xref: /openbmc/linux/drivers/net/wireless/mediatek/mt76/mt76x02_util.c (revision 4464005a12b5c79e1a364e6272ee10a83413f928)
1 // SPDX-License-Identifier: ISC
2 /*
3  * Copyright (C) 2018 Stanislaw Gruszka <stf_xl@wp.pl>
4  * Copyright (C) 2016 Felix Fietkau <nbd@nbd.name>
5  */
6 
7 #include <linux/module.h>
8 #include "mt76x02.h"
9 
10 #define CCK_RATE(_idx, _rate) {					\
11 	.bitrate = _rate,					\
12 	.flags = IEEE80211_RATE_SHORT_PREAMBLE,			\
13 	.hw_value = (MT_PHY_TYPE_CCK << 8) | (_idx),		\
14 	.hw_value_short = (MT_PHY_TYPE_CCK << 8) | (8 + (_idx)),	\
15 }
16 
17 #define OFDM_RATE(_idx, _rate) {				\
18 	.bitrate = _rate,					\
19 	.hw_value = (MT_PHY_TYPE_OFDM << 8) | (_idx),		\
20 	.hw_value_short = (MT_PHY_TYPE_OFDM << 8) | (_idx),	\
21 }
22 
23 struct ieee80211_rate mt76x02_rates[] = {
24 	CCK_RATE(0, 10),
25 	CCK_RATE(1, 20),
26 	CCK_RATE(2, 55),
27 	CCK_RATE(3, 110),
28 	OFDM_RATE(0, 60),
29 	OFDM_RATE(1, 90),
30 	OFDM_RATE(2, 120),
31 	OFDM_RATE(3, 180),
32 	OFDM_RATE(4, 240),
33 	OFDM_RATE(5, 360),
34 	OFDM_RATE(6, 480),
35 	OFDM_RATE(7, 540),
36 };
37 EXPORT_SYMBOL_GPL(mt76x02_rates);
38 
39 static const struct ieee80211_iface_limit mt76x02_if_limits[] = {
40 	{
41 		.max = 1,
42 		.types = BIT(NL80211_IFTYPE_ADHOC)
43 	}, {
44 		.max = 8,
45 		.types = BIT(NL80211_IFTYPE_STATION) |
46 #ifdef CONFIG_MAC80211_MESH
47 			 BIT(NL80211_IFTYPE_MESH_POINT) |
48 #endif
49 			 BIT(NL80211_IFTYPE_P2P_CLIENT) |
50 			 BIT(NL80211_IFTYPE_P2P_GO) |
51 			 BIT(NL80211_IFTYPE_AP)
52 	 },
53 };
54 
55 static const struct ieee80211_iface_limit mt76x02u_if_limits[] = {
56 	{
57 		.max = 1,
58 		.types = BIT(NL80211_IFTYPE_ADHOC)
59 	}, {
60 		.max = 2,
61 		.types = BIT(NL80211_IFTYPE_STATION) |
62 #ifdef CONFIG_MAC80211_MESH
63 			 BIT(NL80211_IFTYPE_MESH_POINT) |
64 #endif
65 			 BIT(NL80211_IFTYPE_P2P_CLIENT) |
66 			 BIT(NL80211_IFTYPE_P2P_GO) |
67 			 BIT(NL80211_IFTYPE_AP)
68 	},
69 };
70 
71 static const struct ieee80211_iface_combination mt76x02_if_comb[] = {
72 	{
73 		.limits = mt76x02_if_limits,
74 		.n_limits = ARRAY_SIZE(mt76x02_if_limits),
75 		.max_interfaces = 8,
76 		.num_different_channels = 1,
77 		.beacon_int_infra_match = true,
78 		.radar_detect_widths = BIT(NL80211_CHAN_WIDTH_20_NOHT) |
79 				       BIT(NL80211_CHAN_WIDTH_20) |
80 				       BIT(NL80211_CHAN_WIDTH_40) |
81 				       BIT(NL80211_CHAN_WIDTH_80),
82 	}
83 };
84 
85 static const struct ieee80211_iface_combination mt76x02u_if_comb[] = {
86 	{
87 		.limits = mt76x02u_if_limits,
88 		.n_limits = ARRAY_SIZE(mt76x02u_if_limits),
89 		.max_interfaces = 2,
90 		.num_different_channels = 1,
91 		.beacon_int_infra_match = true,
92 	}
93 };
94 
95 static void
96 mt76x02_led_set_config(struct mt76_dev *mdev, u8 delay_on,
97 		       u8 delay_off)
98 {
99 	struct mt76x02_dev *dev = container_of(mdev, struct mt76x02_dev,
