1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com> 4 <http://rt2x00.serialmonkey.com> 5 6 */ 7 8 /* 9 Module: rt2400pci 10 Abstract: rt2400pci device specific routines. 11 Supported chipsets: RT2460. 12 */ 13 14 #include <linux/delay.h> 15 #include <linux/etherdevice.h> 16 #include <linux/kernel.h> 17 #include <linux/module.h> 18 #include <linux/pci.h> 19 #include <linux/eeprom_93cx6.h> 20 #include <linux/slab.h> 21 22 #include "rt2x00.h" 23 #include "rt2x00mmio.h" 24 #include "rt2x00pci.h" 25 #include "rt2400pci.h" 26 27 /* 28 * Register access. 29 * All access to the CSR registers will go through the methods 30 * rt2x00mmio_register_read and rt2x00mmio_register_write. 31 * BBP and RF register require indirect register access, 32 * and use the CSR registers BBPCSR and RFCSR to achieve this. 33 * These indirect registers work with busy bits, 34 * and we will try maximal REGISTER_BUSY_COUNT times to access 35 * the register while taking a REGISTER_BUSY_DELAY us delay 36 * between each attempt. When the busy bit is still set at that time, 37 * the access attempt is considered to have failed, 38 * and we will print an error. 39 */ 40 #define WAIT_FOR_BBP(__dev, __reg) \ 41 rt2x00mmio_regbusy_read((__dev), BBPCSR, BBPCSR_BUSY, (__reg)) 42 #define WAIT_FOR_RF(__dev, __reg) \ 43 rt2x00mmio_regbusy_read((__dev), RFCSR, RFCSR_BUSY, (__reg)) 44 45 static void rt2400pci_bbp_write(struct rt2x00_dev *rt2x00dev, 46 const unsigned int word, const u8 value) 47 { 48 u32 reg; 49 50 mutex_lock(&rt2x00dev->csr_mutex); 51 52 /* 53 * Wait until the BBP becomes available, afterwards we 54 * can safely write the new data into the register. 55 */ 56 if (WAIT_FOR_BBP(rt2x00dev, ®)) { 57 reg = 0; 58 rt2x00_set_field32(®, BBPCSR_VALUE, value); 59 rt2x00_set_field32(®, BBPCSR_REGNUM, word); 60 rt2x00_set_field32(®, BBPCSR_BUSY, 1); 61 rt2x00_set_field32(®, BBPCSR_WRITE_CONTROL, 1); 62 63 rt2x00mmio_register_write(rt2x00dev, BBPCSR, reg); 64 } 65 66 mutex_unlock(&rt2x00dev->csr_mutex); 67 } 68 69 static u8 rt2400pci_bbp_read(struct rt2x00_dev *rt2x00dev, 70 const unsigned int word) 71 { 72 u32 reg; 73 u8 value; 74 75 mutex_lock(&rt2x00dev->csr_mutex); 76 77 /* 78 * Wait until the BBP becomes available, afterwards we 79 * can safely write the read request into the register. 80 * After the data has been written, we wait until hardware 81 * returns the correct value, if at any time the register 82 * doesn't become available in time, reg will be 0xffffffff 83 * which means we return 0xff to the caller. 84 */ 85 if (WAIT_FOR_BBP(rt2x00dev, ®)) { 86 reg = 0; 87 rt2x00_set_field32(®, BBPCSR_REGNUM, word); 88 rt2x00_set_field32(®, BBPCSR_BUSY, 1); 89 rt2x00_set_field32(®, BBPCSR_WRITE_CONTROL, 0); 90 91 rt2x00mmio_register_write(rt2x00dev, BBPCSR, reg); 92 93 WAIT_FOR_BBP(rt2x00dev, ®); 94 } 95 96 value = rt2x00_get_field32(reg, BBPCSR_VALUE); 97 98 mutex_unlock(&rt2x00dev->csr_mutex); 99 100 return value; 101 } 102 103 static void rt2400pci_rf_write(struct rt2x00_dev *rt2x00dev, 104 const unsigned int word, const u32 value) 105 { 106 u32 reg; 107 108 mutex_lock(&rt2x00dev->csr_mutex); 109 110 /* 111 * Wait until the RF becomes available, afterwards we 112 * can safely write the new data into the register. 113 */ 114 if (WAIT_FOR_RF(rt2x00dev, ®)) { 115 reg = 0; 116 rt2x00_set_field32(®, RFCSR_VALUE, value); 117 rt2x00_set_field32(®, RFCSR_NUMBER_OF_BITS, 20); 118 rt2x00_set_field32(®, RFCSR_IF_SELECT, 0); 119 rt2x00_set_field32(®, RFCSR_BUSY, 1); 120 121 rt2x00mmio_register_write(rt2x00dev, RFCSR, reg); 122 rt2x00_rf_write(rt2x00dev, word, value); 123 } 124 125 mutex_unlock(&rt2x00dev->csr_mutex); 126 } 127 128 static void rt2400pci_eepromregister_read(struct eeprom_93cx6 *eeprom) 129 { 130 struct rt2x00_dev *rt2x00dev = eeprom->data; 131 u32 reg; 132 133 reg = rt2x00mmio_register_read(rt2x00dev, CSR21); 134 135 eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN); 136 eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT); 137 eeprom->reg_data_clock = 138 !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK); 139 eeprom->reg_chip_select = 140 !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT); 141 } 142 143 static void rt2400pci_eepromregister_write(struct eeprom_93cx6 *eeprom) 144 { 145 struct rt2x00_dev *rt2x00dev = eeprom->data; 146 u32 reg = 0; 147 148 rt2x00_set_field32(®, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in); 149 rt2x00_set_field32(®, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out); 150 rt2x00_set_field32(®, CSR21_EEPROM_DATA_CLOCK, 151 !!eeprom->reg_data_clock); 152 rt2x00_set_field32(®, CSR21_EEPROM_CHIP_SELECT, 153 !!eeprom->reg_chip_select); 154 155 rt2x00mmio_register_write(rt2x00dev, CSR21, reg); 156 } 157 158 #ifdef CONFIG_RT2X00_LIB_DEBUGFS 159 static const struct rt2x00debug rt2400pci_rt2x00debug = { 160 .owner = THIS_MODULE, 161 .csr = { 162 .read = rt2x00mmio_register_read, 163 .write = rt2x00mmio_register_write, 164 .flags = RT2X00DEBUGFS_OFFSET, 165 .word_base = CSR_REG_BASE, 166 .word_size = sizeof(u32), 167 .word_count = CSR_REG_SIZE / sizeof(u32), 168 }, 169 .eeprom = { 170 .read = rt2x00_eeprom_read, 171 .write = rt2x00_eeprom_write, 172 .word_base = EEPROM_BASE, 173 .word_size = sizeof(u16), 174 .word_count = EEPROM_SIZE / sizeof(u16), 175 }, 176 .bbp = { 177 .read = rt2400pci_bbp_read, 178 .write = rt2400pci_bbp_write, 179 .word_base = BBP_BASE, 180 .word_size = sizeof(u8), 181 .word_count = BBP_SIZE / sizeof(u8), 182 }, 183 .rf = { 184 .read = rt2x00_rf_read, 185 .write = rt2400pci_rf_write, 186 .word_base = RF_BASE, 187 .word_size = sizeof(u32), 188 .word_count = RF_SIZE / sizeof(u32), 189 }, 190 }; 191 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */ 192 193 static int rt2400pci_rfkill_poll(struct rt2x00_dev *rt2x00dev) 194 { 195 u32 reg; 196 197 reg = rt2x00mmio_register_read(rt2x00dev, GPIOCSR); 198 return rt2x00_get_field32(reg, GPIOCSR_VAL0); 199 } 200 201 #ifdef CONFIG_RT2X00_LIB_LEDS 202 static void rt2400pci_brightness_set(struct led_classdev *led_cdev, 203 enum led_brightness brightness) 204 { 205 struct rt2x00_led *led = 206 container_of(led_cdev, struct rt2x00_led, led_dev); 207 unsigned int enabled = brightness != LED_OFF; 208 u32 reg; 209 210 reg = rt2x00mmio_register_read(led->rt2x00dev, LEDCSR); 211 212 if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC) 213 rt2x00_set_field32(®, LEDCSR_LINK, enabled); 214 else if (led->type == LED_TYPE_ACTIVITY) 215 rt2x00_set_field32(®, LEDCSR_ACTIVITY, enabled); 216 217 rt2x00mmio_register_write(led->rt2x00dev, LEDCSR, reg); 218 } 219 220 static int rt2400pci_blink_set(struct led_classdev *led_cdev, 221 unsigned long *delay_on, 222 unsigned long *delay_off) 223 { 224 struct rt2x00_led *led = 225 container_of(led_cdev, struct rt2x00_led, led_dev); 226 u32 reg; 227 228 reg = rt2x00mmio_register_read(led->rt2x00dev, LEDCSR); 229 rt2x00_set_field32(®, LEDCSR_ON_PERIOD, *delay_on); 230 rt2x00_set_field32(®, LEDCSR_OFF_PERIOD, *delay_off); 231 rt2x00mmio_register_write(led->rt2x00dev, LEDCSR, reg); 232 233 return 0; 234 } 235 236 static void rt2400pci_init_led(struct rt2x00_dev *rt2x00dev, 237 struct rt2x00_led *led, 238 enum led_type type) 239 { 240 led->rt2x00dev = rt2x00dev; 241 led->type = type; 242 led->led_dev.brightness_set = rt2400pci_brightness_set; 243 led->led_dev.blink_set = rt2400pci_blink_set; 244 led->flags = LED_INITIALIZED; 245 } 246 #endif /* CONFIG_RT2X00_LIB_LEDS */ 247 248 /* 249 * Configuration handlers. 