1 /*
2 	Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3 	<http://rt2x00.serialmonkey.com>
4 
5 	This program is free software; you can redistribute it and/or modify
6 	it under the terms of the GNU General Public License as published by
7 	the Free Software Foundation; either version 2 of the License, or
8 	(at your option) any later version.
9 
10 	This program is distributed in the hope that it will be useful,
11 	but WITHOUT ANY WARRANTY; without even the implied warranty of
12 	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 	GNU General Public License for more details.
14 
15 	You should have received a copy of the GNU General Public License
16 	along with this program; if not, see <http://www.gnu.org/licenses/>.
17  */
18 
19 /*
20 	Module: rt2400pci
21 	Abstract: rt2400pci device specific routines.
22 	Supported chipsets: RT2460.
23  */
24 
25 #include <linux/delay.h>
26 #include <linux/etherdevice.h>
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/pci.h>
30 #include <linux/eeprom_93cx6.h>
31 #include <linux/slab.h>
32 
33 #include "rt2x00.h"
34 #include "rt2x00mmio.h"
35 #include "rt2x00pci.h"
36 #include "rt2400pci.h"
37 
38 /*
39  * Register access.
40  * All access to the CSR registers will go through the methods
41  * rt2x00mmio_register_read and rt2x00mmio_register_write.
42  * BBP and RF register require indirect register access,
43  * and use the CSR registers BBPCSR and RFCSR to achieve this.
44  * These indirect registers work with busy bits,
45  * and we will try maximal REGISTER_BUSY_COUNT times to access
46  * the register while taking a REGISTER_BUSY_DELAY us delay
47  * between each attempt. When the busy bit is still set at that time,
48  * the access attempt is considered to have failed,
49  * and we will print an error.
50  */
51 #define WAIT_FOR_BBP(__dev, __reg) \
52 	rt2x00mmio_regbusy_read((__dev), BBPCSR, BBPCSR_BUSY, (__reg))
53 #define WAIT_FOR_RF(__dev, __reg) \
54 	rt2x00mmio_regbusy_read((__dev), RFCSR, RFCSR_BUSY, (__reg))
55 
56 static void rt2400pci_bbp_write(struct rt2x00_dev *rt2x00dev,
57 				const unsigned int word, const u8 value)
58 {
59 	u32 reg;
60 
61 	mutex_lock(&rt2x00dev->csr_mutex);
62 
63 	/*
64 	 * Wait until the BBP becomes available, afterwards we
65 	 * can safely write the new data into the register.
66 	 */
67 	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
68 		reg = 0;
69 		rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
70 		rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
71 		rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
72 		rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
73 
74 		rt2x00mmio_register_write(rt2x00dev, BBPCSR, reg);
75 	}
76 
77 	mutex_unlock(&rt2x00dev->csr_mutex);
78 }
79 
80 static void rt2400pci_bbp_read(struct rt2x00_dev *rt2x00dev,
81 			       const unsigned int word, u8 *value)
82 {
83 	u32 reg;
84 
85 	mutex_lock(&rt2x00dev->csr_mutex);
86 
87 	/*
88 	 * Wait until the BBP becomes available, afterwards we
89 	 * can safely write the read request into the register.
90 	 * After the data has been written, we wait until hardware
91 	 * returns the correct value, if at any time the register
92 	 * doesn't become available in time, reg will be 0xffffffff
93 	 * which means we return 0xff to the caller.
94 	 */
95 	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
96 		reg = 0;
97 		rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
98 		rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
99 		rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
100 
101 		rt2x00mmio_register_write(rt2x00dev, BBPCSR, reg);
102 
103 		WAIT_FOR_BBP(rt2x00dev, &reg);
104 	}
105 
106 	*value = rt2x00_get_field32(reg, BBPCSR_VALUE);
107 
108 	mutex_unlock(&rt2x00dev->csr_mutex);
109 }
110 
111 static void rt2400pci_rf_write(struct rt2x00_dev *rt2x00dev,
112 			       const unsigned int word, const u32 value)
113 {
114 	u32 reg;
115 
116 	mutex_lock(&rt2x00dev->csr_mutex);
117 
118 	/*
119 	 * Wait until the RF becomes available, afterwards we
120 	 * can safely write the new data into the register.
121 	 */
122 	if (WAIT_FOR_RF(rt2x00dev, &reg)) {
123 		reg = 0;
124 		rt2x00_set_field32(&reg, RFCSR_VALUE, value);
125 		rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
126 		rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
127 		rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
128 
129 		rt2x00mmio_register_write(rt2x00dev, RFCSR, reg);
130 		rt2x00_rf_write(rt2x00dev, word, value);
131 	}
132 
133 	mutex_unlock(&rt2x00dev->csr_mutex);
134 }
135 
136 static void rt2400pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
137 {
138 	struct rt2x00_dev *rt2x00dev = eeprom->data;
139 	u32 reg;
140 
141 	rt2x00mmio_register_read(rt2x00dev, CSR21, &reg);
142 
143 	eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
144 	eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
145 	eeprom->reg_data_clock =
146 	    !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
147 	eeprom->reg_chip_select =
148 	    !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
149 }
150 
151 static void rt2400pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
152 {
153 	struct rt2x00_dev *rt2x00dev = eeprom->data;
154 	u32 reg = 0;
155 
156 	rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
157 	rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
158 	rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
159 			   !!eeprom->reg_data_clock);
160 	rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
161 			   !!eeprom->reg_chip_select);
162 
163 	rt2x00mmio_register_write(rt2x00dev, CSR21, reg);
164 }
165 
166 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
167 static const struct rt2x00debug rt2400pci_rt2x00debug = {
168 	.owner	= THIS_MODULE,
169 	.csr	= {
170 		.read		= rt2x00mmio_register_read,
171 		.write		= rt2x00mmio_register_write,
172 		.flags		= RT2X00DEBUGFS_OFFSET,
173 		.word_base	= CSR_REG_BASE,
174 		.word_size	= sizeof(u32),
175 		.word_count	= CSR_REG_SIZE / sizeof(u32),
176 	},
177 	.eeprom	= {
178 		.read		= rt2x00_eeprom_read,
179 		.write		= rt2x00_eeprom_write,
180 		.word_base	= EEPROM_BASE,
181 		.word_size	= sizeof(u16),
182 		.word_count	= EEPROM_SIZE / sizeof(u16),
183 	},
184 	.bbp	= {
185 		.read		= rt2400pci_bbp_read,
186 		.write		= rt2400pci_bbp_write,
187 		.word_base	= BBP_BASE,
188 		.word_size	= sizeof(u8),
189 		.word_count	= BBP_SIZE / sizeof(u8),
190 	},
191 	.rf	= {
192 		.read		= rt2x00_rf_read,
193 		.write		= rt2400pci_rf_write,
194 		.word_base	= RF_BASE,
195 		.word_size	= sizeof(u32),
196 		.word_count	= RF_SIZE / sizeof(u32),
197 	},
198 };
199 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
200 
201 static int rt2400pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
202 {
203 	u32 reg;
204 
205 	rt2x00mmio_register_read(rt2x00dev, GPIOCSR, &reg);
206 	return rt2x00_get_field32(reg, GPIOCSR_VAL0);
207 }
208 
209 #ifdef CONFIG_RT2X00_LIB_LEDS
210 static void rt2400pci_brightness_set(struct led_classdev *led_cdev,
211 				     enum led_brightness brightness)
212 {
213 	struct rt2x00_led *led =
214 	    container_of(led_cdev, struct rt2x00_led, led_dev);
215 	unsigned int enabled = brightness != LED_OFF;
216 	u32 reg;
217 
218 	rt2x00mmio_register_read(led->rt2x00dev, LEDCSR, &reg);
219 
220 	if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
221 		rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
222 	else if (led->type == LED_TYPE_ACTIVITY)
223 		rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled);
224 
225 	rt2x00mmio_register_write(led->rt2x00dev, LEDCSR, reg);
226 }
227 
228 static int rt2400pci_blink_set(struct led_classdev *led_cdev,
229 			       unsigned long *delay_on,
230 			       unsigned long *delay_off)
231 {
232 	struct rt2x00_led *led =
233 	    container_of(led_cdev, struct rt2x00_led, led_dev);
234 	u32 reg;
235 
236 	rt2x00mmio_register_read(led->rt2x00dev, LEDCSR, &reg);
237 	rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, *delay_on);
238 	rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, *delay_off);
239 	rt2x00mmio_register_write(led->rt2x00dev, LEDCSR, reg);
240 
241 	return 0;
242 }
243 
244 static void rt2400pci_init_led(struct rt2x00_dev *rt2x00dev,
245 			       struct rt2x00_led *led,
246 			       enum led_type type)
247 {
248 	led->rt2x00dev = rt2x00dev;
249 	led->type = type;
250 	led->led_dev.brightness_set = rt2400pci_brightness_set;
251 	led->led_dev.blink_set = rt2400pci_blink_set;
252 	led->flags = LED_INITIALIZED;
253 }
254 #endif /* CONFIG_RT2X00_LIB_LEDS */
255 
256 /*
257  * Configuration handlers.
