1 /* 2 * Copyright (C) 2014 Felix Fietkau <nbd@openwrt.org> 3 * Copyright (C) 2015 Jakub Kicinski <kubakici@wp.pl> 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License version 2 7 * as published by the Free Software Foundation 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 */ 14 15 #include "mt7601u.h" 16 #include "trace.h" 17 #include <linux/etherdevice.h> 18 19 static void 20 mt76_mac_process_tx_rate(struct ieee80211_tx_rate *txrate, u16 rate) 21 { 22 u8 idx = FIELD_GET(MT_TXWI_RATE_MCS, rate); 23 24 txrate->idx = 0; 25 txrate->flags = 0; 26 txrate->count = 1; 27 28 switch (FIELD_GET(MT_TXWI_RATE_PHY_MODE, rate)) { 29 case MT_PHY_TYPE_OFDM: 30 txrate->idx = idx + 4; 31 return; 32 case MT_PHY_TYPE_CCK: 33 if (idx >= 8) 34 idx -= 8; 35 36 txrate->idx = idx; 37 return; 38 case MT_PHY_TYPE_HT_GF: 39 txrate->flags |= IEEE80211_TX_RC_GREEN_FIELD; 40 /* fall through */ 41 case MT_PHY_TYPE_HT: 42 txrate->flags |= IEEE80211_TX_RC_MCS; 43 txrate->idx = idx; 44 break; 45 default: 46 WARN_ON(1); 47 return; 48 } 49 50 if (FIELD_GET(MT_TXWI_RATE_BW, rate) == MT_PHY_BW_40) 51 txrate->flags |= IEEE80211_TX_RC_40_MHZ_WIDTH; 52 53 if (rate & MT_TXWI_RATE_SGI) 54 txrate->flags |= IEEE80211_TX_RC_SHORT_GI; 55 } 56 57 static void 58 mt76_mac_fill_tx_status(struct mt7601u_dev *dev, struct ieee80211_tx_info *info, 59 struct mt76_tx_status *st) 60 { 61 struct ieee80211_tx_rate *rate = info->status.rates; 62 int cur_idx, last_rate; 63 int i; 64 65 last_rate = min_t(int, st->retry, IEEE80211_TX_MAX_RATES - 1); 66 mt76_mac_process_tx_rate(&rate[last_rate], st->rate); 67 if (last_rate < IEEE80211_TX_MAX_RATES - 1) 68 rate[last_rate + 1].idx = -1; 69 70 cur_idx = rate[last_rate].idx + st->retry; 71 for (i = 0; i <= last_rate; i++) { 72 rate[i].flags = rate[last_rate].flags; 73 rate[i].idx = max_t(int, 0, cur_idx - i); 74 rate[i].count = 1; 75 } 76 77 if (last_rate > 0) 78 rate[last_rate - 1].count = st->retry + 1 - last_rate; 79 80 info->status.ampdu_len = 1; 81 info->status.ampdu_ack_len = st->success; 82 83 if (st->is_probe) 84 info->flags |= IEEE80211_TX_CTL_RATE_CTRL_PROBE; 85 86 if (st->aggr) 87 info->flags |= IEEE80211_TX_CTL_AMPDU | 88 IEEE80211_TX_STAT_AMPDU; 89 90 if (!st->ack_req) 91 info->flags |= IEEE80211_TX_CTL_NO_ACK; 92 else if (st->success) 93 info->flags |= IEEE80211_TX_STAT_ACK; 94 } 95 96 u16 mt76_mac_tx_rate_val(struct mt7601u_dev *dev, 97 const struct ieee80211_tx_rate *rate, u8 *nss_val) 98 { 99 u16 rateval; 100 u8 phy, rate_idx; 101 u8 nss = 1; 102 u8 bw = 0; 103 104 if (rate->flags & IEEE80211_TX_RC_MCS) { 105 rate_idx = rate->idx; 106 nss = 1 + (rate->idx >> 3); 107 phy = MT_PHY_TYPE_HT; 