1 // SPDX-License-Identifier: ISC 2 /* 3 * Copyright (C) 2016 Felix Fietkau <nbd@nbd.name> 4 */ 5 6 #include <linux/module.h> 7 #include <asm/unaligned.h> 8 #include "mt76x2.h" 9 #include "eeprom.h" 10 11 #define EE_FIELD(_name, _value) [MT_EE_##_name] = (_value) | 1 12 13 static int 14 mt76x2_eeprom_get_macaddr(struct mt76x02_dev *dev) 15 { 16 void *src = dev->mt76.eeprom.data + MT_EE_MAC_ADDR; 17 18 memcpy(dev->mt76.macaddr, src, ETH_ALEN); 19 return 0; 20 } 21 22 static bool 23 mt76x2_has_cal_free_data(struct mt76x02_dev *dev, u8 *efuse) 24 { 25 u16 *efuse_w = (u16 *)efuse; 26 27 if (efuse_w[MT_EE_NIC_CONF_0] != 0) 28 return false; 29 30 if (efuse_w[MT_EE_XTAL_TRIM_1] == 0xffff) 31 return false; 32 33 if (efuse_w[MT_EE_TX_POWER_DELTA_BW40] != 0) 34 return false; 35 36 if (efuse_w[MT_EE_TX_POWER_0_START_2G] == 0xffff) 37 return false; 38 39 if (efuse_w[MT_EE_TX_POWER_0_GRP3_TX_POWER_DELTA] != 0) 40 return false; 41 42 if (efuse_w[MT_EE_TX_POWER_0_GRP4_TSSI_SLOPE] == 0xffff) 43 return false; 44 45 return true; 46 } 47 48 static void 49 mt76x2_apply_cal_free_data(struct mt76x02_dev *dev, u8 *efuse) 50 { 51 #define GROUP_5G(_id) \ 52 MT_EE_TX_POWER_0_START_5G + MT_TX_POWER_GROUP_SIZE_5G * (_id), \ 53 MT_EE_TX_POWER_0_START_5G + MT_TX_POWER_GROUP_SIZE_5G * (_id) + 1, \ 54 MT_EE_TX_POWER_1_START_5G + MT_TX_POWER_GROUP_SIZE_5G * (_id), \ 55 MT_EE_TX_POWER_1_START_5G + MT_TX_POWER_GROUP_SIZE_5G * (_id) + 1 56 57 static const u8 cal_free_bytes[] = { 58 MT_EE_XTAL_TRIM_1, 59 MT_EE_TX_POWER_EXT_PA_5G + 1, 60 MT_EE_TX_POWER_0_START_2G, 61 MT_EE_TX_POWER_0_START_2G + 1, 62 MT_EE_TX_POWER_1_START_2G, 63 MT_EE_TX_POWER_1_START_2G + 1, 64 GROUP_5G(0), 65 GROUP_5G(1), 66 GROUP_5G(2), 67 GROUP_5G(3), 68 GROUP_5G(4), 69 GROUP_5G(5), 70 MT_EE_RF_2G_TSSI_OFF_TXPOWER, 71 MT_EE_RF_2G_RX_HIGH_GAIN + 1, 72 MT_EE_RF_5G_GRP0_1_RX_HIGH_GAIN, 73 MT_EE_RF_5G_GRP0_1_RX_HIGH_GAIN + 1, 74 MT_EE_RF_5G_GRP2_3_RX_HIGH_GAIN, 75 MT_EE_RF_5G_GRP2_3_RX_HIGH_GAIN + 1, 76 MT_EE_RF_5G_GRP4_5_RX_HIGH_GAIN, 77 MT_EE_RF_5G_GRP4_5_RX_HIGH_GAIN + 1, 78 }; 79 u8 *eeprom = dev->mt76.eeprom.data; 80 u8 prev_grp0[4] = { 81 eeprom[MT_EE_TX_POWER_0_START_5G], 82 eeprom[MT_EE_TX_POWER_0_START_5G + 1], 83 eeprom[MT_EE_TX_POWER_1_START_5G], 84 eeprom[MT_EE_TX_POWER_1_START_5G + 1] 85 }; 86 u16 val; 87 int i; 88 89 if (!mt76x2_has_cal_free_data(dev, efuse)) 90 return; 91 92 for (i = 0; i < ARRAY_SIZE(cal_free_bytes); i++) { 93 int offset = cal_free_bytes[i]; 94 95 eeprom[offset] = efuse[offset]; 96 } 97 98 if (!(efuse[MT_EE_TX_POWER_0_START_5G] | 99 efuse[MT_EE_TX_POWER_0_START_5G + 1])) 100 memcpy(eeprom + MT_EE_TX_POWER_0_START_5G, prev_grp0, 2); 101 if (!