xref: /openbmc/linux/drivers/net/wireless/ralink/rt2x00/rt2400pci.c (revision 023e41632e065d49bcbe31b3c4b336217f96a271)
1 /*
2 	Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3 	<http://rt2x00.serialmonkey.com>
4 
5 	This program is free software; you can redistribute it and/or modify
6 	it under the terms of the GNU General Public License as published by
7 	the Free Software Foundation; either version 2 of the License, or
8 	(at your option) any later version.
9 
10 	This program is distributed in the hope that it will be useful,
11 	but WITHOUT ANY WARRANTY; without even the implied warranty of
12 	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 	GNU General Public License for more details.
14 
15 	You should have received a copy of the GNU General Public License
16 	along with this program; if not, see <http://www.gnu.org/licenses/>.
17  */
18 
19 /*
20 	Module: rt2400pci
21 	Abstract: rt2400pci device specific routines.
22 	Supported chipsets: RT2460.
23  */
24 
25 #include <linux/delay.h>
26 #include <linux/etherdevice.h>
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/pci.h>
30 #include <linux/eeprom_93cx6.h>
31 #include <linux/slab.h>
32 
33 #include "rt2x00.h"
34 #include "rt2x00mmio.h"
35 #include "rt2x00pci.h"
36 #include "rt2400pci.h"
37 
38 /*
39  * Register access.
40  * All access to the CSR registers will go through the methods
41  * rt2x00mmio_register_read and rt2x00mmio_register_write.
42  * BBP and RF register require indirect register access,
43  * and use the CSR registers BBPCSR and RFCSR to achieve this.
44  * These indirect registers work with busy bits,
45  * and we will try maximal REGISTER_BUSY_COUNT times to access
46  * the register while taking a REGISTER_BUSY_DELAY us delay
47  * between each attempt. When the busy bit is still set at that time,
48  * the access attempt is considered to have failed,
49  * and we will print an error.
50  */
51 #define WAIT_FOR_BBP(__dev, __reg) \
52 	rt2x00mmio_regbusy_read((__dev), BBPCSR, BBPCSR_BUSY, (__reg))
53 #define WAIT_FOR_RF(__dev, __reg) \
54 	rt2x00mmio_regbusy_read((__dev), RFCSR, RFCSR_BUSY, (__reg))
55 
56 static void rt2400pci_bbp_write(struct rt2x00_dev *rt2x00dev,
57 				const unsigned int word, const u8 value)
58 {
59 	u32 reg;
60 
61 	mutex_lock(&rt2x00dev->csr_mutex);
62 
63 	/*
64 	 * Wait until the BBP becomes available, afterwards we
65 	 * can safely write the new data into the register.
66 	 */
67 	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
68 		reg = 0;
69 		rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
70 		rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
71 		rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
72 		rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
73 
74 		rt2x00mmio_register_write(rt2x00dev, BBPCSR, reg);
75 	}
76 
77 	mutex_unlock(&rt2x00dev->csr_mutex);
78 }
79 
80 static u8 rt2400pci_bbp_read(struct rt2x00_dev *rt2x00dev,
81 			     const unsigned int word)
82 {
83 	u32 reg;
84 	u8 value;
85 
86 	mutex_lock(&rt2x00dev->csr_mutex);
87 
88 	/*
89 	 * Wait until the BBP becomes available, afterwards we
90 	 * can safely write the read request into the register.
91 	 * After the data has been written, we wait until hardware
92 	 * returns the correct value, if at any time the register
93 	 * doesn't become available in time, reg will be 0xffffffff
94 	 * which means we return 0xff to the caller.
95 	 */
96 	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
97 		reg = 0;
98 		rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
99 		rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
100 		rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
101 
102 		rt2x00mmio_register_write(rt2x00dev, BBPCSR, reg);
103 
104 		WAIT_FOR_BBP(rt2x00dev, &reg);
105 	}
106 
107 	value = rt2x00_get_field32(reg, BBPCSR_VALUE);
108 
109 	mutex_unlock(&rt2x00dev->csr_mutex);
110 
111 	return value;
112 }
113 
114 static void rt2400pci_rf_write(struct rt2x00_dev *rt2x00dev,
115 			       const unsigned int word, const u32 value)
116 {
117 	u32 reg;
118 
119 	mutex_lock(&rt2x00dev->csr_mutex);
120 
121 	/*
122 	 * Wait until the RF becomes available, afterwards we
123 	 * can safely write the new data into the register.
124 	 */
125 	if (WAIT_FOR_RF(rt2x00dev, &reg)) {
126 		reg = 0;
127 		rt2x00_set_field32(&reg, RFCSR_VALUE, value);
128 		rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
129 		rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
130 		rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
131 
132 		rt2x00mmio_register_write(rt2x00dev, RFCSR, reg);
133 		rt2x00_rf_write(rt2x00dev, word, value);
134 	}
135 
136 	mutex_unlock(&rt2x00dev->csr_mutex);
137 }
138 
139 static void rt2400pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
140 {
141 	struct rt2x00_dev *rt2x00dev = eeprom->data;
142 	u32 reg;
143 
144 	reg = rt2x00mmio_register_read(rt2x00dev, CSR21);
145 
146 	eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
147 	eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
148 	eeprom->reg_data_clock =
149 	    !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
150 	eeprom->reg_chip_select =
151 	    !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
152 }
153 
154 static void rt2400pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
155 {
156 	struct rt2x00_dev *rt2x00dev = eeprom->data;
157 	u32 reg = 0;
158 
159 	rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
160 	rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
161 	rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
162 			   !!eeprom->reg_data_clock);
163 	rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
164 			   !!eeprom->reg_chip_select);
165 
166 	rt2x00mmio_register_write(rt2x00dev, CSR21, reg);
167 }
168 
169 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
170 static const struct rt2x00debug rt2400pci_rt2x00debug = {
171 	.owner	= THIS_MODULE,
172 	.csr	= {
173 		.read		= rt2x00mmio_register_read,
174 		.write		= rt2x00mmio_register_write,
175 		.flags		= RT2X00DEBUGFS_OFFSET,
176 		.word_base	= CSR_REG_BASE,
177 		.word_size	= sizeof(u32),
178 		.word_count	= CSR_REG_SIZE / sizeof(u32),
179 	},
180 	.eeprom	= {
181 		.read		= rt2x00_eeprom_read,
182 		.write		= rt2x00_eeprom_write,
183 		.word_base	= EEPROM_BASE,
184 		.word_size	= sizeof(u16),
185 		.word_count	= EEPROM_SIZE / sizeof(u16),
186 	},
187 	.bbp	= {
188 		.read		= rt2400pci_bbp_read,
189 		.write		= rt2400pci_bbp_write,
190 		.word_base	= BBP_BASE,
191 		.word_size	= sizeof(u8),
192 		.word_count	= BBP_SIZE / sizeof(u8),
193 	},
194 	.rf	= {
195 		.read		= rt2x00_rf_read,
196 		.write		= rt2400pci_rf_write,
197 		.word_base	= RF_BASE,
198 		.word_size	= sizeof(u32),
199 		.word_count	= RF_SIZE / sizeof(u32),
200 	},
201 };
202 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
203 
204 static int rt2400pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
205 {
206 	u32 reg;
207 
208 	reg = rt2x00mmio_register_read(rt2x00dev, GPIOCSR);
209 	return rt2x00_get_field32(reg, GPIOCSR_VAL0);
210 }
211 
212 #ifdef CONFIG_RT2X00_LIB_LEDS
213 static void rt2400pci_brightness_set(struct led_classdev *led_cdev,
214 				     enum led_brightness brightness)
215 {
216 	struct rt2x00_led *led =
217 	    container_of(led_cdev, struct rt2x00_led, led_dev);
218 	unsigned int enabled = brightness != LED_OFF;
219 	u32 reg;
220 
221 	reg = rt2x00mmio_register_read(led->rt2x00dev, LEDCSR);
222 
223 	if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
224 		rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
225 	else if (led->type == LED_TYPE_ACTIVITY)
226 		rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled);
227 
228 	rt2x00mmio_register_write(led->rt2x00dev, LEDCSR, reg);
229 }
230 
231 static int rt2400pci_blink_set(struct led_classdev *led_cdev,
232 			       unsigned long *delay_on,
233 			       unsigned long *delay_off)
234 {
235 	struct rt2x00_led *led =
236 	    container_of(led_cdev, struct rt2x00_led, led_dev);
237 	u32 reg;
238 
239 	reg = rt2x00mmio_register_read(led->rt2x00dev, LEDCSR);
240 	rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, *delay_on);
241 	rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, *delay_off);
242 	rt2x00mmio_register_write(led->rt2x00dev, LEDCSR, reg);
243 
244 	return 0;
245 }
246 
247 static void rt2400pci_init_led(struct rt2x00_dev *rt2x00dev,
248 			       struct rt2x00_led *led,
249 			       enum led_type type)
250 {
251 	led->rt2x00dev = rt2x00dev;
252 	led->type = type;
253 	led->led_dev.brightness_set = rt2400pci_brightness_set;
254 	led->led_dev.blink_set = rt2400pci_blink_set;
255 	led->flags = LED_INITIALIZED;
256 }
257 #endif /* CONFIG_RT2X00_LIB_LEDS */
258 
259 /*
260  * Configuration handlers.
