1 /*
2  * Copyright (C) 2014 Felix Fietkau <nbd@openwrt.org>
3  * Copyright (C) 2015 Jakub Kicinski <kubakici@wp.pl>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2
7  * as published by the Free Software Foundation
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  */
14 
15 #include "mt7601u.h"
16 #include "trace.h"
17 #include <linux/etherdevice.h>
18 
19 void mt7601u_set_macaddr(struct mt7601u_dev *dev, const u8 *addr)
20 {
21 	ether_addr_copy(dev->macaddr, addr);
22 
23 	if (!is_valid_ether_addr(dev->macaddr)) {
24 		eth_random_addr(dev->macaddr);
25 		dev_info(dev->dev,
26 			 "Invalid MAC address, using random address %pM\n",
27 			 dev->macaddr);
28 	}
29 
30 	mt76_wr(dev, MT_MAC_ADDR_DW0, get_unaligned_le32(dev->macaddr));
31 	mt76_wr(dev, MT_MAC_ADDR_DW1, get_unaligned_le16(dev->macaddr + 4) |
32 		FIELD_PREP(MT_MAC_ADDR_DW1_U2ME_MASK, 0xff));
33 }
34 
35 static void
36 mt76_mac_process_tx_rate(struct ieee80211_tx_rate *txrate, u16 rate)
37 {
38 	u8 idx = FIELD_GET(MT_TXWI_RATE_MCS, rate);
39 
40 	txrate->idx = 0;
41 	txrate->flags = 0;
42 	txrate->count = 1;
43 
44 	switch (FIELD_GET(MT_TXWI_RATE_PHY_MODE, rate)) {
45 	case MT_PHY_TYPE_OFDM:
46 		txrate->idx = idx + 4;
47 		return;
48 	case MT_PHY_TYPE_CCK:
49 		if (idx >= 8)
50 			idx -= 8;
51 
52 		txrate->idx = idx;
53 		return;
54 	case MT_PHY_TYPE_HT_GF:
55 		txrate->flags |= IEEE80211_TX_RC_GREEN_FIELD;
56 		/* fall through */
57 	case MT_PHY_TYPE_HT:
58 		txrate->flags |= IEEE80211_TX_RC_MCS;
59 		txrate->idx = idx;
60 		break;
61 	default:
62 		WARN_ON(1);
63 		return;
64 	}
65 
66 	if (FIELD_GET(MT_TXWI_RATE_BW, rate) == MT_PHY_BW_40)
67 		txrate->flags |= IEEE80211_TX_RC_40_MHZ_WIDTH;
68 
69 	if (rate & MT_TXWI_RATE_SGI)
70 		txrate->flags |= IEEE80211_TX_RC_SHORT_GI;
71 }
72 
73 static void
74 mt76_mac_fill_tx_status(struct mt7601u_dev *dev, struct ieee80211_tx_info *info,
75 			struct mt76_tx_status *st)
76 {
77 	struct ieee80211_tx_rate *rate = info->status.rates;
78 	int cur_idx, last_rate;
79 	int i;
80 
81 	last_rate = min_t(int, st->retry, IEEE80211_TX_MAX_RATES - 1);
82 	mt76_mac_process_tx_rate(&rate[last_rate], st->rate);
83 	if (last_rate < IEEE80211_TX_MAX_RATES - 1)
84 		rate[last_rate + 1].idx = -1;
85 
86 	cur_idx = rate[last_rate].idx + st->retry;
87 	for (i = 0; i <= last_rate; i++) {
88 		rate[i].flags = rate[last_rate].flags;
89 		rate[i].idx = max_t(int, 0, cur_idx - i);
