1 /* 2 Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com> 3 <http://rt2x00.serialmonkey.com> 4 5 This program is free software; you can redistribute it and/or modify 6 it under the terms of the GNU General Public License as published by 7 the Free Software Foundation; either version 2 of the License, or 8 (at your option) any later version. 9 10 This program is distributed in the hope that it will be useful, 11 but WITHOUT ANY WARRANTY; without even the implied warranty of 12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 GNU General Public License for more details. 14 15 You should have received a copy of the GNU General Public License 16 along with this program; if not, see <http://www.gnu.org/licenses/>. 17 */ 18 19 /* 20 Module: rt2400pci 21 Abstract: rt2400pci device specific routines. 22 Supported chipsets: RT2460. 23 */ 24 25 #include <linux/delay.h> 26 #include <linux/etherdevice.h> 27 #include <linux/kernel.h> 28 #include <linux/module.h> 29 #include <linux/pci.h> 30 #include <linux/eeprom_93cx6.h> 31 #include <linux/slab.h> 32 33 #include "rt2x00.h" 34 #include "rt2x00mmio.h" 35 #include "rt2x00pci.h" 36 #include "rt2400pci.h" 37 38 /* 39 * Register access. 40 * All access to the CSR registers will go through the methods 41 * rt2x00mmio_register_read and rt2x00mmio_register_write. 42 * BBP and RF register require indirect register access, 43 * and use the CSR registers BBPCSR and RFCSR to achieve this. 44 * These indirect registers work with busy bits, 45 * and we will try maximal REGISTER_BUSY_COUNT times to access 46 * the register while taking a REGISTER_BUSY_DELAY us delay 47 * between each attempt. When the busy bit is still set at that time, 48 * the access attempt is considered to have failed, 49 * and we will print an error. 50 */ 51 #define WAIT_FOR_BBP(__dev, __reg) \ 52 rt2x00mmio_regbusy_read((__dev), BBPCSR, BBPCSR_BUSY, (__reg)) 53 #define WAIT_FOR_RF(__dev, __reg) \ 54 rt2x00mmio_regbusy_read((__dev), RFCSR, RFCSR_BUSY, (__reg)) 55 56 static void rt2400pci_bbp_write(struct rt2x00_dev *rt2x00dev, 57 const unsigned int word, const u8 value) 58 { 59 u32 reg; 60 61 mutex_lock(&rt2x00dev->csr_mutex); 62 63 /* 64 * Wait until the BBP becomes available, afterwards we 65 * can safely write the new data into the register. 66 */ 67 if (WAIT_FOR_BBP(rt2x00dev, ®)) { 68 reg = 0; 69 rt2x00_set_field32(®, BBPCSR_VALUE, value); 70 rt2x00_set_field32(®, BBPCSR_REGNUM, word); 71 rt2x00_set_field32(®, BBPCSR_BUSY, 1); 72 rt2x00_set_field32(®, BBPCSR_WRITE_CONTROL, 1); 73 74 rt2x00mmio_register_write(rt2x00dev, BBPCSR, reg); 75 } 76 77 mutex_unlock(&rt2x00dev->csr_mutex); 78 } 79 80 static void rt2400pci_bbp_read(struct rt2x00_dev *rt2x00dev, 81 const unsigned int word, u8 *value) 82 { 83 u32 reg; 84 85 mutex_lock(&rt2x00dev->csr_mutex); 86 87 /* 88 * Wait until the BBP becomes available, afterwards we 89 * can safely write the read request into the register. 90 * After the data has been written, we wait until hardware 91 * returns the correct value, if at any time the register 92 * doesn't become available in time, reg will be 0xffffffff 93 * which means we return 0xff to the caller. 94 */ 95 if (WAIT_FOR_BBP(rt2x00dev, ®)) { 96 reg = 0; 97 rt2x00_set_field32(®, BBPCSR_REGNUM, word); 98 rt2x00_set_field32(®, BBPCSR_BUSY, 1); 99 rt2x00_set_field32(®, BBPCSR_WRITE_CONTROL, 0); 100 101 rt2x00mmio_register_write(rt2x00dev, BBPCSR, reg); 102 103 WAIT_FOR_BBP(rt2x00dev, ®); 104 } 105 106 *value = rt2x00_get_field32(reg, BBPCSR_VALUE); 107 108 mutex_unlock(&rt2x00dev->csr_mutex); 109 } 110 111 static void rt2400pci_rf_write(struct rt2x00_dev *rt2x00dev, 112 const unsigned int word, const u32 value) 113 { 114 u32 reg; 115 116 mutex_lock(&rt2x00dev->csr_mutex); 117 118 /* 119 * Wait until the RF becomes available, afterwards we 120 * can safely write the new data into the register. 121 */ 122 if (WAIT_FOR_RF(rt2x00dev, ®)) { 123 reg = 0; 124 rt2x00_set_field32(®, RFCSR_VALUE, value); 125 rt2x00_set_field32(®, RFCSR_NUMBER_OF_BITS, 20); 126 rt2x00_set_field32(®, RFCSR_IF_SELECT, 0); 127 rt2x00_set_field32(®, RFCSR_BUSY, 1); 128 129 rt2x00mmio_register_write(rt2x00dev, RFCSR, reg); 130 rt2x00_rf_write(rt2x00dev, word, value); 131 } 132 133 mutex_unlock(&rt2x00dev->csr_mutex); 134 } 135 136 static void rt2400pci_eepromregister_read(struct eeprom_93cx6 *eeprom) 137 { 138 struct rt2x00_dev *rt2x00dev = eeprom->data; 139 u32 reg; 140 141 rt2x00mmio_register_read(rt2x00dev, CSR21, ®); 142 143 eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN); 144 eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT); 145 eeprom->reg_data_clock = 146 !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK); 147 eeprom->reg_chip_select = 148 !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT); 149 } 150 151 static void rt2400pci_eepromregister_write(struct eeprom_93cx6 *eeprom) 152 { 153 struct rt2x00_dev *rt2x00dev = eeprom->data; 154 u32 reg = 0; 155 156 rt2x00_set_field32(®, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in); 157 rt2x00_set_field32(®, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out); 158 rt2x00_set_field32(®, CSR21_EEPROM_DATA_CLOCK, 159 !!eeprom->reg_data_clock); 160 rt2x00_set_field32(®, CSR21_EEPROM_CHIP_SELECT, 161 !!eeprom->reg_chip_select); 162 163 rt2x00mmio_register_write(rt2x00dev, CSR21, reg); 164 } 165 166 #ifdef CONFIG_RT2X00_LIB_DEBUGFS 167 static const struct rt2x00debug rt2400pci_rt2x00debug = { 168 .owner = THIS_MODULE, 169 .csr = { 170 .read = rt2x00mmio_register_read, 171 .write = rt2x00mmio_register_write, 172 .flags = RT2X00DEBUGFS_OFFSET, 173 .word_base = CSR_REG_BASE, 174 .word_size = sizeof(u32), 175 .word_count = CSR_REG_SIZE / sizeof(u32), 176 }, 177 .eeprom = { 178 .read = rt2x00_eeprom_read, 179 .write = rt2x00_eeprom_write, 180 .word_base = EEPROM_BASE, 181 .word_size = sizeof(u16), 182 .word_count = EEPROM_SIZE / sizeof(u16), 183 }, 184 .bbp = { 185 .read = rt2400pci_bbp_read, 186 .write = rt2400pci_bbp_write, 187 .word_base = BBP_BASE, 188 .word_size = sizeof(u8), 189 .word_count = BBP_SIZE / sizeof(u8), 190 }, 191 .rf = { 192 .read = rt2x00_rf_read, 193 .write = rt2400pci_rf_write, 194 .word_base = RF_BASE, 195 .word_size = sizeof(u32), 196 .word_count = RF_SIZE / sizeof(u32), 197 }, 198 }; 199 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */ 200 201 static int rt2400pci_rfkill_poll(struct rt2x00_dev *rt2x00dev) 202 { 203 u32 reg; 204 205 rt2x00mmio_register_read(rt2x00dev, GPIOCSR, ®); 206 return rt2x00_get_field32(reg, GPIOCSR_VAL0); 207 } 208 209 #ifdef CONFIG_RT2X00_LIB_LEDS 210 static void rt2400pci_brightness_set(struct led_classdev *led_cdev, 211 enum led_brightness brightness) 212 { 213 struct rt2x00_led *led = 214 container_of(led_cdev, struct rt2x00_led, led_dev); 215 unsigned int enabled = brightness != LED_OFF; 216 u32 reg; 217 218 rt2x00mmio_register_read(led->rt2x00dev, LEDCSR, ®); 219 220 if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC) 221 rt2x00_set_field32(®, LEDCSR_LINK, enabled); 222 else if (led->type == LED_TYPE_ACTIVITY) 223 rt2x00_set_field32(®, LEDCSR_ACTIVITY, enabled); 224 225 rt2x00mmio_register_write(led->rt2x00dev, LEDCSR, reg); 226 } 227 228 static int rt2400pci_blink_set(struct led_classdev *led_cdev, 229 unsigned long *delay_on, 230 unsigned long *delay_off) 231 { 232 struct rt2x00_led *led = 233 container_of(led_cdev, struct rt2x00_led, led_dev); 234 u32 reg; 235 236 rt2x00mmio_register_read(led->rt2x00dev, LEDCSR, ®); 237 rt2x00_set_field32(®, LEDCSR_ON_PERIOD, *delay_on); 238 rt2x00_set_field32(®, LEDCSR_OFF_PERIOD, *delay_off); 239 rt2x00mmio_register_write(led->rt2x00dev, LEDCSR, reg); 240 241 return 0; 242 } 243 244 static void rt2400pci_init_led(struct rt2x00_dev *rt2x00dev, 245 struct rt2x00_led *led, 246 enum led_type type) 247 { 248 led->rt2x00dev = rt2x00dev; 249 led->type = type; 250 led->led_dev.brightness_set = rt2400pci_brightness_set; 251 led->led_dev.blink_set = rt2400pci_blink_set; 252 led->flags = LED_INITIALIZED; 253 } 254 #endif /* CONFIG_RT2X00_LIB_LEDS */ 255 256 /* 257 * Configuration handlers. 