261  */
262 static void rt2400pci_config_filter(struct rt2x00_dev *rt2x00dev,
263 				    const unsigned int filter_flags)
264 {
265 	u32 reg;
266 
267 	/*
268 	 * Start configuration steps.
269 	 * Note that the version error will always be dropped
270 	 * since there is no filter for it at this time.
271 	 */
272 	reg = rt2x00mmio_register_read(rt2x00dev, RXCSR0);
273 	rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
274 			   !(filter_flags & FIF_FCSFAIL));
275 	rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
276 			   !(filter_flags & FIF_PLCPFAIL));
277 	rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
278 			   !(filter_flags & FIF_CONTROL));
279 	rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
280 			   !test_bit(CONFIG_MONITORING, &rt2x00dev->flags));
281 	rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
282 			   !test_bit(CONFIG_MONITORING, &rt2x00dev->flags) &&
283 			   !rt2x00dev->intf_ap_count);
284 	rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
285 	rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
286 }
287 
288 static void rt2400pci_config_intf(struct rt2x00_dev *rt2x00dev,
289 				  struct rt2x00_intf *intf,
290 				  struct rt2x00intf_conf *conf,
291 				  const unsigned int flags)
292 {
293 	unsigned int bcn_preload;
294 	u32 reg;
295 
296 	if (flags & CONFIG_UPDATE_TYPE) {
297 		/*
298 		 * Enable beacon config
299 		 */
300 		bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
301 		reg = rt2x00mmio_register_read(rt2x00dev, BCNCSR1);
302 		rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
303 		rt2x00mmio_register_write(rt2x00dev, BCNCSR1, reg);
304 
305 		/*
306 		 * Enable synchronisation.
307 		 */
308 		reg = rt2x00mmio_register_read(rt2x00dev, CSR14);
309 		rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
310 		rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
311 	}
312 
313 	if (flags & CONFIG_UPDATE_MAC)
314 		rt2x00mmio_register_multiwrite(rt2x00dev, CSR3,
315 					       conf->mac, sizeof(conf->mac));
316 
317 	if (flags & CONFIG_UPDATE_BSSID)
318 		rt2x00mmio_register_multiwrite(rt2x00dev, CSR5,
319 					       conf->bssid,
320 					       sizeof(conf->bssid));
321 }
322 
323 static void rt2400pci_config_erp(struct rt2x00_dev *rt2x00dev,
324 				 struct rt2x00lib_erp *erp,
325 				 u32 changed)
326 {
327 	int preamble_mask;
328 	u32 reg;
329 
330 	/*
331 	 * When short preamble is enabled, we should set bit 0x08
332 	 */
333 	if (changed & BSS_CHANGED_ERP_PREAMBLE) {
334 		preamble_mask = erp->short_preamble << 3;
335 
336 		reg = rt2x00mmio_register_read(rt2x00dev, TXCSR1);
337 		rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, 0x1ff);
338 		rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME, 0x13a);
339 		rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
340 		rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
341 		rt2x00mmio_register_write(rt2x00dev, TXCSR1, reg);
342 
343 		reg = rt2x00mmio_register_read(rt2x00dev, ARCSR2);
344 		rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00);
345 		rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
346 		rt2x00_set_field32(&reg, ARCSR2_LENGTH,
347 				   GET_DURATION(ACK_SIZE, 10));
348 		rt2x00mmio_register_write(rt2x00dev, ARCSR2, reg);
349 
350 		reg = rt2x00mmio_register_read(rt2x00dev, ARCSR3);
351 		rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
352 		rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
353 		rt2x00_set_field32(&reg, ARCSR2_LENGTH,
354 				   GET_DURATION(ACK_SIZE, 20));
355 		rt2x00mmio_register_write(rt2x00dev, ARCSR3, reg);
356 
357 		reg = rt2x00mmio_register_read(rt2x00dev, ARCSR4);
358 		rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
359 		rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
360 		rt2x00_set_field32(&reg, ARCSR2_LENGTH,
361 				   GET_DURATION(ACK_SIZE, 55));
362 		rt2x00mmio_register_write(rt2x00dev, ARCSR4, reg);
363 
364 		reg = rt2x00mmio_register_read(rt2x00dev, ARCSR5);
365 		rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
366 		rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
367 		rt2x00_set_field32(&reg, ARCSR2_LENGTH,
368 				   GET_DURATION(ACK_SIZE, 110));
369 		rt2x00mmio_register_write(rt2x00dev, ARCSR5, reg);
370 	}
371 
372 	if (changed & BSS_CHANGED_BASIC_RATES)
373 		rt2x00mmio_register_write(rt2x00dev, ARCSR1, erp->basic_rates);
374 
375 	if (changed & BSS_CHANGED_ERP_SLOT) {
376 		reg = rt2x00mmio_register_read(rt2x00dev, CSR11);
377 		rt2x00_set_field32(&reg, CSR11_SLOT_TIME, erp->slot_time);
378 		rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
379 
380 		reg = rt2x00mmio_register_read(rt2x00dev, CSR18);
381 		rt2x00_set_field32(&reg, CSR18_SIFS, erp->sifs);
382 		rt2x00_set_field32(&reg, CSR18_PIFS, erp->pifs);
383 		rt2x00mmio_register_write(rt2x00dev, CSR18, reg);
384 
385 		reg = rt2x00mmio_register_read(rt2x00dev, CSR19);
386 		rt2x00_set_field32(&reg, CSR19_DIFS, erp->difs);
387 		rt2x00_set_field32(&reg, CSR19_EIFS, erp->eifs);
388 		rt2x00mmio_register_write(rt2x00dev, CSR19, reg);
389 	}
390 
391 	if (changed & BSS_CHANGED_BEACON_INT) {
392 		reg = rt2x00mmio_register_read(rt2x00dev, CSR12);
393 		rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
394 				   erp->beacon_int * 16);
395 		rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
396 				   erp->beacon_int * 16);
397 		rt2x00mmio_register_write(rt2x00dev, CSR12, reg);
398 	}
399 }
400 
401 static void rt2400pci_config_ant(struct rt2x00_dev *rt2x00dev,
402 				 struct antenna_setup *ant)
403 {
404 	u8 r1;
405 	u8 r4;
406 
407 	/*
408 	 * We should never come here because rt2x00lib is supposed
409 	 * to catch this and send us the correct antenna explicitely.
410 	 */
411 	BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
412 	       ant->tx == ANTENNA_SW_DIVERSITY);
413 
414 	r4 = rt2400pci_bbp_read(rt2x00dev, 4);
415 	r1 = rt2400pci_bbp_read(rt2x00dev, 1);
416 
417 	/*
418 	 * Configure the TX antenna.
419 	 */
420 	switch (ant->tx) {
421 	case ANTENNA_HW_DIVERSITY:
422 		rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 1);
423 		break;
424 	case ANTENNA_A:
425 		rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 0);
426 		break;
427 	case ANTENNA_B:
428 	default:
429 		rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 2);
430 		break;
431 	}
432 
433 	/*
434 	 * Configure the RX antenna.
435 	 */
436 	switch (ant->rx) {
437 	case ANTENNA_HW_DIVERSITY:
438 		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 1);
439 		break;
440 	case ANTENNA_A:
441 		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 0);
442 		break;
443 	case ANTENNA_B:
444 	default:
445 		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 2);
446 		break;
447 	}
448 
449 	rt2400pci_bbp_write(rt2x00dev, 4, r4);
450 	rt2400pci_bbp_write(rt2x00dev, 1, r1);
451 }
452 
453 static void rt2400pci_config_channel(struct rt2x00_dev *rt2x00dev,
454 				     struct rf_channel *rf)
455 {
456 	/*
457 	 * Switch on tuning bits.
458 	 */
459 	rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
460 	rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
461 
462 	rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
463 	rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
464 	rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
465 
466 	/*
467 	 * RF2420 chipset don't need any additional actions.
468 	 */
469 	if (rt2x00_rf(rt2x00dev, RF2420))
470 		return;
471 
472 	/*
473 	 * For the RT2421 chipsets we need to write an invalid
474 	 * reference clock rate to activate auto_tune.