90 		rate[i].count = 1;
91 	}
92 
93 	if (last_rate > 0)
94 		rate[last_rate - 1].count = st->retry + 1 - last_rate;
95 
96 	info->status.ampdu_len = 1;
97 	info->status.ampdu_ack_len = st->success;
98 
99 	if (st->is_probe)
100 		info->flags |= IEEE80211_TX_CTL_RATE_CTRL_PROBE;
101 
102 	if (st->aggr)
103 		info->flags |= IEEE80211_TX_CTL_AMPDU |
104 			       IEEE80211_TX_STAT_AMPDU;
105 
106 	if (!st->ack_req)
107 		info->flags |= IEEE80211_TX_CTL_NO_ACK;
108 	else if (st->success)
109 		info->flags |= IEEE80211_TX_STAT_ACK;
110 }
111 
112 u16 mt76_mac_tx_rate_val(struct mt7601u_dev *dev,
113 			 const struct ieee80211_tx_rate *rate, u8 *nss_val)
114 {
115 	u16 rateval;
116 	u8 phy, rate_idx;
117 	u8 nss = 1;
118 	u8 bw = 0;
119 
120 	if (rate->flags & IEEE80211_TX_RC_MCS) {
121 		rate_idx = rate->idx;
122 		nss = 1 + (rate->idx >> 3);
123 		phy = MT_PHY_TYPE_HT;
124 		if (rate->flags & IEEE80211_TX_RC_GREEN_FIELD)
125 			phy = MT_PHY_TYPE_HT_GF;
126 		if (rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
127 			bw = 1;
128 	} else {
129 		const struct ieee80211_rate *r;
130 		int band = dev->chandef.chan->band;
131 		u16 val;
132 
133 		r = &dev->hw->wiphy->bands[band]->bitrates[rate->idx];
134 		if (rate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
135 			val = r->hw_value_short;
136 		else
137 			val = r->hw_value;
138 
139 		phy = val >> 8;
140 		rate_idx = val & 0xff;
141 		bw = 0;
142 	}
143 
144 	rateval = FIELD_PREP(MT_RXWI_RATE_MCS, rate_idx);
145 	rateval |= FIELD_PREP(MT_RXWI_RATE_PHY, phy);
146 	rateval |= FIELD_PREP(MT_RXWI_RATE_BW, bw);
147 	if (rate->flags & IEEE80211_TX_RC_SHORT_GI)
148 		rateval |= MT_RXWI_RATE_SGI;
149 
150 	*nss_val = nss;
151 	return rateval;
152 }
153 
154 void mt76_mac_wcid_set_rate(struct mt7601u_dev *dev, struct mt76_wcid *wcid,
155 			    const struct ieee80211_tx_rate *rate)
156 {
157 	unsigned long flags;
158 
159 	spin_lock_irqsave(&dev->lock, flags);
160 	wcid->tx_rate = mt76_mac_tx_rate_val(dev, rate, &wcid->tx_rate_nss);
161 	wcid->tx_rate_set = true;
162 	spin_unlock_irqrestore(&dev->lock, flags);
163 }
164 
165 struct mt76_tx_status mt7601u_mac_fetch_tx_status(struct mt7601u_dev *dev)
166 {
167 	struct mt76_tx_status stat = {};
168 	u32 val;
169 
170 	val = mt7601u_rr(dev, MT_TX_STAT_FIFO);
171 	stat.valid = !!(val & MT_TX_STAT_FIFO_VALID);
172 	stat.success = !!(val & MT_TX_STAT_FIFO_SUCCESS);
173 	stat.aggr = !!(val & MT_TX_STAT_FIFO_AGGR);