108 if (rate->flags & IEEE80211_TX_RC_GREEN_FIELD) 109 phy = MT_PHY_TYPE_HT_GF; 110 if (rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) 111 bw = 1; 112 } else { 113 const struct ieee80211_rate *r; 114 int band = dev->chandef.chan->band; 115 u16 val; 116 117 r = &dev->hw->wiphy->bands[band]->bitrates[rate->idx]; 118 if (rate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) 119 val = r->hw_value_short; 120 else 121 val = r->hw_value; 122 123 phy = val >> 8; 124 rate_idx = val & 0xff; 125 bw = 0; 126 } 127 128 rateval = FIELD_PREP(MT_RXWI_RATE_MCS, rate_idx); 129 rateval |= FIELD_PREP(MT_RXWI_RATE_PHY, phy); 130 rateval |= FIELD_PREP(MT_RXWI_RATE_BW, bw); 131 if (rate->flags & IEEE80211_TX_RC_SHORT_GI) 132 rateval |= MT_RXWI_RATE_SGI; 133 134 *nss_val = nss; 135 return rateval; 136 } 137 138 void mt76_mac_wcid_set_rate(struct mt7601u_dev *dev, struct mt76_wcid *wcid, 139 const struct ieee80211_tx_rate *rate) 140 { 141 unsigned long flags; 142 143 spin_lock_irqsave(&dev->lock, flags); 144 wcid->tx_rate = mt76_mac_tx_rate_val(dev, rate, &wcid->tx_rate_nss); 145 wcid->tx_rate_set = true; 146 spin_unlock_irqrestore(&dev->lock, flags); 147 } 148 149 struct mt76_tx_status mt7601u_mac_fetch_tx_status(struct mt7601u_dev *dev) 150 { 151 struct mt76_tx_status stat = {}; 152 u32 val; 153 154 val = mt7601u_rr(dev, MT_TX_STAT_FIFO); 155 stat.valid = !!(val & MT_TX_STAT_FIFO_VALID); 156 stat.success = !!(val & MT_TX_STAT_FIFO_SUCCESS); 157 stat.aggr = !!(val & MT_TX_STAT_FIFO_AGGR); 158 stat.ack_req = !!(val & MT_TX_STAT_FIFO_ACKREQ); 159 stat.pktid = FIELD_GET(MT_TX_STAT_FIFO_PID_TYPE, val); 160 stat.wcid = FIELD_GET(MT_TX_STAT_FIFO_WCID, val); 161 stat.rate = FIELD_GET(MT_TX_STAT_FIFO_RATE, val); 162 163 return stat; 164 } 165 166 void mt76_send_tx_status(struct mt7601u_dev *dev, struct mt76_tx_status *stat) 167 { 168 struct ieee80211_tx_info info = {}; 169 struct ieee80211_sta *sta = NULL; 170 struct mt76_wcid *wcid = NULL; 171 void *msta; 172 173 rcu_read_lock(); 174 if (stat->wcid < ARRAY_SIZE(dev->wcid)) 175 wcid = rcu_dereference(dev->wcid[stat->wcid]); 176 177 if (wcid) { 178 msta = container_of(wcid, struct mt76_sta, wcid); 179 sta = container_of(msta, struct ieee80211_sta, 180 drv_priv); 181 } 182 183 mt76_mac_fill_tx_status(dev, &info, stat); 184 185 spin_lock_bh(&dev->mac_lock); 186 ieee80211_tx_status_noskb(dev->hw, sta, &info); 187 spin_unlock_bh(&dev->mac_lock); 188 189 rcu_read_unlock(); 190 } 191 192 void mt7601u_mac_set_protection(struct mt7601u_dev *dev, bool legacy_prot, 193 int ht_mode) 194 { 195 int mode = ht_mode & IEEE80211_HT_OP_MODE_PROTECTION; 196 bool non_gf = !!