475 	 * After that we set the value back to the correct channel.
476 	 */
477 	rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
478 	rt2400pci_rf_write(rt2x00dev, 2, 0x000c2a32);
479 	rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
480 
481 	msleep(1);
482 
483 	rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
484 	rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
485 	rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
486 
487 	msleep(1);
488 
489 	/*
490 	 * Switch off tuning bits.
491 	 */
492 	rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
493 	rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
494 
495 	rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
496 	rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
497 
498 	/*
499 	 * Clear false CRC during channel switch.
500 	 */
501 	rf->rf1 = rt2x00mmio_register_read(rt2x00dev, CNT0);
502 }
503 
504 static void rt2400pci_config_txpower(struct rt2x00_dev *rt2x00dev, int txpower)
505 {
506 	rt2400pci_bbp_write(rt2x00dev, 3, TXPOWER_TO_DEV(txpower));
507 }
508 
509 static void rt2400pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
510 					 struct rt2x00lib_conf *libconf)
511 {
512 	u32 reg;
513 
514 	reg = rt2x00mmio_register_read(rt2x00dev, CSR11);
515 	rt2x00_set_field32(&reg, CSR11_LONG_RETRY,
516 			   libconf->conf->long_frame_max_tx_count);
517 	rt2x00_set_field32(&reg, CSR11_SHORT_RETRY,
518 			   libconf->conf->short_frame_max_tx_count);
519 	rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
520 }
521 
522 static void rt2400pci_config_ps(struct rt2x00_dev *rt2x00dev,
523 				struct rt2x00lib_conf *libconf)
524 {
525 	enum dev_state state =
526 	    (libconf->conf->flags & IEEE80211_CONF_PS) ?
527 		STATE_SLEEP : STATE_AWAKE;
528 	u32 reg;
529 
530 	if (state == STATE_SLEEP) {
531 		reg = rt2x00mmio_register_read(rt2x00dev, CSR20);
532 		rt2x00_set_field32(&reg, CSR20_DELAY_AFTER_TBCN,
533 				   (rt2x00dev->beacon_int - 20) * 16);
534 		rt2x00_set_field32(&reg, CSR20_TBCN_BEFORE_WAKEUP,
535 				   libconf->conf->listen_interval - 1);
536 
537 		/* We must first disable autowake before it can be enabled */
538 		rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
539 		rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
540 
541 		rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 1);
542 		rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
543 	} else {
544 		reg = rt2x00mmio_register_read(rt2x00dev, CSR20);
545 		rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
546 		rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
547 	}
548 
549 	rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
550 }
551 
552 static void rt2400pci_config(struct rt2x00_dev *rt2x00dev,
553 			     struct rt2x00lib_conf *libconf,
554 			     const unsigned int flags)
555 {
556 	if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
557 		rt2400pci_config_channel(rt2x00dev, &libconf->rf);
558 	if (flags & IEEE80211_CONF_CHANGE_POWER)
559 		rt2400pci_config_txpower(rt2x00dev,
560 					 libconf->conf->power_level);
561 	if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
562 		rt2400pci_config_retry_limit(rt2x00dev, libconf);
563 	if (flags & IEEE80211_CONF_CHANGE_PS)
564 		rt2400pci_config_ps(rt2x00dev, libconf);
565 }
566 
567 static void rt2400pci_config_cw(struct rt2x00_dev *rt2x00dev,
568 				const int cw_min, const int cw_max)
569 {
570 	u32 reg;
571 
572 	reg = rt2x00mmio_register_read(rt2x00dev, CSR11);
573 	rt2x00_set_field32(&reg, CSR11_CWMIN, cw_min);
574 	rt2x00_set_field32(&reg, CSR11_CWMAX, cw_max);
575 	rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
576 }
577 
578 /*
579  * Link tuning
580  */
581 static void rt2400pci_link_stats(struct rt2x00_dev *rt2x00dev,
582 				 struct link_qual *qual)
583 {
584 	u32 reg;
585 	u8 bbp;
586 
587 	/*
588 	 * Update FCS error count from register.
589 	 */
590 	reg = rt2x00mmio_register_read(rt2x00dev, CNT0);
591 	qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
592 
593 	/*
594 	 * Update False CCA count from register.
595 	 */
596 	bbp = rt2400pci_bbp_read(rt2x00dev, 39);
597 	qual->false_cca = bbp;
598 }
599 
600 static inline void rt2400pci_set_vgc(struct rt2x00_dev *rt2x00dev,
601 				     struct link_qual *qual, u8 vgc_level)
602 {
603 	if (qual->vgc_level_reg != vgc_level) {
604 		rt2400pci_bbp_write(rt2x00dev, 13, vgc_level);
605 		qual->vgc_level = vgc_level;
606 		qual->vgc_level_reg = vgc_level;
607 	}
608 }
609 
610 static void rt2400pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
611 				  struct link_qual *qual)
612 {
613 	rt2400pci_set_vgc(rt2x00dev, qual, 0x08);
614 }
615 
616 static void rt2400pci_link_tuner(struct rt2x00_dev *rt2x00dev,
617 				 struct link_qual *qual, const u32 count)
618 {
619 	/*
620 	 * The link tuner should not run longer then 60 seconds,
621 	 * and should run once every 2 seconds.
622 	 */
623 	if (count > 60 || !(count & 1))
624 		return;
625 
626 	/*
627 	 * Base r13 link tuning on the false cca count.
628 	 */
629 	if ((qual->false_cca > 512) && (qual->vgc_level < 0x20))
630 		rt2400pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level);
631 	else if ((qual->false_cca < 100) && (qual->vgc_level > 0x08))
632 		rt2400pci_set_vgc(rt2x00dev, qual, --qual->vgc_level);
633 }
634 
635 /*
636  * Queue handlers.
637  */
638 static void rt2400pci_start_queue(struct data_queue *queue)
639 {
640 	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
641 	u32 reg;
642 
643 	switch (queue->qid) {
644 	case QID_RX:
645 		reg = rt2x00mmio_register_read(rt2x00dev, RXCSR0);
646 		rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX, 0);
647 		rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
648 		break;
649 	case QID_BEACON:
650 		reg = rt2x00mmio_register_read(rt2x00dev, CSR14);
651 		rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
652 		rt2x00_set_field32(&reg, CSR14_TBCN, 1);
653 		rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
654 		rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
655 		break;
656 	default:
657 		break;
658 	}
659 }
660 
661 static void rt2400pci_kick_queue(struct data_queue *queue)
662 {
663 	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
664 	u32 reg;
665 
666 	switch (queue->qid) {
667 	case QID_AC_VO:
668 		reg = rt2x00mmio_register_read(rt2x00dev, TXCSR0);
669 		rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, 1);
670 		rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
671 		break;
672 	case QID_AC_VI:
673 		reg = rt2x00mmio_register_read(rt2x00dev, TXCSR0);
674 		rt2x00_set_field32(&reg, TXCSR0_KICK_TX, 1);
675 		rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
676 		break;
677 	case QID_ATIM:
678 		reg = rt2x00mmio_register_read(rt2x00dev, TXCSR0);
679 		rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, 1);
680 		rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
681 		break;
682 	default:
683 		break;
684 	}
685 }
686 
687 static void rt2400pci_stop_queue(struct data_queue *queue)
688 {
689 	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
690 	u32 reg;
691 
692 	switch (queue->qid) {
693 	case QID_AC_VO:
694 	case QID_AC_VI:
695 	case QID_ATIM:
696 		reg = rt2x00mmio_register_read(rt2x00dev, TXCSR0);
697 		rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
698 		rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
699 		break;
700 	case QID_RX:
701 		reg = rt2x00mmio_register_read(rt2x00dev, RXCSR0);
702 		rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX, 1);
703 		rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
704 		break;
705 	case QID_BEACON:
706 		reg = rt2x00mmio_register_read(rt2x00dev, CSR14);
707 		rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
708 		rt2x00_set_field32(&reg, CSR14_TBCN, 0);
709 		rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
710 		rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
711 
712 		/*
713 		 * Wait for possibly running tbtt tasklets.
714 		 */
715 		tasklet_kill(&rt2x00dev->tbtt_tasklet);
716 		break;
717 	default:
718 		break;
719 	}
720 }
721 
722 /*
723  * Initialization functions.