(efuse[MT_EE_TX_POWER_1_START_5G] | 102 efuse[MT_EE_TX_POWER_1_START_5G + 1])) 103 memcpy(eeprom + MT_EE_TX_POWER_1_START_5G, prev_grp0 + 2, 2); 104 105 val = get_unaligned_le16(efuse + MT_EE_BT_RCAL_RESULT); 106 if (val != 0xffff) 107 eeprom[MT_EE_BT_RCAL_RESULT] = val & 0xff; 108 109 val = get_unaligned_le16(efuse + MT_EE_BT_VCDL_CALIBRATION); 110 if (val != 0xffff) 111 eeprom[MT_EE_BT_VCDL_CALIBRATION + 1] = val >> 8; 112 113 val = get_unaligned_le16(efuse + MT_EE_BT_PMUCFG); 114 if (val != 0xffff) 115 eeprom[MT_EE_BT_PMUCFG] = val & 0xff; 116 } 117 118 static int mt76x2_check_eeprom(struct mt76x02_dev *dev) 119 { 120 u16 val = get_unaligned_le16(dev->mt76.eeprom.data); 121 122 if (!val) 123 val = get_unaligned_le16(dev->mt76.eeprom.data + MT_EE_PCI_ID); 124 125 switch (val) { 126 case 0x7662: 127 case 0x7612: 128 return 0; 129 default: 130 dev_err(dev->mt76.dev, "EEPROM data check failed: %04x\n", val); 131 return -EINVAL; 132 } 133 } 134 135 static int 136 mt76x2_eeprom_load(struct mt76x02_dev *dev) 137 { 138 void *efuse; 139 bool found; 140 int ret; 141 142 ret = mt76_eeprom_init(&dev->mt76, MT7662_EEPROM_SIZE); 143 if (ret < 0) 144 return ret; 145 146 found = ret; 147 if (found) 148 found = !mt76x2_check_eeprom(dev); 149 150 dev->mt76.otp.data = devm_kzalloc(dev->mt76.dev, MT7662_EEPROM_SIZE, 151 GFP_KERNEL); 152 dev->mt76.otp.size = MT7662_EEPROM_SIZE; 153 if (!dev->mt76.otp.data) 154 return -ENOMEM; 155 156 efuse = dev->mt76.otp.data; 157 158 if (mt76x02_get_efuse_data(dev, 0, efuse, MT7662_EEPROM_SIZE, 159 MT_EE_READ)) 160 goto out; 161 162 if (found) { 163 mt76x2_apply_cal_free_data(dev, efuse); 164 } else { 165 /* FIXME: check if efuse data is complete */ 166 found = true; 167 memcpy(dev->mt76.eeprom.data, efuse, MT7662_EEPROM_SIZE); 168 } 169 170 out: 171 if (!found) 172 return -ENOENT; 173 174 return 0; 175 } 176 177 static void 178 mt76x2_set_rx_gain_group(struct mt76x02_dev *dev, u8 val) 179 { 180 s8 *dest = dev->cal.rx.high_gain; 181 182 if (!mt76x02_field_valid(val)) { 183 dest[0] = 0; 184 dest[1] = 0; 185 return; 186 } 187 188 dest[0] = mt76x02_sign_extend(val, 4); 189 dest[1] = mt76x02_sign_extend(val >> 4, 4); 190 } 191 192 static void 193 mt76x2_set_rssi_offset(struct mt76x02_dev *dev, int chain, u8 val) 194 { 195 s8 *dest = dev->cal.rx.rssi_offset; 196 197 if (!mt76x02_field_valid(val)) { 198 dest[chain] = 0; 199 return; 200 } 201 202 dest[chain] = mt76x02_sign_extend_optional(val, 7); 203 } 204 205 static enum mt76x2_cal_channel_group 206 mt76x2_get_cal_channel_group(int channel) 207 { 208 if (channel >= 184 && channel <= 196) 209 return MT_CH_5G_JAPAN; 210 if (channel <= 48) 211 return MT_CH_5G_UNII_1; 212 if (channel <= 64) 213 return MT_CH_5G_UNII_2; 214 if (channel <= 114) 215 return MT_CH_5G_UNII_2E_1; 216 if (channel <= 144) 217 return MT_CH_5G_UNII_2E_2; 218 return MT_CH_5G_UNII_3; 219 } 220 221 static u8 222 mt76x2_get_5g_rx_gain(struct mt76x02_dev *dev, u8 channel) 223 { 224 enum mt76x2_cal_channel_group group; 225 226 group = mt76x2_get_cal_channel_group(channel); 227 switch (group) { 228 case MT_CH_5G_JAPAN: 229 return mt76x02_eeprom_get(dev, 230 MT_EE_RF_5G_GRP0_1_RX_HIGH_GAIN); 231 case MT_CH_5G_UNII_1: 232 return mt76x02_eeprom_get(dev, 233 MT_EE_RF_5G_GRP0_1_RX_HIGH_GAIN) >> 8; 234 case MT_CH_5G_UNII_2: 235 return mt76x02_eeprom_get(dev, 236 MT_EE_RF_5G_GRP2_3_RX_HIGH_GAIN); 237 case MT_CH_5G_UNII_2E_1: 238 return mt76x02_eeprom_get(dev, 239 MT_EE_RF_5G_GRP2_3_RX_HIGH_GAIN) >> 8; 240 case MT_CH_5G_UNII_2E_2: 241 return mt76x02_eeprom_get(dev, 242 MT_EE_RF_5G_GRP4_5_RX_HIGH_GAIN); 243 default: 244 return mt76x02_eeprom_get(dev, 245 MT_EE_RF_5G_GRP4_5_RX_HIGH_GAIN) >> 8; 246 } 247 } 248 249 void mt76x2_read_rx_gain(struct mt76x02_dev *dev) 250 { 251 struct ieee80211_channel *chan = dev->mt76.chandef.chan; 252 int channel = chan->hw_value; 253 s8 lna_5g[3], lna_2g; 254 u8 lna; 255 u16 val; 256 257 if (chan->band == NL80211_BAND_2GHZ) 258 val = mt76x02_eeprom_get(dev, MT_EE_RF_2G_RX_HIGH_GAIN) >> 8; 259 else 260 val = mt76x2_get_5g_rx_gain(dev, channel); 261 262 mt76x2_set_rx_gain_group(dev, val); 263 264 mt76x02_get_rx_gain(dev, chan->band, &val, &lna_2g, lna_5g); 265 mt76x2_set_rssi_offset(dev, 0, val); 266 mt76x2_set_rssi_offset(dev, 1, val >> 8); 267 268 dev->cal.rx.mcu_gain = (lna_2g & 0xff); 269 dev->cal.rx.mcu_gain |= (lna_5g[0] & 0xff) << 8; 270 dev->cal.rx.mcu_gain |= (lna_5g[1] & 0xff) << 16; 271 dev->cal.rx.mcu_gain |= (lna_5g[2] & 0xff) << 24; 272 273 lna = mt76x02_get_lna_gain(dev, &lna_2g, lna_5g, chan); 274 dev->cal.rx.lna_gain = mt76x02_sign_extend(lna, 8); 275 } 276 EXPORT_SYMBOL_GPL(mt76x2_read_rx_gain); 277 278 void mt76x2_get_rate_power(struct mt76x02_dev *dev, struct mt76_rate_power *t, 279 struct ieee80211_channel *chan) 280 { 281 bool is_5ghz; 282 u16 val; 283 284 is_5ghz = chan->band == NL80211_BAND_5GHZ; 285 286 memset(t, 0, sizeof(*t)); 287 288 val = mt76x02_eeprom_get(dev, MT_EE_TX_POWER_CCK); 289 t->cck[0] = t->cck[1] = mt76x02_rate_power_val(val); 290 t->cck[2] = t->cck[3] = mt76x02_rate_power_val(val >> 8); 291 292 if (is_5ghz) 293 val = mt76x02_eeprom_get(dev, MT_EE_TX_POWER_OFDM_5G_6M); 294 else 295 val = mt76x02_eeprom_get(dev, MT_EE_TX_POWER_OFDM_2G_6M); 296 t->ofdm[0] = t->ofdm[1] = mt76x02_rate_power_val(val); 297 t->ofdm[2] = t->ofdm[3] = mt76x02_rate_power_val(val >> 8); 298 299 if (is_5ghz) 300 val = mt76x02_eeprom_get(dev, MT_EE_TX_POWER_OFDM_5G_24M); 301 else 302 val = mt76x02_eeprom_get(dev, MT_EE_TX_POWER_OFDM_2G_24M); 303 t->ofdm[4] = t->ofdm[5] = mt76x02_rate_power_val(val); 304 t->ofdm[6] = t->ofdm[7] = mt76x02_rate_power_val(val >> 8); 305 306 val = mt76x02_eeprom_get(dev, MT_EE_TX_POWER_HT_MCS0); 307 t->ht[0] = t->ht[1] = mt76x02_rate_power_val(val); 308 t->ht[2] = t->ht[3] = mt76x02_rate_power_val(val >> 8); 309 310 val = mt76x02_eeprom_get(dev, MT_EE_TX_POWER_HT_MCS4); 