258  */
259 static void rt2400pci_config_filter(struct rt2x00_dev *rt2x00dev,
260 				    const unsigned int filter_flags)
261 {
262 	u32 reg;
263 
264 	/*
265 	 * Start configuration steps.
266 	 * Note that the version error will always be dropped
267 	 * since there is no filter for it at this time.
268 	 */
269 	rt2x00mmio_register_read(rt2x00dev, RXCSR0, &reg);
270 	rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
271 			   !(filter_flags & FIF_FCSFAIL));
272 	rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
273 			   !(filter_flags & FIF_PLCPFAIL));
274 	rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
275 			   !(filter_flags & FIF_CONTROL));
276 	rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME, 1);
277 	rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
278 			   !rt2x00dev->intf_ap_count);
279 	rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
280 	rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
281 }
282 
283 static void rt2400pci_config_intf(struct rt2x00_dev *rt2x00dev,
284 				  struct rt2x00_intf *intf,
285 				  struct rt2x00intf_conf *conf,
286 				  const unsigned int flags)
287 {
288 	unsigned int bcn_preload;
289 	u32 reg;
290 
291 	if (flags & CONFIG_UPDATE_TYPE) {
292 		/*
293 		 * Enable beacon config
294 		 */
295 		bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
296 		rt2x00mmio_register_read(rt2x00dev, BCNCSR1, &reg);
297 		rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
298 		rt2x00mmio_register_write(rt2x00dev, BCNCSR1, reg);
299 
300 		/*
301 		 * Enable synchronisation.
302 		 */
303 		rt2x00mmio_register_read(rt2x00dev, CSR14, &reg);
304 		rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
305 		rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
306 	}
307 
308 	if (flags & CONFIG_UPDATE_MAC)
309 		rt2x00mmio_register_multiwrite(rt2x00dev, CSR3,
310 					       conf->mac, sizeof(conf->mac));
311 
312 	if (flags & CONFIG_UPDATE_BSSID)
313 		rt2x00mmio_register_multiwrite(rt2x00dev, CSR5,
314 					       conf->bssid,
315 					       sizeof(conf->bssid));
316 }
317 
318 static void rt2400pci_config_erp(struct rt2x00_dev *rt2x00dev,
319 				 struct rt2x00lib_erp *erp,
320 				 u32 changed)
321 {
322 	int preamble_mask;
323 	u32 reg;
324 
325 	/*
326 	 * When short preamble is enabled, we should set bit 0x08
327 	 */
328 	if (changed & BSS_CHANGED_ERP_PREAMBLE) {
329 		preamble_mask = erp->short_preamble << 3;
330 
331 		rt2x00mmio_register_read(rt2x00dev, TXCSR1, &reg);
332 		rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, 0x1ff);
333 		rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME, 0x13a);
334 		rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
335 		rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
336 		rt2x00mmio_register_write(rt2x00dev, TXCSR1, reg);
337 
338 		rt2x00mmio_register_read(rt2x00dev, ARCSR2, &reg);
339 		rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00);
340 		rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
341 		rt2x00_set_field32(&reg, ARCSR2_LENGTH,
342 				   GET_DURATION(ACK_SIZE, 10));
343 		rt2x00mmio_register_write(rt2x00dev, ARCSR2, reg);
344 
345 		rt2x00mmio_register_read(rt2x00dev, ARCSR3, &reg);
346 		rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
347 		rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
348 		rt2x00_set_field32(&reg, ARCSR2_LENGTH,
349 				   GET_DURATION(ACK_SIZE, 20));
350 		rt2x00mmio_register_write(rt2x00dev, ARCSR3, reg);
351 
352 		rt2x00mmio_register_read(rt2x00dev, ARCSR4, &reg);
353 		rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
354 		rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
355 		rt2x00_set_field32(&reg, ARCSR2_LENGTH,
356 				   GET_DURATION(ACK_SIZE, 55));
357 		rt2x00mmio_register_write(rt2x00dev, ARCSR4, reg);
358 
359 		rt2x00mmio_register_read(rt2x00dev, ARCSR5, &reg);
360 		rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
361 		rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
362 		rt2x00_set_field32(&reg, ARCSR2_LENGTH,
363 				   GET_DURATION(ACK_SIZE, 110));
364 		rt2x00mmio_register_write(rt2x00dev, ARCSR5, reg);
365 	}
366 
367 	if (changed & BSS_CHANGED_BASIC_RATES)
368 		rt2x00mmio_register_write(rt2x00dev, ARCSR1, erp->basic_rates);
369 
370 	if (changed & BSS_CHANGED_ERP_SLOT) {
371 		rt2x00mmio_register_read(rt2x00dev, CSR11, &reg);
372 		rt2x00_set_field32(&reg, CSR11_SLOT_TIME, erp->slot_time);
373 		rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
374 
375 		rt2x00mmio_register_read(rt2x00dev, CSR18, &reg);
376 		rt2x00_set_field32(&reg, CSR18_SIFS, erp->sifs);
377 		rt2x00_set_field32(&reg, CSR18_PIFS, erp->pifs);
378 		rt2x00mmio_register_write(rt2x00dev, CSR18, reg);
379 
380 		rt2x00mmio_register_read(rt2x00dev, CSR19, &reg);
381 		rt2x00_set_field32(&reg, CSR19_DIFS, erp->difs);
382 		rt2x00_set_field32(&reg, CSR19_EIFS, erp->eifs);
383 		rt2x00mmio_register_write(rt2x00dev, CSR19, reg);
384 	}
385 
386 	if (changed & BSS_CHANGED_BEACON_INT) {
387 		rt2x00mmio_register_read(rt2x00dev, CSR12, &reg);
388 		rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
389 				   erp->beacon_int * 16);
390 		rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
391 				   erp->beacon_int * 16);
392 		rt2x00mmio_register_write(rt2x00dev, CSR12, reg);
393 	}
394 }
395 
396 static void rt2400pci_config_ant(struct rt2x00_dev *rt2x00dev,
397 				 struct antenna_setup *ant)
398 {
399 	u8 r1;
400 	u8 r4;
401 
402 	/*
403 	 * We should never come here because rt2x00lib is supposed
404 	 * to catch this and send us the correct antenna explicitely.
405 	 */
406 	BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
407 	       ant->tx == ANTENNA_SW_DIVERSITY);
408 
409 	rt2400pci_bbp_read(rt2x00dev, 4, &r4);
410 	rt2400pci_bbp_read(rt2x00dev, 1, &r1);
411 
412 	/*
413 	 * Configure the TX antenna.
414 	 */
415 	switch (ant->tx) {
416 	case ANTENNA_HW_DIVERSITY:
417 		rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 1);
418 		break;
419 	case ANTENNA_A:
420 		rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 0);
421 		break;
422 	case ANTENNA_B:
423 	default:
424 		rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 2);
425 		break;
426 	}
427 
428 	/*
429 	 * Configure the RX antenna.
430 	 */
431 	switch (ant->rx) {
432 	case ANTENNA_HW_DIVERSITY:
433 		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 1);
434 		break;
435 	case ANTENNA_A:
436 		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 0);
437 		break;
438 	case ANTENNA_B:
439 	default:
440 		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 2);
441 		break;
442 	}
443 
444 	rt2400pci_bbp_write(rt2x00dev, 4, r4);
445 	rt2400pci_bbp_write(rt2x00dev, 1, r1);
446 }
447 
448 static void rt2400pci_config_channel(struct rt2x00_dev *rt2x00dev,
449 				     struct rf_channel *rf)
450 {
451 	/*
452 	 * Switch on tuning bits.
453 	 */
454 	rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
455 	rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
456 
457 	rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
458 	rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
459 	rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
460 
461 	/*
462 	 * RF2420 chipset don't need any additional actions.
463 	 */
464 	if (rt2x00_rf(rt2x00dev, RF2420))
465 		return;
466 
467 	/*
468 	 * For the RT2421 chipsets we need to write an invalid
469 	 * reference clock rate to activate auto_tune.
470 	 * After that we set the value back to the correct channel.
471 	 */
472 	rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
473 	rt2400pci_rf_write(rt2x00dev, 2, 0x000c2a32);
474 	rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
475 
476 	msleep(1);
477 
478 	rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
479 	rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
480 	rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
481 
482 	msleep(1);
483 
484 	/*
485 	 * Switch off tuning bits.