724  */
725 static bool rt2400pci_get_entry_state(struct queue_entry *entry)
726 {
727 	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
728 	u32 word;
729 
730 	if (entry->queue->qid == QID_RX) {
731 		word = rt2x00_desc_read(entry_priv->desc, 0);
732 
733 		return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
734 	} else {
735 		word = rt2x00_desc_read(entry_priv->desc, 0);
736 
737 		return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
738 		        rt2x00_get_field32(word, TXD_W0_VALID));
739 	}
740 }
741 
742 static void rt2400pci_clear_entry(struct queue_entry *entry)
743 {
744 	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
745 	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
746 	u32 word;
747 
748 	if (entry->queue->qid == QID_RX) {
749 		word = rt2x00_desc_read(entry_priv->desc, 2);
750 		rt2x00_set_field32(&word, RXD_W2_BUFFER_LENGTH, entry->skb->len);
751 		rt2x00_desc_write(entry_priv->desc, 2, word);
752 
753 		word = rt2x00_desc_read(entry_priv->desc, 1);
754 		rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
755 		rt2x00_desc_write(entry_priv->desc, 1, word);
756 
757 		word = rt2x00_desc_read(entry_priv->desc, 0);
758 		rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
759 		rt2x00_desc_write(entry_priv->desc, 0, word);
760 	} else {
761 		word = rt2x00_desc_read(entry_priv->desc, 0);
762 		rt2x00_set_field32(&word, TXD_W0_VALID, 0);
763 		rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
764 		rt2x00_desc_write(entry_priv->desc, 0, word);
765 	}
766 }
767 
768 static int rt2400pci_init_queues(struct rt2x00_dev *rt2x00dev)
769 {
770 	struct queue_entry_priv_mmio *entry_priv;
771 	u32 reg;
772 
773 	/*
774 	 * Initialize registers.
775 	 */
776 	reg = rt2x00mmio_register_read(rt2x00dev, TXCSR2);
777 	rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
778 	rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
779 	rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->atim->limit);
780 	rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
781 	rt2x00mmio_register_write(rt2x00dev, TXCSR2, reg);
782 
783 	entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
784 	reg = rt2x00mmio_register_read(rt2x00dev, TXCSR3);
785 	rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
786 			   entry_priv->desc_dma);
787 	rt2x00mmio_register_write(rt2x00dev, TXCSR3, reg);
788 
789 	entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
790 	reg = rt2x00mmio_register_read(rt2x00dev, TXCSR5);
791 	rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
792 			   entry_priv->desc_dma);
793 	rt2x00mmio_register_write(rt2x00dev, TXCSR5, reg);
794 
795 	entry_priv = rt2x00dev->atim->entries[0].priv_data;
796 	reg = rt2x00mmio_register_read(rt2x00dev, TXCSR4);
797 	rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
798 			   entry_priv->desc_dma);
799 	rt2x00mmio_register_write(rt2x00dev, TXCSR4, reg);
800 
801 	entry_priv = rt2x00dev->bcn->entries[0].priv_data;
802 	reg = rt2x00mmio_register_read(rt2x00dev, TXCSR6);
803 	rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
804 			   entry_priv->desc_dma);
805 	rt2x00mmio_register_write(rt2x00dev, TXCSR6, reg);
806 
807 	reg = rt2x00mmio_register_read(rt2x00dev, RXCSR1);
808 	rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
809 	rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
810 	rt2x00mmio_register_write(rt2x00dev, RXCSR1, reg);
811 
812 	entry_priv = rt2x00dev->rx->entries[0].priv_data;
813 	reg = rt2x00mmio_register_read(rt2x00dev, RXCSR2);
814 	rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
815 			   entry_priv->desc_dma);
816 	rt2x00mmio_register_write(rt2x00dev, RXCSR2, reg);
817 
818 	return 0;
819 }
820 
821 static int rt2400pci_init_registers(struct rt2x00_dev *rt2x00dev)
822 {
823 	u32 reg;
824 
825 	rt2x00mmio_register_write(rt2x00dev, PSCSR0, 0x00020002);
826 	rt2x00mmio_register_write(rt2x00dev, PSCSR1, 0x00000002);
827 	rt2x00mmio_register_write(rt2x00dev, PSCSR2, 0x00023f20);
828 	rt2x00mmio_register_write(rt2x00dev, PSCSR3, 0x00000002);
829 
830 	reg = rt2x00mmio_register_read(rt2x00dev, TIMECSR);
831 	rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
832 	rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
833 	rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
834 	rt2x00mmio_register_write(rt2x00dev, TIMECSR, reg);
835 
836 	reg = rt2x00mmio_register_read(rt2x00dev, CSR9);
837 	rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
838 			   (rt2x00dev->rx->data_size / 128));
839 	rt2x00mmio_register_write(rt2x00dev, CSR9, reg);
840 
841 	reg = rt2x00mmio_register_read(rt2x00dev, CSR14);
842 	rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
843 	rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 0);
844 	rt2x00_set_field32(&reg, CSR14_TBCN, 0);
845 	rt2x00_set_field32(&reg, CSR14_TCFP, 0);
846 	rt2x00_set_field32(&reg, CSR14_TATIMW, 0);
847 	rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
848 	rt2x00_set_field32(&reg, CSR14_CFP_COUNT_PRELOAD, 0);
849 	rt2x00_set_field32(&reg, CSR14_TBCM_PRELOAD, 0);
850 	rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
851 
852 	rt2x00mmio_register_write(rt2x00dev, CNT3, 0x3f080000);
853 
854 	reg = rt2x00mmio_register_read(rt2x00dev, ARCSR0);
855 	rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA0, 133);
856 	rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID0, 134);
857 	rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA1, 136);
858 	rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID1, 135);
859 	rt2x00mmio_register_write(rt2x00dev, ARCSR0, reg);
860 
861 	reg = rt2x00mmio_register_read(rt2x00dev, RXCSR3);
862 	rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 3); /* Tx power.*/
863 	rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
864 	rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 32); /* Signal */
865 	rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
866 	rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 36); /* Rssi */
867 	rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
868 	rt2x00mmio_register_write(rt2x00dev, RXCSR3, reg);
869 
870 	rt2x00mmio_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
871 
872 	if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
873 		return -EBUSY;
874 
875 	rt2x00mmio_register_write(rt2x00dev, MACCSR0, 0x00217223);
876 	rt2x00mmio_register_write(rt2x00dev, MACCSR1, 0x00235518);
877 
878 	reg = rt2x00mmio_register_read(rt2x00dev, MACCSR2);
879 	rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
880 	rt2x00mmio_register_write(rt2x00dev, MACCSR2, reg);
881 
882 	reg = rt2x00mmio_register_read(rt2x00dev, RALINKCSR);
883 	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
884 	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 154);
885 	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
886 	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 154);
887 	rt2x00mmio_register_write(rt2x00dev, RALINKCSR, reg);
888 
889 	reg = rt2x00mmio_register_read(rt2x00dev, CSR1);
890 	rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
891 	rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
892 	rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
893 	rt2x00mmio_register_write(rt2x00dev, CSR1, reg);
894 
895 	reg = rt2x00mmio_register_read(rt2x00dev, CSR1);
896 	rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
897 	rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
898 	rt2x00mmio_register_write(rt2x00dev, CSR1, reg);
899 
900 	/*
901 	 * We must clear the FCS and FIFO error count.
902 	 * These registers are cleared on read,
903 	 * so we may pass a useless variable to store the value.
904 	 */
905 	reg = rt2x00mmio_register_read(rt2x00dev, CNT0);
906 	reg = rt2x00mmio_register_read(rt2x00dev, CNT4);
907 
908 	return 0;
909 }
910 
911 static int rt2400pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
912 {
913 	unsigned int i;
914 	u8 value;
915 
916 	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
917 		value = rt2400pci_bbp_read(rt2x00dev, 0);
918 		if ((value != 0xff) && (value != 0x00))
919 			return 0;
920 		udelay(REGISTER_BUSY_DELAY);
921 	}
922 
923 	rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n");
924 	return -EACCES;
925 }
926 
927 static int rt2400pci_init_bbp(struct rt2x00_dev *rt2x00dev)
928 {
929 	unsigned int i;
930 	u16 eeprom;
931 	u8 reg_id;
932 	u8 value;
933 
934 	if (unlikely(rt2400pci_wait_bbp_ready(rt2x00dev)))
935 		return -EACCES;
936 
937 	rt2400pci_bbp_write(rt2x00dev, 1, 0x00);
938 	rt2400pci_bbp_write(rt2x00dev, 3, 0x27);
939 	rt2400pci_bbp_write(rt2x00dev, 4, 0x08);
940 	rt2400pci_bbp_write(rt2x00dev, 10, 0x0f);
941 	rt2400pci_bbp_write(rt2x00dev, 15, 0x72);
942 	rt2400pci_bbp_write(rt2x00dev, 16, 0x74);
943 	rt2400pci_bbp_write(rt2x00dev, 17, 0x20);
944 	rt2400pci_bbp_write(rt2x00dev, 18, 0x72);
945 	rt2400pci_bbp_write(rt2x00dev, 19, 0x0b);
946 	rt2400pci_bbp_write(rt2x00dev, 20, 0x00);
947 	rt2400pci_bbp_write(rt2x00dev, 28, 0x11);
948 	rt2400pci_bbp_write(rt2x00dev, 29, 0x04);
949 	rt2400pci_bbp_write(rt2x00dev, 30, 0x21);
950 	rt2400pci_bbp_write(rt2x00dev, 31, 0x00);
951 
952 	for (i = 0; i < EEPROM_BBP_SIZE; i++) {
953 		eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i);
954 
955 		if (eeprom != 0xffff && eeprom != 0x0000) {
956 			reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
957 			value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
958 			rt2400pci_bbp_write(rt2x00dev, reg_id, value);
959 		}
960 	}
961 
962 	return 0;
963 }
964 
965 /*
966  * Device state switch handlers.