311 t->ht[4] = t->ht[5] = mt76x02_rate_power_val(val); 312 t->ht[6] = t->ht[7] = mt76x02_rate_power_val(val >> 8); 313 314 val = mt76x02_eeprom_get(dev, MT_EE_TX_POWER_HT_MCS8); 315 t->ht[8] = t->ht[9] = mt76x02_rate_power_val(val); 316 t->ht[10] = t->ht[11] = mt76x02_rate_power_val(val >> 8); 317 318 val = mt76x02_eeprom_get(dev, MT_EE_TX_POWER_HT_MCS12); 319 t->ht[12] = t->ht[13] = mt76x02_rate_power_val(val); 320 t->ht[14] = t->ht[15] = mt76x02_rate_power_val(val >> 8); 321 322 val = mt76x02_eeprom_get(dev, MT_EE_TX_POWER_VHT_MCS0); 323 t->vht[0] = t->vht[1] = mt76x02_rate_power_val(val); 324 t->vht[2] = t->vht[3] = mt76x02_rate_power_val(val >> 8); 325 326 val = mt76x02_eeprom_get(dev, MT_EE_TX_POWER_VHT_MCS4); 327 t->vht[4] = t->vht[5] = mt76x02_rate_power_val(val); 328 t->vht[6] = t->vht[7] = mt76x02_rate_power_val(val >> 8); 329 330 val = mt76x02_eeprom_get(dev, MT_EE_TX_POWER_VHT_MCS8); 331 if (!is_5ghz) 332 val >>= 8; 333 t->vht[8] = t->vht[9] = mt76x02_rate_power_val(val >> 8); 334 335 memcpy(t->stbc, t->ht, sizeof(t->stbc[0]) * 8); 336 t->stbc[8] = t->vht[8]; 337 t->stbc[9] = t->vht[9]; 338 } 339 EXPORT_SYMBOL_GPL(mt76x2_get_rate_power); 340 341 static void 342 mt76x2_get_power_info_2g(struct mt76x02_dev *dev, 343 struct mt76x2_tx_power_info *t, 344 struct ieee80211_channel *chan, 345 int chain, int offset) 346 { 347 int channel = chan->hw_value; 348 int delta_idx; 349 u8 data[6]; 350 u16 val; 351 352 if (channel < 6) 353 delta_idx = 3; 354 else if (channel < 11) 355 delta_idx = 4; 356 else 357 delta_idx = 5; 358 359 mt76x02_eeprom_copy(dev, offset, data, sizeof(data)); 360 361 t->chain[chain].tssi_slope = data[0]; 362 t->chain[chain].tssi_offset = data[1]; 363 t->chain[chain].target_power = data[2]; 364 t->chain[chain].delta = 365 mt76x02_sign_extend_optional(data[delta_idx], 7); 366 367 val = mt76x02_eeprom_get(dev, MT_EE_RF_2G_TSSI_OFF_TXPOWER); 368 t->target_power = val >> 8; 369 } 370 371 static void 372 mt76x2_get_power_info_5g(struct mt76x02_dev *dev, 373 struct mt76x2_tx_power_info *t, 374 struct ieee80211_channel *chan, 375 int chain, int offset) 376 { 377 int channel = chan->hw_value; 378 enum mt76x2_cal_channel_group group; 379 int delta_idx; 380 u16 val; 381 u8 data[5]; 382 383 group = mt76x2_get_cal_channel_group(channel); 384 offset += group * MT_TX_POWER_GROUP_SIZE_5G; 385 386 if (channel >= 192) 387 delta_idx = 4; 388 else if (channel >= 184) 389 delta_idx = 3; 390 else if (channel < 44) 391 delta_idx = 3; 392 else if (channel < 52) 393 delta_idx = 4; 394 else if (channel < 58) 395 delta_idx = 3; 396 else if (channel < 98) 397 delta_idx = 4; 398 else if (channel < 106) 399 delta_idx = 3; 400 else if (channel < 116) 401 delta_idx = 4; 402 else if (channel < 130) 403 delta_idx = 3; 404 else if (channel < 149) 405 delta_idx = 4; 406 else if (channel < 157) 407 