486 	 */
487 	rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
488 	rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
489 
490 	rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
491 	rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
492 
493 	/*
494 	 * Clear false CRC during channel switch.
495 	 */
496 	rt2x00mmio_register_read(rt2x00dev, CNT0, &rf->rf1);
497 }
498 
499 static void rt2400pci_config_txpower(struct rt2x00_dev *rt2x00dev, int txpower)
500 {
501 	rt2400pci_bbp_write(rt2x00dev, 3, TXPOWER_TO_DEV(txpower));
502 }
503 
504 static void rt2400pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
505 					 struct rt2x00lib_conf *libconf)
506 {
507 	u32 reg;
508 
509 	rt2x00mmio_register_read(rt2x00dev, CSR11, &reg);
510 	rt2x00_set_field32(&reg, CSR11_LONG_RETRY,
511 			   libconf->conf->long_frame_max_tx_count);
512 	rt2x00_set_field32(&reg, CSR11_SHORT_RETRY,
513 			   libconf->conf->short_frame_max_tx_count);
514 	rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
515 }
516 
517 static void rt2400pci_config_ps(struct rt2x00_dev *rt2x00dev,
518 				struct rt2x00lib_conf *libconf)
519 {
520 	enum dev_state state =
521 	    (libconf->conf->flags & IEEE80211_CONF_PS) ?
522 		STATE_SLEEP : STATE_AWAKE;
523 	u32 reg;
524 
525 	if (state == STATE_SLEEP) {
526 		rt2x00mmio_register_read(rt2x00dev, CSR20, &reg);
527 		rt2x00_set_field32(&reg, CSR20_DELAY_AFTER_TBCN,
528 				   (rt2x00dev->beacon_int - 20) * 16);
529 		rt2x00_set_field32(&reg, CSR20_TBCN_BEFORE_WAKEUP,
530 				   libconf->conf->listen_interval - 1);
531 
532 		/* We must first disable autowake before it can be enabled */
533 		rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
534 		rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
535 
536 		rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 1);
537 		rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
538 	} else {
539 		rt2x00mmio_register_read(rt2x00dev, CSR20, &reg);
540 		rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
541 		rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
542 	}
543 
544 	rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
545 }
546 
547 static void rt2400pci_config(struct rt2x00_dev *rt2x00dev,
548 			     struct rt2x00lib_conf *libconf,
549 			     const unsigned int flags)
550 {
551 	if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
552 		rt2400pci_config_channel(rt2x00dev, &libconf->rf);
553 	if (flags & IEEE80211_CONF_CHANGE_POWER)
554 		rt2400pci_config_txpower(rt2x00dev,
555 					 libconf->conf->power_level);
556 	if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
557 		rt2400pci_config_retry_limit(rt2x00dev, libconf);
558 	if (flags & IEEE80211_CONF_CHANGE_PS)
559 		rt2400pci_config_ps(rt2x00dev, libconf);
560 }
561 
562 static void rt2400pci_config_cw(struct rt2x00_dev *rt2x00dev,
563 				const int cw_min, const int cw_max)
564 {
565 	u32 reg;
566 
567 	rt2x00mmio_register_read(rt2x00dev, CSR11, &reg);
568 	rt2x00_set_field32(&reg, CSR11_CWMIN, cw_min);
569 	rt2x00_set_field32(&reg, CSR11_CWMAX, cw_max);
570 	rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
571 }
572 
573 /*
574  * Link tuning
575  */
576 static void rt2400pci_link_stats(struct rt2x00_dev *rt2x00dev,
577 				 struct link_qual *qual)
578 {
579 	u32 reg;
580 	u8 bbp;
581 
582 	/*
583 	 * Update FCS error count from register.
584 	 */
585 	rt2x00mmio_register_read(rt2x00dev, CNT0, &reg);
586 	qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
587 
588 	/*
589 	 * Update False CCA count from register.
590 	 */
591 	rt2400pci_bbp_read(rt2x00dev, 39, &bbp);
592 	qual->false_cca = bbp;
593 }
594 
595 static inline void rt2400pci_set_vgc(struct rt2x00_dev *rt2x00dev,
596 				     struct link_qual *qual, u8 vgc_level)
597 {
598 	if (qual->vgc_level_reg != vgc_level) {
599 		rt2400pci_bbp_write(rt2x00dev, 13, vgc_level);
600 		qual->vgc_level = vgc_level;
601 		qual->vgc_level_reg = vgc_level;
602 	}
603 }
604 
605 static void rt2400pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
606 				  struct link_qual *qual)
607 {
608 	rt2400pci_set_vgc(rt2x00dev, qual, 0x08);
609 }
610 
611 static void rt2400pci_link_tuner(struct rt2x00_dev *rt2x00dev,
612 				 struct link_qual *qual, const u32 count)
613 {
614 	/*
615 	 * The link tuner should not run longer then 60 seconds,
616 	 * and should run once every 2 seconds.
617 	 */
618 	if (count > 60 || !(count & 1))
619 		return;
620 
621 	/*
622 	 * Base r13 link tuning on the false cca count.
623 	 */
624 	if ((qual->false_cca > 512) && (qual->vgc_level < 0x20))
625 		rt2400pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level);
626 	else if ((qual->false_cca < 100) && (qual->vgc_level > 0x08))
627 		rt2400pci_set_vgc(rt2x00dev, qual, --qual->vgc_level);
628 }
629 
630 /*
631  * Queue handlers.
632  */
633 static void rt2400pci_start_queue(struct data_queue *queue)
634 {
635 	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
636 	u32 reg;
637 
638 	switch (queue->qid) {
639 	case QID_RX:
640 		rt2x00mmio_register_read(rt2x00dev, RXCSR0, &reg);
641 		rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX, 0);
642 		rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
643 		break;
644 	case QID_BEACON:
645 		rt2x00mmio_register_read(rt2x00dev, CSR14, &reg);
646 		rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
647 		rt2x00_set_field32(&reg, CSR14_TBCN, 1);
648 		rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
649 		rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
650 		break;
651 	default:
652 		break;
653 	}
654 }
655 
656 static void rt2400pci_kick_queue(struct data_queue *queue)
657 {
658 	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
659 	u32 reg;
660 
661 	switch (queue->qid) {
662 	case QID_AC_VO:
663 		rt2x00mmio_register_read(rt2x00dev, TXCSR0, &reg);
664 		rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, 1);
665 		rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
666 		break;
667 	case QID_AC_VI:
668 		rt2x00mmio_register_read(rt2x00dev, TXCSR0, &reg);
669 		rt2x00_set_field32(&reg, TXCSR0_KICK_TX, 1);
670 		rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
671 		break;
672 	case QID_ATIM:
673 		rt2x00mmio_register_read(rt2x00dev, TXCSR0, &reg);
674 		rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, 1);
675 		rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
676 		break;
677 	default:
678 		break;
679 	}
680 }
681 
682 static void rt2400pci_stop_queue(struct data_queue *queue)
683 {
684 	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
685 	u32 reg;
686 
687 	switch (queue->qid) {
688 	case QID_AC_VO:
689 	case QID_AC_VI:
690 	case QID_ATIM:
691 		rt2x00mmio_register_read(rt2x00dev, TXCSR0, &reg);
692 		rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
693 		rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
694 		break;
695 	case QID_RX:
696 		rt2x00mmio_register_read(rt2x00dev, RXCSR0, &reg);
697 		rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX, 1);
698 		rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
699 		break;
700 	case QID_BEACON:
701 		rt2x00mmio_register_read(rt2x00dev, CSR14, &reg);
702 		rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
703 		rt2x00_set_field32(&reg, CSR14_TBCN, 0);
704 		rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
705 		rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
706 
707 		/*
708 		 * Wait for possibly running tbtt tasklets.
709 		 */
710 		tasklet_kill(&rt2x00dev->tbtt_tasklet);
711 		break;
712 	default:
713 		break;
714 	}
715 }
716 
717 /*
718  * Initialization functions.