258 */ 259 static void rt2400pci_config_filter(struct rt2x00_dev *rt2x00dev, 260 const unsigned int filter_flags) 261 { 262 u32 reg; 263 264 /* 265 * Start configuration steps. 266 * Note that the version error will always be dropped 267 * since there is no filter for it at this time. 268 */ 269 rt2x00mmio_register_read(rt2x00dev, RXCSR0, ®); 270 rt2x00_set_field32(®, RXCSR0_DROP_CRC, 271 !(filter_flags & FIF_FCSFAIL)); 272 rt2x00_set_field32(®, RXCSR0_DROP_PHYSICAL, 273 !(filter_flags & FIF_PLCPFAIL)); 274 rt2x00_set_field32(®, RXCSR0_DROP_CONTROL, 275 !(filter_flags & FIF_CONTROL)); 276 rt2x00_set_field32(®, RXCSR0_DROP_NOT_TO_ME, 277 !test_bit(CONFIG_MONITORING, &rt2x00dev->flags)); 278 rt2x00_set_field32(®, RXCSR0_DROP_TODS, 279 !test_bit(CONFIG_MONITORING, &rt2x00dev->flags) && 280 !rt2x00dev->intf_ap_count); 281 rt2x00_set_field32(®, RXCSR0_DROP_VERSION_ERROR, 1); 282 rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg); 283 } 284 285 static void rt2400pci_config_intf(struct rt2x00_dev *rt2x00dev, 286 struct rt2x00_intf *intf, 287 struct rt2x00intf_conf *conf, 288 const unsigned int flags) 289 { 290 unsigned int bcn_preload; 291 u32 reg; 292 293 if (flags & CONFIG_UPDATE_TYPE) { 294 /* 295 * Enable beacon config 296 */ 297 bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20); 298 rt2x00mmio_register_read(rt2x00dev, BCNCSR1, ®); 299 rt2x00_set_field32(®, BCNCSR1_PRELOAD, bcn_preload); 300 rt2x00mmio_register_write(rt2x00dev, BCNCSR1, reg); 301 302 /* 303 * Enable synchronisation. 304 */ 305 rt2x00mmio_register_read(rt2x00dev, CSR14, ®); 306 rt2x00_set_field32(®, CSR14_TSF_SYNC, conf->sync); 307 rt2x00mmio_register_write(rt2x00dev, CSR14, reg); 308 } 309 310 if (flags & CONFIG_UPDATE_MAC) 311 rt2x00mmio_register_multiwrite(rt2x00dev, CSR3, 312 conf->mac, sizeof(conf->mac)); 313 314 if (flags & CONFIG_UPDATE_BSSID) 315 rt2x00mmio_register_multiwrite(rt2x00dev, CSR5, 316 conf->bssid, 317 sizeof(conf->bssid)); 318 } 319 320 static void rt2400pci_config_erp(struct rt2x00_dev *rt2x00dev, 321 struct rt2x00lib_erp *erp, 322 u32 changed) 323 { 324 int preamble_mask; 325 u32 reg; 326 327 /* 328 * When short preamble is enabled, we should set bit 0x08 329 */ 330 if (changed & BSS_CHANGED_ERP_PREAMBLE) { 331 preamble_mask = erp->short_preamble << 3; 332 333 rt2x00mmio_register_read(rt2x00dev, TXCSR1, ®); 334 rt2x00_set_field32(®, TXCSR1_ACK_TIMEOUT, 0x1ff); 335 rt2x00_set_field32(®, TXCSR1_ACK_CONSUME_TIME, 0x13a); 336 rt2x00_set_field32(®, TXCSR1_TSF_OFFSET, IEEE80211_HEADER); 337 rt2x00_set_field32(®, TXCSR1_AUTORESPONDER, 1); 338 rt2x00mmio_register_write(rt2x00dev, TXCSR1, reg); 339 340 rt2x00mmio_register_read(rt2x00dev, ARCSR2, ®); 341 rt2x00_set_field32(®, ARCSR2_SIGNAL, 0x00); 342 rt2x00_set_field32(®, ARCSR2_SERVICE, 0x04); 343 rt2x00_set_field32(®, ARCSR2_LENGTH, 344 GET_DURATION(ACK_SIZE, 10)); 345 rt2x00mmio_register_write(rt2x00dev, ARCSR2, reg); 346 347 rt2x00mmio_register_read(rt2x00dev, ARCSR3, ®); 348 rt2x00_set_field32(®, ARCSR3_SIGNAL, 0x01 | preamble_mask); 349 rt2x00_set_field32(®, ARCSR3_SERVICE, 0x04); 350 rt2x00_set_field32(®, ARCSR2_LENGTH, 351 GET_DURATION(ACK_SIZE, 20)); 352 rt2x00mmio_register_write(rt2x00dev, ARCSR3, reg); 353 354 rt2x00mmio_register_read(rt2x00dev, ARCSR4, ®); 355 rt2x00_set_field32(®, ARCSR4_SIGNAL, 0x02 | preamble_mask); 356 rt2x00_set_field32(®, ARCSR4_SERVICE, 0x04); 357 rt2x00_set_field32(®, ARCSR2_LENGTH, 358 GET_DURATION(ACK_SIZE, 55)); 359 rt2x00mmio_register_write(rt2x00dev, ARCSR4, reg); 360 361 rt2x00mmio_register_read(rt2x00dev, ARCSR5, ®); 362 rt2x00_set_field32(®, ARCSR5_SIGNAL, 0x03 | preamble_mask); 363 rt2x00_set_field32(®, ARCSR5_SERVICE, 0x84); 364 rt2x00_set_field32(®, ARCSR2_LENGTH, 365 GET_DURATION(ACK_SIZE, 110)); 366 rt2x00mmio_register_write(rt2x00dev, ARCSR5, reg); 367 } 368 369 if (changed & BSS_CHANGED_BASIC_RATES) 370 rt2x00mmio_register_write(rt2x00dev, ARCSR1, erp->basic_rates); 371 372 if (changed & BSS_CHANGED_ERP_SLOT) { 373 rt2x00mmio_register_read(rt2x00dev, CSR11, ®); 374 rt2x00_set_field32(®, CSR11_SLOT_TIME, erp->slot_time); 375 rt2x00mmio_register_write(rt2x00dev, CSR11, reg); 376 377 rt2x00mmio_register_read(rt2x00dev, CSR18, ®); 378 rt2x00_set_field32(®, CSR18_SIFS, erp->sifs); 379 rt2x00_set_field32(®, CSR18_PIFS, erp->pifs); 380 rt2x00mmio_register_write(rt2x00dev, CSR18, reg); 381 382 rt2x00mmio_register_read(rt2x00dev, CSR19, ®); 383 rt2x00_set_field32(®, CSR19_DIFS, erp->difs); 384 rt2x00_set_field32(®, CSR19_EIFS, erp->eifs); 385 rt2x00mmio_register_write(rt2x00dev, CSR19, reg); 386 } 387 388 if (changed & BSS_CHANGED_BEACON_INT) { 389 rt2x00mmio_register_read(rt2x00dev, CSR12, ®); 390 rt2x00_set_field32(®, CSR12_BEACON_INTERVAL, 391 erp->beacon_int * 16); 392 rt2x00_set_field32(®, CSR12_CFP_MAX_DURATION, 393 erp->beacon_int * 16); 394 rt2x00mmio_register_write(rt2x00dev, CSR12, reg); 395 } 396 } 397 398 static void rt2400pci_config_ant(struct rt2x00_dev *rt2x00dev, 399 struct antenna_setup *ant) 400 { 401 u8 r1; 402 u8 r4; 403 404 /* 405 * We should never come here because rt2x00lib is supposed 406 * to catch this and send us the correct antenna explicitely. 407 */ 408 BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY || 409 ant->tx == ANTENNA_SW_DIVERSITY); 410 411 rt2400pci_bbp_read(rt2x00dev, 4, &r4); 412 rt2400pci_bbp_read(rt2x00dev, 1, &r1); 413 414 /* 415 * Configure the TX antenna. 416 */ 417 switch (ant->tx) { 418 case ANTENNA_HW_DIVERSITY: 419 rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 1); 420 break; 421 case ANTENNA_A: 422 rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 0); 423 break; 424 case ANTENNA_B: 425 default: 426 rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 2); 427 break; 428 } 429 430 /* 431 * Configure the RX antenna. 432 */ 433 switch (ant->rx) { 434 case ANTENNA_HW_DIVERSITY: 435 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 1); 436 break; 437 case ANTENNA_A: 438 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 0); 439 break; 440 case ANTENNA_B: 441 default: 442 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 2); 443 break; 444 } 445 446 rt2400pci_bbp_write(rt2x00dev, 4, r4); 447 rt2400pci_bbp_write(rt2x00dev, 1, r1); 448 } 449 450 static void rt2400pci_config_channel(struct rt2x00_dev *rt2x00dev, 451 struct rf_channel *rf) 452 { 453 /* 454 * Switch on tuning bits. 455 */ 456 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1); 457 rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1); 458 459 rt2400pci_rf_write(rt2x00dev, 1, rf->rf1); 460 rt2400pci_rf_write(rt2x00dev, 2, rf->rf2); 461 rt2400pci_rf_write(rt2x00dev, 3, rf->rf3); 462 463 /* 464 * RF2420 chipset don't need any additional actions. 465 */ 466 if (rt2x00_rf(rt2x00dev, RF2420)) 467 return; 468 469 /* 470 * For the RT2421 chipsets we need to write an invalid 471 * reference clock rate to activate auto_tune. 472 * After that we set the value back to the correct channel. 