250 */ 251 static void rt2400pci_config_filter(struct rt2x00_dev *rt2x00dev, 252 const unsigned int filter_flags) 253 { 254 u32 reg; 255 256 /* 257 * Start configuration steps. 258 * Note that the version error will always be dropped 259 * since there is no filter for it at this time. 260 */ 261 reg = rt2x00mmio_register_read(rt2x00dev, RXCSR0); 262 rt2x00_set_field32(®, RXCSR0_DROP_CRC, 263 !(filter_flags & FIF_FCSFAIL)); 264 rt2x00_set_field32(®, RXCSR0_DROP_PHYSICAL, 265 !(filter_flags & FIF_PLCPFAIL)); 266 rt2x00_set_field32(®, RXCSR0_DROP_CONTROL, 267 !(filter_flags & FIF_CONTROL)); 268 rt2x00_set_field32(®, RXCSR0_DROP_NOT_TO_ME, 269 !test_bit(CONFIG_MONITORING, &rt2x00dev->flags)); 270 rt2x00_set_field32(®, RXCSR0_DROP_TODS, 271 !test_bit(CONFIG_MONITORING, &rt2x00dev->flags) && 272 !rt2x00dev->intf_ap_count); 273 rt2x00_set_field32(®, RXCSR0_DROP_VERSION_ERROR, 1); 274 rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg); 275 } 276 277 static void rt2400pci_config_intf(struct rt2x00_dev *rt2x00dev, 278 struct rt2x00_intf *intf, 279 struct rt2x00intf_conf *conf, 280 const unsigned int flags) 281 { 282 unsigned int bcn_preload; 283 u32 reg; 284 285 if (flags & CONFIG_UPDATE_TYPE) { 286 /* 287 * Enable beacon config 288 */ 289 bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20); 290 reg = rt2x00mmio_register_read(rt2x00dev, BCNCSR1); 291 rt2x00_set_field32(®, BCNCSR1_PRELOAD, bcn_preload); 292 rt2x00mmio_register_write(rt2x00dev, BCNCSR1, reg); 293 294 /* 295 * Enable synchronisation. 296 */ 297 reg = rt2x00mmio_register_read(rt2x00dev, CSR14); 298 rt2x00_set_field32(®, CSR14_TSF_SYNC, conf->sync); 299 rt2x00mmio_register_write(rt2x00dev, CSR14, reg); 300 } 301 302 if (flags & CONFIG_UPDATE_MAC) 303 rt2x00mmio_register_multiwrite(rt2x00dev, CSR3, 304 conf->mac, sizeof(conf->mac)); 305 306 if (flags & CONFIG_UPDATE_BSSID) 307 rt2x00mmio_register_multiwrite(rt2x00dev, CSR5, 308 conf->bssid, 309 sizeof(conf->bssid)); 310 } 311 312 static void rt2400pci_config_erp(struct rt2x00_dev *rt2x00dev, 313 struct rt2x00lib_erp *erp, 314 u32 changed) 315 { 316 int preamble_mask; 317 u32 reg; 318 319 /* 320 * When short preamble is enabled, we should set bit 0x08 321 */ 322 if (changed & BSS_CHANGED_ERP_PREAMBLE) { 323 preamble_mask = erp->short_preamble << 3; 324 325 reg = rt2x00mmio_register_read(rt2x00dev, TXCSR1); 326 rt2x00_set_field32(®, TXCSR1_ACK_TIMEOUT, 0x1ff); 327 rt2x00_set_field32(®, TXCSR1_ACK_CONSUME_TIME, 0x13a); 328 rt2x00_set_field32(®, TXCSR1_TSF_OFFSET, IEEE80211_HEADER); 329 rt2x00_set_field32(®, TXCSR1_AUTORESPONDER, 1); 330 rt2x00mmio_register_write(rt2x00dev, TXCSR1, reg); 331 332 reg = rt2x00mmio_register_read(rt2x00dev, ARCSR2); 333 rt2x00_set_field32(®, ARCSR2_SIGNAL, 0x00); 334 rt2x00_set_field32(®, ARCSR2_SERVICE, 0x04); 335 rt2x00_set_field32(®, ARCSR2_LENGTH, 336 GET_DURATION(ACK_SIZE, 10)); 337 rt2x00mmio_register_write(rt2x00dev, ARCSR2, reg); 338 339 reg = rt2x00mmio_register_read(rt2x00dev, ARCSR3); 340 rt2x00_set_field32(®, ARCSR3_SIGNAL, 0x01 | preamble_mask); 341 rt2x00_set_field32(®, ARCSR3_SERVICE, 0x04); 342 rt2x00_set_field32(®, ARCSR2_LENGTH, 343 GET_DURATION(ACK_SIZE, 20)); 344 rt2x00mmio_register_write(rt2x00dev, ARCSR3, reg); 345 346 reg = rt2x00mmio_register_read(rt2x00dev, ARCSR4); 347 rt2x00_set_field32(®, ARCSR4_SIGNAL, 0x02 | preamble_mask); 348 rt2x00_set_field32(®, ARCSR4_SERVICE, 0x04); 349 rt2x00_set_field32(®, ARCSR2_LENGTH, 350 GET_DURATION(ACK_SIZE, 55)); 351 rt2x00mmio_register_write(rt2x00dev, ARCSR4, reg); 352 353 reg = rt2x00mmio_register_read(rt2x00dev, ARCSR5); 354 rt2x00_set_field32(®, ARCSR5_SIGNAL, 0x03 | preamble_mask); 355 rt2x00_set_field32(®, ARCSR5_SERVICE, 0x84); 356 rt2x00_set_field32(®, ARCSR2_LENGTH, 357 GET_DURATION(ACK_SIZE, 110)); 358 rt2x00mmio_register_write(rt2x00dev, ARCSR5, reg); 359 } 360 361 if (changed & BSS_CHANGED_BASIC_RATES) 362 rt2x00mmio_register_write(rt2x00dev, ARCSR1, erp->basic_rates); 363 364 if (changed & BSS_CHANGED_ERP_SLOT) { 365 reg = rt2x00mmio_register_read(rt2x00dev, CSR11); 366 rt2x00_set_field32(®, CSR11_SLOT_TIME, erp->slot_time); 367 rt2x00mmio_register_write(rt2x00dev, CSR11, reg); 368 369 reg = rt2x00mmio_register_read(rt2x00dev, CSR18); 370 rt2x00_set_field32(®, CSR18_SIFS, erp->sifs); 371 rt2x00_set_field32(®, CSR18_PIFS, erp->pifs); 372 rt2x00mmio_register_write(rt2x00dev, CSR18, reg); 373 374 reg = rt2x00mmio_register_read(rt2x00dev, CSR19); 375 rt2x00_set_field32(®, CSR19_DIFS, erp->difs); 376 rt2x00_set_field32(®, CSR19_EIFS, erp->eifs); 377 rt2x00mmio_register_write(rt2x00dev, CSR19, reg); 378 } 379 380 if (changed & BSS_CHANGED_BEACON_INT) { 381 reg = rt2x00mmio_register_read(rt2x00dev, CSR12); 382 rt2x00_set_field32(®, CSR12_BEACON_INTERVAL, 383 erp->beacon_int * 16); 384 rt2x00_set_field32(®, CSR12_CFP_MAX_DURATION, 385 erp->beacon_int * 16); 386 rt2x00mmio_register_write(rt2x00dev, CSR12, reg); 387 } 388 } 389 390 static void rt2400pci_config_ant(struct rt2x00_dev *rt2x00dev, 391 struct antenna_setup *ant) 392 { 393 u8 r1; 394 u8 r4; 395 396 /* 397 * We should never come here because rt2x00lib is supposed 398 * to catch this and send us the correct antenna explicitely. 399 */ 400 BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY || 401 ant->tx == ANTENNA_SW_DIVERSITY); 402 403 r4 = rt2400pci_bbp_read(rt2x00dev, 4); 404 r1 = rt2400pci_bbp_read(rt2x00dev, 1); 405 406 /* 407 * Configure the TX antenna. 408 */ 409 switch (ant->tx) { 410 case ANTENNA_HW_DIVERSITY: 411 rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 1); 412 break; 413 case ANTENNA_A: 414 rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 0); 415 break; 416 case ANTENNA_B: 417 default: 418 rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 2); 419 break; 420 } 421 422 /* 423 * Configure the RX antenna. 424 */ 425 switch (ant->rx) { 426 case ANTENNA_HW_DIVERSITY: 427 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 1); 428 break; 429 case ANTENNA_A: 430 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 0); 431 break; 432 case ANTENNA_B: 433 default: 434 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 2); 435 break; 436 } 437 438 rt2400pci_bbp_write(rt2x00dev, 4, r4); 439 rt2400pci_bbp_write(rt2x00dev, 1, r1); 440 } 441 442 static void rt2400pci_config_channel(struct rt2x00_dev *rt2x00dev, 443 struct rf_channel *rf) 444 { 445 /* 446 * Switch on tuning bits. 447 */ 448 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1); 449 rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1); 450 451 rt2400pci_rf_write(rt2x00dev, 1, rf->rf1); 452 rt2400pci_rf_write(rt2x00dev, 2, rf->rf2); 453 rt2400pci_rf_write(rt2x00dev, 3, rf->rf3); 454 455 /* 456 * RF2420 chipset don't need any additional actions. 457 */ 458 if (rt2x00_rf(rt2x00dev, RF2420)) 459 return; 460 461 /* 462 * For the RT2421 chipsets we need to write an invalid 463 * reference clock rate to activate auto_tune. 464 * After that we set the value back to the correct channel. 465 */ 466 rt2400pci_rf_write(rt2x00dev, 1, rf->rf1); 467 rt2400pci_rf_write(rt2x00dev, 2, 0x000c2a32); 468 rt2400pci_rf_write(rt2x00dev, 3, rf->rf3); 469 470 msleep(1); 471 472 rt2400pci_rf_write(rt2x00dev, 1, rf->rf1); 473 rt2400pci_rf_write(rt2x00dev, 2, rf->rf2); 474 rt2400pci_rf_write(rt2x00dev, 3, rf->rf3); 475 476 msleep(1); 477 478 /* 479 * Switch off tuning bits. 480 */ 481 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0); 482 rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0); 483 484 rt2400pci_rf_write(rt2x00dev, 1, rf->rf1); 485 rt2400pci_rf_write(rt2x00dev, 3, rf->rf3); 486 487 /* 488 * Clear false CRC during channel switch. 