100 					       mt76);
101 	u32 val;
102 
103 	val = FIELD_PREP(MT_LED_STATUS_DURATION, 0xff) |
104 	      FIELD_PREP(MT_LED_STATUS_OFF, delay_off) |
105 	      FIELD_PREP(MT_LED_STATUS_ON, delay_on);
106 
107 	mt76_wr(dev, MT_LED_S0(mdev->led_pin), val);
108 	mt76_wr(dev, MT_LED_S1(mdev->led_pin), val);
109 
110 	val = MT_LED_CTRL_REPLAY(mdev->led_pin) |
111 	      MT_LED_CTRL_KICK(mdev->led_pin);
112 	if (mdev->led_al)
113 		val |= MT_LED_CTRL_POLARITY(mdev->led_pin);
114 	mt76_wr(dev, MT_LED_CTRL, val);
115 }
116 
117 static int
118 mt76x02_led_set_blink(struct led_classdev *led_cdev,
119 		      unsigned long *delay_on,
120 		      unsigned long *delay_off)
121 {
122 	struct mt76_dev *mdev = container_of(led_cdev, struct mt76_dev,
123 					     led_cdev);
124 	u8 delta_on, delta_off;
125 
126 	delta_off = max_t(u8, *delay_off / 10, 1);
127 	delta_on = max_t(u8, *delay_on / 10, 1);
128 
129 	mt76x02_led_set_config(mdev, delta_on, delta_off);
130 
131 	return 0;
132 }
133 
134 static void
135 mt76x02_led_set_brightness(struct led_classdev *led_cdev,
136 			   enum led_brightness brightness)
137 {
138 	struct mt76_dev *mdev = container_of(led_cdev, struct mt76_dev,
139 					     led_cdev);
140 
141 	if (!brightness)
142 		mt76x02_led_set_config(mdev, 0, 0xff);
143 	else
144 		mt76x02_led_set_config(mdev, 0xff, 0);
145 }
146 
147 void mt76x02_init_device(struct mt76x02_dev *dev)
148 {
149 	struct ieee80211_hw *hw = mt76_hw(dev);
150 	struct wiphy *wiphy = hw->wiphy;
151 
152 	INIT_DELAYED_WORK(&dev->mt76.mac_work, mt76x02_mac_work);
153 
154 	hw->queues = 4;
155 	hw->max_rates = 1;
156 	hw->max_report_rates = 7;
157 	hw->max_rate_tries = 1;
158 	hw->extra_tx_headroom = 2;
159 
160 	if (mt76_is_usb(&dev->mt76)) {
161 		hw->extra_tx_headroom += sizeof(struct mt76x02_txwi) +
162 					 MT_DMA_HDR_LEN;
163 		wiphy->iface_combinations = mt76x02u_if_comb;
164 		wiphy->n_iface_combinations = ARRAY_SIZE(mt76x02u_if_comb);
165 	} else {
166 		INIT_DELAYED_WORK(&dev->wdt_work, mt76x02_wdt_work);
167 
168 		mt76x02_dfs_init_detector(dev);
169 
170 		wiphy->reg_notifier = mt76x02_regd_notifier;
171 		wiphy->iface_combinations = mt76x02_if_comb;
172 		wiphy->n_iface_combinations = ARRAY_SIZE(mt76x02_if_comb);
173 
174 		/* init led callbacks */
175 		if (IS_ENABLED(CONFIG_MT76_LEDS)) {
176 			dev->mt76.led_cdev.brightness_set =
177 					mt76x02_led_set_brightness;
178 			dev->mt76.led_cdev.blink_set = mt76x02_led_set_blink;
179 		}
180 	}
181 
182 	wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_VHT_IBSS);
183 
184 	hw->sta_data_size = sizeof(struct mt76x02_sta);
185 	hw->vif_data_size = sizeof(struct mt76x02_vif);
186 
187 	ieee80211_hw_set(hw, SUPPORTS_HT_CCK_RATES);
188 	ieee80211_hw_set(hw, HOST_BROADCAST_PS_BUFFERING);
189 
190 	dev->mt76.global_wcid.idx = 255;
191 	dev->mt76.global_wcid.hw_key_idx = -1;