(ht_mode & IEEE80211_HT_OP_MODE_NON_GF_STA_PRSNT); 197 u32 prot[6]; 198 bool ht_rts[4] = {}; 199 int i; 200 201 prot[0] = MT_PROT_NAV_SHORT | 202 MT_PROT_TXOP_ALLOW_ALL | 203 MT_PROT_RTS_THR_EN; 204 prot[1] = prot[0]; 205 if (legacy_prot) 206 prot[1] |= MT_PROT_CTRL_CTS2SELF; 207 208 prot[2] = prot[4] = MT_PROT_NAV_SHORT | MT_PROT_TXOP_ALLOW_BW20; 209 prot[3] = prot[5] = MT_PROT_NAV_SHORT | MT_PROT_TXOP_ALLOW_ALL; 210 211 if (legacy_prot) { 212 prot[2] |= MT_PROT_RATE_CCK_11; 213 prot[3] |= MT_PROT_RATE_CCK_11; 214 prot[4] |= MT_PROT_RATE_CCK_11; 215 prot[5] |= MT_PROT_RATE_CCK_11; 216 } else { 217 prot[2] |= MT_PROT_RATE_OFDM_24; 218 prot[3] |= MT_PROT_RATE_DUP_OFDM_24; 219 prot[4] |= MT_PROT_RATE_OFDM_24; 220 prot[5] |= MT_PROT_RATE_DUP_OFDM_24; 221 } 222 223 switch (mode) { 224 case IEEE80211_HT_OP_MODE_PROTECTION_NONE: 225 break; 226 227 case IEEE80211_HT_OP_MODE_PROTECTION_NONMEMBER: 228 ht_rts[0] = ht_rts[1] = ht_rts[2] = ht_rts[3] = true; 229 break; 230 231 case IEEE80211_HT_OP_MODE_PROTECTION_20MHZ: 232 ht_rts[1] = ht_rts[3] = true; 233 break; 234 235 case IEEE80211_HT_OP_MODE_PROTECTION_NONHT_MIXED: 236 ht_rts[0] = ht_rts[1] = ht_rts[2] = ht_rts[3] = true; 237 break; 238 } 239 240 if (non_gf) 241 ht_rts[2] = ht_rts[3] = true; 242 243 for (i = 0; i < 4; i++) 244 if (ht_rts[i]) 245 prot[i + 2] |= MT_PROT_CTRL_RTS_CTS; 246 247 for (i = 0; i < 6; i++) 248 mt7601u_wr(dev, MT_CCK_PROT_CFG + i * 4, prot[i]); 249 } 250 251 void mt7601u_mac_set_short_preamble(struct mt7601u_dev *dev, bool short_preamb) 252 { 253 if (short_preamb) 254 mt76_set(dev, MT_AUTO_RSP_CFG, MT_AUTO_RSP_PREAMB_SHORT); 255 else 256 mt76_clear(dev, MT_AUTO_RSP_CFG, MT_AUTO_RSP_PREAMB_SHORT); 257 } 258 259 void mt7601u_mac_config_tsf(struct mt7601u_dev *dev, bool enable, int interval) 260 { 261 u32 val = mt7601u_rr(dev, MT_BEACON_TIME_CFG); 262 263 val &= ~(MT_BEACON_TIME_CFG_TIMER_EN | 264 MT_BEACON_TIME_CFG_SYNC_MODE | 265 MT_BEACON_TIME_CFG_TBTT_EN); 266 267 if (!enable) { 268 mt7601u_wr(dev, MT_BEACON_TIME_CFG, val); 269 return; 270 } 271 272 val &= ~MT_BEACON_TIME_CFG_INTVAL; 273 val |= FIELD_PREP(MT_BEACON_TIME_CFG_INTVAL, interval << 4) | 274 MT_BEACON_TIME_CFG_TIMER_EN | 275 MT_BEACON_TIME_CFG_SYNC_MODE | 276 MT_BEACON_TIME_CFG_TBTT_EN; 277 } 278 279 static void mt7601u_check_mac_err(struct mt7601u_dev *dev) 280 { 281 u32 val = mt7601u_rr(dev, 0x10f4); 282 283 if (!(val & BIT(29)) || !