489 */ 490 rf->rf1 = rt2x00mmio_register_read(rt2x00dev, CNT0); 491 } 492 493 static void rt2400pci_config_txpower(struct rt2x00_dev *rt2x00dev, int txpower) 494 { 495 rt2400pci_bbp_write(rt2x00dev, 3, TXPOWER_TO_DEV(txpower)); 496 } 497 498 static void rt2400pci_config_retry_limit(struct rt2x00_dev *rt2x00dev, 499 struct rt2x00lib_conf *libconf) 500 { 501 u32 reg; 502 503 reg = rt2x00mmio_register_read(rt2x00dev, CSR11); 504 rt2x00_set_field32(®, CSR11_LONG_RETRY, 505 libconf->conf->long_frame_max_tx_count); 506 rt2x00_set_field32(®, CSR11_SHORT_RETRY, 507 libconf->conf->short_frame_max_tx_count); 508 rt2x00mmio_register_write(rt2x00dev, CSR11, reg); 509 } 510 511 static void rt2400pci_config_ps(struct rt2x00_dev *rt2x00dev, 512 struct rt2x00lib_conf *libconf) 513 { 514 enum dev_state state = 515 (libconf->conf->flags & IEEE80211_CONF_PS) ? 516 STATE_SLEEP : STATE_AWAKE; 517 u32 reg; 518 519 if (state == STATE_SLEEP) { 520 reg = rt2x00mmio_register_read(rt2x00dev, CSR20); 521 rt2x00_set_field32(®, CSR20_DELAY_AFTER_TBCN, 522 (rt2x00dev->beacon_int - 20) * 16); 523 rt2x00_set_field32(®, CSR20_TBCN_BEFORE_WAKEUP, 524 libconf->conf->listen_interval - 1); 525 526 /* We must first disable autowake before it can be enabled */ 527 rt2x00_set_field32(®, CSR20_AUTOWAKE, 0); 528 rt2x00mmio_register_write(rt2x00dev, CSR20, reg); 529 530 rt2x00_set_field32(®, CSR20_AUTOWAKE, 1); 531 rt2x00mmio_register_write(rt2x00dev, CSR20, reg); 532 } else { 533 reg = rt2x00mmio_register_read(rt2x00dev, CSR20); 534 rt2x00_set_field32(®, CSR20_AUTOWAKE, 0); 535 rt2x00mmio_register_write(rt2x00dev, CSR20, reg); 536 } 537 538 rt2x00dev->ops->lib->set_device_state(rt2x00dev, state); 539 } 540 541 static void rt2400pci_config(struct rt2x00_dev *rt2x00dev, 542 struct rt2x00lib_conf *libconf, 543 const unsigned int flags) 544 { 545 if (flags & IEEE80211_CONF_CHANGE_CHANNEL) 546 rt2400pci_config_channel(rt2x00dev, &libconf->rf); 547 if (flags & IEEE80211_CONF_CHANGE_POWER) 548 rt2400pci_config_txpower(rt2x00dev, 549 libconf->conf->power_level); 550 if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS) 551 rt2400pci_config_retry_limit(rt2x00dev, libconf); 552 if (flags & IEEE80211_CONF_CHANGE_PS) 553 rt2400pci_config_ps(rt2x00dev, libconf); 554 } 555 556 static void rt2400pci_config_cw(struct rt2x00_dev *rt2x00dev, 557 const int cw_min, const int cw_max) 558 { 559 u32 reg; 560 561 reg = rt2x00mmio_register_read(rt2x00dev, CSR11); 562 rt2x00_set_field32(®, CSR11_CWMIN, cw_min); 563 rt2x00_set_field32(®, CSR11_CWMAX, cw_max); 564 rt2x00mmio_register_write(rt2x00dev, CSR11, reg); 565 } 566 567 /* 568 * Link tuning 569 */ 570 static void rt2400pci_link_stats(struct rt2x00_dev *rt2x00dev, 571 struct link_qual *qual) 572 { 573 u32 reg; 574 u8 bbp; 575 576 /* 577 * Update FCS error count from register. 578 */ 579 reg = rt2x00mmio_register_read(rt2x00dev, CNT0); 580 qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR); 581 582 /* 583 * Update False CCA count from register. 584 */ 585 bbp = rt2400pci_bbp_read(rt2x00dev, 39); 586 qual->false_cca = bbp; 587 } 588 589 static inline void rt2400pci_set_vgc(struct rt2x00_dev *rt2x00dev, 590 struct link_qual *qual, u8 vgc_level) 591 { 592 if (qual->vgc_level_reg != vgc_level) { 593 rt2400pci_bbp_write(rt2x00dev, 13, vgc_level); 594 qual->vgc_level = vgc_level; 595 qual->vgc_level_reg = vgc_level; 596 } 597 } 598 599 static void rt2400pci_reset_tuner(struct rt2x00_dev *rt2x00dev, 600 struct link_qual *qual) 601 { 602 rt2400pci_set_vgc(rt2x00dev, qual, 0x08); 603 } 604 605 static void rt2400pci_link_tuner(struct rt2x00_dev *rt2x00dev, 606 struct link_qual *qual, const u32 count) 607 { 608 /* 609 * The link tuner should not run longer then 60 seconds, 610 * and should run once every 2 seconds. 611 */ 612 if (count > 60 || !(count & 1)) 613 return; 614 615 /* 616 * Base r13 link tuning on the false cca count. 617 */ 618 if ((qual->false_cca > 512) && (qual->vgc_level < 0x20)) 619 rt2400pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level); 620 else if ((qual->false_cca < 100) && (qual->vgc_level > 0x08)) 621 rt2400pci_set_vgc(rt2x00dev, qual, --qual->vgc_level); 622 } 623 624 /* 625 * Queue handlers. 626 */ 627 static void rt2400pci_start_queue(struct data_queue *queue) 628 { 629 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev; 630 u32 reg; 631 632 switch (queue->qid) { 633 case QID_RX: 634 reg = rt2x00mmio_register_read(rt2x00dev, RXCSR0); 635 rt2x00_set_field32(®, RXCSR0_DISABLE_RX, 0); 636 rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg); 637 break; 638 case QID_BEACON: 639 reg = rt2x00mmio_register_read(rt2x00dev, CSR14); 640 rt2x00_set_field32(®, CSR14_TSF_COUNT, 1); 641 rt2x00_set_field32(®, CSR14_TBCN, 1); 642 rt2x00_set_field32(®, CSR14_BEACON_GEN, 1); 643 rt2x00mmio_register_write(rt2x00dev, CSR14, reg); 644 break; 645 default: 646 break; 647 } 648 } 649 650 static void rt2400pci_kick_queue(struct data_queue *queue) 651 { 652 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev; 653 u32 reg; 654 655 switch (queue->qid) { 656 case QID_AC_VO: 657 reg = rt2x00mmio_register_read(rt2x00dev, TXCSR0); 658 rt2x00_set_field32(®, TXCSR0_KICK_PRIO, 1); 659 rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg); 660 break; 661 case QID_AC_VI: 662 reg = rt2x00mmio_register_read(rt2x00dev, TXCSR0); 663 rt2x00_set_field32(®, TXCSR0_KICK_TX, 1); 664 rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg); 665 break; 666 case QID_ATIM: 667 reg = rt2x00mmio_register_read(rt2x00dev, TXCSR0); 668 rt2x00_set_field32(®, TXCSR0_KICK_ATIM, 1); 669 rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg); 670 break; 671 default: 672 break; 673 } 674 } 675 676 static void rt2400pci_stop_queue(struct data_queue *queue) 677 { 678 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev; 679 u32 reg; 680 681 switch (queue->qid) { 682 case QID_AC_VO: 683 case QID_AC_VI: 684 case QID_ATIM: 685 reg = rt2x00mmio_register_read(rt2x00dev, TXCSR0); 686 rt2x00_set_field32(®, TXCSR0_ABORT, 1); 687 rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg); 688 break; 689 case QID_RX: 690 reg = rt2x00mmio_register_read(rt2x00dev, RXCSR0); 691 rt2x00_set_field32(®, RXCSR0_DISABLE_RX, 1); 692 rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg); 693 break; 694 case QID_BEACON: 695 reg = rt2x00mmio_register_read(rt2x00dev, CSR14); 696 rt2x00_set_field32(®, CSR14_TSF_COUNT, 0); 697 rt2x00_set_field32(®, CSR14_TBCN, 0); 698 rt2x00_set_field32(®, CSR14_BEACON_GEN, 0); 699 rt2x00mmio_register_write(rt2x00dev, CSR14, reg); 700 701 /* 702 * Wait for possibly running tbtt tasklets. 703 */ 704 tasklet_kill(&rt2x00dev->tbtt_tasklet); 705 break; 706 default: 707 break; 708 } 709 } 710 711 /* 712 * Initialization functions. 