967  */
968 static void rt2400pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
969 				 enum dev_state state)
970 {
971 	int mask = (state == STATE_RADIO_IRQ_OFF);
972 	u32 reg;
973 	unsigned long flags;
974 
975 	/*
976 	 * When interrupts are being enabled, the interrupt registers
977 	 * should clear the register to assure a clean state.
978 	 */
979 	if (state == STATE_RADIO_IRQ_ON) {
980 		reg = rt2x00mmio_register_read(rt2x00dev, CSR7);
981 		rt2x00mmio_register_write(rt2x00dev, CSR7, reg);
982 	}
983 
984 	/*
985 	 * Only toggle the interrupts bits we are going to use.
986 	 * Non-checked interrupt bits are disabled by default.
987 	 */
988 	spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
989 
990 	reg = rt2x00mmio_register_read(rt2x00dev, CSR8);
991 	rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
992 	rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
993 	rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
994 	rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
995 	rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
996 	rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
997 
998 	spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
999 
1000 	if (state == STATE_RADIO_IRQ_OFF) {
1001 		/*
1002 		 * Ensure that all tasklets are finished before
1003 		 * disabling the interrupts.
1004 		 */
1005 		tasklet_kill(&rt2x00dev->txstatus_tasklet);
1006 		tasklet_kill(&rt2x00dev->rxdone_tasklet);
1007 		tasklet_kill(&rt2x00dev->tbtt_tasklet);
1008 	}
1009 }
1010 
1011 static int rt2400pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1012 {
1013 	/*
1014 	 * Initialize all registers.
1015 	 */
1016 	if (unlikely(rt2400pci_init_queues(rt2x00dev) ||
1017 		     rt2400pci_init_registers(rt2x00dev) ||
1018 		     rt2400pci_init_bbp(rt2x00dev)))
1019 		return -EIO;
1020 
1021 	return 0;
1022 }
1023 
1024 static void rt2400pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1025 {
1026 	/*
1027 	 * Disable power
1028 	 */
1029 	rt2x00mmio_register_write(rt2x00dev, PWRCSR0, 0);
1030 }
1031 
1032 static int rt2400pci_set_state(struct rt2x00_dev *rt2x00dev,
1033 			       enum dev_state state)
1034 {
1035 	u32 reg, reg2;
1036 	unsigned int i;
1037 	char put_to_sleep;
1038 	char bbp_state;
1039 	char rf_state;
1040 
1041 	put_to_sleep = (state != STATE_AWAKE);
1042 
1043 	reg = rt2x00mmio_register_read(rt2x00dev, PWRCSR1);
1044 	rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
1045 	rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
1046 	rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
1047 	rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
1048 	rt2x00mmio_register_write(rt2x00dev, PWRCSR1, reg);
1049 
1050 	/*
1051 	 * Device is not guaranteed to be in the requested state yet.
1052 	 * We must wait until the register indicates that the
1053 	 * device has entered the correct state.
1054 	 */
1055 	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1056 		reg2 = rt2x00mmio_register_read(rt2x00dev, PWRCSR1);
1057 		bbp_state = rt2x00_get_field32(reg2, PWRCSR1_BBP_CURR_STATE);
1058 		rf_state = rt2x00_get_field32(reg2, PWRCSR1_RF_CURR_STATE);
1059 		if (bbp_state == state && rf_state == state)
1060 			return 0;
1061 		rt2x00mmio_register_write(rt2x00dev, PWRCSR1, reg);
1062 		msleep(10);
1063 	}
1064 
1065 	return -EBUSY;
1066 }
1067 
1068 static int rt2400pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1069 				      enum dev_state state)
1070 {
1071 	int retval = 0;
1072 
1073 	switch (state) {
1074 	case STATE_RADIO_ON:
1075 		retval = rt2400pci_enable_radio(rt2x00dev);
1076 		break;
1077 	case STATE_RADIO_OFF:
1078 		rt2400pci_disable_radio(rt2x00dev);
1079 		break;
1080 	case STATE_RADIO_IRQ_ON:
1081 	case STATE_RADIO_IRQ_OFF:
1082 		rt2400pci_toggle_irq(rt2x00dev, state);
1083 		break;
1084 	case STATE_DEEP_SLEEP:
1085 	case STATE_SLEEP:
1086 	case STATE_STANDBY:
1087 	case STATE_AWAKE:
1088 		retval = rt2400pci_set_state(rt2x00dev, state);
1089 		break;
1090 	default:
1091 		retval = -ENOTSUPP;
1092 		break;
1093 	}
1094 
1095 	if (unlikely(retval))
1096 		rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n",
1097 			   state, retval);
1098 
1099 	return retval;
1100 }
1101 
1102 /*
1103  * TX descriptor initialization
1104  */
1105 static void rt2400pci_write_tx_desc(struct queue_entry *entry,
1106 				    struct txentry_desc *txdesc)
1107 {
1108 	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1109 	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1110 	__le32 *txd = entry_priv->desc;
1111 	u32 word;
1112 
1113 	/*
1114 	 * Start writing the descriptor words.
1115 	 */
1116 	word = rt2x00_desc_read(txd, 1);
1117 	rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
1118 	rt2x00_desc_write(txd, 1, word);
1119 
1120 	word = rt2x00_desc_read(txd, 2);
1121 	rt2x00_set_field32(&word, TXD_W2_BUFFER_LENGTH, txdesc->length);
1122 	rt2x00_set_field32(&word, TXD_W2_DATABYTE_COUNT, txdesc->length);
1123 	rt2x00_desc_write(txd, 2, word);
1124 
1125 	word = rt2x00_desc_read(txd, 3);
1126 	rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->u.plcp.signal);
1127 	rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_REGNUM, 5);
1128 	rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_BUSY, 1);
1129 	rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->u.plcp.service);
1130 	rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_REGNUM, 6);
1131 	rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_BUSY, 1);
1132 	rt2x00_desc_write(txd, 3, word);
1133 
1134 	word = rt2x00_desc_read(txd, 4);
1135 	rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_LOW,
1136 			   txdesc->u.plcp.length_low);
1137 	rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_REGNUM, 8);
1138 	rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_BUSY, 1);
1139 	rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_HIGH,
1140 			   txdesc->u.plcp.length_high);
1141 	rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_REGNUM, 7);
1142 	rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_BUSY, 1);
1143 	rt2x00_desc_write(txd, 4, word);
1144 
1145 	/*
1146 	 * Writing TXD word 0 must the last to prevent a race condition with
1147 	 * the device, whereby the device may take hold of the TXD before we
1148 	 * finished updating it.
1149 	 */
1150 	word = rt2x00_desc_read(txd, 0);
1151 	rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1152 	rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1153 	rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1154 			   test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1155 	rt2x00_set_field32(&word, TXD_W0_ACK,
1156 			   test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1157 	rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1158 			   test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1159 	rt2x00_set_field32(&word, TXD_W0_RTS,
1160 			   test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
1161 	rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
1162 	rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1163 			   test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1164 	rt2x00_desc_write(txd, 0, word);
1165 
1166 	/*
1167 	 * Register descriptor details in skb frame descriptor.
1168 	 */
1169 	skbdesc->desc = txd;
1170 	skbdesc->desc_len = TXD_DESC_SIZE;
1171 }
1172 
1173 /*
1174  * TX data initialization
1175  */
1176 static void rt2400pci_write_beacon(struct queue_entry *entry,
1177 				   struct txentry_desc *txdesc)
1178 {
1179 	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1180 	u32 reg;
1181 
1182 	/*
1183 	 * Disable beaconing while we are reloading the beacon data,
1184 	 * otherwise we might be sending out invalid data.