473 */ 474 rt2400pci_rf_write(rt2x00dev, 1, rf->rf1); 475 rt2400pci_rf_write(rt2x00dev, 2, 0x000c2a32); 476 rt2400pci_rf_write(rt2x00dev, 3, rf->rf3); 477 478 msleep(1); 479 480 rt2400pci_rf_write(rt2x00dev, 1, rf->rf1); 481 rt2400pci_rf_write(rt2x00dev, 2, rf->rf2); 482 rt2400pci_rf_write(rt2x00dev, 3, rf->rf3); 483 484 msleep(1); 485 486 /* 487 * Switch off tuning bits. 488 */ 489 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0); 490 rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0); 491 492 rt2400pci_rf_write(rt2x00dev, 1, rf->rf1); 493 rt2400pci_rf_write(rt2x00dev, 3, rf->rf3); 494 495 /* 496 * Clear false CRC during channel switch. 497 */ 498 rt2x00mmio_register_read(rt2x00dev, CNT0, &rf->rf1); 499 } 500 501 static void rt2400pci_config_txpower(struct rt2x00_dev *rt2x00dev, int txpower) 502 { 503 rt2400pci_bbp_write(rt2x00dev, 3, TXPOWER_TO_DEV(txpower)); 504 } 505 506 static void rt2400pci_config_retry_limit(struct rt2x00_dev *rt2x00dev, 507 struct rt2x00lib_conf *libconf) 508 { 509 u32 reg; 510 511 rt2x00mmio_register_read(rt2x00dev, CSR11, ®); 512 rt2x00_set_field32(®, CSR11_LONG_RETRY, 513 libconf->conf->long_frame_max_tx_count); 514 rt2x00_set_field32(®, CSR11_SHORT_RETRY, 515 libconf->conf->short_frame_max_tx_count); 516 rt2x00mmio_register_write(rt2x00dev, CSR11, reg); 517 } 518 519 static void rt2400pci_config_ps(struct rt2x00_dev *rt2x00dev, 520 struct rt2x00lib_conf *libconf) 521 { 522 enum dev_state state = 523 (libconf->conf->flags & IEEE80211_CONF_PS) ? 524 STATE_SLEEP : STATE_AWAKE; 525 u32 reg; 526 527 if (state == STATE_SLEEP) { 528 rt2x00mmio_register_read(rt2x00dev, CSR20, ®); 529 rt2x00_set_field32(®, CSR20_DELAY_AFTER_TBCN, 530 (rt2x00dev->beacon_int - 20) * 16); 531 rt2x00_set_field32(®, CSR20_TBCN_BEFORE_WAKEUP, 532 libconf->conf->listen_interval - 1); 533 534 /* We must first disable autowake before it can be enabled */ 535 rt2x00_set_field32(®, CSR20_AUTOWAKE, 0); 536 rt2x00mmio_register_write(rt2x00dev, CSR20, reg); 537 538 rt2x00_set_field32(®, CSR20_AUTOWAKE, 1); 539 rt2x00mmio_register_write(rt2x00dev, CSR20, reg); 540 } else { 541 rt2x00mmio_register_read(rt2x00dev, CSR20, ®); 542 rt2x00_set_field32(®, CSR20_AUTOWAKE, 0); 543 rt2x00mmio_register_write(rt2x00dev, CSR20, reg); 544 } 545 546 rt2x00dev->ops->lib->set_device_state(rt2x00dev, state); 547 } 548 549 static void rt2400pci_config(struct rt2x00_dev *rt2x00dev, 550 struct rt2x00lib_conf *libconf, 551 const unsigned int flags) 552 { 553 if (flags & IEEE80211_CONF_CHANGE_CHANNEL) 554 rt2400pci_config_channel(rt2x00dev, &libconf->rf); 555 if (flags & IEEE80211_CONF_CHANGE_POWER) 556 rt2400pci_config_txpower(rt2x00dev, 557 libconf->conf->power_level); 558 if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS) 559 rt2400pci_config_retry_limit(rt2x00dev, libconf); 560 if (flags & IEEE80211_CONF_CHANGE_PS) 561 rt2400pci_config_ps(rt2x00dev, libconf); 562 } 563 564 static void rt2400pci_config_cw(struct rt2x00_dev *rt2x00dev, 565 const int cw_min, const int cw_max) 566 { 567 u32 reg; 568 569 rt2x00mmio_register_read(rt2x00dev, CSR11, ®); 570 rt2x00_set_field32(®, CSR11_CWMIN, cw_min); 571 rt2x00_set_field32(®, CSR11_CWMAX, cw_max); 572 rt2x00mmio_register_write(rt2x00dev, CSR11, reg); 573 } 574 575 /* 576 * Link tuning 577 */ 578 static void rt2400pci_link_stats(struct rt2x00_dev *rt2x00dev, 579 struct link_qual *qual) 580 { 581 u32 reg; 582 u8 bbp; 583 584 /* 585 * Update FCS error count from register. 586 */ 587 rt2x00mmio_register_read(rt2x00dev, CNT0, ®); 588 qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR); 589 590 /* 591 * Update False CCA count from register. 592 */ 593 rt2400pci_bbp_read(rt2x00dev, 39, &bbp); 594 qual->false_cca = bbp; 595 } 596 597 static inline void rt2400pci_set_vgc(struct rt2x00_dev *rt2x00dev, 598 struct link_qual *qual, u8 vgc_level) 599 { 600 if (qual->vgc_level_reg != vgc_level) { 601 rt2400pci_bbp_write(rt2x00dev, 13, vgc_level); 602 qual->vgc_level = vgc_level; 603 qual->vgc_level_reg = vgc_level; 604 } 605 } 606 607 static void rt2400pci_reset_tuner(struct rt2x00_dev *rt2x00dev, 608 struct link_qual *qual) 609 { 610 rt2400pci_set_vgc(rt2x00dev, qual, 0x08); 611 } 612 613 static void rt2400pci_link_tuner(struct rt2x00_dev *rt2x00dev, 614 struct link_qual *qual, const u32 count) 615 { 616 /* 617 * The link tuner should not run longer then 60 seconds, 618 * and should run once every 2 seconds. 619 */ 620 if (count > 60 || !(count & 1)) 621 return; 622 623 /* 624 * Base r13 link tuning on the false cca count. 625 */ 626 if ((qual->false_cca > 512) && (qual->vgc_level < 0x20)) 627 rt2400pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level); 628 else if ((qual->false_cca < 100) && (qual->vgc_level > 0x08)) 629 rt2400pci_set_vgc(rt2x00dev, qual, --qual->vgc_level); 630 } 631 632 /* 633 * Queue handlers. 634 */ 635 static void rt2400pci_start_queue(struct data_queue *queue) 636 { 637 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev; 638 u32 reg; 639 640 switch (queue->qid) { 641 case QID_RX: 642 rt2x00mmio_register_read(rt2x00dev, RXCSR0, ®); 643 rt2x00_set_field32(®, RXCSR0_DISABLE_RX, 0); 644 rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg); 645 break; 646 case QID_BEACON: 647 rt2x00mmio_register_read(rt2x00dev, CSR14, ®); 648 rt2x00_set_field32(®, CSR14_TSF_COUNT, 1); 649 rt2x00_set_field32(®, CSR14_TBCN, 1); 650 rt2x00_set_field32(®, CSR14_BEACON_GEN, 1); 651 rt2x00mmio_register_write(rt2x00dev, CSR14, reg); 652 break; 653 default: 654 break; 655 } 656 } 657 658 static void rt2400pci_kick_queue(struct data_queue *queue) 659 { 660 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev; 661 u32 reg; 662 663 switch (queue->qid) { 664 case QID_AC_VO: 665 rt2x00mmio_register_read(rt2x00dev, TXCSR0, ®); 666 rt2x00_set_field32(®, TXCSR0_KICK_PRIO, 1); 667 rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg); 668 break; 669 case QID_AC_VI: 670 rt2x00mmio_register_read(rt2x00dev, TXCSR0, ®); 671 rt2x00_set_field32(®, TXCSR0_KICK_TX, 1); 672 rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg); 673 break; 674 case QID_ATIM: 675 rt2x00mmio_register_read(rt2x00dev, TXCSR0, ®); 676 rt2x00_set_field32(®, TXCSR0_KICK_ATIM, 1); 677 rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg); 678 break; 679 default: 680 break; 681 } 682 } 683 684 static void rt2400pci_stop_queue(struct data_queue *queue) 685 { 686 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev; 687 u32 reg; 688 689 switch (queue->qid) { 690 case QID_AC_VO: 691 case QID_AC_VI: 692 case QID_ATIM: 693 rt2x00mmio_register_read(rt2x00dev, TXCSR0, ®); 694 rt2x00_set_field32(®, TXCSR0_ABORT, 1); 695 rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg); 696 break; 697 case QID_RX: 698 rt2x00mmio_register_read(rt2x00dev, RXCSR0, ®); 699 rt2x00_set_field32(®, RXCSR0_DISABLE_RX, 1); 700 rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg); 701 break; 702 case QID_BEACON: 703 rt2x00mmio_register_read(rt2x00dev, CSR14, ®); 704 rt2x00_set_field32(®, CSR14_TSF_COUNT, 0); 705 rt2x00_set_field32(®, CSR14_TBCN, 0); 706 rt2x00_set_field32(®, CSR14_BEACON_GEN, 0); 707 rt2x00mmio_register_write(rt2x00dev, CSR14, reg); 708 709 /* 710 * Wait for possibly running tbtt tasklets. 711 */ 712 tasklet_kill(&rt2x00dev->tbtt_tasklet); 713 break; 714 default: 715 break; 716 } 717 } 718 719 /* 720 * Initialization functions. 