174 	stat.ack_req = !!(val & MT_TX_STAT_FIFO_ACKREQ);
175 	stat.pktid = FIELD_GET(MT_TX_STAT_FIFO_PID_TYPE, val);
176 	stat.wcid = FIELD_GET(MT_TX_STAT_FIFO_WCID, val);
177 	stat.rate = FIELD_GET(MT_TX_STAT_FIFO_RATE, val);
178 
179 	return stat;
180 }
181 
182 void mt76_send_tx_status(struct mt7601u_dev *dev, struct mt76_tx_status *stat)
183 {
184 	struct ieee80211_tx_info info = {};
185 	struct ieee80211_sta *sta = NULL;
186 	struct mt76_wcid *wcid = NULL;
187 	void *msta;
188 
189 	rcu_read_lock();
190 	if (stat->wcid < ARRAY_SIZE(dev->wcid))
191 		wcid = rcu_dereference(dev->wcid[stat->wcid]);
192 
193 	if (wcid) {
194 		msta = container_of(wcid, struct mt76_sta, wcid);
195 		sta = container_of(msta, struct ieee80211_sta,
196 				   drv_priv);
197 	}
198 
199 	mt76_mac_fill_tx_status(dev, &info, stat);
200 
201 	spin_lock_bh(&dev->mac_lock);
202 	ieee80211_tx_status_noskb(dev->hw, sta, &info);
203 	spin_unlock_bh(&dev->mac_lock);
204 
205 	rcu_read_unlock();
206 }
207 
208 void mt7601u_mac_set_protection(struct mt7601u_dev *dev, bool legacy_prot,
209 				int ht_mode)
210 {
211 	int mode = ht_mode & IEEE80211_HT_OP_MODE_PROTECTION;
212 	bool non_gf = !!(ht_mode & IEEE80211_HT_OP_MODE_NON_GF_STA_PRSNT);
213 	u32 prot[6];
214 	bool ht_rts[4] = {};
215 	int i;
216 
217 	prot[0] = MT_PROT_NAV_SHORT |
218 		  MT_PROT_TXOP_ALLOW_ALL |
219 		  MT_PROT_RTS_THR_EN;
220 	prot[1] = prot[0];
221 	if (legacy_prot)
222 		prot[1] |= MT_PROT_CTRL_CTS2SELF;
223 
224 	prot[2] = prot[4] = MT_PROT_NAV_SHORT | MT_PROT_TXOP_ALLOW_BW20;
225 	prot[3] = prot[5] = MT_PROT_NAV_SHORT | MT_PROT_TXOP_ALLOW_ALL;
226 
227 	if (legacy_prot) {
228 		prot[2] |= MT_PROT_RATE_CCK_11;
229 		prot[3] |= MT_PROT_RATE_CCK_11;
230 		prot[4] |= MT_PROT_RATE_CCK_11;
231 		prot[5] |= MT_PROT_RATE_CCK_11;
232 	} else {
233 		prot[2] |= MT_PROT_RATE_OFDM_24;
234 		prot[3] |= MT_PROT_RATE_DUP_OFDM_24;
235 		prot[4] |= MT_PROT_RATE_OFDM_24;
236 		prot[5] |= MT_PROT_RATE_DUP_OFDM_24;
237 	}
238 
239 	switch (mode) {
240 	case IEEE80211_HT_OP_MODE_PROTECTION_NONE:
241 		break;
242 
243 	case IEEE80211_HT_OP_MODE_PROTECTION_NONMEMBER:
244 		ht_rts[0] = ht_rts[1] = ht_rts[2] = ht_rts[3] = true;
245 		break;
246 
247 	case IEEE80211_HT_OP_MODE_PROTECTION_20MHZ:
248 		ht_rts[1] = ht_rts[3] = true;
249 		break;
250 
251 	case IEEE80211_HT_OP_MODE_PROTECTION_NONHT_MIXED:
252 		ht_rts[0] = ht_rts[1] = ht_rts[2] = ht_rts[3] = true;