(val & (BIT(7) | BIT(5)))) 284 return; 285 286 dev_err(dev->dev, "Error: MAC specific condition occurred\n"); 287 288 mt76_set(dev, MT_MAC_SYS_CTRL, MT_MAC_SYS_CTRL_RESET_CSR); 289 udelay(10); 290 mt76_clear(dev, MT_MAC_SYS_CTRL, MT_MAC_SYS_CTRL_RESET_CSR); 291 } 292 293 void mt7601u_mac_work(struct work_struct *work) 294 { 295 struct mt7601u_dev *dev = container_of(work, struct mt7601u_dev, 296 mac_work.work); 297 struct { 298 u32 addr_base; 299 u32 span; 300 u64 *stat_base; 301 } spans[] = { 302 { MT_RX_STA_CNT0, 3, dev->stats.rx_stat }, 303 { MT_TX_STA_CNT0, 3, dev->stats.tx_stat }, 304 { MT_TX_AGG_STAT, 1, dev->stats.aggr_stat }, 305 { MT_MPDU_DENSITY_CNT, 1, dev->stats.zero_len_del }, 306 { MT_TX_AGG_CNT_BASE0, 8, &dev->stats.aggr_n[0] }, 307 { MT_TX_AGG_CNT_BASE1, 8, &dev->stats.aggr_n[16] }, 308 }; 309 u32 sum, n; 310 int i, j, k; 311 312 /* Note: using MCU_RANDOM_READ is actually slower then reading all the 313 * registers by hand. MCU takes ca. 20ms to complete read of 24 314 * registers while reading them one by one will takes roughly 315 * 24*200us =~ 5ms. 316 */ 317 318 k = 0; 319 n = 0; 320 sum = 0; 321 for (i = 0; i < ARRAY_SIZE(spans); i++) 322 for (j = 0; j < spans[i].span; j++) { 323 u32 val = mt7601u_rr(dev, spans[i].addr_base + j * 4); 324 325 spans[i].stat_base[j * 2] += val & 0xffff; 326 spans[i].stat_base[j * 2 + 1] += val >> 16; 327 328 /* Calculate average AMPDU length */ 329 if (spans[i].addr_base != MT_TX_AGG_CNT_BASE0 && 330 spans[i].addr_base != MT_TX_AGG_CNT_BASE1) 331 continue; 332 333 n += (val >> 16) + (val & 0xffff); 334 sum += (val & 0xffff) * (1 + k * 2) + 335 (val >> 16) * (2 + k * 2); 336 k++; 337 } 338 339 atomic_set(&dev->avg_ampdu_len, n ? DIV_ROUND_CLOSEST(sum, n) : 1); 340 341 mt7601u_check_mac_err(dev); 342 343 ieee80211_queue_delayed_work(dev->hw, &dev->mac_work, 10 * HZ); 344 } 345 346 void 347 mt7601u_mac_wcid_setup(struct mt7601u_dev *dev, u8 idx, u8 vif_idx, u8 *mac) 348 { 349 u8 zmac[ETH_ALEN] = {}; 350 u32 attr; 351 352 attr = FIELD_PREP(MT_WCID_ATTR_BSS_IDX, vif_idx & 7) | 353 FIELD_PREP(MT_WCID_ATTR_BSS_IDX_EXT, !!(vif_idx & 8)); 354 355 mt76_wr(dev, MT_WCID_ATTR(idx), attr); 356 357 if (mac) 358 memcpy(zmac, mac, sizeof(zmac)); 359 360 mt7601u_addr_wr(dev, MT_WCID_ADDR(idx), zmac); 361 } 362 363 void mt7601u_mac_set_ampdu_factor(struct mt7601u_dev *dev) 364 { 365 struct ieee80211_sta *sta; 366 struct mt76_wcid *wcid; 367 void *msta; 368 u8 min_factor = 3; 369 int i; 370 371 rcu_read_lock(); 372 for (i = 0; i < ARRAY_SIZE(dev->wcid); i++) { 373 wcid = rcu_dereference(dev->wcid[i]); 374 if (!wcid) 375 continue; 376 377 msta = container_of(wcid, struct mt76_sta, wcid); 378 sta = container_of(msta, struct ieee80211_sta, drv_priv); 379 380 min_factor = min(min_factor, sta->ht_cap.ampdu_factor); 381 } 382 rcu_read_unlock(); 383 384 mt7601u_wr(dev, MT_MAX_LEN_CFG, 0xa0fff | 385 