719  */
720 static bool rt2400pci_get_entry_state(struct queue_entry *entry)
721 {
722 	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
723 	u32 word;
724 
725 	if (entry->queue->qid == QID_RX) {
726 		rt2x00_desc_read(entry_priv->desc, 0, &word);
727 
728 		return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
729 	} else {
730 		rt2x00_desc_read(entry_priv->desc, 0, &word);
731 
732 		return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
733 		        rt2x00_get_field32(word, TXD_W0_VALID));
734 	}
735 }
736 
737 static void rt2400pci_clear_entry(struct queue_entry *entry)
738 {
739 	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
740 	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
741 	u32 word;
742 
743 	if (entry->queue->qid == QID_RX) {
744 		rt2x00_desc_read(entry_priv->desc, 2, &word);
745 		rt2x00_set_field32(&word, RXD_W2_BUFFER_LENGTH, entry->skb->len);
746 		rt2x00_desc_write(entry_priv->desc, 2, word);
747 
748 		rt2x00_desc_read(entry_priv->desc, 1, &word);
749 		rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
750 		rt2x00_desc_write(entry_priv->desc, 1, word);
751 
752 		rt2x00_desc_read(entry_priv->desc, 0, &word);
753 		rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
754 		rt2x00_desc_write(entry_priv->desc, 0, word);
755 	} else {
756 		rt2x00_desc_read(entry_priv->desc, 0, &word);
757 		rt2x00_set_field32(&word, TXD_W0_VALID, 0);
758 		rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
759 		rt2x00_desc_write(entry_priv->desc, 0, word);
760 	}
761 }
762 
763 static int rt2400pci_init_queues(struct rt2x00_dev *rt2x00dev)
764 {
765 	struct queue_entry_priv_mmio *entry_priv;
766 	u32 reg;
767 
768 	/*
769 	 * Initialize registers.
770 	 */
771 	rt2x00mmio_register_read(rt2x00dev, TXCSR2, &reg);
772 	rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
773 	rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
774 	rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->atim->limit);
775 	rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
776 	rt2x00mmio_register_write(rt2x00dev, TXCSR2, reg);
777 
778 	entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
779 	rt2x00mmio_register_read(rt2x00dev, TXCSR3, &reg);
780 	rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
781 			   entry_priv->desc_dma);
782 	rt2x00mmio_register_write(rt2x00dev, TXCSR3, reg);
783 
784 	entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
785 	rt2x00mmio_register_read(rt2x00dev, TXCSR5, &reg);
786 	rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
787 			   entry_priv->desc_dma);
788 	rt2x00mmio_register_write(rt2x00dev, TXCSR5, reg);
789 
790 	entry_priv = rt2x00dev->atim->entries[0].priv_data;
791 	rt2x00mmio_register_read(rt2x00dev, TXCSR4, &reg);
792 	rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
793 			   entry_priv->desc_dma);
794 	rt2x00mmio_register_write(rt2x00dev, TXCSR4, reg);
795 
796 	entry_priv = rt2x00dev->bcn->entries[0].priv_data;
797 	rt2x00mmio_register_read(rt2x00dev, TXCSR6, &reg);
798 	rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
799 			   entry_priv->desc_dma);
800 	rt2x00mmio_register_write(rt2x00dev, TXCSR6, reg);
801 
802 	rt2x00mmio_register_read(rt2x00dev, RXCSR1, &reg);
803 	rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
804 	rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
805 	rt2x00mmio_register_write(rt2x00dev, RXCSR1, reg);
806 
807 	entry_priv = rt2x00dev->rx->entries[0].priv_data;
808 	rt2x00mmio_register_read(rt2x00dev, RXCSR2, &reg);
809 	rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
810 			   entry_priv->desc_dma);
811 	rt2x00mmio_register_write(rt2x00dev, RXCSR2, reg);
812 
813 	return 0;
814 }
815 
816 static int rt2400pci_init_registers(struct rt2x00_dev *rt2x00dev)
817 {
818 	u32 reg;
819 
820 	rt2x00mmio_register_write(rt2x00dev, PSCSR0, 0x00020002);
821 	rt2x00mmio_register_write(rt2x00dev, PSCSR1, 0x00000002);
822 	rt2x00mmio_register_write(rt2x00dev, PSCSR2, 0x00023f20);
823 	rt2x00mmio_register_write(rt2x00dev, PSCSR3, 0x00000002);
824 
825 	rt2x00mmio_register_read(rt2x00dev, TIMECSR, &reg);
826 	rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
827 	rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
828 	rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
829 	rt2x00mmio_register_write(rt2x00dev, TIMECSR, reg);
830 
831 	rt2x00mmio_register_read(rt2x00dev, CSR9, &reg);
832 	rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
833 			   (rt2x00dev->rx->data_size / 128));
834 	rt2x00mmio_register_write(rt2x00dev, CSR9, reg);
835 
836 	rt2x00mmio_register_read(rt2x00dev, CSR14, &reg);
837 	rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
838 	rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 0);
839 	rt2x00_set_field32(&reg, CSR14_TBCN, 0);
840 	rt2x00_set_field32(&reg, CSR14_TCFP, 0);
841 	rt2x00_set_field32(&reg, CSR14_TATIMW, 0);
842 	rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
843 	rt2x00_set_field32(&reg, CSR14_CFP_COUNT_PRELOAD, 0);
844 	rt2x00_set_field32(&reg, CSR14_TBCM_PRELOAD, 0);
845 	rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
846 
847 	rt2x00mmio_register_write(rt2x00dev, CNT3, 0x3f080000);
848 
849 	rt2x00mmio_register_read(rt2x00dev, ARCSR0, &reg);
850 	rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA0, 133);
851 	rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID0, 134);
852 	rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA1, 136);
853 	rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID1, 135);
854 	rt2x00mmio_register_write(rt2x00dev, ARCSR0, reg);
855 
856 	rt2x00mmio_register_read(rt2x00dev, RXCSR3, &reg);
857 	rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 3); /* Tx power.*/
858 	rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
859 	rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 32); /* Signal */
860 	rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
861 	rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 36); /* Rssi */
862 	rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
863 	rt2x00mmio_register_write(rt2x00dev, RXCSR3, reg);
864 
865 	rt2x00mmio_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
866 
867 	if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
868 		return -EBUSY;
869 
870 	rt2x00mmio_register_write(rt2x00dev, MACCSR0, 0x00217223);
871 	rt2x00mmio_register_write(rt2x00dev, MACCSR1, 0x00235518);
872 
873 	rt2x00mmio_register_read(rt2x00dev, MACCSR2, &reg);
874 	rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
875 	rt2x00mmio_register_write(rt2x00dev, MACCSR2, reg);
876 
877 	rt2x00mmio_register_read(rt2x00dev, RALINKCSR, &reg);
878 	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
879 	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 154);
880 	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
881 	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 154);
882 	rt2x00mmio_register_write(rt2x00dev, RALINKCSR, reg);
883 
884 	rt2x00mmio_register_read(rt2x00dev, CSR1, &reg);
885 	rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
886 	rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
887 	rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
888 	rt2x00mmio_register_write(rt2x00dev, CSR1, reg);
889 
890 	rt2x00mmio_register_read(rt2x00dev, CSR1, &reg);
891 	rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
892 	rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
893 	rt2x00mmio_register_write(rt2x00dev, CSR1, reg);
894 
895 	/*
896 	 * We must clear the FCS and FIFO error count.
897 	 * These registers are cleared on read,
898 	 * so we may pass a useless variable to store the value.
899 	 */
900 	rt2x00mmio_register_read(rt2x00dev, CNT0, &reg);
901 	rt2x00mmio_register_read(rt2x00dev, CNT4, &reg);
902 
903 	return 0;
904 }
905 
906 static int rt2400pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
907 {
908 	unsigned int i;
909 	u8 value;
910 
911 	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
912 		rt2400pci_bbp_read(rt2x00dev, 0, &value);
913 		if ((value != 0xff) && (value != 0x00))
914 			return 0;
915 		udelay(REGISTER_BUSY_DELAY);
916 	}
917 
918 	rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n");
919 	return -EACCES;
920 }
921 
922 static int rt2400pci_init_bbp(struct rt2x00_dev *rt2x00dev)
923 {
924 	unsigned int i;
925 	u16 eeprom;
926 	u8 reg_id;
927 	u8 value;
928 
929 	if (unlikely(rt2400pci_wait_bbp_ready(rt2x00dev)))
930 		return -EACCES;
931 
932 	rt2400pci_bbp_write(rt2x00dev, 1, 0x00);
933 	rt2400pci_bbp_write(rt2x00dev, 3, 0x27);
934 	rt2400pci_bbp_write(rt2x00dev, 4, 0x08);
935 	rt2400pci_bbp_write(rt2x00dev, 10, 0x0f);
936 	rt2400pci_bbp_write(rt2x00dev, 15, 0x72);
937 	rt2400pci_bbp_write(rt2x00dev, 16, 0x74);
938 	rt2400pci_bbp_write(rt2x00dev, 17, 0x20);
939 	rt2400pci_bbp_write(rt2x00dev, 18, 0x72);
940 	rt2400pci_bbp_write(rt2x00dev, 19, 0x0b);
941 	rt2400pci_bbp_write(rt2x00dev, 20, 0x00);
942 	rt2400pci_bbp_write(rt2x00dev, 28, 0x11);
943 	rt2400pci_bbp_write(rt2x00dev, 29, 0x04);
944 	rt2400pci_bbp_write(rt2x00dev, 30, 0x21);
945 	rt2400pci_bbp_write(rt2x00dev, 31, 0x00);
946 
947 	for (i = 0; i < EEPROM_BBP_SIZE; i++) {
948 		rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
949 
950 		if (eeprom != 0xffff && eeprom != 0x0000) {
951 			reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
952 			value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
953 			rt2400pci_bbp_write(rt2x00dev, reg_id, value);
954 		}
955 	}
956 
957 	return 0;
958 }
959 
960 /*
961  * Device state switch handlers.