1185 	 */
1186 	reg = rt2x00mmio_register_read(rt2x00dev, CSR14);
1187 	rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
1188 	rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
1189 
1190 	if (rt2x00queue_map_txskb(entry)) {
1191 		rt2x00_err(rt2x00dev, "Fail to map beacon, aborting\n");
1192 		goto out;
1193 	}
1194 	/*
1195 	 * Enable beaconing again.
1196 	 */
1197 	rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
1198 	/*
1199 	 * Write the TX descriptor for the beacon.
1200 	 */
1201 	rt2400pci_write_tx_desc(entry, txdesc);
1202 
1203 	/*
1204 	 * Dump beacon to userspace through debugfs.
1205 	 */
1206 	rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry);
1207 out:
1208 	/*
1209 	 * Enable beaconing again.
1210 	 */
1211 	rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
1212 	rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
1213 }
1214 
1215 /*
1216  * RX control handlers
1217  */
1218 static void rt2400pci_fill_rxdone(struct queue_entry *entry,
1219 				  struct rxdone_entry_desc *rxdesc)
1220 {
1221 	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1222 	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1223 	u32 word0;
1224 	u32 word2;
1225 	u32 word3;
1226 	u32 word4;
1227 	u64 tsf;
1228 	u32 rx_low;
1229 	u32 rx_high;
1230 
1231 	word0 = rt2x00_desc_read(entry_priv->desc, 0);
1232 	word2 = rt2x00_desc_read(entry_priv->desc, 2);
1233 	word3 = rt2x00_desc_read(entry_priv->desc, 3);
1234 	word4 = rt2x00_desc_read(entry_priv->desc, 4);
1235 
1236 	if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1237 		rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1238 	if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1239 		rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1240 
1241 	/*
1242 	 * We only get the lower 32bits from the timestamp,
1243 	 * to get the full 64bits we must complement it with
1244 	 * the timestamp from get_tsf().
1245 	 * Note that when a wraparound of the lower 32bits
1246 	 * has occurred between the frame arrival and the get_tsf()
1247 	 * call, we must decrease the higher 32bits with 1 to get
1248 	 * to correct value.
1249 	 */
1250 	tsf = rt2x00dev->ops->hw->get_tsf(rt2x00dev->hw, NULL);
1251 	rx_low = rt2x00_get_field32(word4, RXD_W4_RX_END_TIME);
1252 	rx_high = upper_32_bits(tsf);
1253 
1254 	if ((u32)tsf <= rx_low)
1255 		rx_high--;
1256 
1257 	/*
1258 	 * Obtain the status about this packet.
1259 	 * The signal is the PLCP value, and needs to be stripped
1260 	 * of the preamble bit (0x08).
1261 	 */
1262 	rxdesc->timestamp = ((u64)rx_high << 32) | rx_low;
1263 	rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL) & ~0x08;
1264 	rxdesc->rssi = rt2x00_get_field32(word3, RXD_W3_RSSI) -
1265 	    entry->queue->rt2x00dev->rssi_offset;
1266 	rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1267 
1268 	rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1269 	if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1270 		rxdesc->dev_flags |= RXDONE_MY_BSS;
1271 }
1272 
1273 /*
1274  * Interrupt functions.
1275  */
1276 static void rt2400pci_txdone(struct rt2x00_dev *rt2x00dev,
1277 			     const enum data_queue_qid queue_idx)
1278 {
1279 	struct data_queue *queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx);
1280 	struct queue_entry_priv_mmio *entry_priv;
1281 	struct queue_entry *entry;
1282 	struct txdone_entry_desc txdesc;
1283 	u32 word;
1284 
1285 	while (!rt2x00queue_empty(queue)) {
1286 		entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
1287 		entry_priv = entry->priv_data;
1288 		word = rt2x00_desc_read(entry_priv->desc, 0);
1289 
1290 		if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1291 		    !rt2x00_get_field32(word, TXD_W0_VALID))
1292 			break;
1293 
1294 		/*
1295 		 * Obtain the status about this packet.
1296 		 */
1297 		txdesc.flags = 0;
1298 		switch (rt2x00_get_field32(word, TXD_W0_RESULT)) {
1299 		case 0: /* Success */
1300 		case 1: /* Success with retry */
1301 			__set_bit(TXDONE_SUCCESS, &txdesc.flags);
1302 			break;
1303 		case 2: /* Failure, excessive retries */
1304 			__set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
1305 			/* Fall through - this is a failed frame! */
1306 		default: /* Failure */
1307 			__set_bit(TXDONE_FAILURE, &txdesc.flags);
1308 		}
1309 		txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
1310 
1311 		rt2x00lib_txdone(entry, &txdesc);
1312 	}
1313 }
1314 
1315 static inline void rt2400pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
1316 					      struct rt2x00_field32 irq_field)
1317 {
1318 	u32 reg;
1319 
1320 	/*
1321 	 * Enable a single interrupt. The interrupt mask register
1322 	 * access needs locking.
1323 	 */
1324 	spin_lock_irq(&rt2x00dev->irqmask_lock);
1325 
1326 	reg = rt2x00mmio_register_read(rt2x00dev, CSR8);
1327 	rt2x00_set_field32(&reg, irq_field, 0);
1328 	rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
1329 
1330 	spin_unlock_irq(&rt2x00dev->irqmask_lock);
1331 }
1332 
1333 static void rt2400pci_txstatus_tasklet(unsigned long data)
1334 {
1335 	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
1336 	u32 reg;
1337 
1338 	/*
1339 	 * Handle all tx queues.
1340 	 */
1341 	rt2400pci_txdone(rt2x00dev, QID_ATIM);
1342 	rt2400pci_txdone(rt2x00dev, QID_AC_VO);
1343 	rt2400pci_txdone(rt2x00dev, QID_AC_VI);
1344 
1345 	/*
1346 	 * Enable all TXDONE interrupts again.
1347 	 */
1348 	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) {
1349 		spin_lock_irq(&rt2x00dev->irqmask_lock);
1350 
1351 		reg = rt2x00mmio_register_read(rt2x00dev, CSR8);
1352 		rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, 0);
1353 		rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, 0);
1354 		rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, 0);
1355 		rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
1356 
1357 		spin_unlock_irq(&rt2x00dev->irqmask_lock);
1358 	}
1359 }
1360 
1361 static void rt2400pci_tbtt_tasklet(unsigned long data)
1362 {
1363 	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
1364 	rt2x00lib_beacondone(rt2x00dev);
1365 	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1366 		rt2400pci_enable_interrupt(rt2x00dev, CSR8_TBCN_EXPIRE);
1367 }
1368 
1369 static void rt2400pci_rxdone_tasklet(unsigned long data)
1370 {
1371 	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
1372 	if (rt2x00mmio_rxdone(rt2x00dev))
1373 		tasklet_schedule(&rt2x00dev->rxdone_tasklet);
1374 	else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1375 		rt2400pci_enable_interrupt(rt2x00dev, CSR8_RXDONE);
1376 }
1377 
1378 static irqreturn_t rt2400pci_interrupt(int irq, void *dev_instance)
1379 {
1380 	struct rt2x00_dev *rt2x00dev = dev_instance;
1381 	u32 reg, mask;
1382 
1383 	/*
1384 	 * Get the interrupt sources & saved to local variable.
1385 	 * Write register value back to clear pending interrupts.
1386 	 */
1387 	reg = rt2x00mmio_register_read(rt2x00dev, CSR7);
1388 	rt2x00mmio_register_write(rt2x00dev, CSR7, reg);
1389 
1390 	if (!reg)
1391 		return IRQ_NONE;
1392 
1393 	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1394 		return IRQ_HANDLED;
1395 
1396 	mask = reg;
1397 
1398 	/*
1399 	 * Schedule tasklets for interrupt handling.
1400 	 */
1401 	if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
1402 		tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
1403 
1404 	if (rt2x00_get_field32(reg, CSR7_RXDONE))
1405 		tasklet_schedule(&rt2x00dev->rxdone_tasklet);
1406 
1407 	if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING) ||
1408 	    rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING) ||
1409 	    rt2x00_get_field32(reg, CSR7_TXDONE_TXRING)) {
1410 		tasklet_schedule(&rt2x00dev->txstatus_tasklet);
1411 		/*
1412 		 * Mask out all txdone interrupts.
1413 		 */
1414 		rt2x00_set_field32(&mask, CSR8_TXDONE_TXRING, 1);
1415 		rt2x00_set_field32(&mask, CSR8_TXDONE_ATIMRING, 1);
1416 		rt2x00_set_field32(&mask, CSR8_TXDONE_PRIORING, 1);
1417 	}
1418 
1419 	/*
1420 	 * Disable all interrupts for which a tasklet was scheduled right now,
1421 	 * the tasklet will reenable the appropriate interrupts.