713 */ 714 static bool rt2400pci_get_entry_state(struct queue_entry *entry) 715 { 716 struct queue_entry_priv_mmio *entry_priv = entry->priv_data; 717 u32 word; 718 719 if (entry->queue->qid == QID_RX) { 720 word = rt2x00_desc_read(entry_priv->desc, 0); 721 722 return rt2x00_get_field32(word, RXD_W0_OWNER_NIC); 723 } else { 724 word = rt2x00_desc_read(entry_priv->desc, 0); 725 726 return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) || 727 rt2x00_get_field32(word, TXD_W0_VALID)); 728 } 729 } 730 731 static void rt2400pci_clear_entry(struct queue_entry *entry) 732 { 733 struct queue_entry_priv_mmio *entry_priv = entry->priv_data; 734 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); 735 u32 word; 736 737 if (entry->queue->qid == QID_RX) { 738 word = rt2x00_desc_read(entry_priv->desc, 2); 739 rt2x00_set_field32(&word, RXD_W2_BUFFER_LENGTH, entry->skb->len); 740 rt2x00_desc_write(entry_priv->desc, 2, word); 741 742 word = rt2x00_desc_read(entry_priv->desc, 1); 743 rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma); 744 rt2x00_desc_write(entry_priv->desc, 1, word); 745 746 word = rt2x00_desc_read(entry_priv->desc, 0); 747 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1); 748 rt2x00_desc_write(entry_priv->desc, 0, word); 749 } else { 750 word = rt2x00_desc_read(entry_priv->desc, 0); 751 rt2x00_set_field32(&word, TXD_W0_VALID, 0); 752 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0); 753 rt2x00_desc_write(entry_priv->desc, 0, word); 754 } 755 } 756 757 static int rt2400pci_init_queues(struct rt2x00_dev *rt2x00dev) 758 { 759 struct queue_entry_priv_mmio *entry_priv; 760 u32 reg; 761 762 /* 763 * Initialize registers. 764 */ 765 reg = rt2x00mmio_register_read(rt2x00dev, TXCSR2); 766 rt2x00_set_field32(®, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size); 767 rt2x00_set_field32(®, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit); 768 rt2x00_set_field32(®, TXCSR2_NUM_ATIM, rt2x00dev->atim->limit); 769 rt2x00_set_field32(®, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit); 770 rt2x00mmio_register_write(rt2x00dev, TXCSR2, reg); 771 772 entry_priv = rt2x00dev->tx[1].entries[0].priv_data; 773 reg = rt2x00mmio_register_read(rt2x00dev, TXCSR3); 774 rt2x00_set_field32(®, TXCSR3_TX_RING_REGISTER, 775 entry_priv->desc_dma); 776 rt2x00mmio_register_write(rt2x00dev, TXCSR3, reg); 777 778 entry_priv = rt2x00dev->tx[0].entries[0].priv_data; 779 reg = rt2x00mmio_register_read(rt2x00dev, TXCSR5); 780 rt2x00_set_field32(®, TXCSR5_PRIO_RING_REGISTER, 781 entry_priv->desc_dma); 782 rt2x00mmio_register_write(rt2x00dev, TXCSR5, reg); 783 784 entry_priv = rt2x00dev->atim->entries[0].priv_data; 785 reg = rt2x00mmio_register_read(rt2x00dev, TXCSR4); 786 rt2x00_set_field32(®, TXCSR4_ATIM_RING_REGISTER, 787 entry_priv->desc_dma); 788 rt2x00mmio_register_write(rt2x00dev, TXCSR4, reg); 789 790 entry_priv = rt2x00dev->bcn->entries[0].priv_data; 791 reg = rt2x00mmio_register_read(rt2x00dev, TXCSR6); 792 rt2x00_set_field32(®, TXCSR6_BEACON_RING_REGISTER, 793 entry_priv->desc_dma); 794 rt2x00mmio_register_write(rt2x00dev, TXCSR6, reg); 795 796 reg = rt2x00mmio_register_read(rt2x00dev, RXCSR1); 797 rt2x00_set_field32(®, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size); 798 rt2x00_set_field32(®, RXCSR1_NUM_RXD, rt2x00dev->rx->limit); 799 rt2x00mmio_register_write(rt2x00dev, RXCSR1, reg); 800 801 entry_priv = rt2x00dev->rx->entries[0].priv_data; 802 reg = rt2x00mmio_register_read(rt2x00dev, RXCSR2); 803 rt2x00_set_field32(®, RXCSR2_RX_RING_REGISTER, 804 entry_priv->desc_dma); 805 rt2x00mmio_register_write(rt2x00dev, RXCSR2, reg); 806 807 return 0; 808 } 809 810 static int rt2400pci_init_registers(struct rt2x00_dev *rt2x00dev) 811 { 812 u32 reg; 813 814 rt2x00mmio_register_write(rt2x00dev, PSCSR0, 0x00020002); 815 rt2x00mmio_register_write(rt2x00dev, PSCSR1, 0x00000002); 816 rt2x00mmio_register_write(rt2x00dev, PSCSR2, 0x00023f20); 817 rt2x00mmio_register_write(rt2x00dev, PSCSR3, 0x00000002); 818 819 reg = rt2x00mmio_register_read(rt2x00dev, TIMECSR); 820 rt2x00_set_field32(®, TIMECSR_US_COUNT, 33); 821 rt2x00_set_field32(®, TIMECSR_US_64_COUNT, 63); 822 rt2x00_set_field32(®, TIMECSR_BEACON_EXPECT, 0); 823 rt2x00mmio_register_write(rt2x00dev, TIMECSR, reg); 824 825 reg = rt2x00mmio_register_read(rt2x00dev, CSR9); 826 rt2x00_set_field32(®, CSR9_MAX_FRAME_UNIT, 827 (rt2x00dev->rx->data_size / 128)); 828 rt2x00mmio_register_write(rt2x00dev, CSR9, reg); 829 830 reg = rt2x00mmio_register_read(rt2x00dev, CSR14); 831 rt2x00_set_field32(®, CSR14_TSF_COUNT, 0); 832 rt2x00_set_field32(®, CSR14_TSF_SYNC, 0); 833 rt2x00_set_field32(®, CSR14_TBCN, 0); 834 rt2x00_set_field32(®, CSR14_TCFP, 0); 835 rt2x00_set_field32(®, CSR14_TATIMW, 0); 836 rt2x00_set_field32(®, CSR14_BEACON_GEN, 0); 837 rt2x00_set_field32(®, CSR14_CFP_COUNT_PRELOAD, 0); 838 rt2x00_set_field32(®, CSR14_TBCM_PRELOAD, 0); 839 rt2x00mmio_register_write(rt2x00dev, CSR14, reg); 840 841 rt2x00mmio_register_write(rt2x00dev, CNT3, 0x3f080000); 842 843 reg = rt2x00mmio_register_read(rt2x00dev, ARCSR0); 844 rt2x00_set_field32(®, ARCSR0_AR_BBP_DATA0, 133); 845 rt2x00_set_field32(®, ARCSR0_AR_BBP_ID0, 134); 846 rt2x00_set_field32(®, ARCSR0_AR_BBP_DATA1, 136); 847 rt2x00_set_field32(®, ARCSR0_AR_BBP_ID1, 135); 848 rt2x00mmio_register_write(rt2x00dev, ARCSR0, reg); 849 850 reg = rt2x00mmio_register_read(rt2x00dev, RXCSR3); 851 rt2x00_set_field32(®, RXCSR3_BBP_ID0, 3); /* Tx power.*/ 852 rt2x00_set_field32(®, RXCSR3_BBP_ID0_VALID, 1); 853 rt2x00_set_field32(®, RXCSR3_BBP_ID1, 32); /* Signal */ 854 rt2x00_set_field32(®, RXCSR3_BBP_ID1_VALID, 1); 855 rt2x00_set_field32(®, RXCSR3_BBP_ID2, 36); /* Rssi */ 856 rt2x00_set_field32(®, RXCSR3_BBP_ID2_VALID, 1); 857 rt2x00mmio_register_write(rt2x00dev, RXCSR3, reg); 858 859 rt2x00mmio_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100); 860 861 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE)) 862 return -EBUSY; 863 864 rt2x00mmio_register_write(rt2x00dev, MACCSR0, 0x00217223); 865 rt2x00mmio_register_write(rt2x00dev, MACCSR1, 0x00235518); 866 867 reg = rt2x00mmio_register_read(rt2x00dev, MACCSR2); 868 rt2x00_set_field32(®, MACCSR2_DELAY, 64); 869 rt2x00mmio_register_write(rt2x00dev, MACCSR2, reg); 870 871 reg = rt2x00mmio_register_read(rt2x00dev, RALINKCSR); 872 rt2x00_set_field32(®, RALINKCSR_AR_BBP_DATA0, 17); 873 rt2x00_set_field32(®, RALINKCSR_AR_BBP_ID0, 154); 874 rt2x00_set_field32(®, RALINKCSR_AR_BBP_DATA1, 0); 875 rt2x00_set_field32(®, RALINKCSR_AR_BBP_ID1, 154); 876 rt2x00mmio_register_write(rt2x00dev, RALINKCSR, reg); 877 878 reg = rt2x00mmio_register_read(rt2x00dev, CSR1); 879 rt2x00_set_field32(®, CSR1_SOFT_RESET, 1); 880 rt2x00_set_field32(®, CSR1_BBP_RESET, 0); 881 rt2x00_set_field32(®, CSR1_HOST_READY, 0); 882 rt2x00mmio_register_write(rt2x00dev, CSR1, reg); 883 884 reg = rt2x00mmio_register_read(rt2x00dev, CSR1); 885 rt2x00_set_field32(®, CSR1_SOFT_RESET, 0); 886 rt2x00_set_field32(®, CSR1_HOST_READY, 1); 887 rt2x00mmio_register_write(rt2x00dev, CSR1, reg); 888 889 /* 890 * We must clear the FCS and FIFO error count. 891 * These registers are cleared on read, 892 * so we may pass a useless variable to store the value. 