721 */ 722 static bool rt2400pci_get_entry_state(struct queue_entry *entry) 723 { 724 struct queue_entry_priv_mmio *entry_priv = entry->priv_data; 725 u32 word; 726 727 if (entry->queue->qid == QID_RX) { 728 rt2x00_desc_read(entry_priv->desc, 0, &word); 729 730 return rt2x00_get_field32(word, RXD_W0_OWNER_NIC); 731 } else { 732 rt2x00_desc_read(entry_priv->desc, 0, &word); 733 734 return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) || 735 rt2x00_get_field32(word, TXD_W0_VALID)); 736 } 737 } 738 739 static void rt2400pci_clear_entry(struct queue_entry *entry) 740 { 741 struct queue_entry_priv_mmio *entry_priv = entry->priv_data; 742 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); 743 u32 word; 744 745 if (entry->queue->qid == QID_RX) { 746 rt2x00_desc_read(entry_priv->desc, 2, &word); 747 rt2x00_set_field32(&word, RXD_W2_BUFFER_LENGTH, entry->skb->len); 748 rt2x00_desc_write(entry_priv->desc, 2, word); 749 750 rt2x00_desc_read(entry_priv->desc, 1, &word); 751 rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma); 752 rt2x00_desc_write(entry_priv->desc, 1, word); 753 754 rt2x00_desc_read(entry_priv->desc, 0, &word); 755 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1); 756 rt2x00_desc_write(entry_priv->desc, 0, word); 757 } else { 758 rt2x00_desc_read(entry_priv->desc, 0, &word); 759 rt2x00_set_field32(&word, TXD_W0_VALID, 0); 760 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0); 761 rt2x00_desc_write(entry_priv->desc, 0, word); 762 } 763 } 764 765 static int rt2400pci_init_queues(struct rt2x00_dev *rt2x00dev) 766 { 767 struct queue_entry_priv_mmio *entry_priv; 768 u32 reg; 769 770 /* 771 * Initialize registers. 772 */ 773 rt2x00mmio_register_read(rt2x00dev, TXCSR2, ®); 774 rt2x00_set_field32(®, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size); 775 rt2x00_set_field32(®, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit); 776 rt2x00_set_field32(®, TXCSR2_NUM_ATIM, rt2x00dev->atim->limit); 777 rt2x00_set_field32(®, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit); 778 rt2x00mmio_register_write(rt2x00dev, TXCSR2, reg); 779 780 entry_priv = rt2x00dev->tx[1].entries[0].priv_data; 781 rt2x00mmio_register_read(rt2x00dev, TXCSR3, ®); 782 rt2x00_set_field32(®, TXCSR3_TX_RING_REGISTER, 783 entry_priv->desc_dma); 784 rt2x00mmio_register_write(rt2x00dev, TXCSR3, reg); 785 786 entry_priv = rt2x00dev->tx[0].entries[0].priv_data; 787 rt2x00mmio_register_read(rt2x00dev, TXCSR5, ®); 788 rt2x00_set_field32(®, TXCSR5_PRIO_RING_REGISTER, 789 entry_priv->desc_dma); 790 rt2x00mmio_register_write(rt2x00dev, TXCSR5, reg); 791 792 entry_priv = rt2x00dev->atim->entries[0].priv_data; 793 rt2x00mmio_register_read(rt2x00dev, TXCSR4, ®); 794 rt2x00_set_field32(®, TXCSR4_ATIM_RING_REGISTER, 795 entry_priv->desc_dma); 796 rt2x00mmio_register_write(rt2x00dev, TXCSR4, reg); 797 798 entry_priv = rt2x00dev->bcn->entries[0].priv_data; 799 rt2x00mmio_register_read(rt2x00dev, TXCSR6, ®); 800 rt2x00_set_field32(®, TXCSR6_BEACON_RING_REGISTER, 801 entry_priv->desc_dma); 802 rt2x00mmio_register_write(rt2x00dev, TXCSR6, reg); 803 804 rt2x00mmio_register_read(rt2x00dev, RXCSR1, ®); 805 rt2x00_set_field32(®, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size); 806 rt2x00_set_field32(®, RXCSR1_NUM_RXD, rt2x00dev->rx->limit); 807 rt2x00mmio_register_write(rt2x00dev, RXCSR1, reg); 808 809 entry_priv = rt2x00dev->rx->entries[0].priv_data; 810 rt2x00mmio_register_read(rt2x00dev, RXCSR2, ®); 811 rt2x00_set_field32(®, RXCSR2_RX_RING_REGISTER, 812 entry_priv->desc_dma); 813 rt2x00mmio_register_write(rt2x00dev, RXCSR2, reg); 814 815 return 0; 816 } 817 818 static int rt2400pci_init_registers(struct rt2x00_dev *rt2x00dev) 819 { 820 u32 reg; 821 822 rt2x00mmio_register_write(rt2x00dev, PSCSR0, 0x00020002); 823 rt2x00mmio_register_write(rt2x00dev, PSCSR1, 0x00000002); 824 rt2x00mmio_register_write(rt2x00dev, PSCSR2, 0x00023f20); 825 rt2x00mmio_register_write(rt2x00dev, PSCSR3, 0x00000002); 826 827 rt2x00mmio_register_read(rt2x00dev, TIMECSR, ®); 828 rt2x00_set_field32(®, TIMECSR_US_COUNT, 33); 829 rt2x00_set_field32(®, TIMECSR_US_64_COUNT, 63); 830 rt2x00_set_field32(®, TIMECSR_BEACON_EXPECT, 0); 831 rt2x00mmio_register_write(rt2x00dev, TIMECSR, reg); 832 833 rt2x00mmio_register_read(rt2x00dev, CSR9, ®); 834 rt2x00_set_field32(®, CSR9_MAX_FRAME_UNIT, 835 (rt2x00dev->rx->data_size / 128)); 836 rt2x00mmio_register_write(rt2x00dev, CSR9, reg); 837 838 rt2x00mmio_register_read(rt2x00dev, CSR14, ®); 839 rt2x00_set_field32(®, CSR14_TSF_COUNT, 0); 840 rt2x00_set_field32(®, CSR14_TSF_SYNC, 0); 841 rt2x00_set_field32(®, CSR14_TBCN, 0); 842 rt2x00_set_field32(®, CSR14_TCFP, 0); 843 rt2x00_set_field32(®, CSR14_TATIMW, 0); 844 rt2x00_set_field32(®, CSR14_BEACON_GEN, 0); 845 rt2x00_set_field32(®, CSR14_CFP_COUNT_PRELOAD, 0); 846 rt2x00_set_field32(®, CSR14_TBCM_PRELOAD, 0); 847 rt2x00mmio_register_write(rt2x00dev, CSR14, reg); 848 849 rt2x00mmio_register_write(rt2x00dev, CNT3, 0x3f080000); 850 851 rt2x00mmio_register_read(rt2x00dev, ARCSR0, ®); 852 rt2x00_set_field32(®, ARCSR0_AR_BBP_DATA0, 133); 853 rt2x00_set_field32(®, ARCSR0_AR_BBP_ID0, 134); 854 rt2x00_set_field32(®, ARCSR0_AR_BBP_DATA1, 136); 855 rt2x00_set_field32(®, ARCSR0_AR_BBP_ID1, 135); 856 rt2x00mmio_register_write(rt2x00dev, ARCSR0, reg); 857 858 rt2x00mmio_register_read(rt2x00dev, RXCSR3, ®); 859 rt2x00_set_field32(®, RXCSR3_BBP_ID0, 3); /* Tx power.*/ 860 rt2x00_set_field32(®, RXCSR3_BBP_ID0_VALID, 1); 861 rt2x00_set_field32(®, RXCSR3_BBP_ID1, 32); /* Signal */ 862 rt2x00_set_field32(®, RXCSR3_BBP_ID1_VALID, 1); 863 rt2x00_set_field32(®, RXCSR3_BBP_ID2, 36); /* Rssi */ 864 rt2x00_set_field32(®, RXCSR3_BBP_ID2_VALID, 1); 865 rt2x00mmio_register_write(rt2x00dev, RXCSR3, reg); 866 867 rt2x00mmio_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100); 868 869 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE)) 870 return -EBUSY; 871 872 rt2x00mmio_register_write(rt2x00dev, MACCSR0, 0x00217223); 873 rt2x00mmio_register_write(rt2x00dev, MACCSR1, 0x00235518); 874 875 rt2x00mmio_register_read(rt2x00dev, MACCSR2, ®); 876 rt2x00_set_field32(®, MACCSR2_DELAY, 64); 877 rt2x00mmio_register_write(rt2x00dev, MACCSR2, reg); 878 879 rt2x00mmio_register_read(rt2x00dev, RALINKCSR, ®); 880 rt2x00_set_field32(®, RALINKCSR_AR_BBP_DATA0, 17); 881 rt2x00_set_field32(®, RALINKCSR_AR_BBP_ID0, 154); 882 rt2x00_set_field32(®, RALINKCSR_AR_BBP_DATA1, 0); 883 rt2x00_set_field32(®, RALINKCSR_AR_BBP_ID1, 154); 884 rt2x00mmio_register_write(rt2x00dev, RALINKCSR, reg); 885 886 rt2x00mmio_register_read(rt2x00dev, CSR1, ®); 887 rt2x00_set_field32(®, CSR1_SOFT_RESET, 1); 888 rt2x00_set_field32(®, CSR1_BBP_RESET, 0); 889 rt2x00_set_field32(®, CSR1_HOST_READY, 0); 890 rt2x00mmio_register_write(rt2x00dev, CSR1, reg); 891 892 rt2x00mmio_register_read(rt2x00dev, CSR1, ®); 893 rt2x00_set_field32(®, CSR1_SOFT_RESET, 0); 894 rt2x00_set_field32(®, CSR1_HOST_READY, 1); 895 rt2x00mmio_register_write(rt2x00dev, CSR1, reg); 896 897 /* 898 * We must clear the FCS and FIFO error count. 899 * These registers are cleared on read, 900 * so we may pass a useless variable to store the value. 