FIELD_PREP(MT_MAX_LEN_CFG_AMPDU, min_factor)); 386 } 387 388 static void 389 mt76_mac_process_rate(struct ieee80211_rx_status *status, u16 rate) 390 { 391 u8 idx = FIELD_GET(MT_RXWI_RATE_MCS, rate); 392 393 switch (FIELD_GET(MT_RXWI_RATE_PHY, rate)) { 394 case MT_PHY_TYPE_OFDM: 395 if (WARN_ON(idx >= 8)) 396 idx = 0; 397 idx += 4; 398 399 status->rate_idx = idx; 400 return; 401 case MT_PHY_TYPE_CCK: 402 if (idx >= 8) { 403 idx -= 8; 404 status->flag |= RX_FLAG_SHORTPRE; 405 } 406 407 if (WARN_ON(idx >= 4)) 408 idx = 0; 409 410 status->rate_idx = idx; 411 return; 412 case MT_PHY_TYPE_HT_GF: 413 status->flag |= RX_FLAG_HT_GF; 414 /* fall through */ 415 case MT_PHY_TYPE_HT: 416 status->flag |= RX_FLAG_HT; 417 status->rate_idx = idx; 418 break; 419 default: 420 WARN_ON(1); 421 return; 422 } 423 424 if (rate & MT_RXWI_RATE_SGI) 425 status->flag |= RX_FLAG_SHORT_GI; 426 427 if (rate & MT_RXWI_RATE_STBC) 428 status->flag |= 1 << RX_FLAG_STBC_SHIFT; 429 430 if (rate & MT_RXWI_RATE_BW) 431 status->flag |= RX_FLAG_40MHZ; 432 } 433 434 static void 435 mt7601u_rx_monitor_beacon(struct mt7601u_dev *dev, struct mt7601u_rxwi *rxwi, 436 u16 rate, int rssi) 437 { 438 dev->bcn_freq_off = rxwi->freq_off; 439 dev->bcn_phy_mode = FIELD_GET(MT_RXWI_RATE_PHY, rate); 440 dev->avg_rssi = (dev->avg_rssi * 15) / 16 + (rssi << 8); 441 } 442 443 static int 444 mt7601u_rx_is_our_beacon(struct mt7601u_dev *dev, u8 *data) 445 { 446 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)data; 447 448 return ieee80211_is_beacon(hdr->frame_control) && 449 ether_addr_equal(hdr->addr2, dev->ap_bssid); 450 } 451 452 u32 mt76_mac_process_rx(struct mt7601u_dev *dev, struct sk_buff *skb, 453 u8 *data, void *rxi) 454 { 455 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 456 struct mt7601u_rxwi *rxwi = rxi; 457 u32 len, ctl = le32_to_cpu(rxwi->ctl); 458 u16 rate = le16_to_cpu(rxwi->rate); 459 int rssi; 460 461 len = FIELD_GET(MT_RXWI_CTL_MPDU_LEN, ctl); 462 if (len < 10) 463 return 0; 464 465 if (rxwi->rxinfo & cpu_to_le32(MT_RXINFO_DECRYPT)) { 466 status->flag |= RX_FLAG_DECRYPTED; 467 status->flag |= RX_FLAG_IV_STRIPPED | RX_FLAG_MMIC_STRIPPED; 468 } 469 470 status->chains = BIT(0); 471 rssi = mt7601u_phy_get_rssi(dev, rxwi, rate); 472 status->chain_signal[0] = status->signal = rssi; 473 status->freq = dev->chandef.chan->center_freq; 474 status->band = dev->chandef.chan->band; 475 476 mt76_mac_process_rate(status, rate); 477 478 spin_lock_bh(&dev->con_mon_lock); 479 if (mt7601u_rx_is_our_beacon(dev, data)) 480 mt7601u_rx_monitor_beacon(dev, rxwi, rate, rssi); 481 else if (rxwi->rxinfo & cpu_to_le32(MT_RXINFO_U2M)) 482 dev->avg_rssi = (dev->avg_rssi * 15) / 16 + (rssi << 8); 483 spin_unlock_bh(&dev->con_mon_lock); 484 485 return len; 486 } 487 488 static enum mt76_cipher_type 489 mt76_mac_get_key_info(struct ieee80211_key_conf *key, u8 *key_data) 490 { 491 memset(key_data, 0, 32); 492 if (!key) 493 return MT_CIPHER_NONE; 494 495 if (key->keylen > 32) 496 return MT_CIPHER_NONE; 497 498 memcpy(key_data, key->key, key->keylen); 499 500 switch (key->cipher) { 501 case WLAN_CIPHER_SUITE_WEP40: 502 return MT_CIPHER_WEP40; 503 case WLAN_CIPHER_SUITE_WEP104: 504 return MT_CIPHER_WEP104; 505 case WLAN_CIPHER_SUITE_TKIP: 506 return MT_CIPHER_TKIP; 507 case WLAN_CIPHER_SUITE_CCMP: 508 return MT_CIPHER_AES_CCMP; 509 default: 510 return MT_CIPHER_NONE; 511 } 512 } 513 514 int mt76_mac_wcid_set_key(struct mt7601u_dev *dev, u8 idx, 515 struct ieee80211_key_conf *key) 516 { 517 enum mt76_cipher_type cipher; 518 u8 key_data[32]; 519 u8 iv_data[8]; 520 u32 val; 521 522 cipher = mt76_mac_get_key_info(key, key_data); 523 if (cipher == MT_CIPHER_NONE && key) 524 return -EINVAL; 525 526 trace_set_key(dev, idx); 527 528 mt7601u_wr_copy(dev, MT_WCID_KEY(idx), key_data, sizeof(key_data)); 529 530 memset(iv_data, 0, sizeof(iv_data)); 531 if (key) { 532 iv_data[3] = key->keyidx << 6; 533 if (cipher >= MT_CIPHER_TKIP) { 534 /* Note: start with 1 to comply with spec, 535 * (see comment on common/cmm_wpa.c:4291). 536 */ 537 iv_data[0] |= 1; 538 iv_data[3] |= 0x20; 539 } 540 } 541 mt7601u_wr_copy(dev, MT_WCID_IV(idx), iv_data, sizeof(iv_data)); 542 543 val = mt7601u_rr(dev, MT_WCID_ATTR(idx)); 544 val &= ~MT_WCID_ATTR_PKEY_MODE & ~MT_WCID_ATTR_PKEY_MODE_EXT; 545 val |= FIELD_PREP(MT_WCID_ATTR_PKEY_MODE, cipher & 7) | 546 FIELD_PREP(MT_WCID_ATTR_PKEY_MODE_EXT, cipher >> 3); 547 val &= ~MT_WCID_ATTR_PAIRWISE; 548 val |= MT_WCID_ATTR_PAIRWISE * 549 !!(key && key->flags & IEEE80211_KEY_FLAG_PAIRWISE); 550 mt7601u_wr(dev, MT_WCID_ATTR(idx), val); 551 552 return 0; 553 } 554 555 int mt76_mac_shared_key_setup(struct mt7601u_dev *dev, u8 vif_idx, u8 key_idx, 556 struct ieee80211_key_conf *key) 557 { 558 enum mt76_cipher_type cipher; 559 u8 key_data[32]; 560 u32 val; 561 562 cipher = mt76_mac_get_key_info(key, key_data); 563 if (cipher == MT_CIPHER_NONE && key) 564 return -EINVAL; 565 566 trace_set_shared_key(dev, vif_idx, key_idx); 567 568 mt7601u_wr_copy(dev, MT_SKEY(vif_idx, key_idx), 569 key_data, sizeof(key_data)); 570 571 val = mt76_rr(dev, MT_SKEY_MODE(vif_idx)); 572 val &= ~(MT_SKEY_MODE_MASK << MT_SKEY_MODE_SHIFT(vif_idx, key_idx)); 573 val |= cipher << MT_SKEY_MODE_SHIFT(vif_idx, key_idx); 574 mt76_wr(dev, MT_SKEY_MODE(vif_idx), val); 575 576 return 0; 577 } 578