delta_idx = 3; 408 else 409 delta_idx = 4; 410 411 mt76x02_eeprom_copy(dev, offset, data, sizeof(data)); 412 413 t->chain[chain].tssi_slope = data[0]; 414 t->chain[chain].tssi_offset = data[1]; 415 t->chain[chain].target_power = data[2]; 416 t->chain[chain].delta = 417 mt76x02_sign_extend_optional(data[delta_idx], 7); 418 419 val = mt76x02_eeprom_get(dev, MT_EE_RF_2G_RX_HIGH_GAIN); 420 t->target_power = val & 0xff; 421 } 422 423 void mt76x2_get_power_info(struct mt76x02_dev *dev, 424 struct mt76x2_tx_power_info *t, 425 struct ieee80211_channel *chan) 426 { 427 u16 bw40, bw80; 428 429 memset(t, 0, sizeof(*t)); 430 431 bw40 = mt76x02_eeprom_get(dev, MT_EE_TX_POWER_DELTA_BW40); 432 bw80 = mt76x02_eeprom_get(dev, MT_EE_TX_POWER_DELTA_BW80); 433 434 if (chan->band == NL80211_BAND_5GHZ) { 435 bw40 >>= 8; 436 mt76x2_get_power_info_5g(dev, t, chan, 0, 437 MT_EE_TX_POWER_0_START_5G); 438 mt76x2_get_power_info_5g(dev, t, chan, 1, 439 MT_EE_TX_POWER_1_START_5G); 440 } else { 441 mt76x2_get_power_info_2g(dev, t, chan, 0, 442 MT_EE_TX_POWER_0_START_2G); 443 mt76x2_get_power_info_2g(dev, t, chan, 1, 444 MT_EE_TX_POWER_1_START_2G); 445 } 446 447 if (mt76x2_tssi_enabled(dev) || 448 !mt76x02_field_valid(t->target_power)) 449 t->target_power = t->chain[0].target_power; 450 451 t->delta_bw40 = mt76x02_rate_power_val(bw40); 452 t->delta_bw80 = mt76x02_rate_power_val(bw80); 453 } 454 EXPORT_SYMBOL_GPL(mt76x2_get_power_info); 455 456 int mt76x2_get_temp_comp(struct mt76x02_dev *dev, struct mt76x2_temp_comp *t) 457 { 458 enum nl80211_band band = dev->mt76.chandef.chan->band; 459 u16 val, slope; 460 u8 bounds; 461 462 memset(t, 0, sizeof(*t)); 463 464 if (!mt76x2_temp_tx_alc_enabled(dev)) 465 return -EINVAL; 466 467 if (!mt76x02_ext_pa_enabled(dev, band)) 468 return -EINVAL; 469 470 val = mt76x02_eeprom_get(dev, MT_EE_TX_POWER_EXT_PA_5G) >> 8; 471 t->temp_25_ref = val & 0x7f; 472 if (band == NL80211_BAND_5GHZ) { 473 slope = mt76x02_eeprom_get(dev, MT_EE_RF_TEMP_COMP_SLOPE_5G); 474 bounds = mt76x02_eeprom_get(dev, MT_EE_TX_POWER_EXT_PA_5G); 475 } else { 476 slope = mt76x02_eeprom_get(dev, MT_EE_RF_TEMP_COMP_SLOPE_2G); 477 bounds = mt76x02_eeprom_get(dev, 478 MT_EE_TX_POWER_DELTA_BW80) >> 8; 479 } 480 481 t->high_slope = slope & 0xff; 482 t->low_slope = slope >> 8; 483 t->lower_bound = 0 - (bounds & 0xf); 484 t->upper_bound = (bounds >> 4) & 0xf; 485 486 return 0; 487 } 488 EXPORT_SYMBOL_GPL(mt76x2_get_temp_comp); 489 490 int mt76x2_eeprom_init(struct mt76x02_dev *dev) 491 { 492 int ret; 493 494 ret = mt76x2_eeprom_load(dev); 495 if (ret) 496 return ret; 497 498 mt76x02_eeprom_parse_hw_cap(dev); 499 mt76x2_eeprom_get_macaddr(dev); 500 mt76_eeprom_override(&dev->mt76); 501 dev->mt76.macaddr[0] &= ~BIT(1); 502 503 return 0; 504 } 505 EXPORT_SYMBOL_GPL(mt76x2_eeprom_init); 506 507 MODULE_LICENSE("Dual BSD/GPL"); 508