901 */ 902 rt2x00mmio_register_read(rt2x00dev, CNT0, ®); 903 rt2x00mmio_register_read(rt2x00dev, CNT4, ®); 904 905 return 0; 906 } 907 908 static int rt2400pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev) 909 { 910 unsigned int i; 911 u8 value; 912 913 for (i = 0; i < REGISTER_BUSY_COUNT; i++) { 914 rt2400pci_bbp_read(rt2x00dev, 0, &value); 915 if ((value != 0xff) && (value != 0x00)) 916 return 0; 917 udelay(REGISTER_BUSY_DELAY); 918 } 919 920 rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n"); 921 return -EACCES; 922 } 923 924 static int rt2400pci_init_bbp(struct rt2x00_dev *rt2x00dev) 925 { 926 unsigned int i; 927 u16 eeprom; 928 u8 reg_id; 929 u8 value; 930 931 if (unlikely(rt2400pci_wait_bbp_ready(rt2x00dev))) 932 return -EACCES; 933 934 rt2400pci_bbp_write(rt2x00dev, 1, 0x00); 935 rt2400pci_bbp_write(rt2x00dev, 3, 0x27); 936 rt2400pci_bbp_write(rt2x00dev, 4, 0x08); 937 rt2400pci_bbp_write(rt2x00dev, 10, 0x0f); 938 rt2400pci_bbp_write(rt2x00dev, 15, 0x72); 939 rt2400pci_bbp_write(rt2x00dev, 16, 0x74); 940 rt2400pci_bbp_write(rt2x00dev, 17, 0x20); 941 rt2400pci_bbp_write(rt2x00dev, 18, 0x72); 942 rt2400pci_bbp_write(rt2x00dev, 19, 0x0b); 943 rt2400pci_bbp_write(rt2x00dev, 20, 0x00); 944 rt2400pci_bbp_write(rt2x00dev, 28, 0x11); 945 rt2400pci_bbp_write(rt2x00dev, 29, 0x04); 946 rt2400pci_bbp_write(rt2x00dev, 30, 0x21); 947 rt2400pci_bbp_write(rt2x00dev, 31, 0x00); 948 949 for (i = 0; i < EEPROM_BBP_SIZE; i++) { 950 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom); 951 952 if (eeprom != 0xffff && eeprom != 0x0000) { 953 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID); 954 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE); 955 rt2400pci_bbp_write(rt2x00dev, reg_id, value); 956 } 957 } 958 959 return 0; 960 } 961 962 /* 963 * Device state switch handlers. 964 */ 965 static void rt2400pci_toggle_irq(struct rt2x00_dev *rt2x00dev, 966 enum dev_state state) 967 { 968 int mask = (state == STATE_RADIO_IRQ_OFF); 969 u32 reg; 970 unsigned long flags; 971 972 /* 973 * When interrupts are being enabled, the interrupt registers 974 * should clear the register to assure a clean state. 975 */ 976 if (state == STATE_RADIO_IRQ_ON) { 977 rt2x00mmio_register_read(rt2x00dev, CSR7, ®); 978 rt2x00mmio_register_write(rt2x00dev, CSR7, reg); 979 } 980 981 /* 982 * Only toggle the interrupts bits we are going to use. 983 * Non-checked interrupt bits are disabled by default. 984 */ 985 spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags); 986 987 rt2x00mmio_register_read(rt2x00dev, CSR8, ®); 988 rt2x00_set_field32(®, CSR8_TBCN_EXPIRE, mask); 989 rt2x00_set_field32(®, CSR8_TXDONE_TXRING, mask); 990 rt2x00_set_field32(®, CSR8_TXDONE_ATIMRING, mask); 991 rt2x00_set_field32(®, CSR8_TXDONE_PRIORING, mask); 992 rt2x00_set_field32(®, CSR8_RXDONE, mask); 993 rt2x00mmio_register_write(rt2x00dev, CSR8, reg); 994 995 spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags); 996 997 if (state == STATE_RADIO_IRQ_OFF) { 998 /* 999 * Ensure that all tasklets are finished before 1000 * disabling the interrupts. 1001 */ 1002 tasklet_kill(&rt2x00dev->txstatus_tasklet); 1003 tasklet_kill(&rt2x00dev->rxdone_tasklet); 1004 tasklet_kill(&rt2x00dev->tbtt_tasklet); 1005 } 1006 } 1007 1008 static int rt2400pci_enable_radio(struct rt2x00_dev *rt2x00dev) 1009 { 1010 /* 1011 * Initialize all registers. 1012 */ 1013 if (unlikely(rt2400pci_init_queues(rt2x00dev) || 1014 rt2400pci_init_registers(rt2x00dev) || 1015 rt2400pci_init_bbp(rt2x00dev))) 1016 return -EIO; 1017 1018 return 0; 1019 } 1020 1021 static void rt2400pci_disable_radio(struct rt2x00_dev *rt2x00dev) 1022 { 1023 /* 1024 * Disable power 1025 */ 1026 rt2x00mmio_register_write(rt2x00dev, PWRCSR0, 0); 1027 } 1028 1029 static int rt2400pci_set_state(struct rt2x00_dev *rt2x00dev, 1030 enum dev_state state) 1031 { 1032 u32 reg, reg2; 1033 unsigned int i; 1034 char put_to_sleep; 1035 char bbp_state; 1036 char rf_state; 1037 1038 put_to_sleep = (state != STATE_AWAKE); 1039 1040 rt2x00mmio_register_read(rt2x00dev, PWRCSR1, ®); 1041 rt2x00_set_field32(®, PWRCSR1_SET_STATE, 1); 1042 rt2x00_set_field32(®, PWRCSR1_BBP_DESIRE_STATE, state); 1043 rt2x00_set_field32(®, PWRCSR1_RF_DESIRE_STATE, state); 1044 rt2x00_set_field32(®, PWRCSR1_PUT_TO_SLEEP, put_to_sleep); 1045 rt2x00mmio_register_write(rt2x00dev, PWRCSR1, reg); 1046 1047 /* 1048 * Device is not guaranteed to be in the requested state yet. 1049 * We must wait until the register indicates that the 1050 * device has entered the correct state. 1051 */ 1052 for (i = 0; i < REGISTER_BUSY_COUNT; i++) { 1053 rt2x00mmio_register_read(rt2x00dev, PWRCSR1, ®2); 1054 bbp_state = rt2x00_get_field32(reg2, PWRCSR1_BBP_CURR_STATE); 1055 rf_state = rt2x00_get_field32(reg2, PWRCSR1_RF_CURR_STATE); 1056 if (bbp_state == state && rf_state == state) 1057 return 0; 1058 rt2x00mmio_register_write(rt2x00dev, PWRCSR1, reg); 1059 msleep(10); 1060 } 1061 1062 return -EBUSY; 1063 } 1064 1065 static int rt2400pci_set_device_state(struct rt2x00_dev *rt2x00dev, 1066 enum dev_state state) 1067 { 1068 int retval = 0; 1069 1070 switch (state) { 1071 case STATE_RADIO_ON: 1072 retval = rt2400pci_enable_radio(rt2x00dev); 1073 break; 1074 case STATE_RADIO_OFF: 1075 rt2400pci_disable_radio(rt2x00dev); 1076 break; 1077 case STATE_RADIO_IRQ_ON: 1078 case STATE_RADIO_IRQ_OFF: 1079 rt2400pci_toggle_irq(rt2x00dev, state); 1080 break; 1081 case STATE_DEEP_SLEEP: 1082 case STATE_SLEEP: 1083 case STATE_STANDBY: 1084 case STATE_AWAKE: 1085 retval = rt2400pci_set_state(rt2x00dev, state); 1086 break; 1087 default: 1088 retval = -ENOTSUPP; 1089 break; 1090 } 1091 1092 if (unlikely(retval)) 1093 rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n", 1094 state, retval); 1095 1096 return retval; 1097 } 1098 1099 /* 1100 * TX descriptor initialization 1101 */ 1102 static void rt2400pci_write_tx_desc(struct queue_entry *entry, 1103 struct txentry_desc *txdesc) 1104 { 1105 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); 1106 struct queue_entry_priv_mmio *entry_priv = entry->priv_data; 1107 __le32 *txd = entry_priv->desc; 1108 u32 word; 1109 1110 /* 1111 * Start writing the descriptor words. 1112 */ 1113 rt2x00_desc_read(txd, 1, &word); 1114 rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma); 1115 rt2x00_desc_write(txd, 1, word); 1116 1117 rt2x00_desc_read(txd, 2, &word); 1118 rt2x00_set_field32(&word, TXD_W2_BUFFER_LENGTH, txdesc->length); 1119 rt2x00_set_field32(&word, TXD_W2_DATABYTE_COUNT, txdesc->length); 1120 rt2x00_desc_write(txd, 2, word); 1121 1122 rt2x00_desc_read(txd, 3, &word); 1123 rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->u.plcp.signal); 1124 rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_REGNUM, 5); 1125 rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_BUSY, 1); 1126 rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->u.plcp.service); 1127 rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_REGNUM, 6); 1128 rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_BUSY, 1); 1129 rt2x00_desc_write(txd, 3, word); 1130 1131 rt2x00_desc_read(txd, 4, &word); 1132 rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_LOW, 1133 txdesc->u.plcp.length_low); 1134 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_REGNUM, 8); 1135 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_BUSY, 1); 1136 rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_HIGH, 1137 txdesc->u.plcp.length_high); 1138 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_REGNUM, 7); 1139 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_BUSY, 1); 1140 rt2x00_desc_write(txd, 4, word); 1141 1142 /* 1143 * Writing TXD word 0 must the last to prevent a race condition with 1144 * the device, whereby the device may take hold of the TXD before we 1145 * finished updating it. 1146 */ 1147 rt2x00_desc_read(txd, 0, &word); 1148 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1); 1149 rt2x00_set_field32(&word, TXD_W0_VALID, 1); 1150 rt2x00_set_field32(&word, TXD_W0_MORE_FRAG, 1151 test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags)); 1152 rt2x00_set_field32(&word, TXD_W0_ACK, 1153 test_bit(ENTRY_TXD_ACK, &txdesc->flags)); 1154 rt2x00_set_field32(&word, TXD_W0_TIMESTAMP, 1155 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags)); 1156 rt2x00_set_field32(&word, TXD_W0_RTS, 1157 test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags)); 1158 rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs); 1159 rt2x00_set_field32(&word, TXD_W0_RETRY_MODE, 1160 test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags)); 1161 rt2x00_desc_write(txd, 0, word); 1162 1163 /* 1164 * Register descriptor details in skb frame descriptor. 