253 		break;
254 	}
255 
256 	if (non_gf)
257 		ht_rts[2] = ht_rts[3] = true;
258 
259 	for (i = 0; i < 4; i++)
260 		if (ht_rts[i])
261 			prot[i + 2] |= MT_PROT_CTRL_RTS_CTS;
262 
263 	for (i = 0; i < 6; i++)
264 		mt7601u_wr(dev, MT_CCK_PROT_CFG + i * 4, prot[i]);
265 }
266 
267 void mt7601u_mac_set_short_preamble(struct mt7601u_dev *dev, bool short_preamb)
268 {
269 	if (short_preamb)
270 		mt76_set(dev, MT_AUTO_RSP_CFG, MT_AUTO_RSP_PREAMB_SHORT);
271 	else
272 		mt76_clear(dev, MT_AUTO_RSP_CFG, MT_AUTO_RSP_PREAMB_SHORT);
273 }
274 
275 void mt7601u_mac_config_tsf(struct mt7601u_dev *dev, bool enable, int interval)
276 {
277 	u32 val = mt7601u_rr(dev, MT_BEACON_TIME_CFG);
278 
279 	val &= ~(MT_BEACON_TIME_CFG_TIMER_EN |
280 		 MT_BEACON_TIME_CFG_SYNC_MODE |
281 		 MT_BEACON_TIME_CFG_TBTT_EN);
282 
283 	if (!enable) {
284 		mt7601u_wr(dev, MT_BEACON_TIME_CFG, val);
285 		return;
286 	}
287 
288 	val &= ~MT_BEACON_TIME_CFG_INTVAL;
289 	val |= FIELD_PREP(MT_BEACON_TIME_CFG_INTVAL, interval << 4) |
290 		MT_BEACON_TIME_CFG_TIMER_EN |
291 		MT_BEACON_TIME_CFG_SYNC_MODE |
292 		MT_BEACON_TIME_CFG_TBTT_EN;
293 }
294 
295 static void mt7601u_check_mac_err(struct mt7601u_dev *dev)
296 {
297 	u32 val = mt7601u_rr(dev, 0x10f4);
298 
299 	if (!(val & BIT(29)) || !(val & (BIT(7) | BIT(5))))
300 		return;
301 
302 	dev_err(dev->dev, "Error: MAC specific condition occurred\n");
303 
304 	mt76_set(dev, MT_MAC_SYS_CTRL, MT_MAC_SYS_CTRL_RESET_CSR);
305 	udelay(10);
306 	mt76_clear(dev, MT_MAC_SYS_CTRL, MT_MAC_SYS_CTRL_RESET_CSR);
307 }
308 
309 void mt7601u_mac_work(struct work_struct *work)
310 {
311 	struct mt7601u_dev *dev = container_of(work, struct mt7601u_dev,
312 					       mac_work.work);
313 	struct {
314 		u32 addr_base;
315 		u32 span;
316 		u64 *stat_base;
317 	} spans[] = {
318 		{ MT_RX_STA_CNT0,	3,	dev->stats.rx_stat },
319 		{ MT_TX_STA_CNT0,	3,	dev->stats.tx_stat },
320 		{ MT_TX_AGG_STAT,	1,	dev->stats.aggr_stat },
321 		{ MT_MPDU_DENSITY_CNT,	1,	dev->stats.zero_len_del },
322 		{ MT_TX_AGG_CNT_BASE0,	8,	&dev->stats.aggr_n[0] },
323 		{ MT_TX_AGG_CNT_BASE1,	8,	&dev->stats.aggr_n[16] },
324 	};
325 	u32 sum, n;
326 	int i, j, k;
327 
328 	/* Note: using MCU_RANDOM_READ is actually slower then reading all the
329 	 *	 registers by hand.  MCU takes ca. 20ms to complete read of 24
330 	 *	 registers while reading them one by one will takes roughly
331 	 *	 24*200us =~ 5ms.