962  */
963 static void rt2400pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
964 				 enum dev_state state)
965 {
966 	int mask = (state == STATE_RADIO_IRQ_OFF);
967 	u32 reg;
968 	unsigned long flags;
969 
970 	/*
971 	 * When interrupts are being enabled, the interrupt registers
972 	 * should clear the register to assure a clean state.
973 	 */
974 	if (state == STATE_RADIO_IRQ_ON) {
975 		rt2x00mmio_register_read(rt2x00dev, CSR7, &reg);
976 		rt2x00mmio_register_write(rt2x00dev, CSR7, reg);
977 	}
978 
979 	/*
980 	 * Only toggle the interrupts bits we are going to use.
981 	 * Non-checked interrupt bits are disabled by default.
982 	 */
983 	spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
984 
985 	rt2x00mmio_register_read(rt2x00dev, CSR8, &reg);
986 	rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
987 	rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
988 	rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
989 	rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
990 	rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
991 	rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
992 
993 	spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
994 
995 	if (state == STATE_RADIO_IRQ_OFF) {
996 		/*
997 		 * Ensure that all tasklets are finished before
998 		 * disabling the interrupts.
999 		 */
1000 		tasklet_kill(&rt2x00dev->txstatus_tasklet);
1001 		tasklet_kill(&rt2x00dev->rxdone_tasklet);
1002 		tasklet_kill(&rt2x00dev->tbtt_tasklet);
1003 	}
1004 }
1005 
1006 static int rt2400pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1007 {
1008 	/*
1009 	 * Initialize all registers.
1010 	 */
1011 	if (unlikely(rt2400pci_init_queues(rt2x00dev) ||
1012 		     rt2400pci_init_registers(rt2x00dev) ||
1013 		     rt2400pci_init_bbp(rt2x00dev)))
1014 		return -EIO;
1015 
1016 	return 0;
1017 }
1018 
1019 static void rt2400pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1020 {
1021 	/*
1022 	 * Disable power
1023 	 */
1024 	rt2x00mmio_register_write(rt2x00dev, PWRCSR0, 0);
1025 }
1026 
1027 static int rt2400pci_set_state(struct rt2x00_dev *rt2x00dev,
1028 			       enum dev_state state)
1029 {
1030 	u32 reg, reg2;
1031 	unsigned int i;
1032 	char put_to_sleep;
1033 	char bbp_state;
1034 	char rf_state;
1035 
1036 	put_to_sleep = (state != STATE_AWAKE);
1037 
1038 	rt2x00mmio_register_read(rt2x00dev, PWRCSR1, &reg);
1039 	rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
1040 	rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
1041 	rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
1042 	rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
1043 	rt2x00mmio_register_write(rt2x00dev, PWRCSR1, reg);
1044 
1045 	/*
1046 	 * Device is not guaranteed to be in the requested state yet.
1047 	 * We must wait until the register indicates that the
1048 	 * device has entered the correct state.
1049 	 */
1050 	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1051 		rt2x00mmio_register_read(rt2x00dev, PWRCSR1, &reg2);
1052 		bbp_state = rt2x00_get_field32(reg2, PWRCSR1_BBP_CURR_STATE);
1053 		rf_state = rt2x00_get_field32(reg2, PWRCSR1_RF_CURR_STATE);
1054 		if (bbp_state == state && rf_state == state)
1055 			return 0;
1056 		rt2x00mmio_register_write(rt2x00dev, PWRCSR1, reg);
1057 		msleep(10);
1058 	}
1059 
1060 	return -EBUSY;
1061 }
1062 
1063 static int rt2400pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1064 				      enum dev_state state)
1065 {
1066 	int retval = 0;
1067 
1068 	switch (state) {
1069 	case STATE_RADIO_ON:
1070 		retval = rt2400pci_enable_radio(rt2x00dev);
1071 		break;
1072 	case STATE_RADIO_OFF:
1073 		rt2400pci_disable_radio(rt2x00dev);
1074 		break;
1075 	case STATE_RADIO_IRQ_ON:
1076 	case STATE_RADIO_IRQ_OFF:
1077 		rt2400pci_toggle_irq(rt2x00dev, state);
1078 		break;
1079 	case STATE_DEEP_SLEEP:
1080 	case STATE_SLEEP:
1081 	case STATE_STANDBY:
1082 	case STATE_AWAKE:
1083 		retval = rt2400pci_set_state(rt2x00dev, state);
1084 		break;
1085 	default:
1086 		retval = -ENOTSUPP;
1087 		break;
1088 	}
1089 
1090 	if (unlikely(retval))
1091 		rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n",
1092 			   state, retval);
1093 
1094 	return retval;
1095 }
1096 
1097 /*
1098  * TX descriptor initialization
1099  */
1100 static void rt2400pci_write_tx_desc(struct queue_entry *entry,
1101 				    struct txentry_desc *txdesc)
1102 {
1103 	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1104 	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1105 	__le32 *txd = entry_priv->desc;
1106 	u32 word;
1107 
1108 	/*
1109 	 * Start writing the descriptor words.
1110 	 */
1111 	rt2x00_desc_read(txd, 1, &word);
1112 	rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
1113 	rt2x00_desc_write(txd, 1, word);
1114 
1115 	rt2x00_desc_read(txd, 2, &word);
1116 	rt2x00_set_field32(&word, TXD_W2_BUFFER_LENGTH, txdesc->length);
1117 	rt2x00_set_field32(&word, TXD_W2_DATABYTE_COUNT, txdesc->length);
1118 	rt2x00_desc_write(txd, 2, word);
1119 
1120 	rt2x00_desc_read(txd, 3, &word);
1121 	rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->u.plcp.signal);
1122 	rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_REGNUM, 5);
1123 	rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_BUSY, 1);
1124 	rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->u.plcp.service);
1125 	rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_REGNUM, 6);
1126 	rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_BUSY, 1);
1127 	rt2x00_desc_write(txd, 3, word);
1128 
1129 	rt2x00_desc_read(txd, 4, &word);
1130 	rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_LOW,
1131 			   txdesc->u.plcp.length_low);
1132 	rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_REGNUM, 8);
1133 	rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_BUSY, 1);
1134 	rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_HIGH,
1135 			   txdesc->u.plcp.length_high);
1136 	rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_REGNUM, 7);
1137 	rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_BUSY, 1);
1138 	rt2x00_desc_write(txd, 4, word);
1139 
1140 	/*
1141 	 * Writing TXD word 0 must the last to prevent a race condition with
1142 	 * the device, whereby the device may take hold of the TXD before we
1143 	 * finished updating it.
1144 	 */
1145 	rt2x00_desc_read(txd, 0, &word);
1146 	rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1147 	rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1148 	rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1149 			   test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1150 	rt2x00_set_field32(&word, TXD_W0_ACK,
1151 			   test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1152 	rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1153 			   test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1154 	rt2x00_set_field32(&word, TXD_W0_RTS,
1155 			   test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
1156 	rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
1157 	rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1158 			   test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1159 	rt2x00_desc_write(txd, 0, word);
1160 
1161 	/*
1162 	 * Register descriptor details in skb frame descriptor.
1163 	 */
1164 	skbdesc->desc = txd;
1165 	skbdesc->desc_len = TXD_DESC_SIZE;
1166 }
1167 
1168 /*
1169  * TX data initialization
1170  */
1171 static void rt2400pci_write_beacon(struct queue_entry *entry,
1172 				   struct txentry_desc *txdesc)
1173 {
1174 	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1175 	u32 reg;
1176 
1177 	/*
1178 	 * Disable beaconing while we are reloading the beacon data,
1179 	 * otherwise we might be sending out invalid data.
1180 	 */
1181 	rt2x00mmio_register_read(rt2x00dev, CSR14, &reg);
1182 	rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
1183 	rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
1184 
1185 	if (rt2x00queue_map_txskb(entry)) {
1186 		rt2x00_err(rt2x00dev, "Fail to map beacon, aborting\n");
1187 		goto out;
1188 	}
1189 	/*
1190 	 * Enable beaconing again.