1165 */ 1166 skbdesc->desc = txd; 1167 skbdesc->desc_len = TXD_DESC_SIZE; 1168 } 1169 1170 /* 1171 * TX data initialization 1172 */ 1173 static void rt2400pci_write_beacon(struct queue_entry *entry, 1174 struct txentry_desc *txdesc) 1175 { 1176 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; 1177 u32 reg; 1178 1179 /* 1180 * Disable beaconing while we are reloading the beacon data, 1181 * otherwise we might be sending out invalid data. 1182 */ 1183 rt2x00mmio_register_read(rt2x00dev, CSR14, ®); 1184 rt2x00_set_field32(®, CSR14_BEACON_GEN, 0); 1185 rt2x00mmio_register_write(rt2x00dev, CSR14, reg); 1186 1187 if (rt2x00queue_map_txskb(entry)) { 1188 rt2x00_err(rt2x00dev, "Fail to map beacon, aborting\n"); 1189 goto out; 1190 } 1191 /* 1192 * Enable beaconing again. 1193 */ 1194 rt2x00_set_field32(®, CSR14_BEACON_GEN, 1); 1195 /* 1196 * Write the TX descriptor for the beacon. 1197 */ 1198 rt2400pci_write_tx_desc(entry, txdesc); 1199 1200 /* 1201 * Dump beacon to userspace through debugfs. 1202 */ 1203 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb); 1204 out: 1205 /* 1206 * Enable beaconing again. 1207 */ 1208 rt2x00_set_field32(®, CSR14_BEACON_GEN, 1); 1209 rt2x00mmio_register_write(rt2x00dev, CSR14, reg); 1210 } 1211 1212 /* 1213 * RX control handlers 1214 */ 1215 static void rt2400pci_fill_rxdone(struct queue_entry *entry, 1216 struct rxdone_entry_desc *rxdesc) 1217 { 1218 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; 1219 struct queue_entry_priv_mmio *entry_priv = entry->priv_data; 1220 u32 word0; 1221 u32 word2; 1222 u32 word3; 1223 u32 word4; 1224 u64 tsf; 1225 u32 rx_low; 1226 u32 rx_high; 1227 1228 rt2x00_desc_read(entry_priv->desc, 0, &word0); 1229 rt2x00_desc_read(entry_priv->desc, 2, &word2); 1230 rt2x00_desc_read(entry_priv->desc, 3, &word3); 1231 rt2x00_desc_read(entry_priv->desc, 4, &word4); 1232 1233 if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR)) 1234 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC; 1235 if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR)) 1236 rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC; 1237 1238 /* 1239 * We only get the lower 32bits from the timestamp, 1240 * to get the full 64bits we must complement it with 1241 * the timestamp from get_tsf(). 1242 * Note that when a wraparound of the lower 32bits 1243 * has occurred between the frame arrival and the get_tsf() 1244 * call, we must decrease the higher 32bits with 1 to get 1245 * to correct value. 1246 */ 1247 tsf = rt2x00dev->ops->hw->get_tsf(rt2x00dev->hw, NULL); 1248 rx_low = rt2x00_get_field32(word4, RXD_W4_RX_END_TIME); 1249 rx_high = upper_32_bits(tsf); 1250 1251 if ((u32)tsf <= rx_low) 1252 rx_high--; 1253 1254 /* 1255 * Obtain the status about this packet. 1256 * The signal is the PLCP value, and needs to be stripped 1257 * of the preamble bit (0x08). 1258 */ 1259 rxdesc->timestamp = ((u64)rx_high << 32) | rx_low; 1260 rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL) & ~0x08; 1261 rxdesc->rssi = rt2x00_get_field32(word3, RXD_W3_RSSI) - 1262 entry->queue->rt2x00dev->rssi_offset; 1263 rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT); 1264 1265 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP; 1266 if (rt2x00_get_field32(word0, RXD_W0_MY_BSS)) 1267 rxdesc->dev_flags |= RXDONE_MY_BSS; 1268 } 1269 1270 /* 1271 * Interrupt functions. 1272 */ 1273 static void rt2400pci_txdone(struct rt2x00_dev *rt2x00dev, 1274 const enum data_queue_qid queue_idx) 1275 { 1276 struct data_queue *queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx); 1277 struct queue_entry_priv_mmio *entry_priv; 1278 struct queue_entry *entry; 1279 struct txdone_entry_desc txdesc; 1280 u32 word; 1281 1282 while (!rt2x00queue_empty(queue)) { 1283 entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE); 1284 entry_priv = entry->priv_data; 1285 rt2x00_desc_read(entry_priv->desc, 0, &word); 1286 1287 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) || 1288 !rt2x00_get_field32(word, TXD_W0_VALID)) 1289 break; 1290 1291 /* 1292 * Obtain the status about this packet. 1293 */ 1294 txdesc.flags = 0; 1295 switch (rt2x00_get_field32(word, TXD_W0_RESULT)) { 1296 case 0: /* Success */ 1297 case 1: /* Success with retry */ 1298 __set_bit(TXDONE_SUCCESS, &txdesc.flags); 1299 break; 1300 case 2: /* Failure, excessive retries */ 1301 __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags); 1302 /* Don't break, this is a failed frame! */ 1303 default: /* Failure */ 1304 __set_bit(TXDONE_FAILURE, &txdesc.flags); 1305 } 1306 txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT); 1307 1308 rt2x00lib_txdone(entry, &txdesc); 1309 } 1310 } 1311 1312 static inline void rt2400pci_enable_interrupt(struct rt2x00_dev *rt2x00dev, 1313 struct rt2x00_field32 irq_field) 1314 { 1315 u32 reg; 1316 1317 /* 1318 * Enable a single interrupt. The interrupt mask register 1319 * access needs locking. 1320 */ 1321 spin_lock_irq(&rt2x00dev->irqmask_lock); 1322 1323 rt2x00mmio_register_read(rt2x00dev, CSR8, ®); 1324 rt2x00_set_field32(®, irq_field, 0); 1325 rt2x00mmio_register_write(rt2x00dev, CSR8, reg); 1326 1327 spin_unlock_irq(&rt2x00dev->irqmask_lock); 1328 } 1329 1330 static void rt2400pci_txstatus_tasklet(unsigned long data) 1331 { 1332 struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data; 1333 u32 reg; 1334 1335 /* 1336 * Handle all tx queues. 1337 */ 1338 rt2400pci_txdone(rt2x00dev, QID_ATIM); 1339 rt2400pci_txdone(rt2x00dev, QID_AC_VO); 1340 rt2400pci_txdone(rt2x00dev, QID_AC_VI); 1341 1342 /* 1343 * Enable all TXDONE interrupts again. 1344 */ 1345 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) { 1346 spin_lock_irq(&rt2x00dev->irqmask_lock); 1347 1348 rt2x00mmio_register_read(rt2x00dev, CSR8, ®); 1349 rt2x00_set_field32(®, CSR8_TXDONE_TXRING, 0); 1350 rt2x00_set_field32(®, CSR8_TXDONE_ATIMRING, 0); 1351 rt2x00_set_field32(®, CSR8_TXDONE_PRIORING, 0); 1352 rt2x00mmio_register_write(rt2x00dev, CSR8, reg); 1353 1354 spin_unlock_irq(&rt2x00dev->irqmask_lock); 1355 } 1356 } 1357 1358 static void rt2400pci_tbtt_tasklet(unsigned long data) 1359 { 1360 struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data; 1361 rt2x00lib_beacondone(rt2x00dev); 1362 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 1363 rt2400pci_enable_interrupt(rt2x00dev, CSR8_TBCN_EXPIRE); 1364 } 1365 1366 static void rt2400pci_rxdone_tasklet(unsigned long data) 1367 { 1368 struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data; 1369 if (rt2x00mmio_rxdone(rt2x00dev)) 1370 tasklet_schedule(&rt2x00dev->rxdone_tasklet); 1371 else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 1372 rt2400pci_enable_interrupt(rt2x00dev, CSR8_RXDONE); 1373 } 1374 1375 static irqreturn_t rt2400pci_interrupt(int irq, void *dev_instance) 1376 { 1377 struct rt2x00_dev *rt2x00dev = dev_instance; 1378 u32 reg, mask; 1379 1380 /* 1381 * Get the interrupt sources & saved to local variable. 