1422 	 */
1423 	spin_lock(&rt2x00dev->irqmask_lock);
1424 
1425 	reg = rt2x00mmio_register_read(rt2x00dev, CSR8);
1426 	reg |= mask;
1427 	rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
1428 
1429 	spin_unlock(&rt2x00dev->irqmask_lock);
1430 
1431 
1432 
1433 	return IRQ_HANDLED;
1434 }
1435 
1436 /*
1437  * Device probe functions.
1438  */
1439 static int rt2400pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1440 {
1441 	struct eeprom_93cx6 eeprom;
1442 	u32 reg;
1443 	u16 word;
1444 	u8 *mac;
1445 
1446 	reg = rt2x00mmio_register_read(rt2x00dev, CSR21);
1447 
1448 	eeprom.data = rt2x00dev;
1449 	eeprom.register_read = rt2400pci_eepromregister_read;
1450 	eeprom.register_write = rt2400pci_eepromregister_write;
1451 	eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
1452 	    PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1453 	eeprom.reg_data_in = 0;
1454 	eeprom.reg_data_out = 0;
1455 	eeprom.reg_data_clock = 0;
1456 	eeprom.reg_chip_select = 0;
1457 
1458 	eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1459 			       EEPROM_SIZE / sizeof(u16));
1460 
1461 	/*
1462 	 * Start validation of the data that has been read.
1463 	 */
1464 	mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1465 	rt2x00lib_set_mac_address(rt2x00dev, mac);
1466 
1467 	word = rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA);
1468 	if (word == 0xffff) {
1469 		rt2x00_err(rt2x00dev, "Invalid EEPROM data detected\n");
1470 		return -EINVAL;
1471 	}
1472 
1473 	return 0;
1474 }
1475 
1476 static int rt2400pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1477 {
1478 	u32 reg;
1479 	u16 value;
1480 	u16 eeprom;
1481 
1482 	/*
1483 	 * Read EEPROM word for configuration.
1484 	 */
1485 	eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA);
1486 
1487 	/*
1488 	 * Identify RF chipset.
1489 	 */
1490 	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1491 	reg = rt2x00mmio_register_read(rt2x00dev, CSR0);
1492 	rt2x00_set_chip(rt2x00dev, RT2460, value,
1493 			rt2x00_get_field32(reg, CSR0_REVISION));
1494 
1495 	if (!rt2x00_rf(rt2x00dev, RF2420) && !rt2x00_rf(rt2x00dev, RF2421)) {
1496 		rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n");
1497 		return -ENODEV;
1498 	}
1499 
1500 	/*
1501 	 * Identify default antenna configuration.
1502 	 */
1503 	rt2x00dev->default_ant.tx =
1504 	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1505 	rt2x00dev->default_ant.rx =
1506 	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1507 
1508 	/*
1509 	 * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
1510 	 * I am not 100% sure about this, but the legacy drivers do not
1511 	 * indicate antenna swapping in software is required when
1512 	 * diversity is enabled.
1513 	 */
1514 	if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
1515 		rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
1516 	if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
1517 		rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
1518 
1519 	/*
1520 	 * Store led mode, for correct led behaviour.
1521 	 */
1522 #ifdef CONFIG_RT2X00_LIB_LEDS
1523 	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1524 
1525 	rt2400pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1526 	if (value == LED_MODE_TXRX_ACTIVITY ||
1527 	    value == LED_MODE_DEFAULT ||
1528 	    value == LED_MODE_ASUS)
1529 		rt2400pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
1530 				   LED_TYPE_ACTIVITY);
1531 #endif /* CONFIG_RT2X00_LIB_LEDS */
1532 
1533 	/*
1534 	 * Detect if this device has an hardware controlled radio.
1535 	 */
1536 	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1537 		__set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
1538 
1539 	/*
1540 	 * Check if the BBP tuning should be enabled.
1541 	 */
1542 	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_AGCVGC_TUNING))
1543 		__set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
1544 
1545 	return 0;
1546 }
1547 
1548 /*
1549  * RF value list for RF2420 & RF2421
1550  * Supports: 2.4 GHz
1551  */
1552 static const struct rf_channel rf_vals_b[] = {
1553 	{ 1,  0x00022058, 0x000c1fda, 0x00000101, 0 },
1554 	{ 2,  0x00022058, 0x000c1fee, 0x00000101, 0 },
1555 	{ 3,  0x00022058, 0x000c2002, 0x00000101, 0 },
1556 	{ 4,  0x00022058, 0x000c2016, 0x00000101, 0 },
1557 	{ 5,  0x00022058, 0x000c202a, 0x00000101, 0 },
1558 	{ 6,  0x00022058, 0x000c203e, 0x00000101, 0 },
1559 	{ 7,  0x00022058, 0x000c2052, 0x00000101, 0 },
1560 	{ 8,  0x00022058, 0x000c2066, 0x00000101, 0 },
1561 	{ 9,  0x00022058, 0x000c207a, 0x00000101, 0 },
1562 	{ 10, 0x00022058, 0x000c208e, 0x00000101, 0 },
1563 	{ 11, 0x00022058, 0x000c20a2, 0x00000101, 0 },
1564 	{ 12, 0x00022058, 0x000c20b6, 0x00000101, 0 },
1565 	{ 13, 0x00022058, 0x000c20ca, 0x00000101, 0 },
1566 	{ 14, 0x00022058, 0x000c20fa, 0x00000101, 0 },
1567 };
1568 
1569 static int rt2400pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1570 {
1571 	struct hw_mode_spec *spec = &rt2x00dev->spec;
1572 	struct channel_info *info;
1573 	char *tx_power;
1574 	unsigned int i;
1575 
1576 	/*
1577 	 * Initialize all hw fields.
1578 	 */
1579 	ieee80211_hw_set(rt2x00dev->hw, PS_NULLFUNC_STACK);
1580 	ieee80211_hw_set(rt2x00dev->hw, SUPPORTS_PS);
1581 	ieee80211_hw_set(rt2x00dev->hw, HOST_BROADCAST_PS_BUFFERING);
1582 	ieee80211_hw_set(rt2x00dev->hw, SIGNAL_DBM);
1583 
1584 	SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1585 	SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1586 				rt2x00_eeprom_addr(rt2x00dev,
1587 						   EEPROM_MAC_ADDR_0));
1588 
1589 	/*
1590 	 * Initialize hw_mode information.
1591 	 */
1592 	spec->supported_bands = SUPPORT_BAND_2GHZ;
1593 	spec->supported_rates = SUPPORT_RATE_CCK;
1594 
1595 	spec->num_channels = ARRAY_SIZE(rf_vals_b);
1596 	spec->channels = rf_vals_b;
1597 
1598 	/*
1599 	 * Create channel information array
1600 	 */
1601 	info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
1602 	if (!info)
1603 		return -ENOMEM;
1604 
1605 	spec->channels_info = info;
1606 
1607 	tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1608 	for (i = 0; i < 14; i++) {
1609 		info[i].max_power = TXPOWER_FROM_DEV(MAX_TXPOWER);
1610 		info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
1611 	}
1612 
1613 	return 0;
1614 }
1615 
1616 static int rt2400pci_probe_hw(struct rt2x00_dev *rt2x00dev)
1617 {
1618 	int retval;
1619 	u32 reg;
1620 
1621 	/*
1622 	 * Allocate eeprom data.
1623 	 */
1624 	retval = rt2400pci_validate_eeprom(rt2x00dev);
1625 	if (retval)
1626 		return retval;
1627 
1628 	retval = rt2400pci_init_eeprom(rt2x00dev);
1629 	if (retval)
1630 		return retval;
1631 
1632 	/*
1633 	 * Enable rfkill polling by setting GPIO direction of the
1634 	 * rfkill switch GPIO pin correctly.
1635 	 */
1636 	reg = rt2x00mmio_register_read(rt2x00dev, GPIOCSR);
1637 	rt2x00_set_field32(&reg, GPIOCSR_DIR0, 1);
1638 	rt2x00mmio_register_write(rt2x00dev, GPIOCSR, reg);
1639 
1640 	/*
1641 	 * Initialize hw specifications.
1642 	 */
1643 	retval = rt2400pci_probe_hw_mode(rt2x00dev);
1644 	if (retval)
1645 		return retval;
1646 
1647 	/*
1648 	 * This device requires the atim queue and DMA-mapped skbs.
1649 	 */
1650 	__set_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags);
1651 	__set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags);
1652 	__set_bit(REQUIRE_SW_SEQNO, &rt2x00dev->cap_flags);
1653 
1654 	/*
1655 	 * Set the rssi offset.