1191 	 */
1192 	rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
1193 	/*
1194 	 * Write the TX descriptor for the beacon.
1195 	 */
1196 	rt2400pci_write_tx_desc(entry, txdesc);
1197 
1198 	/*
1199 	 * Dump beacon to userspace through debugfs.
1200 	 */
1201 	rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
1202 out:
1203 	/*
1204 	 * Enable beaconing again.
1205 	 */
1206 	rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
1207 	rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
1208 }
1209 
1210 /*
1211  * RX control handlers
1212  */
1213 static void rt2400pci_fill_rxdone(struct queue_entry *entry,
1214 				  struct rxdone_entry_desc *rxdesc)
1215 {
1216 	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1217 	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1218 	u32 word0;
1219 	u32 word2;
1220 	u32 word3;
1221 	u32 word4;
1222 	u64 tsf;
1223 	u32 rx_low;
1224 	u32 rx_high;
1225 
1226 	rt2x00_desc_read(entry_priv->desc, 0, &word0);
1227 	rt2x00_desc_read(entry_priv->desc, 2, &word2);
1228 	rt2x00_desc_read(entry_priv->desc, 3, &word3);
1229 	rt2x00_desc_read(entry_priv->desc, 4, &word4);
1230 
1231 	if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1232 		rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1233 	if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1234 		rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1235 
1236 	/*
1237 	 * We only get the lower 32bits from the timestamp,
1238 	 * to get the full 64bits we must complement it with
1239 	 * the timestamp from get_tsf().
1240 	 * Note that when a wraparound of the lower 32bits
1241 	 * has occurred between the frame arrival and the get_tsf()
1242 	 * call, we must decrease the higher 32bits with 1 to get
1243 	 * to correct value.
1244 	 */
1245 	tsf = rt2x00dev->ops->hw->get_tsf(rt2x00dev->hw, NULL);
1246 	rx_low = rt2x00_get_field32(word4, RXD_W4_RX_END_TIME);
1247 	rx_high = upper_32_bits(tsf);
1248 
1249 	if ((u32)tsf <= rx_low)
1250 		rx_high--;
1251 
1252 	/*
1253 	 * Obtain the status about this packet.
1254 	 * The signal is the PLCP value, and needs to be stripped
1255 	 * of the preamble bit (0x08).
1256 	 */
1257 	rxdesc->timestamp = ((u64)rx_high << 32) | rx_low;
1258 	rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL) & ~0x08;
1259 	rxdesc->rssi = rt2x00_get_field32(word3, RXD_W3_RSSI) -
1260 	    entry->queue->rt2x00dev->rssi_offset;
1261 	rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1262 
1263 	rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1264 	if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1265 		rxdesc->dev_flags |= RXDONE_MY_BSS;
1266 }
1267 
1268 /*
1269  * Interrupt functions.
1270  */
1271 static void rt2400pci_txdone(struct rt2x00_dev *rt2x00dev,
1272 			     const enum data_queue_qid queue_idx)
1273 {
1274 	struct data_queue *queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx);
1275 	struct queue_entry_priv_mmio *entry_priv;
1276 	struct queue_entry *entry;
1277 	struct txdone_entry_desc txdesc;
1278 	u32 word;
1279 
1280 	while (!rt2x00queue_empty(queue)) {
1281 		entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
1282 		entry_priv = entry->priv_data;
1283 		rt2x00_desc_read(entry_priv->desc, 0, &word);
1284 
1285 		if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1286 		    !rt2x00_get_field32(word, TXD_W0_VALID))
1287 			break;
1288 
1289 		/*
1290 		 * Obtain the status about this packet.
1291 		 */
1292 		txdesc.flags = 0;
1293 		switch (rt2x00_get_field32(word, TXD_W0_RESULT)) {
1294 		case 0: /* Success */
1295 		case 1: /* Success with retry */
1296 			__set_bit(TXDONE_SUCCESS, &txdesc.flags);
1297 			break;
1298 		case 2: /* Failure, excessive retries */
1299 			__set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
1300 			/* Don't break, this is a failed frame! */
1301 		default: /* Failure */
1302 			__set_bit(TXDONE_FAILURE, &txdesc.flags);
1303 		}
1304 		txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
1305 
1306 		rt2x00lib_txdone(entry, &txdesc);
1307 	}
1308 }
1309 
1310 static inline void rt2400pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
1311 					      struct rt2x00_field32 irq_field)
1312 {
1313 	u32 reg;
1314 
1315 	/*
1316 	 * Enable a single interrupt. The interrupt mask register
1317 	 * access needs locking.
1318 	 */
1319 	spin_lock_irq(&rt2x00dev->irqmask_lock);
1320 
1321 	rt2x00mmio_register_read(rt2x00dev, CSR8, &reg);
1322 	rt2x00_set_field32(&reg, irq_field, 0);
1323 	rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
1324 
1325 	spin_unlock_irq(&rt2x00dev->irqmask_lock);
1326 }
1327 
1328 static void rt2400pci_txstatus_tasklet(unsigned long data)
1329 {
1330 	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
1331 	u32 reg;
1332 
1333 	/*
1334 	 * Handle all tx queues.
1335 	 */
1336 	rt2400pci_txdone(rt2x00dev, QID_ATIM);
1337 	rt2400pci_txdone(rt2x00dev, QID_AC_VO);
1338 	rt2400pci_txdone(rt2x00dev, QID_AC_VI);
1339 
1340 	/*
1341 	 * Enable all TXDONE interrupts again.
1342 	 */
1343 	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) {
1344 		spin_lock_irq(&rt2x00dev->irqmask_lock);
1345 
1346 		rt2x00mmio_register_read(rt2x00dev, CSR8, &reg);
1347 		rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, 0);
1348 		rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, 0);
1349 		rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, 0);
1350 		rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
1351 
1352 		spin_unlock_irq(&rt2x00dev->irqmask_lock);
1353 	}
1354 }
1355 
1356 static void rt2400pci_tbtt_tasklet(unsigned long data)
1357 {
1358 	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
1359 	rt2x00lib_beacondone(rt2x00dev);
1360 	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1361 		rt2400pci_enable_interrupt(rt2x00dev, CSR8_TBCN_EXPIRE);
1362 }
1363 
1364 static void rt2400pci_rxdone_tasklet(unsigned long data)
1365 {
1366 	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
1367 	if (rt2x00mmio_rxdone(rt2x00dev))
1368 		tasklet_schedule(&rt2x00dev->rxdone_tasklet);
1369 	else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1370 		rt2400pci_enable_interrupt(rt2x00dev, CSR8_RXDONE);
1371 }
1372 
1373 static irqreturn_t rt2400pci_interrupt(int irq, void *dev_instance)
1374 {
1375 	struct rt2x00_dev *rt2x00dev = dev_instance;
1376 	u32 reg, mask;
1377 
1378 	/*
1379 	 * Get the interrupt sources & saved to local variable.
1380 	 * Write register value back to clear pending interrupts.
1381 	 */
1382 	rt2x00mmio_register_read(rt2x00dev, CSR7, &reg);
1383 	rt2x00mmio_register_write(rt2x00dev, CSR7, reg);
1384 
1385 	if (!reg)
1386 		return IRQ_NONE;
1387 
1388 	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1389 		return IRQ_HANDLED;
1390 
1391 	mask = reg;
1392 
1393 	/*
1394 	 * Schedule tasklets for interrupt handling.
1395 	 */
1396 	if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
1397 		tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
1398 
1399 	if (rt2x00_get_field32(reg, CSR7_RXDONE))
1400 		tasklet_schedule(&rt2x00dev->rxdone_tasklet);
1401 
1402 	if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING) ||
1403 	    rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING) ||
1404 	    rt2x00_get_field32(reg, CSR7_TXDONE_TXRING)) {
1405 		tasklet_schedule(&rt2x00dev->txstatus_tasklet);
1406 		/*
1407 		 * Mask out all txdone interrupts.
1408 		 */
1409 		rt2x00_set_field32(&mask, CSR8_TXDONE_TXRING, 1);
1410 		rt2x00_set_field32(&mask, CSR8_TXDONE_ATIMRING, 1);
1411 		rt2x00_set_field32(&mask, CSR8_TXDONE_PRIORING, 1);
1412 	}
1413 
1414 	/*
1415 	 * Disable all interrupts for which a tasklet was scheduled right now,
1416 	 * the tasklet will reenable the appropriate interrupts.