1382 * Write register value back to clear pending interrupts. 1383 */ 1384 rt2x00mmio_register_read(rt2x00dev, CSR7, ®); 1385 rt2x00mmio_register_write(rt2x00dev, CSR7, reg); 1386 1387 if (!reg) 1388 return IRQ_NONE; 1389 1390 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 1391 return IRQ_HANDLED; 1392 1393 mask = reg; 1394 1395 /* 1396 * Schedule tasklets for interrupt handling. 1397 */ 1398 if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE)) 1399 tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet); 1400 1401 if (rt2x00_get_field32(reg, CSR7_RXDONE)) 1402 tasklet_schedule(&rt2x00dev->rxdone_tasklet); 1403 1404 if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING) || 1405 rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING) || 1406 rt2x00_get_field32(reg, CSR7_TXDONE_TXRING)) { 1407 tasklet_schedule(&rt2x00dev->txstatus_tasklet); 1408 /* 1409 * Mask out all txdone interrupts. 1410 */ 1411 rt2x00_set_field32(&mask, CSR8_TXDONE_TXRING, 1); 1412 rt2x00_set_field32(&mask, CSR8_TXDONE_ATIMRING, 1); 1413 rt2x00_set_field32(&mask, CSR8_TXDONE_PRIORING, 1); 1414 } 1415 1416 /* 1417 * Disable all interrupts for which a tasklet was scheduled right now, 1418 * the tasklet will reenable the appropriate interrupts. 1419 */ 1420 spin_lock(&rt2x00dev->irqmask_lock); 1421 1422 rt2x00mmio_register_read(rt2x00dev, CSR8, ®); 1423 reg |= mask; 1424 rt2x00mmio_register_write(rt2x00dev, CSR8, reg); 1425 1426 spin_unlock(&rt2x00dev->irqmask_lock); 1427 1428 1429 1430 return IRQ_HANDLED; 1431 } 1432 1433 /* 1434 * Device probe functions. 1435 */ 1436 static int rt2400pci_validate_eeprom(struct rt2x00_dev *rt2x00dev) 1437 { 1438 struct eeprom_93cx6 eeprom; 1439 u32 reg; 1440 u16 word; 1441 u8 *mac; 1442 1443 rt2x00mmio_register_read(rt2x00dev, CSR21, ®); 1444 1445 eeprom.data = rt2x00dev; 1446 eeprom.register_read = rt2400pci_eepromregister_read; 1447 eeprom.register_write = rt2400pci_eepromregister_write; 1448 eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ? 1449 PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66; 1450 eeprom.reg_data_in = 0; 1451 eeprom.reg_data_out = 0; 1452 eeprom.reg_data_clock = 0; 1453 eeprom.reg_chip_select = 0; 1454 1455 eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom, 1456 EEPROM_SIZE / sizeof(u16)); 1457 1458 /* 1459 * Start validation of the data that has been read. 1460 */ 1461 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0); 1462 if (!is_valid_ether_addr(mac)) { 1463 eth_random_addr(mac); 1464 rt2x00_eeprom_dbg(rt2x00dev, "MAC: %pM\n", mac); 1465 } 1466 1467 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word); 1468 if (word == 0xffff) { 1469 rt2x00_err(rt2x00dev, "Invalid EEPROM data detected\n"); 1470 return -EINVAL; 1471 } 1472 1473 return 0; 1474 } 1475 1476 static int rt2400pci_init_eeprom(struct rt2x00_dev *rt2x00dev) 1477 { 1478 u32 reg; 1479 u16 value; 1480 u16 eeprom; 1481 1482 /* 1483 * Read EEPROM word for configuration. 1484 */ 1485 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom); 1486 1487 /* 1488 * Identify RF chipset. 1489 */ 1490 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE); 1491 rt2x00mmio_register_read(rt2x00dev, CSR0, ®); 1492 rt2x00_set_chip(rt2x00dev, RT2460, value, 1493 rt2x00_get_field32(reg, CSR0_REVISION)); 1494 1495 if (!rt2x00_rf(rt2x00dev, RF2420) && !rt2x00_rf(rt2x00dev, RF2421)) { 1496 rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n"); 1497 return -ENODEV; 1498 } 1499 1500 /* 1501 * Identify default antenna configuration. 1502 */ 1503 rt2x00dev->default_ant.tx = 1504 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT); 1505 rt2x00dev->default_ant.rx = 1506 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT); 1507 1508 /* 1509 * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead. 1510 * I am not 100% sure about this, but the legacy drivers do not 1511 * indicate antenna swapping in software is required when 1512 * diversity is enabled. 1513 */ 1514 if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY) 1515 rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY; 1516 if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY) 1517 rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY; 1518 1519 /* 1520 * Store led mode, for correct led behaviour. 1521 */ 1522 #ifdef CONFIG_RT2X00_LIB_LEDS 1523 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE); 1524 1525 rt2400pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO); 1526 if (value == LED_MODE_TXRX_ACTIVITY || 1527 value == LED_MODE_DEFAULT || 1528 value == LED_MODE_ASUS) 1529 rt2400pci_init_led(rt2x00dev, &rt2x00dev->led_qual, 1530 LED_TYPE_ACTIVITY); 1531 #endif /* CONFIG_RT2X00_LIB_LEDS */ 1532 1533 /* 1534 * Detect if this device has an hardware controlled radio. 1535 */ 1536 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO)) 1537 __set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags); 1538 1539 /* 1540 * Check if the BBP tuning should be enabled. 1541 */ 1542 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_AGCVGC_TUNING)) 1543 __set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags); 1544 1545 return 0; 1546 } 1547 1548 /* 1549 * RF value list for RF2420 & RF2421 1550 * Supports: 2.4 GHz 1551 */ 1552 static const struct rf_channel rf_vals_b[] = { 1553 { 1, 0x00022058, 0x000c1fda, 0x00000101, 0 }, 1554 { 2, 0x00022058, 0x000c1fee, 0x00000101, 0 }, 1555 { 3, 0x00022058, 0x000c2002, 0x00000101, 0 }, 1556 { 4, 0x00022058, 0x000c2016, 0x00000101, 0 }, 1557 { 5, 0x00022058, 0x000c202a, 0x00000101, 0 }, 1558 { 6, 0x00022058, 0x000c203e, 0x00000101, 0 }, 1559 { 7, 0x00022058, 0x000c2052, 0x00000101, 0 }, 1560 { 8, 0x00022058, 0x000c2066, 0x00000101, 0 }, 1561 { 9, 0x00022058, 0x000c207a, 0x00000101, 0 }, 1562 { 10, 0x00022058, 0x000c208e, 0x00000101, 0 }, 1563 { 11, 0x00022058, 0x000c20a2, 0x00000101, 0 }, 1564 { 12, 0x00022058, 0x000c20b6, 0x00000101, 0 }, 1565 { 13, 0x00022058, 0x000c20ca, 0x00000101, 0 }, 1566 { 14, 0x00022058, 0x000c20fa, 0x00000101, 0 }, 1567 }; 1568 1569 static int rt2400pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev) 1570 { 1571 struct hw_mode_spec *spec = &rt2x00dev->spec; 1572 struct channel_info *info; 1573 char *tx_power; 1574 unsigned int i; 1575 1576 /* 1577 * Initialize all hw fields. 1578 */ 1579 ieee80211_hw_set(rt2x00dev->hw, PS_NULLFUNC_STACK); 1580 ieee80211_hw_set(rt2x00dev->hw, SUPPORTS_PS); 1581 ieee80211_hw_set(rt2x00dev->hw, HOST_BROADCAST_PS_BUFFERING); 1582 ieee80211_hw_set(rt2x00dev->hw, SIGNAL_DBM); 1583 1584 SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev); 1585 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw, 1586 rt2x00_eeprom_addr(rt2x00dev, 1587 EEPROM_MAC_ADDR_0)); 1588 1589 /* 1590 * Initialize hw_mode information. 