893 */ 894 reg = rt2x00mmio_register_read(rt2x00dev, CNT0); 895 reg = rt2x00mmio_register_read(rt2x00dev, CNT4); 896 897 return 0; 898 } 899 900 static int rt2400pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev) 901 { 902 unsigned int i; 903 u8 value; 904 905 for (i = 0; i < REGISTER_BUSY_COUNT; i++) { 906 value = rt2400pci_bbp_read(rt2x00dev, 0); 907 if ((value != 0xff) && (value != 0x00)) 908 return 0; 909 udelay(REGISTER_BUSY_DELAY); 910 } 911 912 rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n"); 913 return -EACCES; 914 } 915 916 static int rt2400pci_init_bbp(struct rt2x00_dev *rt2x00dev) 917 { 918 unsigned int i; 919 u16 eeprom; 920 u8 reg_id; 921 u8 value; 922 923 if (unlikely(rt2400pci_wait_bbp_ready(rt2x00dev))) 924 return -EACCES; 925 926 rt2400pci_bbp_write(rt2x00dev, 1, 0x00); 927 rt2400pci_bbp_write(rt2x00dev, 3, 0x27); 928 rt2400pci_bbp_write(rt2x00dev, 4, 0x08); 929 rt2400pci_bbp_write(rt2x00dev, 10, 0x0f); 930 rt2400pci_bbp_write(rt2x00dev, 15, 0x72); 931 rt2400pci_bbp_write(rt2x00dev, 16, 0x74); 932 rt2400pci_bbp_write(rt2x00dev, 17, 0x20); 933 rt2400pci_bbp_write(rt2x00dev, 18, 0x72); 934 rt2400pci_bbp_write(rt2x00dev, 19, 0x0b); 935 rt2400pci_bbp_write(rt2x00dev, 20, 0x00); 936 rt2400pci_bbp_write(rt2x00dev, 28, 0x11); 937 rt2400pci_bbp_write(rt2x00dev, 29, 0x04); 938 rt2400pci_bbp_write(rt2x00dev, 30, 0x21); 939 rt2400pci_bbp_write(rt2x00dev, 31, 0x00); 940 941 for (i = 0; i < EEPROM_BBP_SIZE; i++) { 942 eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i); 943 944 if (eeprom != 0xffff && eeprom != 0x0000) { 945 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID); 946 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE); 947 rt2400pci_bbp_write(rt2x00dev, reg_id, value); 948 } 949 } 950 951 return 0; 952 } 953 954 /* 955 * Device state switch handlers. 956 */ 957 static void rt2400pci_toggle_irq(struct rt2x00_dev *rt2x00dev, 958 enum dev_state state) 959 { 960 int mask = (state == STATE_RADIO_IRQ_OFF); 961 u32 reg; 962 unsigned long flags; 963 964 /* 965 * When interrupts are being enabled, the interrupt registers 966 * should clear the register to assure a clean state. 967 */ 968 if (state == STATE_RADIO_IRQ_ON) { 969 reg = rt2x00mmio_register_read(rt2x00dev, CSR7); 970 rt2x00mmio_register_write(rt2x00dev, CSR7, reg); 971 } 972 973 /* 974 * Only toggle the interrupts bits we are going to use. 975 * Non-checked interrupt bits are disabled by default. 976 */ 977 spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags); 978 979 reg = rt2x00mmio_register_read(rt2x00dev, CSR8); 980 rt2x00_set_field32(®, CSR8_TBCN_EXPIRE, mask); 981 rt2x00_set_field32(®, CSR8_TXDONE_TXRING, mask); 982 rt2x00_set_field32(®, CSR8_TXDONE_ATIMRING, mask); 983 rt2x00_set_field32(®, CSR8_TXDONE_PRIORING, mask); 984 rt2x00_set_field32(®, CSR8_RXDONE, mask); 985 rt2x00mmio_register_write(rt2x00dev, CSR8, reg); 986 987 spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags); 988 989 if (state == STATE_RADIO_IRQ_OFF) { 990 /* 991 * Ensure that all tasklets are finished before 992 * disabling the interrupts. 993 */ 994 tasklet_kill(&rt2x00dev->txstatus_tasklet); 995 tasklet_kill(&rt2x00dev->rxdone_tasklet); 996 tasklet_kill(&rt2x00dev->tbtt_tasklet); 997 } 998 } 999 1000 static int rt2400pci_enable_radio(struct rt2x00_dev *rt2x00dev) 1001 { 1002 /* 1003 * Initialize all registers. 1004 */ 1005 if (unlikely(rt2400pci_init_queues(rt2x00dev) || 1006 rt2400pci_init_registers(rt2x00dev) || 1007 rt2400pci_init_bbp(rt2x00dev))) 1008 return -EIO; 1009 1010 return 0; 1011 } 1012 1013 static void rt2400pci_disable_radio(struct rt2x00_dev *rt2x00dev) 1014 { 1015 /* 1016 * Disable power 1017 */ 1018 rt2x00mmio_register_write(rt2x00dev, PWRCSR0, 0); 1019 } 1020 1021 static int rt2400pci_set_state(struct rt2x00_dev *rt2x00dev, 1022 enum dev_state state) 1023 { 1024 u32 reg, reg2; 1025 unsigned int i; 1026 char put_to_sleep; 1027 char bbp_state; 1028 char rf_state; 1029 1030 put_to_sleep = (state != STATE_AWAKE); 1031 1032 reg = rt2x00mmio_register_read(rt2x00dev, PWRCSR1); 1033 rt2x00_set_field32(®, PWRCSR1_SET_STATE, 1); 1034 rt2x00_set_field32(®, PWRCSR1_BBP_DESIRE_STATE, state); 1035 rt2x00_set_field32(®, PWRCSR1_RF_DESIRE_STATE, state); 1036 rt2x00_set_field32(®, PWRCSR1_PUT_TO_SLEEP, put_to_sleep); 1037 rt2x00mmio_register_write(rt2x00dev, PWRCSR1, reg); 1038 1039 /* 1040 * Device is not guaranteed to be in the requested state yet. 1041 * We must wait until the register indicates that the 1042 * device has entered the correct state. 1043 */ 1044 for (i = 0; i < REGISTER_BUSY_COUNT; i++) { 1045 reg2 = rt2x00mmio_register_read(rt2x00dev, PWRCSR1); 1046 bbp_state = rt2x00_get_field32(reg2, PWRCSR1_BBP_CURR_STATE); 1047 rf_state = rt2x00_get_field32(reg2, PWRCSR1_RF_CURR_STATE); 1048 if (bbp_state == state && rf_state == state) 1049 return 0; 1050 rt2x00mmio_register_write(rt2x00dev, PWRCSR1, reg); 1051 msleep(10); 1052 } 1053 1054 return -EBUSY; 1055 } 1056 1057 static int rt2400pci_set_device_state(struct rt2x00_dev *rt2x00dev, 1058 enum dev_state state) 1059 { 1060 int retval = 0; 1061 1062 switch (state) { 1063 case STATE_RADIO_ON: 1064 retval = rt2400pci_enable_radio(rt2x00dev); 1065 break; 1066 case STATE_RADIO_OFF: 1067 rt2400pci_disable_radio(rt2x00dev); 1068 break; 1069 case STATE_RADIO_IRQ_ON: 1070 case STATE_RADIO_IRQ_OFF: 1071 rt2400pci_toggle_irq(rt2x00dev, state); 1072 break; 1073 case STATE_DEEP_SLEEP: 1074 case STATE_SLEEP: 1075 case STATE_STANDBY: 1076 case STATE_AWAKE: 1077 retval = rt2400pci_set_state(rt2x00dev, state); 1078 break; 1079 default: 1080 retval = -ENOTSUPP; 1081 break; 1082 } 1083 1084 if (unlikely(retval)) 1085 rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n", 1086 state, retval); 1087 1088 return retval; 1089 } 1090 1091 /* 1092 * TX descriptor initialization 1093 */ 1094 static void rt2400pci_write_tx_desc(struct queue_entry *entry, 1095 struct txentry_desc *txdesc) 1096 { 1097 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); 1098 struct queue_entry_priv_mmio *entry_priv = entry->priv_data; 1099 __le32 *txd = entry_priv->desc; 1100 u32 word; 1101 1102 /* 1103 * Start writing the descriptor words. 1104 */ 1105 word = rt2x00_desc_read(txd, 1); 1106 rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma); 1107 rt2x00_desc_write(txd, 1, word); 1108 1109 word = rt2x00_desc_read(txd, 2); 1110 rt2x00_set_field32(&word, TXD_W2_BUFFER_LENGTH, txdesc->length); 1111 rt2x00_set_field32(&word, TXD_W2_DATABYTE_COUNT, txdesc->length); 1112 rt2x00_desc_write(txd, 2, word); 1113 1114 word = rt2x00_desc_read(txd, 3); 1115 rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->u.plcp.signal); 1116 rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_REGNUM, 5); 1117 rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_BUSY, 1); 1118 rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->u.plcp.service); 1119 rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_REGNUM, 6); 1120 rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_BUSY, 1); 1121 rt2x00_desc_write(txd, 3, word); 1122 1123 word = rt2x00_desc_read(txd, 4); 1124 rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_LOW, 1125 txdesc->u.plcp.length_low); 1126 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_REGNUM, 8); 1127 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_BUSY, 1); 1128 rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_HIGH, 1129 txdesc->u.plcp.length_high); 1130 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_REGNUM, 7); 1131 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_BUSY, 1); 1132 rt2x00_desc_write(txd, 4, word); 1133 1134 /* 1135 * Writing TXD word 0 must the last to prevent a race condition with 1136 * the device, whereby the device may take hold of the TXD before we 1137 * finished updating it. 1138 */ 1139 word = rt2x00_desc_read(txd, 0); 1140 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1); 1141 rt2x00_set_field32(&word, TXD_W0_VALID, 1); 1142 rt2x00_set_field32(&word, TXD_W0_MORE_FRAG, 1143 test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags)); 1144 rt2x00_set_field32(&word, TXD_W0_ACK, 1145 test_bit(ENTRY_TXD_ACK, &txdesc->flags)); 1146 rt2x00_set_field32(&word, TXD_W0_TIMESTAMP, 1147 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags)); 1148 rt2x00_set_field32(&word, TXD_W0_RTS, 1149 test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags)); 1150 rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs); 1151 rt2x00_set_field32(&word, TXD_W0_RETRY_MODE, 1152 test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags)); 1153 rt2x00_desc_write(txd, 0, word); 1154 1155 /* 1156 * Register descriptor details in skb frame descriptor. 