332 	 */
333 
334 	k = 0;
335 	n = 0;
336 	sum = 0;
337 	for (i = 0; i < ARRAY_SIZE(spans); i++)
338 		for (j = 0; j < spans[i].span; j++) {
339 			u32 val = mt7601u_rr(dev, spans[i].addr_base + j * 4);
340 
341 			spans[i].stat_base[j * 2] += val & 0xffff;
342 			spans[i].stat_base[j * 2 + 1] += val >> 16;
343 
344 			/* Calculate average AMPDU length */
345 			if (spans[i].addr_base != MT_TX_AGG_CNT_BASE0 &&
346 			    spans[i].addr_base != MT_TX_AGG_CNT_BASE1)
347 				continue;
348 
349 			n += (val >> 16) + (val & 0xffff);
350 			sum += (val & 0xffff) * (1 + k * 2) +
351 				(val >> 16) * (2 + k * 2);
352 			k++;
353 		}
354 
355 	atomic_set(&dev->avg_ampdu_len, n ? DIV_ROUND_CLOSEST(sum, n) : 1);
356 
357 	mt7601u_check_mac_err(dev);
358 
359 	ieee80211_queue_delayed_work(dev->hw, &dev->mac_work, 10 * HZ);
360 }
361 
362 void
363 mt7601u_mac_wcid_setup(struct mt7601u_dev *dev, u8 idx, u8 vif_idx, u8 *mac)
364 {
365 	u8 zmac[ETH_ALEN] = {};
366 	u32 attr;
367 
368 	attr = FIELD_PREP(MT_WCID_ATTR_BSS_IDX, vif_idx & 7) |
369 	       FIELD_PREP(MT_WCID_ATTR_BSS_IDX_EXT, !!(vif_idx & 8));
370 
371 	mt76_wr(dev, MT_WCID_ATTR(idx), attr);
372 
373 	if (mac)
374 		memcpy(zmac, mac, sizeof(zmac));
375 
376 	mt7601u_addr_wr(dev, MT_WCID_ADDR(idx), zmac);
377 }
378 
379 void mt7601u_mac_set_ampdu_factor(struct mt7601u_dev *dev)
380 {
381 	struct ieee80211_sta *sta;
382 	struct mt76_wcid *wcid;
383 	void *msta;
384 	u8 min_factor = 3;
385 	int i;
386 
387 	rcu_read_lock();
388 	for (i = 0; i < ARRAY_SIZE(dev->wcid); i++) {
389 		wcid = rcu_dereference(dev->wcid[i]);
390 		if (!wcid)
391 			continue;
392 
393 		msta = container_of(wcid, struct mt76_sta, wcid);
394 		sta = container_of(msta, struct ieee80211_sta, drv_priv);
395 
396 		min_factor = min(min_factor, sta->ht_cap.ampdu_factor);
397 	}
398 	rcu_read_unlock();
399 
400 	mt7601u_wr(dev, MT_MAX_LEN_CFG, 0xa0fff |
401 		   FIELD_PREP(MT_MAX_LEN_CFG_AMPDU, min_factor));
402 }
403 
404 static void
405 mt76_mac_process_rate(struct ieee80211_rx_status *status, u16 rate)
406 {
407 	u8 idx = FIELD_GET(MT_RXWI_RATE_MCS, rate);
408 
409 	switch (FIELD_GET(MT_RXWI_RATE_PHY, rate)) {
410 	case MT_PHY_TYPE_OFDM:
411 		if (WARN_ON(idx >= 8))
412 			idx = 0;
413 		idx += 4;
414 
415 		status->rate_idx = idx;
416 		return;
417 	case MT_PHY_TYPE_CCK:
418 		if (idx >= 8) {
419 			idx -= 8;
420 			status->enc_flags |= RX_ENC_FLAG_SHORTPRE;
421 		}
422 
423 		if (WARN_ON(idx >= 4))
424 			idx = 0;
425 
426 		status->rate_idx = idx;
427 		return;
428 	case MT_PHY_TYPE_HT_GF:
429 		status->enc_flags |= RX_ENC_FLAG_HT_GF;