1591 */ 1592 spec->supported_bands = SUPPORT_BAND_2GHZ; 1593 spec->supported_rates = SUPPORT_RATE_CCK; 1594 1595 spec->num_channels = ARRAY_SIZE(rf_vals_b); 1596 spec->channels = rf_vals_b; 1597 1598 /* 1599 * Create channel information array 1600 */ 1601 info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL); 1602 if (!info) 1603 return -ENOMEM; 1604 1605 spec->channels_info = info; 1606 1607 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START); 1608 for (i = 0; i < 14; i++) { 1609 info[i].max_power = TXPOWER_FROM_DEV(MAX_TXPOWER); 1610 info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]); 1611 } 1612 1613 return 0; 1614 } 1615 1616 static int rt2400pci_probe_hw(struct rt2x00_dev *rt2x00dev) 1617 { 1618 int retval; 1619 u32 reg; 1620 1621 /* 1622 * Allocate eeprom data. 1623 */ 1624 retval = rt2400pci_validate_eeprom(rt2x00dev); 1625 if (retval) 1626 return retval; 1627 1628 retval = rt2400pci_init_eeprom(rt2x00dev); 1629 if (retval) 1630 return retval; 1631 1632 /* 1633 * Enable rfkill polling by setting GPIO direction of the 1634 * rfkill switch GPIO pin correctly. 1635 */ 1636 rt2x00mmio_register_read(rt2x00dev, GPIOCSR, ®); 1637 rt2x00_set_field32(®, GPIOCSR_DIR0, 1); 1638 rt2x00mmio_register_write(rt2x00dev, GPIOCSR, reg); 1639 1640 /* 1641 * Initialize hw specifications. 1642 */ 1643 retval = rt2400pci_probe_hw_mode(rt2x00dev); 1644 if (retval) 1645 return retval; 1646 1647 /* 1648 * This device requires the atim queue and DMA-mapped skbs. 1649 */ 1650 __set_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags); 1651 __set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags); 1652 __set_bit(REQUIRE_SW_SEQNO, &rt2x00dev->cap_flags); 1653 1654 /* 1655 * Set the rssi offset. 1656 */ 1657 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET; 1658 1659 return 0; 1660 } 1661 1662 /* 1663 * IEEE80211 stack callback functions. 1664 */ 1665 static int rt2400pci_conf_tx(struct ieee80211_hw *hw, 1666 struct ieee80211_vif *vif, u16 queue, 1667 const struct ieee80211_tx_queue_params *params) 1668 { 1669 struct rt2x00_dev *rt2x00dev = hw->priv; 1670 1671 /* 1672 * We don't support variating cw_min and cw_max variables 1673 * per queue. So by default we only configure the TX queue, 1674 * and ignore all other configurations. 1675 */ 1676 if (queue != 0) 1677 return -EINVAL; 1678 1679 if (rt2x00mac_conf_tx(hw, vif, queue, params)) 1680 return -EINVAL; 1681 1682 /* 1683 * Write configuration to register. 1684 */ 1685 rt2400pci_config_cw(rt2x00dev, 1686 rt2x00dev->tx->cw_min, rt2x00dev->tx->cw_max); 1687 1688 return 0; 1689 } 1690 1691 static u64 rt2400pci_get_tsf(struct ieee80211_hw *hw, 1692 struct ieee80211_vif *vif) 1693 { 1694 struct rt2x00_dev *rt2x00dev = hw->priv; 1695 u64 tsf; 1696 u32 reg; 1697 1698 rt2x00mmio_register_read(rt2x00dev, CSR17, ®); 1699 tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32; 1700 rt2x00mmio_register_read(rt2x00dev, CSR16, ®); 1701 tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER); 1702 1703 return tsf; 1704 } 1705 1706 static int rt2400pci_tx_last_beacon(struct ieee80211_hw *hw) 1707 { 1708 struct rt2x00_dev *rt2x00dev = hw->priv; 1709 u32 reg; 1710 1711 rt2x00mmio_register_read(rt2x00dev, CSR15, ®); 1712 return rt2x00_get_field32(reg, CSR15_BEACON_SENT); 1713 } 1714 1715 static const struct ieee80211_ops rt2400pci_mac80211_ops = { 1716 .tx = rt2x00mac_tx, 1717 .start = rt2x00mac_start, 1718 .stop = rt2x00mac_stop, 1719 .add_interface = rt2x00mac_add_interface, 1720 .remove_interface = rt2x00mac_remove_interface, 1721 .config = rt2x00mac_config, 1722 .configure_filter = rt2x00mac_configure_filter, 1723 .sw_scan_start = rt2x00mac_sw_scan_start, 1724 .sw_scan_complete = rt2x00mac_sw_scan_complete, 1725 .get_stats = rt2x00mac_get_stats, 1726 .bss_info_changed = rt2x00mac_bss_info_changed, 1727 .conf_tx = rt2400pci_conf_tx, 1728 .get_tsf = rt2400pci_get_tsf, 1729 .tx_last_beacon = rt2400pci_tx_last_beacon, 1730 .rfkill_poll = rt2x00mac_rfkill_poll, 1731 .flush = rt2x00mac_flush, 1732 .set_antenna = rt2x00mac_set_antenna, 1733 .get_antenna = rt2x00mac_get_antenna, 1734 .get_ringparam = rt2x00mac_get_ringparam, 1735 .tx_frames_pending = rt2x00mac_tx_frames_pending, 1736 }; 1737 1738 static const struct rt2x00lib_ops rt2400pci_rt2x00_ops = { 1739 .irq_handler = rt2400pci_interrupt, 1740 .txstatus_tasklet = rt2400pci_txstatus_tasklet, 1741 .tbtt_tasklet = rt2400pci_tbtt_tasklet, 1742 .rxdone_tasklet = rt2400pci_rxdone_tasklet, 1743 .probe_hw = rt2400pci_probe_hw, 1744 .initialize = rt2x00mmio_initialize, 1745 .uninitialize = rt2x00mmio_uninitialize, 1746 .get_entry_state = rt2400pci_get_entry_state, 1747 .clear_entry = rt2400pci_clear_entry, 1748 .set_device_state = rt2400pci_set_device_state, 1749 .rfkill_poll = rt2400pci_rfkill_poll, 1750 .link_stats = rt2400pci_link_stats, 1751 .reset_tuner = rt2400pci_reset_tuner, 1752 .link_tuner = rt2400pci_link_tuner, 1753 .start_queue = rt2400pci_start_queue, 1754 .kick_queue = rt2400pci_kick_queue, 1755 .stop_queue = rt2400pci_stop_queue, 1756 .flush_queue = rt2x00mmio_flush_queue, 1757 .write_tx_desc = rt2400pci_write_tx_desc, 1758 .write_beacon = rt2400pci_write_beacon, 1759 .fill_rxdone = rt2400pci_fill_rxdone, 1760 .config_filter = rt2400pci_config_filter, 1761 .config_intf = rt2400pci_config_intf, 1762 .config_erp = rt2400pci_config_erp, 1763 .config_ant = rt2400pci_config_ant, 1764 .config = rt2400pci_config, 1765 }; 1766 1767 static void rt2400pci_queue_init(struct data_queue *queue) 1768 { 1769 switch (queue->qid) { 1770 case QID_RX: 1771 queue->limit = 24; 1772 queue->data_size = DATA_FRAME_SIZE; 1773 queue->desc_size = RXD_DESC_SIZE; 1774 queue->priv_size = sizeof(struct queue_entry_priv_mmio); 1775 break; 1776 1777 case QID_AC_VO: 1778 case QID_AC_VI: 1779 case QID_AC_BE: 1780 case QID_AC_BK: 1781 queue->limit = 24; 1782 queue->data_size = DATA_FRAME_SIZE; 1783 queue->desc_size = TXD_DESC_SIZE; 1784 queue->priv_size = sizeof(struct queue_entry_priv_mmio); 1785 break; 1786 1787 case QID_BEACON: 1788 queue->limit = 1; 1789 queue->data_size = MGMT_FRAME_SIZE; 1790 queue->desc_size = TXD_DESC_SIZE; 1791 queue->priv_size = sizeof(struct queue_entry_priv_mmio); 1792 break; 1793 1794 case QID_ATIM: 1795 queue->limit = 8; 1796 queue->data_size = DATA_FRAME_SIZE; 1797 queue->desc_size = TXD_DESC_SIZE; 1798 queue->priv_size = sizeof(struct queue_entry_priv_mmio); 1799 break; 1800 1801 default: 1802 BUG(); 1803 break; 1804 } 1805 } 1806 1807 static const struct rt2x00_ops rt2400pci_ops = { 1808 .name = KBUILD_MODNAME, 1809 .max_ap_intf = 1, 1810 .eeprom_size = EEPROM_SIZE, 1811 .rf_size = RF_SIZE, 1812 .tx_queues = NUM_TX_QUEUES, 1813 .queue_init = rt2400pci_queue_init, 1814 .lib = &rt2400pci_rt2x00_ops, 1815 .hw = &rt2400pci_mac80211_ops, 1816 #ifdef CONFIG_RT2X00_LIB_DEBUGFS 1817 .debugfs = &rt2400pci_rt2x00debug, 1818 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */ 1819 }; 1820 1821 /* 1822 * RT2400pci module information. 1823 */ 1824 static const struct pci_device_id rt2400pci_device_table[] = { 1825 { PCI_DEVICE(0x1814, 0x0101) }, 1826 { 0, } 1827 }; 1828 1829 1830 MODULE_AUTHOR(DRV_PROJECT); 1831 MODULE_VERSION(DRV_VERSION); 1832 MODULE_DESCRIPTION("Ralink RT2400 PCI & PCMCIA Wireless LAN driver."); 1833 MODULE_SUPPORTED_DEVICE("Ralink RT2460 PCI & PCMCIA chipset based cards"); 1834 MODULE_DEVICE_TABLE(pci, rt2400pci_device_table); 1835 MODULE_LICENSE("GPL"); 1836 1837 static int rt2400pci_probe(struct pci_dev *pci_dev, 1838 const struct pci_device_id *id) 1839 { 1840 return rt2x00pci_probe(pci_dev, &rt2400pci_ops); 1841 } 1842 1843 static struct pci_driver rt2400pci_driver = { 1844 .name = KBUILD_MODNAME, 1845 .id_table = rt2400pci_device_table, 1846 .probe = rt2400pci_probe, 1847 .remove = rt2x00pci_remove, 1848 .suspend = rt2x00pci_suspend, 1849 .resume = rt2x00pci_resume, 1850 }; 1851 1852 module_pci_driver(rt2400pci_driver); 1853