1157 */ 1158 skbdesc->desc = txd; 1159 skbdesc->desc_len = TXD_DESC_SIZE; 1160 } 1161 1162 /* 1163 * TX data initialization 1164 */ 1165 static void rt2400pci_write_beacon(struct queue_entry *entry, 1166 struct txentry_desc *txdesc) 1167 { 1168 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; 1169 u32 reg; 1170 1171 /* 1172 * Disable beaconing while we are reloading the beacon data, 1173 * otherwise we might be sending out invalid data. 1174 */ 1175 reg = rt2x00mmio_register_read(rt2x00dev, CSR14); 1176 rt2x00_set_field32(®, CSR14_BEACON_GEN, 0); 1177 rt2x00mmio_register_write(rt2x00dev, CSR14, reg); 1178 1179 if (rt2x00queue_map_txskb(entry)) { 1180 rt2x00_err(rt2x00dev, "Fail to map beacon, aborting\n"); 1181 goto out; 1182 } 1183 /* 1184 * Enable beaconing again. 1185 */ 1186 rt2x00_set_field32(®, CSR14_BEACON_GEN, 1); 1187 /* 1188 * Write the TX descriptor for the beacon. 1189 */ 1190 rt2400pci_write_tx_desc(entry, txdesc); 1191 1192 /* 1193 * Dump beacon to userspace through debugfs. 1194 */ 1195 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry); 1196 out: 1197 /* 1198 * Enable beaconing again. 1199 */ 1200 rt2x00_set_field32(®, CSR14_BEACON_GEN, 1); 1201 rt2x00mmio_register_write(rt2x00dev, CSR14, reg); 1202 } 1203 1204 /* 1205 * RX control handlers 1206 */ 1207 static void rt2400pci_fill_rxdone(struct queue_entry *entry, 1208 struct rxdone_entry_desc *rxdesc) 1209 { 1210 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; 1211 struct queue_entry_priv_mmio *entry_priv = entry->priv_data; 1212 u32 word0; 1213 u32 word2; 1214 u32 word3; 1215 u32 word4; 1216 u64 tsf; 1217 u32 rx_low; 1218 u32 rx_high; 1219 1220 word0 = rt2x00_desc_read(entry_priv->desc, 0); 1221 word2 = rt2x00_desc_read(entry_priv->desc, 2); 1222 word3 = rt2x00_desc_read(entry_priv->desc, 3); 1223 word4 = rt2x00_desc_read(entry_priv->desc, 4); 1224 1225 if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR)) 1226 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC; 1227 if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR)) 1228 rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC; 1229 1230 /* 1231 * We only get the lower 32bits from the timestamp, 1232 * to get the full 64bits we must complement it with 1233 * the timestamp from get_tsf(). 1234 * Note that when a wraparound of the lower 32bits 1235 * has occurred between the frame arrival and the get_tsf() 1236 * call, we must decrease the higher 32bits with 1 to get 1237 * to correct value. 1238 */ 1239 tsf = rt2x00dev->ops->hw->get_tsf(rt2x00dev->hw, NULL); 1240 rx_low = rt2x00_get_field32(word4, RXD_W4_RX_END_TIME); 1241 rx_high = upper_32_bits(tsf); 1242 1243 if ((u32)tsf <= rx_low) 1244 rx_high--; 1245 1246 /* 1247 * Obtain the status about this packet. 1248 * The signal is the PLCP value, and needs to be stripped 1249 * of the preamble bit (0x08). 1250 */ 1251 rxdesc->timestamp = ((u64)rx_high << 32) | rx_low; 1252 rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL) & ~0x08; 1253 rxdesc->rssi = rt2x00_get_field32(word3, RXD_W3_RSSI) - 1254 entry->queue->rt2x00dev->rssi_offset; 1255 rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT); 1256 1257 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP; 1258 if (rt2x00_get_field32(word0, RXD_W0_MY_BSS)) 1259 rxdesc->dev_flags |= RXDONE_MY_BSS; 1260 } 1261 1262 /* 1263 * Interrupt functions. 1264 */ 1265 static void rt2400pci_txdone(struct rt2x00_dev *rt2x00dev, 1266 const enum data_queue_qid queue_idx) 1267 { 1268 struct data_queue *queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx); 1269 struct queue_entry_priv_mmio *entry_priv; 1270 struct queue_entry *entry; 1271 struct txdone_entry_desc txdesc; 1272 u32 word; 1273 1274 while (!rt2x00queue_empty(queue)) { 1275 entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE); 1276 entry_priv = entry->priv_data; 1277 word = rt2x00_desc_read(entry_priv->desc, 0); 1278 1279 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) || 1280 !rt2x00_get_field32(word, TXD_W0_VALID)) 1281 break; 1282 1283 /* 1284 * Obtain the status about this packet. 1285 */ 1286 txdesc.flags = 0; 1287 switch (rt2x00_get_field32(word, TXD_W0_RESULT)) { 1288 case 0: /* Success */ 1289 case 1: /* Success with retry */ 1290 __set_bit(TXDONE_SUCCESS, &txdesc.flags); 1291 break; 1292 case 2: /* Failure, excessive retries */ 1293 __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags); 1294 fallthrough; /* this is a failed frame! */ 1295 default: /* Failure */ 1296 __set_bit(TXDONE_FAILURE, &txdesc.flags); 1297 } 1298 txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT); 1299 1300 rt2x00lib_txdone(entry, &txdesc); 1301 } 1302 } 1303 1304 static inline void rt2400pci_enable_interrupt(struct rt2x00_dev *rt2x00dev, 1305 struct rt2x00_field32 irq_field) 1306 { 1307 u32 reg; 1308 1309 /* 1310 * Enable a single interrupt. The interrupt mask register 1311 * access needs locking. 1312 */ 1313 spin_lock_irq(&rt2x00dev->irqmask_lock); 1314 1315 reg = rt2x00mmio_register_read(rt2x00dev, CSR8); 1316 rt2x00_set_field32(®, irq_field, 0); 1317 rt2x00mmio_register_write(rt2x00dev, CSR8, reg); 1318 1319 spin_unlock_irq(&rt2x00dev->irqmask_lock); 1320 } 1321 1322 static void rt2400pci_txstatus_tasklet(struct tasklet_struct *t) 1323 { 1324 struct rt2x00_dev *rt2x00dev = from_tasklet(rt2x00dev, t, 1325 txstatus_tasklet); 1326 u32 reg; 1327 1328 /* 1329 * Handle all tx queues. 1330 */ 1331 rt2400pci_txdone(rt2x00dev, QID_ATIM); 1332 rt2400pci_txdone(rt2x00dev, QID_AC_VO); 1333 rt2400pci_txdone(rt2x00dev, QID_AC_VI); 1334 1335 /* 1336 * Enable all TXDONE interrupts again. 1337 */ 1338 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) { 1339 spin_lock_irq(&rt2x00dev->irqmask_lock); 1340 1341 reg = rt2x00mmio_register_read(rt2x00dev, CSR8); 1342 rt2x00_set_field32(®, CSR8_TXDONE_TXRING, 0); 1343 rt2x00_set_field32(®, CSR8_TXDONE_ATIMRING, 0); 1344 rt2x00_set_field32(®, CSR8_TXDONE_PRIORING, 0); 1345 rt2x00mmio_register_write(rt2x00dev, CSR8, reg); 1346 1347 spin_unlock_irq(&rt2x00dev->irqmask_lock); 1348 } 1349 } 1350 1351 static void rt2400pci_tbtt_tasklet(struct tasklet_struct *t) 1352 { 1353 struct rt2x00_dev *rt2x00dev = from_tasklet(rt2x00dev, t, tbtt_tasklet); 1354 rt2x00lib_beacondone(rt2x00dev); 1355 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 1356 rt2400pci_enable_interrupt(rt2x00dev, CSR8_TBCN_EXPIRE); 1357 } 1358 1359 static void rt2400pci_rxdone_tasklet(struct tasklet_struct *t) 1360 { 1361 struct rt2x00_dev *rt2x00dev = from_tasklet(rt2x00dev, t, 1362 rxdone_tasklet); 1363 if (rt2x00mmio_rxdone(rt2x00dev)) 1364 tasklet_schedule(&rt2x00dev->rxdone_tasklet); 1365 else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 1366 rt2400pci_enable_interrupt(rt2x00dev, CSR8_RXDONE); 1367 } 1368 1369 static irqreturn_t rt2400pci_interrupt(int irq, void *dev_instance) 1370 { 1371 struct rt2x00_dev *rt2x00dev = dev_instance; 1372 u32 reg, mask; 1373 1374 /* 1375 * Get the interrupt sources & saved to local variable. 