1417 	 */
1418 	spin_lock(&rt2x00dev->irqmask_lock);
1419 
1420 	rt2x00mmio_register_read(rt2x00dev, CSR8, &reg);
1421 	reg |= mask;
1422 	rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
1423 
1424 	spin_unlock(&rt2x00dev->irqmask_lock);
1425 
1426 
1427 
1428 	return IRQ_HANDLED;
1429 }
1430 
1431 /*
1432  * Device probe functions.
1433  */
1434 static int rt2400pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1435 {
1436 	struct eeprom_93cx6 eeprom;
1437 	u32 reg;
1438 	u16 word;
1439 	u8 *mac;
1440 
1441 	rt2x00mmio_register_read(rt2x00dev, CSR21, &reg);
1442 
1443 	eeprom.data = rt2x00dev;
1444 	eeprom.register_read = rt2400pci_eepromregister_read;
1445 	eeprom.register_write = rt2400pci_eepromregister_write;
1446 	eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
1447 	    PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1448 	eeprom.reg_data_in = 0;
1449 	eeprom.reg_data_out = 0;
1450 	eeprom.reg_data_clock = 0;
1451 	eeprom.reg_chip_select = 0;
1452 
1453 	eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1454 			       EEPROM_SIZE / sizeof(u16));
1455 
1456 	/*
1457 	 * Start validation of the data that has been read.
1458 	 */
1459 	mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1460 	if (!is_valid_ether_addr(mac)) {
1461 		eth_random_addr(mac);
1462 		rt2x00_eeprom_dbg(rt2x00dev, "MAC: %pM\n", mac);
1463 	}
1464 
1465 	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1466 	if (word == 0xffff) {
1467 		rt2x00_err(rt2x00dev, "Invalid EEPROM data detected\n");
1468 		return -EINVAL;
1469 	}
1470 
1471 	return 0;
1472 }
1473 
1474 static int rt2400pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1475 {
1476 	u32 reg;
1477 	u16 value;
1478 	u16 eeprom;
1479 
1480 	/*
1481 	 * Read EEPROM word for configuration.
1482 	 */
1483 	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1484 
1485 	/*
1486 	 * Identify RF chipset.
1487 	 */
1488 	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1489 	rt2x00mmio_register_read(rt2x00dev, CSR0, &reg);
1490 	rt2x00_set_chip(rt2x00dev, RT2460, value,
1491 			rt2x00_get_field32(reg, CSR0_REVISION));
1492 
1493 	if (!rt2x00_rf(rt2x00dev, RF2420) && !rt2x00_rf(rt2x00dev, RF2421)) {
1494 		rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n");
1495 		return -ENODEV;
1496 	}
1497 
1498 	/*
1499 	 * Identify default antenna configuration.
1500 	 */
1501 	rt2x00dev->default_ant.tx =
1502 	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1503 	rt2x00dev->default_ant.rx =
1504 	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1505 
1506 	/*
1507 	 * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
1508 	 * I am not 100% sure about this, but the legacy drivers do not
1509 	 * indicate antenna swapping in software is required when
1510 	 * diversity is enabled.
1511 	 */
1512 	if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
1513 		rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
1514 	if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
1515 		rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
1516 
1517 	/*
1518 	 * Store led mode, for correct led behaviour.
1519 	 */
1520 #ifdef CONFIG_RT2X00_LIB_LEDS
1521 	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1522 
1523 	rt2400pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1524 	if (value == LED_MODE_TXRX_ACTIVITY ||
1525 	    value == LED_MODE_DEFAULT ||
1526 	    value == LED_MODE_ASUS)
1527 		rt2400pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
1528 				   LED_TYPE_ACTIVITY);
1529 #endif /* CONFIG_RT2X00_LIB_LEDS */
1530 
1531 	/*
1532 	 * Detect if this device has an hardware controlled radio.
1533 	 */
1534 	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1535 		__set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
1536 
1537 	/*
1538 	 * Check if the BBP tuning should be enabled.
1539 	 */
1540 	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_AGCVGC_TUNING))
1541 		__set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
1542 
1543 	return 0;
1544 }
1545 
1546 /*
1547  * RF value list for RF2420 & RF2421
1548  * Supports: 2.4 GHz
1549  */
1550 static const struct rf_channel rf_vals_b[] = {
1551 	{ 1,  0x00022058, 0x000c1fda, 0x00000101, 0 },
1552 	{ 2,  0x00022058, 0x000c1fee, 0x00000101, 0 },
1553 	{ 3,  0x00022058, 0x000c2002, 0x00000101, 0 },
1554 	{ 4,  0x00022058, 0x000c2016, 0x00000101, 0 },
1555 	{ 5,  0x00022058, 0x000c202a, 0x00000101, 0 },
1556 	{ 6,  0x00022058, 0x000c203e, 0x00000101, 0 },
1557 	{ 7,  0x00022058, 0x000c2052, 0x00000101, 0 },
1558 	{ 8,  0x00022058, 0x000c2066, 0x00000101, 0 },
1559 	{ 9,  0x00022058, 0x000c207a, 0x00000101, 0 },
1560 	{ 10, 0x00022058, 0x000c208e, 0x00000101, 0 },
1561 	{ 11, 0x00022058, 0x000c20a2, 0x00000101, 0 },
1562 	{ 12, 0x00022058, 0x000c20b6, 0x00000101, 0 },
1563 	{ 13, 0x00022058, 0x000c20ca, 0x00000101, 0 },
1564 	{ 14, 0x00022058, 0x000c20fa, 0x00000101, 0 },
1565 };
1566 
1567 static int rt2400pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1568 {
1569 	struct hw_mode_spec *spec = &rt2x00dev->spec;
1570 	struct channel_info *info;
1571 	char *tx_power;
1572 	unsigned int i;
1573 
1574 	/*
1575 	 * Initialize all hw fields.
1576 	 */
1577 	ieee80211_hw_set(rt2x00dev->hw, PS_NULLFUNC_STACK);
1578 	ieee80211_hw_set(rt2x00dev->hw, SUPPORTS_PS);
1579 	ieee80211_hw_set(rt2x00dev->hw, HOST_BROADCAST_PS_BUFFERING);
1580 	ieee80211_hw_set(rt2x00dev->hw, SIGNAL_DBM);
1581 
1582 	SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1583 	SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1584 				rt2x00_eeprom_addr(rt2x00dev,
1585 						   EEPROM_MAC_ADDR_0));
1586 
1587 	/*
1588 	 * Initialize hw_mode information.
1589 	 */
1590 	spec->supported_bands = SUPPORT_BAND_2GHZ;
1591 	spec->supported_rates = SUPPORT_RATE_CCK;
1592 
1593 	spec->num_channels = ARRAY_SIZE(rf_vals_b);
1594 	spec->channels = rf_vals_b;
1595 
1596 	/*
1597 	 * Create channel information array
1598 	 */
1599 	info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
1600 	if (!info)
1601 		return -ENOMEM;
1602 
1603 	spec->channels_info = info;
1604 
1605 	tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1606 	for (i = 0; i < 14; i++) {
1607 		info[i].max_power = TXPOWER_FROM_DEV(MAX_TXPOWER);
1608 		info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
1609 	}
1610 
1611 	return 0;
1612 }
1613 
1614 static int rt2400pci_probe_hw(struct rt2x00_dev *rt2x00dev)
1615 {
1616 	int retval;
1617 	u32 reg;
1618 
1619 	/*
1620 	 * Allocate eeprom data.
1621 	 */
1622 	retval = rt2400pci_validate_eeprom(rt2x00dev);
1623 	if (retval)
1624 		return retval;
1625 
1626 	retval = rt2400pci_init_eeprom(rt2x00dev);
1627 	if (retval)
1628 		return retval;
1629 
1630 	/*
1631 	 * Enable rfkill polling by setting GPIO direction of the
1632 	 * rfkill switch GPIO pin correctly.
1633 	 */
1634 	rt2x00mmio_register_read(rt2x00dev, GPIOCSR, &reg);
1635 	rt2x00_set_field32(&reg, GPIOCSR_DIR0, 1);
1636 	rt2x00mmio_register_write(rt2x00dev, GPIOCSR, reg);
1637 
1638 	/*
1639 	 * Initialize hw specifications.
1640 	 */
1641 	retval = rt2400pci_probe_hw_mode(rt2x00dev);
1642 	if (retval)
1643 		return retval;
1644 
1645 	/*
1646 	 * This device requires the atim queue and DMA-mapped skbs.
1647 	 */
1648 	__set_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags);
1649 	__set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags);
1650 	__set_bit(REQUIRE_SW_SEQNO, &rt2x00dev->cap_flags);
1651 
1652 	/*
1653 	 * Set the rssi offset.