430 		/* fall through */
431 	case MT_PHY_TYPE_HT:
432 		status->encoding = RX_ENC_HT;
433 		status->rate_idx = idx;
434 		break;
435 	default:
436 		WARN_ON(1);
437 		return;
438 	}
439 
440 	if (rate & MT_RXWI_RATE_SGI)
441 		status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
442 
443 	if (rate & MT_RXWI_RATE_STBC)
444 		status->enc_flags |= 1 << RX_ENC_FLAG_STBC_SHIFT;
445 
446 	if (rate & MT_RXWI_RATE_BW)
447 		status->bw = RATE_INFO_BW_40;
448 }
449 
450 static void
451 mt7601u_rx_monitor_beacon(struct mt7601u_dev *dev, struct mt7601u_rxwi *rxwi,
452 			  u16 rate, int rssi)
453 {
454 	dev->bcn_freq_off = rxwi->freq_off;
455 	dev->bcn_phy_mode = FIELD_GET(MT_RXWI_RATE_PHY, rate);
456 	ewma_rssi_add(&dev->avg_rssi, -rssi);
457 }
458 
459 static int
460 mt7601u_rx_is_our_beacon(struct mt7601u_dev *dev, u8 *data)
461 {
462 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)data;
463 
464 	return ieee80211_is_beacon(hdr->frame_control) &&
465 		ether_addr_equal(hdr->addr2, dev->ap_bssid);
466 }
467 
468 u32 mt76_mac_process_rx(struct mt7601u_dev *dev, struct sk_buff *skb,
469 			u8 *data, void *rxi)
470 {
471 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
472 	struct mt7601u_rxwi *rxwi = rxi;
473 	u32 len, ctl = le32_to_cpu(rxwi->ctl);
474 	u16 rate = le16_to_cpu(rxwi->rate);
475 	int rssi;
476 
477 	len = FIELD_GET(MT_RXWI_CTL_MPDU_LEN, ctl);
478 	if (len < 10)
479 		return 0;
480 
481 	if (rxwi->rxinfo & cpu_to_le32(MT_RXINFO_DECRYPT)) {
482 		status->flag |= RX_FLAG_DECRYPTED;
483 		status->flag |= RX_FLAG_MMIC_STRIPPED;
484 		status->flag |= RX_FLAG_MIC_STRIPPED;
485 		status->flag |= RX_FLAG_ICV_STRIPPED;
486 		status->flag |= RX_FLAG_IV_STRIPPED;
487 	}
488 	/* let mac80211 take care of PN validation since apparently
489 	 * the hardware does not support it
490 	 */
491 	if (rxwi->rxinfo & cpu_to_le32(MT_RXINFO_PN_LEN))
492 		status->flag &= ~RX_FLAG_IV_STRIPPED;
493 
494 	status->chains = BIT(0);
495 	rssi = mt7601u_phy_get_rssi(dev, rxwi, rate);
496 	status->chain_signal[0] = status->signal = rssi;
497 	status->freq = dev->chandef.chan->center_freq;
498 	status->band = dev->chandef.chan->band;
499 
500 	mt76_mac_process_rate(status, rate);
501 
502 	spin_lock_bh(&dev->con_mon_lock);
503 	if (mt7601u_rx_is_our_beacon(dev, data))
504 		mt7601u_rx_monitor_beacon(dev, rxwi, rate, rssi);
505 	else if (rxwi->rxinfo & cpu_to_le32(MT_RXINFO_U2M))
506 		ewma_rssi_add(&dev->avg_rssi, -rssi);
507 	spin_unlock_bh(&dev->con_mon_lock);
508 
509 	return len;
510 }
511 
512 static enum mt76_cipher_type