1376 * Write register value back to clear pending interrupts. 1377 */ 1378 reg = rt2x00mmio_register_read(rt2x00dev, CSR7); 1379 rt2x00mmio_register_write(rt2x00dev, CSR7, reg); 1380 1381 if (!reg) 1382 return IRQ_NONE; 1383 1384 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 1385 return IRQ_HANDLED; 1386 1387 mask = reg; 1388 1389 /* 1390 * Schedule tasklets for interrupt handling. 1391 */ 1392 if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE)) 1393 tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet); 1394 1395 if (rt2x00_get_field32(reg, CSR7_RXDONE)) 1396 tasklet_schedule(&rt2x00dev->rxdone_tasklet); 1397 1398 if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING) || 1399 rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING) || 1400 rt2x00_get_field32(reg, CSR7_TXDONE_TXRING)) { 1401 tasklet_schedule(&rt2x00dev->txstatus_tasklet); 1402 /* 1403 * Mask out all txdone interrupts. 1404 */ 1405 rt2x00_set_field32(&mask, CSR8_TXDONE_TXRING, 1); 1406 rt2x00_set_field32(&mask, CSR8_TXDONE_ATIMRING, 1); 1407 rt2x00_set_field32(&mask, CSR8_TXDONE_PRIORING, 1); 1408 } 1409 1410 /* 1411 * Disable all interrupts for which a tasklet was scheduled right now, 1412 * the tasklet will reenable the appropriate interrupts. 1413 */ 1414 spin_lock(&rt2x00dev->irqmask_lock); 1415 1416 reg = rt2x00mmio_register_read(rt2x00dev, CSR8); 1417 reg |= mask; 1418 rt2x00mmio_register_write(rt2x00dev, CSR8, reg); 1419 1420 spin_unlock(&rt2x00dev->irqmask_lock); 1421 1422 1423 1424 return IRQ_HANDLED; 1425 } 1426 1427 /* 1428 * Device probe functions. 1429 */ 1430 static int rt2400pci_validate_eeprom(struct rt2x00_dev *rt2x00dev) 1431 { 1432 struct eeprom_93cx6 eeprom; 1433 u32 reg; 1434 u16 word; 1435 u8 *mac; 1436 1437 reg = rt2x00mmio_register_read(rt2x00dev, CSR21); 1438 1439 eeprom.data = rt2x00dev; 1440 eeprom.register_read = rt2400pci_eepromregister_read; 1441 eeprom.register_write = rt2400pci_eepromregister_write; 1442 eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ? 1443 PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66; 1444 eeprom.reg_data_in = 0; 1445 eeprom.reg_data_out = 0; 1446 eeprom.reg_data_clock = 0; 1447 eeprom.reg_chip_select = 0; 1448 1449 eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom, 1450 EEPROM_SIZE / sizeof(u16)); 1451 1452 /* 1453 * Start validation of the data that has been read. 1454 */ 1455 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0); 1456 rt2x00lib_set_mac_address(rt2x00dev, mac); 1457 1458 word = rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA); 1459 if (word == 0xffff) { 1460 rt2x00_err(rt2x00dev, "Invalid EEPROM data detected\n"); 1461 return -EINVAL; 1462 } 1463 1464 return 0; 1465 } 1466 1467 static int rt2400pci_init_eeprom(struct rt2x00_dev *rt2x00dev) 1468 { 1469 u32 reg; 1470 u16 value; 1471 u16 eeprom; 1472 1473 /* 1474 * Read EEPROM word for configuration. 1475 */ 1476 eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA); 1477 1478 /* 1479 * Identify RF chipset. 1480 */ 1481 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE); 1482 reg = rt2x00mmio_register_read(rt2x00dev, CSR0); 1483 rt2x00_set_chip(rt2x00dev, RT2460, value, 1484 rt2x00_get_field32(reg, CSR0_REVISION)); 1485 1486 if (!rt2x00_rf(rt2x00dev, RF2420) && !rt2x00_rf(rt2x00dev, RF2421)) { 1487 rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n"); 1488 return -ENODEV; 1489 } 1490 1491 /* 1492 * Identify default antenna configuration. 1493 */ 1494 rt2x00dev->default_ant.tx = 1495 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT); 1496 rt2x00dev->default_ant.rx = 1497 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT); 1498 1499 /* 1500 * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead. 1501 * I am not 100% sure about this, but the legacy drivers do not 1502 * indicate antenna swapping in software is required when 1503 * diversity is enabled. 1504 */ 1505 if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY) 1506 rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY; 1507 if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY) 1508 rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY; 1509 1510 /* 1511 * Store led mode, for correct led behaviour. 1512 */ 1513 #ifdef CONFIG_RT2X00_LIB_LEDS 1514 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE); 1515 1516 rt2400pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO); 1517 if (value == LED_MODE_TXRX_ACTIVITY || 1518 value == LED_MODE_DEFAULT || 1519 value == LED_MODE_ASUS) 1520 rt2400pci_init_led(rt2x00dev, &rt2x00dev->led_qual, 1521 LED_TYPE_ACTIVITY); 1522 #endif /* CONFIG_RT2X00_LIB_LEDS */ 1523 1524 /* 1525 * Detect if this device has an hardware controlled radio. 1526 */ 1527 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO)) 1528 __set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags); 1529 1530 /* 1531 * Check if the BBP tuning should be enabled. 1532 */ 1533 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_AGCVGC_TUNING)) 1534 __set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags); 1535 1536 return 0; 1537 } 1538 1539 /* 1540 * RF value list for RF2420 & RF2421 1541 * Supports: 2.4 GHz 1542 */ 1543 static const struct rf_channel rf_vals_b[] = { 1544 { 1, 0x00022058, 0x000c1fda, 0x00000101, 0 }, 1545 { 2, 0x00022058, 0x000c1fee, 0x00000101, 0 }, 1546 { 3, 0x00022058, 0x000c2002, 0x00000101, 0 }, 1547 { 4, 0x00022058, 0x000c2016, 0x00000101, 0 }, 1548 { 5, 0x00022058, 0x000c202a, 0x00000101, 0 }, 1549 { 6, 0x00022058, 0x000c203e, 0x00000101, 0 }, 1550 { 7, 0x00022058, 0x000c2052, 0x00000101, 0 }, 1551 { 8, 0x00022058, 0x000c2066, 0x00000101, 0 }, 1552 { 9, 0x00022058, 0x000c207a, 0x00000101, 0 }, 1553 { 10, 0x00022058, 0x000c208e, 0x00000101, 0 }, 1554 { 11, 0x00022058, 0x000c20a2, 0x00000101, 0 }, 1555 { 12, 0x00022058, 0x000c20b6, 0x00000101, 0 }, 1556 { 13, 0x00022058, 0x000c20ca, 0x00000101, 0 }, 1557 { 14, 0x00022058, 0x000c20fa, 0x00000101, 0 }, 1558 }; 1559 1560 static int rt2400pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev) 1561 { 1562 struct hw_mode_spec *spec = &rt2x00dev->spec; 1563 struct channel_info *info; 1564 char *tx_power; 1565 unsigned int i; 1566 1567 /* 1568 * Initialize all hw fields. 1569 */ 1570 ieee80211_hw_set(rt2x00dev->hw, PS_NULLFUNC_STACK); 1571 ieee80211_hw_set(rt2x00dev->hw, SUPPORTS_PS); 1572 ieee80211_hw_set(rt2x00dev->hw, HOST_BROADCAST_PS_BUFFERING); 1573 ieee80211_hw_set(rt2x00dev->hw, SIGNAL_DBM); 1574 1575 SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev); 1576 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw, 1577 rt2x00_eeprom_addr(rt2x00dev, 1578 EEPROM_MAC_ADDR_0)); 1579 1580 /* 1581 * Initialize hw_mode information. 