1656 	 */
1657 	rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1658 
1659 	return 0;
1660 }
1661 
1662 /*
1663  * IEEE80211 stack callback functions.
1664  */
1665 static int rt2400pci_conf_tx(struct ieee80211_hw *hw,
1666 			     struct ieee80211_vif *vif, u16 queue,
1667 			     const struct ieee80211_tx_queue_params *params)
1668 {
1669 	struct rt2x00_dev *rt2x00dev = hw->priv;
1670 
1671 	/*
1672 	 * We don't support variating cw_min and cw_max variables
1673 	 * per queue. So by default we only configure the TX queue,
1674 	 * and ignore all other configurations.
1675 	 */
1676 	if (queue != 0)
1677 		return -EINVAL;
1678 
1679 	if (rt2x00mac_conf_tx(hw, vif, queue, params))
1680 		return -EINVAL;
1681 
1682 	/*
1683 	 * Write configuration to register.
1684 	 */
1685 	rt2400pci_config_cw(rt2x00dev,
1686 			    rt2x00dev->tx->cw_min, rt2x00dev->tx->cw_max);
1687 
1688 	return 0;
1689 }
1690 
1691 static u64 rt2400pci_get_tsf(struct ieee80211_hw *hw,
1692 			     struct ieee80211_vif *vif)
1693 {
1694 	struct rt2x00_dev *rt2x00dev = hw->priv;
1695 	u64 tsf;
1696 	u32 reg;
1697 
1698 	reg = rt2x00mmio_register_read(rt2x00dev, CSR17);
1699 	tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
1700 	reg = rt2x00mmio_register_read(rt2x00dev, CSR16);
1701 	tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
1702 
1703 	return tsf;
1704 }
1705 
1706 static int rt2400pci_tx_last_beacon(struct ieee80211_hw *hw)
1707 {
1708 	struct rt2x00_dev *rt2x00dev = hw->priv;
1709 	u32 reg;
1710 
1711 	reg = rt2x00mmio_register_read(rt2x00dev, CSR15);
1712 	return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
1713 }
1714 
1715 static const struct ieee80211_ops rt2400pci_mac80211_ops = {
1716 	.tx			= rt2x00mac_tx,
1717 	.start			= rt2x00mac_start,
1718 	.stop			= rt2x00mac_stop,
1719 	.add_interface		= rt2x00mac_add_interface,
1720 	.remove_interface	= rt2x00mac_remove_interface,
1721 	.config			= rt2x00mac_config,
1722 	.configure_filter	= rt2x00mac_configure_filter,
1723 	.sw_scan_start		= rt2x00mac_sw_scan_start,
1724 	.sw_scan_complete	= rt2x00mac_sw_scan_complete,
1725 	.get_stats		= rt2x00mac_get_stats,
1726 	.bss_info_changed	= rt2x00mac_bss_info_changed,
1727 	.conf_tx		= rt2400pci_conf_tx,
1728 	.get_tsf		= rt2400pci_get_tsf,
1729 	.tx_last_beacon		= rt2400pci_tx_last_beacon,
1730 	.rfkill_poll		= rt2x00mac_rfkill_poll,
1731 	.flush			= rt2x00mac_flush,
1732 	.set_antenna		= rt2x00mac_set_antenna,
1733 	.get_antenna		= rt2x00mac_get_antenna,
1734 	.get_ringparam		= rt2x00mac_get_ringparam,
1735 	.tx_frames_pending	= rt2x00mac_tx_frames_pending,
1736 };
1737 
1738 static const struct rt2x00lib_ops rt2400pci_rt2x00_ops = {
1739 	.irq_handler		= rt2400pci_interrupt,
1740 	.txstatus_tasklet	= rt2400pci_txstatus_tasklet,
1741 	.tbtt_tasklet		= rt2400pci_tbtt_tasklet,
1742 	.rxdone_tasklet		= rt2400pci_rxdone_tasklet,
1743 	.probe_hw		= rt2400pci_probe_hw,
1744 	.initialize		= rt2x00mmio_initialize,
1745 	.uninitialize		= rt2x00mmio_uninitialize,
1746 	.get_entry_state	= rt2400pci_get_entry_state,
1747 	.clear_entry		= rt2400pci_clear_entry,
1748 	.set_device_state	= rt2400pci_set_device_state,
1749 	.rfkill_poll		= rt2400pci_rfkill_poll,
1750 	.link_stats		= rt2400pci_link_stats,
1751 	.reset_tuner		= rt2400pci_reset_tuner,
1752 	.link_tuner		= rt2400pci_link_tuner,
1753 	.start_queue		= rt2400pci_start_queue,
1754 	.kick_queue		= rt2400pci_kick_queue,
1755 	.stop_queue		= rt2400pci_stop_queue,
1756 	.flush_queue		= rt2x00mmio_flush_queue,
1757 	.write_tx_desc		= rt2400pci_write_tx_desc,
1758 	.write_beacon		= rt2400pci_write_beacon,
1759 	.fill_rxdone		= rt2400pci_fill_rxdone,
1760 	.config_filter		= rt2400pci_config_filter,
1761 	.config_intf		= rt2400pci_config_intf,
1762 	.config_erp		= rt2400pci_config_erp,
1763 	.config_ant		= rt2400pci_config_ant,
1764 	.config			= rt2400pci_config,
1765 };
1766 
1767 static void rt2400pci_queue_init(struct data_queue *queue)
1768 {
1769 	switch (queue->qid) {
1770 	case QID_RX:
1771 		queue->limit = 24;
1772 		queue->data_size = DATA_FRAME_SIZE;
1773 		queue->desc_size = RXD_DESC_SIZE;
1774 		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
1775 		break;
1776 
1777 	case QID_AC_VO:
1778 	case QID_AC_VI:
1779 	case QID_AC_BE:
1780 	case QID_AC_BK:
1781 		queue->limit = 24;
1782 		queue->data_size = DATA_FRAME_SIZE;
1783 		queue->desc_size = TXD_DESC_SIZE;
1784 		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
1785 		break;
1786 
1787 	case QID_BEACON:
1788 		queue->limit = 1;
1789 		queue->data_size = MGMT_FRAME_SIZE;
1790 		queue->desc_size = TXD_DESC_SIZE;
1791 		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
1792 		break;
1793 
1794 	case QID_ATIM:
1795 		queue->limit = 8;
1796 		queue->data_size = DATA_FRAME_SIZE;
1797 		queue->desc_size = TXD_DESC_SIZE;
1798 		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
1799 		break;
1800 
1801 	default:
1802 		BUG();
1803 		break;
1804 	}
1805 }
1806 
1807 static const struct rt2x00_ops rt2400pci_ops = {
1808 	.name			= KBUILD_MODNAME,
1809 	.max_ap_intf		= 1,
1810 	.eeprom_size		= EEPROM_SIZE,
1811 	.rf_size		= RF_SIZE,
1812 	.tx_queues		= NUM_TX_QUEUES,
1813 	.queue_init		= rt2400pci_queue_init,
1814 	.lib			= &rt2400pci_rt2x00_ops,
1815 	.hw			= &rt2400pci_mac80211_ops,
1816 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1817 	.debugfs		= &rt2400pci_rt2x00debug,
1818 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1819 };
1820 
1821 /*
1822  * RT2400pci module information.
1823  */
1824 static const struct pci_device_id rt2400pci_device_table[] = {
1825 	{ PCI_DEVICE(0x1814, 0x0101) },
1826 	{ 0, }
1827 };
1828 
1829 
1830 MODULE_AUTHOR(DRV_PROJECT);
1831 MODULE_VERSION(DRV_VERSION);
1832 MODULE_DESCRIPTION("Ralink RT2400 PCI & PCMCIA Wireless LAN driver.");
1833 MODULE_SUPPORTED_DEVICE("Ralink RT2460 PCI & PCMCIA chipset based cards");
1834 MODULE_DEVICE_TABLE(pci, rt2400pci_device_table);
1835 MODULE_LICENSE("GPL");
1836 
1837 static int rt2400pci_probe(struct pci_dev *pci_dev,
1838 			   const struct pci_device_id *id)
1839 {
1840 	return rt2x00pci_probe(pci_dev, &rt2400pci_ops);
1841 }
1842 
1843 static struct pci_driver rt2400pci_driver = {
1844 	.name		= KBUILD_MODNAME,
1845 	.id_table	= rt2400pci_device_table,
1846 	.probe		= rt2400pci_probe,
1847 	.remove		= rt2x00pci_remove,
1848 	.suspend	= rt2x00pci_suspend,
1849 	.resume		= rt2x00pci_resume,
1850 };
1851 
1852 module_pci_driver(rt2400pci_driver);
1853