513 mt76_mac_get_key_info(struct ieee80211_key_conf *key, u8 *key_data)
514 {
515 	memset(key_data, 0, 32);
516 	if (!key)
517 		return MT_CIPHER_NONE;
518 
519 	if (key->keylen > 32)
520 		return MT_CIPHER_NONE;
521 
522 	memcpy(key_data, key->key, key->keylen);
523 
524 	switch (key->cipher) {
525 	case WLAN_CIPHER_SUITE_WEP40:
526 		return MT_CIPHER_WEP40;
527 	case WLAN_CIPHER_SUITE_WEP104:
528 		return MT_CIPHER_WEP104;
529 	case WLAN_CIPHER_SUITE_TKIP:
530 		return MT_CIPHER_TKIP;
531 	case WLAN_CIPHER_SUITE_CCMP:
532 		return MT_CIPHER_AES_CCMP;
533 	default:
534 		return MT_CIPHER_NONE;
535 	}
536 }
537 
538 int mt76_mac_wcid_set_key(struct mt7601u_dev *dev, u8 idx,
539 			  struct ieee80211_key_conf *key)
540 {
541 	enum mt76_cipher_type cipher;
542 	u8 key_data[32];
543 	u8 iv_data[8];
544 	u32 val;
545 
546 	cipher = mt76_mac_get_key_info(key, key_data);
547 	if (cipher == MT_CIPHER_NONE && key)
548 		return -EINVAL;
549 
550 	trace_set_key(dev, idx);
551 
552 	mt7601u_wr_copy(dev, MT_WCID_KEY(idx), key_data, sizeof(key_data));
553 
554 	memset(iv_data, 0, sizeof(iv_data));
555 	if (key) {
556 		iv_data[3] = key->keyidx << 6;
557 		if (cipher >= MT_CIPHER_TKIP) {
558 			/* Note: start with 1 to comply with spec,
559 			 *	 (see comment on common/cmm_wpa.c:4291).
560 			 */
561 			iv_data[0] |= 1;
562 			iv_data[3] |= 0x20;
563 		}
564 	}
565 	mt7601u_wr_copy(dev, MT_WCID_IV(idx), iv_data, sizeof(iv_data));
566 
567 	val = mt7601u_rr(dev, MT_WCID_ATTR(idx));
568 	val &= ~MT_WCID_ATTR_PKEY_MODE & ~MT_WCID_ATTR_PKEY_MODE_EXT;
569 	val |= FIELD_PREP(MT_WCID_ATTR_PKEY_MODE, cipher & 7) |
570 	       FIELD_PREP(MT_WCID_ATTR_PKEY_MODE_EXT, cipher >> 3);
571 	val &= ~MT_WCID_ATTR_PAIRWISE;
572 	val |= MT_WCID_ATTR_PAIRWISE *
573 		!!(key && key->flags & IEEE80211_KEY_FLAG_PAIRWISE);
574 	mt7601u_wr(dev, MT_WCID_ATTR(idx), val);
575 
576 	return 0;
577 }
578 
579 int mt76_mac_shared_key_setup(struct mt7601u_dev *dev, u8 vif_idx, u8 key_idx,
580 			      struct ieee80211_key_conf *key)
581 {
582 	enum mt76_cipher_type cipher;
583 	u8 key_data[32];
584 	u32 val;
585 
586 	cipher = mt76_mac_get_key_info(key, key_data);
587 	if (cipher == MT_CIPHER_NONE && key)
588 		return -EINVAL;
589 
590 	trace_set_shared_key(dev, vif_idx, key_idx);
591 
592 	mt7601u_wr_copy(dev, MT_SKEY(vif_idx, key_idx),
593 			key_data, sizeof(key_data));
594 
595 	val = mt76_rr(dev, MT_SKEY_MODE(vif_idx));
596 	val &= ~(MT_SKEY_MODE_MASK << MT_SKEY_MODE_SHIFT(vif_idx, key_idx));
597 	val |= cipher << MT_SKEY_MODE_SHIFT(vif_idx, key_idx);
598 	mt76_wr(dev, MT_SKEY_MODE(vif_idx), val);
599 
600 	return 0;
601 }
602