1582 */ 1583 spec->supported_bands = SUPPORT_BAND_2GHZ; 1584 spec->supported_rates = SUPPORT_RATE_CCK; 1585 1586 spec->num_channels = ARRAY_SIZE(rf_vals_b); 1587 spec->channels = rf_vals_b; 1588 1589 /* 1590 * Create channel information array 1591 */ 1592 info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL); 1593 if (!info) 1594 return -ENOMEM; 1595 1596 spec->channels_info = info; 1597 1598 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START); 1599 for (i = 0; i < 14; i++) { 1600 info[i].max_power = TXPOWER_FROM_DEV(MAX_TXPOWER); 1601 info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]); 1602 } 1603 1604 return 0; 1605 } 1606 1607 static int rt2400pci_probe_hw(struct rt2x00_dev *rt2x00dev) 1608 { 1609 int retval; 1610 u32 reg; 1611 1612 /* 1613 * Allocate eeprom data. 1614 */ 1615 retval = rt2400pci_validate_eeprom(rt2x00dev); 1616 if (retval) 1617 return retval; 1618 1619 retval = rt2400pci_init_eeprom(rt2x00dev); 1620 if (retval) 1621 return retval; 1622 1623 /* 1624 * Enable rfkill polling by setting GPIO direction of the 1625 * rfkill switch GPIO pin correctly. 1626 */ 1627 reg = rt2x00mmio_register_read(rt2x00dev, GPIOCSR); 1628 rt2x00_set_field32(®, GPIOCSR_DIR0, 1); 1629 rt2x00mmio_register_write(rt2x00dev, GPIOCSR, reg); 1630 1631 /* 1632 * Initialize hw specifications. 1633 */ 1634 retval = rt2400pci_probe_hw_mode(rt2x00dev); 1635 if (retval) 1636 return retval; 1637 1638 /* 1639 * This device requires the atim queue and DMA-mapped skbs. 1640 */ 1641 __set_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags); 1642 __set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags); 1643 __set_bit(REQUIRE_SW_SEQNO, &rt2x00dev->cap_flags); 1644 1645 /* 1646 * Set the rssi offset. 1647 */ 1648 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET; 1649 1650 return 0; 1651 } 1652 1653 /* 1654 * IEEE80211 stack callback functions. 1655 */ 1656 static int rt2400pci_conf_tx(struct ieee80211_hw *hw, 1657 struct ieee80211_vif *vif, u16 queue, 1658 const struct ieee80211_tx_queue_params *params) 1659 { 1660 struct rt2x00_dev *rt2x00dev = hw->priv; 1661 1662 /* 1663 * We don't support variating cw_min and cw_max variables 1664 * per queue. So by default we only configure the TX queue, 1665 * and ignore all other configurations. 1666 */ 1667 if (queue != 0) 1668 return -EINVAL; 1669 1670 if (rt2x00mac_conf_tx(hw, vif, queue, params)) 1671 return -EINVAL; 1672 1673 /* 1674 * Write configuration to register. 1675 */ 1676 rt2400pci_config_cw(rt2x00dev, 1677 rt2x00dev->tx->cw_min, rt2x00dev->tx->cw_max); 1678 1679 return 0; 1680 } 1681 1682 static u64 rt2400pci_get_tsf(struct ieee80211_hw *hw, 1683 struct ieee80211_vif *vif) 1684 { 1685 struct rt2x00_dev *rt2x00dev = hw->priv; 1686 u64 tsf; 1687 u32 reg; 1688 1689 reg = rt2x00mmio_register_read(rt2x00dev, CSR17); 1690 tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32; 1691 reg = rt2x00mmio_register_read(rt2x00dev, CSR16); 1692 tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER); 1693 1694 return tsf; 1695 } 1696 1697 static int rt2400pci_tx_last_beacon(struct ieee80211_hw *hw) 1698 { 1699 struct rt2x00_dev *rt2x00dev = hw->priv; 1700 u32 reg; 1701 1702 reg = rt2x00mmio_register_read(rt2x00dev, CSR15); 1703 return rt2x00_get_field32(reg, CSR15_BEACON_SENT); 1704 } 1705 1706 static const struct ieee80211_ops rt2400pci_mac80211_ops = { 1707 .tx = rt2x00mac_tx, 1708 .start = rt2x00mac_start, 1709 .stop = rt2x00mac_stop, 1710 .add_interface = rt2x00mac_add_interface, 1711 .remove_interface = rt2x00mac_remove_interface, 1712 .config = rt2x00mac_config, 1713 .configure_filter = rt2x00mac_configure_filter, 1714 .sw_scan_start = rt2x00mac_sw_scan_start, 1715 .sw_scan_complete = rt2x00mac_sw_scan_complete, 1716 .get_stats = rt2x00mac_get_stats, 1717 .bss_info_changed = rt2x00mac_bss_info_changed, 1718 .conf_tx = rt2400pci_conf_tx, 1719 .get_tsf = rt2400pci_get_tsf, 1720 .tx_last_beacon = rt2400pci_tx_last_beacon, 1721 .rfkill_poll = rt2x00mac_rfkill_poll, 1722 .flush = rt2x00mac_flush, 1723 .set_antenna = rt2x00mac_set_antenna, 1724 .get_antenna = rt2x00mac_get_antenna, 1725 .get_ringparam = rt2x00mac_get_ringparam, 1726 .tx_frames_pending = rt2x00mac_tx_frames_pending, 1727 }; 1728 1729 static const struct rt2x00lib_ops rt2400pci_rt2x00_ops = { 1730 .irq_handler = rt2400pci_interrupt, 1731 .txstatus_tasklet = rt2400pci_txstatus_tasklet, 1732 .tbtt_tasklet = rt2400pci_tbtt_tasklet, 1733 .rxdone_tasklet = rt2400pci_rxdone_tasklet, 1734 .probe_hw = rt2400pci_probe_hw, 1735 .initialize = rt2x00mmio_initialize, 1736 .uninitialize = rt2x00mmio_uninitialize, 1737 .get_entry_state = rt2400pci_get_entry_state, 1738 .clear_entry = rt2400pci_clear_entry, 1739 .set_device_state = rt2400pci_set_device_state, 1740 .rfkill_poll = rt2400pci_rfkill_poll, 1741 .link_stats = rt2400pci_link_stats, 1742 .reset_tuner = rt2400pci_reset_tuner, 1743 .link_tuner = rt2400pci_link_tuner, 1744 .start_queue = rt2400pci_start_queue, 1745 .kick_queue = rt2400pci_kick_queue, 1746 .stop_queue = rt2400pci_stop_queue, 1747 .flush_queue = rt2x00mmio_flush_queue, 1748 .write_tx_desc = rt2400pci_write_tx_desc, 1749 .write_beacon = rt2400pci_write_beacon, 1750 .fill_rxdone = rt2400pci_fill_rxdone, 1751 .config_filter = rt2400pci_config_filter, 1752 .config_intf = rt2400pci_config_intf, 1753 .config_erp = rt2400pci_config_erp, 1754 .config_ant = rt2400pci_config_ant, 1755 .config = rt2400pci_config, 1756 }; 1757 1758 static void rt2400pci_queue_init(struct data_queue *queue) 1759 { 1760 switch (queue->qid) { 1761 case QID_RX: 1762 queue->limit = 24; 1763 queue->data_size = DATA_FRAME_SIZE; 1764 queue->desc_size = RXD_DESC_SIZE; 1765 queue->priv_size = sizeof(struct queue_entry_priv_mmio); 1766 break; 1767 1768 case QID_AC_VO: 1769 case QID_AC_VI: 1770 case QID_AC_BE: 1771 case QID_AC_BK: 1772 queue->limit = 24; 1773 queue->data_size = DATA_FRAME_SIZE; 1774 queue->desc_size = TXD_DESC_SIZE; 1775 queue->priv_size = sizeof(struct queue_entry_priv_mmio); 1776 break; 1777 1778 case QID_BEACON: 1779 queue->limit = 1; 1780 queue->data_size = MGMT_FRAME_SIZE; 1781 queue->desc_size = TXD_DESC_SIZE; 1782 queue->priv_size = sizeof(struct queue_entry_priv_mmio); 1783 break; 1784 1785 case QID_ATIM: 1786 queue->limit = 8; 1787 queue->data_size = DATA_FRAME_SIZE; 1788 queue->desc_size = TXD_DESC_SIZE; 1789 queue->priv_size = sizeof(struct queue_entry_priv_mmio); 1790 break; 1791 1792 default: 1793 BUG(); 1794 break; 1795 } 1796 } 1797 1798 static const struct rt2x00_ops rt2400pci_ops = { 1799 .name = KBUILD_MODNAME, 1800 .max_ap_intf = 1, 1801 .eeprom_size = EEPROM_SIZE, 1802 .rf_size = RF_SIZE, 1803 .tx_queues = NUM_TX_QUEUES, 1804 .queue_init = rt2400pci_queue_init, 1805 .lib = &rt2400pci_rt2x00_ops, 1806 .hw = &rt2400pci_mac80211_ops, 1807 #ifdef CONFIG_RT2X00_LIB_DEBUGFS 1808 .debugfs = &rt2400pci_rt2x00debug, 1809 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */ 1810 }; 1811 1812 /* 1813 * RT2400pci module information. 1814 */ 1815 static const struct pci_device_id rt2400pci_device_table[] = { 1816 { PCI_DEVICE(0x1814, 0x0101) }, 1817 { 0, } 1818 }; 1819 1820 1821 MODULE_AUTHOR(DRV_PROJECT); 1822 MODULE_VERSION(DRV_VERSION); 1823 MODULE_DESCRIPTION("Ralink RT2400 PCI & PCMCIA Wireless LAN driver."); 1824 MODULE_DEVICE_TABLE(pci, rt2400pci_device_table); 1825 MODULE_LICENSE("GPL"); 1826 1827 static int rt2400pci_probe(struct pci_dev *pci_dev, 1828 const struct pci_device_id *id) 1829 { 1830 return rt2x00pci_probe(pci_dev, &rt2400pci_ops); 1831 } 1832 1833 static struct pci_driver rt2400pci_driver = { 1834 .name = KBUILD_MODNAME, 1835 .id_table = rt2400pci_device_table, 1836 .probe = rt2400pci_probe, 1837 .remove = rt2x00pci_remove, 1838 .driver.pm = &rt2x00pci_pm_ops, 1839 }; 1840 1841 module_pci_driver(rt2400pci_driver); 1842