1654 	 */
1655 	rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1656 
1657 	return 0;
1658 }
1659 
1660 /*
1661  * IEEE80211 stack callback functions.
1662  */
1663 static int rt2400pci_conf_tx(struct ieee80211_hw *hw,
1664 			     struct ieee80211_vif *vif, u16 queue,
1665 			     const struct ieee80211_tx_queue_params *params)
1666 {
1667 	struct rt2x00_dev *rt2x00dev = hw->priv;
1668 
1669 	/*
1670 	 * We don't support variating cw_min and cw_max variables
1671 	 * per queue. So by default we only configure the TX queue,
1672 	 * and ignore all other configurations.
1673 	 */
1674 	if (queue != 0)
1675 		return -EINVAL;
1676 
1677 	if (rt2x00mac_conf_tx(hw, vif, queue, params))
1678 		return -EINVAL;
1679 
1680 	/*
1681 	 * Write configuration to register.
1682 	 */
1683 	rt2400pci_config_cw(rt2x00dev,
1684 			    rt2x00dev->tx->cw_min, rt2x00dev->tx->cw_max);
1685 
1686 	return 0;
1687 }
1688 
1689 static u64 rt2400pci_get_tsf(struct ieee80211_hw *hw,
1690 			     struct ieee80211_vif *vif)
1691 {
1692 	struct rt2x00_dev *rt2x00dev = hw->priv;
1693 	u64 tsf;
1694 	u32 reg;
1695 
1696 	rt2x00mmio_register_read(rt2x00dev, CSR17, &reg);
1697 	tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
1698 	rt2x00mmio_register_read(rt2x00dev, CSR16, &reg);
1699 	tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
1700 
1701 	return tsf;
1702 }
1703 
1704 static int rt2400pci_tx_last_beacon(struct ieee80211_hw *hw)
1705 {
1706 	struct rt2x00_dev *rt2x00dev = hw->priv;
1707 	u32 reg;
1708 
1709 	rt2x00mmio_register_read(rt2x00dev, CSR15, &reg);
1710 	return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
1711 }
1712 
1713 static const struct ieee80211_ops rt2400pci_mac80211_ops = {
1714 	.tx			= rt2x00mac_tx,
1715 	.start			= rt2x00mac_start,
1716 	.stop			= rt2x00mac_stop,
1717 	.add_interface		= rt2x00mac_add_interface,
1718 	.remove_interface	= rt2x00mac_remove_interface,
1719 	.config			= rt2x00mac_config,
1720 	.configure_filter	= rt2x00mac_configure_filter,
1721 	.sw_scan_start		= rt2x00mac_sw_scan_start,
1722 	.sw_scan_complete	= rt2x00mac_sw_scan_complete,
1723 	.get_stats		= rt2x00mac_get_stats,
1724 	.bss_info_changed	= rt2x00mac_bss_info_changed,
1725 	.conf_tx		= rt2400pci_conf_tx,
1726 	.get_tsf		= rt2400pci_get_tsf,
1727 	.tx_last_beacon		= rt2400pci_tx_last_beacon,
1728 	.rfkill_poll		= rt2x00mac_rfkill_poll,
1729 	.flush			= rt2x00mac_flush,
1730 	.set_antenna		= rt2x00mac_set_antenna,
1731 	.get_antenna		= rt2x00mac_get_antenna,
1732 	.get_ringparam		= rt2x00mac_get_ringparam,
1733 	.tx_frames_pending	= rt2x00mac_tx_frames_pending,
1734 };
1735 
1736 static const struct rt2x00lib_ops rt2400pci_rt2x00_ops = {
1737 	.irq_handler		= rt2400pci_interrupt,
1738 	.txstatus_tasklet	= rt2400pci_txstatus_tasklet,
1739 	.tbtt_tasklet		= rt2400pci_tbtt_tasklet,
1740 	.rxdone_tasklet		= rt2400pci_rxdone_tasklet,
1741 	.probe_hw		= rt2400pci_probe_hw,
1742 	.initialize		= rt2x00mmio_initialize,
1743 	.uninitialize		= rt2x00mmio_uninitialize,
1744 	.get_entry_state	= rt2400pci_get_entry_state,
1745 	.clear_entry		= rt2400pci_clear_entry,
1746 	.set_device_state	= rt2400pci_set_device_state,
1747 	.rfkill_poll		= rt2400pci_rfkill_poll,
1748 	.link_stats		= rt2400pci_link_stats,
1749 	.reset_tuner		= rt2400pci_reset_tuner,
1750 	.link_tuner		= rt2400pci_link_tuner,
1751 	.start_queue		= rt2400pci_start_queue,
1752 	.kick_queue		= rt2400pci_kick_queue,
1753 	.stop_queue		= rt2400pci_stop_queue,
1754 	.flush_queue		= rt2x00mmio_flush_queue,
1755 	.write_tx_desc		= rt2400pci_write_tx_desc,
1756 	.write_beacon		= rt2400pci_write_beacon,
1757 	.fill_rxdone		= rt2400pci_fill_rxdone,
1758 	.config_filter		= rt2400pci_config_filter,
1759 	.config_intf		= rt2400pci_config_intf,
1760 	.config_erp		= rt2400pci_config_erp,
1761 	.config_ant		= rt2400pci_config_ant,
1762 	.config			= rt2400pci_config,
1763 };
1764 
1765 static void rt2400pci_queue_init(struct data_queue *queue)
1766 {
1767 	switch (queue->qid) {
1768 	case QID_RX:
1769 		queue->limit = 24;
1770 		queue->data_size = DATA_FRAME_SIZE;
1771 		queue->desc_size = RXD_DESC_SIZE;
1772 		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
1773 		break;
1774 
1775 	case QID_AC_VO:
1776 	case QID_AC_VI:
1777 	case QID_AC_BE:
1778 	case QID_AC_BK:
1779 		queue->limit = 24;
1780 		queue->data_size = DATA_FRAME_SIZE;
1781 		queue->desc_size = TXD_DESC_SIZE;
1782 		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
1783 		break;
1784 
1785 	case QID_BEACON:
1786 		queue->limit = 1;
1787 		queue->data_size = MGMT_FRAME_SIZE;
1788 		queue->desc_size = TXD_DESC_SIZE;
1789 		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
1790 		break;
1791 
1792 	case QID_ATIM:
1793 		queue->limit = 8;
1794 		queue->data_size = DATA_FRAME_SIZE;
1795 		queue->desc_size = TXD_DESC_SIZE;
1796 		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
1797 		break;
1798 
1799 	default:
1800 		BUG();
1801 		break;
1802 	}
1803 }
1804 
1805 static const struct rt2x00_ops rt2400pci_ops = {
1806 	.name			= KBUILD_MODNAME,
1807 	.max_ap_intf		= 1,
1808 	.eeprom_size		= EEPROM_SIZE,
1809 	.rf_size		= RF_SIZE,
1810 	.tx_queues		= NUM_TX_QUEUES,
1811 	.queue_init		= rt2400pci_queue_init,
1812 	.lib			= &rt2400pci_rt2x00_ops,
1813 	.hw			= &rt2400pci_mac80211_ops,
1814 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1815 	.debugfs		= &rt2400pci_rt2x00debug,
1816 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1817 };
1818 
1819 /*
1820  * RT2400pci module information.
1821  */
1822 static const struct pci_device_id rt2400pci_device_table[] = {
1823 	{ PCI_DEVICE(0x1814, 0x0101) },
1824 	{ 0, }
1825 };
1826 
1827 
1828 MODULE_AUTHOR(DRV_PROJECT);
1829 MODULE_VERSION(DRV_VERSION);
1830 MODULE_DESCRIPTION("Ralink RT2400 PCI & PCMCIA Wireless LAN driver.");
1831 MODULE_SUPPORTED_DEVICE("Ralink RT2460 PCI & PCMCIA chipset based cards");
1832 MODULE_DEVICE_TABLE(pci, rt2400pci_device_table);
1833 MODULE_LICENSE("GPL");
1834 
1835 static int rt2400pci_probe(struct pci_dev *pci_dev,
1836 			   const struct pci_device_id *id)
1837 {
1838 	return rt2x00pci_probe(pci_dev, &rt2400pci_ops);
1839 }
1840 
1841 static struct pci_driver rt2400pci_driver = {
1842 	.name		= KBUILD_MODNAME,
1843 	.id_table	= rt2400pci_device_table,
1844 	.probe		= rt2400pci_probe,
1845 	.remove		= rt2x00pci_remove,
1846 	.suspend	= rt2x00pci_suspend,
1847 	.resume		= rt2x00pci_resume,
1848 };
1849 
1850 module_pci_driver(rt2400pci_driver);
1851