192 	dev->slottime = 9;
193 
194 	if (is_mt76x2(dev)) {
195 		dev->mphy.sband_2g.sband.ht_cap.cap |=
196 				IEEE80211_HT_CAP_LDPC_CODING;
197 		dev->mphy.sband_5g.sband.ht_cap.cap |=
198 				IEEE80211_HT_CAP_LDPC_CODING;
199 		dev->chainmask = 0x202;
200 		dev->mphy.antenna_mask = 3;
201 	} else {
202 		dev->chainmask = 0x101;
203 		dev->mphy.antenna_mask = 1;
204 	}
205 }
206 EXPORT_SYMBOL_GPL(mt76x02_init_device);
207 
208 void mt76x02_configure_filter(struct ieee80211_hw *hw,
209 			      unsigned int changed_flags,
210 			      unsigned int *total_flags, u64 multicast)
211 {
212 	struct mt76x02_dev *dev = hw->priv;
213 	u32 flags = 0;
214 
215 #define MT76_FILTER(_flag, _hw) do { \
216 		flags |= *total_flags & FIF_##_flag;			\
217 		dev->mt76.rxfilter &= ~(_hw);				\
218 		dev->mt76.rxfilter |= !(flags & FIF_##_flag) * (_hw);	\
219 	} while (0)
220 
221 	mutex_lock(&dev->mt76.mutex);
222 
223 	dev->mt76.rxfilter &= ~MT_RX_FILTR_CFG_OTHER_BSS;
224 
225 	MT76_FILTER(FCSFAIL, MT_RX_FILTR_CFG_CRC_ERR);
226 	MT76_FILTER(PLCPFAIL, MT_RX_FILTR_CFG_PHY_ERR);
227 	MT76_FILTER(CONTROL, MT_RX_FILTR_CFG_ACK |
228 			     MT_RX_FILTR_CFG_CTS |
229 			     MT_RX_FILTR_CFG_CFEND |
230 			     MT_RX_FILTR_CFG_CFACK |
231 			     MT_RX_FILTR_CFG_BA |
232 			     MT_RX_FILTR_CFG_CTRL_RSV);
233 	MT76_FILTER(PSPOLL, MT_RX_FILTR_CFG_PSPOLL);
234 
235 	*total_flags = flags;
236 	mt76_wr(dev, MT_RX_FILTR_CFG, dev->mt76.rxfilter);
237 
238 	mutex_unlock(&dev->mt76.mutex);
239 }
240 EXPORT_SYMBOL_GPL(mt76x02_configure_filter);
241 
242 int mt76x02_sta_add(struct mt76_dev *mdev, struct ieee80211_vif *vif,
243 		    struct ieee80211_sta *sta)
244 {
245 	struct mt76x02_dev *dev = container_of(mdev, struct mt76x02_dev, mt76);
246 	struct mt76x02_sta *msta = (struct mt76x02_sta *)sta->drv_priv;
247 	struct mt76x02_vif *mvif = (struct mt76x02_vif *)vif->drv_priv;
248 	int idx = 0;
249 
250 	memset(msta, 0, sizeof(*msta));
251 
252 	idx = mt76_wcid_alloc(dev->mt76.wcid_mask, MT76x02_N_WCIDS);
253 	if (idx < 0)
254 		return -ENOSPC;
255 
256 	msta->vif = mvif;
257 	msta->wcid.sta = 1;
258 	msta->wcid.idx = idx;
259 	msta->wcid.hw_key_idx = -1;
260 	mt76x02_mac_wcid_setup(dev, idx, mvif->idx, sta->addr);
261 	mt76x02_mac_wcid_set_drop(dev, idx, false);
262 	ewma_pktlen_init(&msta->pktlen);
263 
264 	if (vif->type == NL80211_IFTYPE_AP)
265 		set_bit(MT_WCID_FLAG_CHECK_PS, &msta->wcid.flags);
266 
267 	return 0;
268 }
269 EXPORT_SYMBOL_GPL(mt76x02_sta_add);
270 
271 void mt76x02_sta_remove(struct mt76_dev *mdev, struct ieee80211_vif *vif,
272 			struct ieee80211_sta *sta)
273 {
274 	struct mt76x02_dev *dev = container_of(mdev, struct mt76x02_dev, mt76);
275 	struct mt76_wcid *wcid = (struct mt76_wcid *)sta->drv_priv;
276 	int idx = wcid->idx;
277 
278 	mt76x02_mac_wcid_set_drop(dev, idx, true);
279 	mt76x02_mac_wcid_setup(dev, idx, 0, NULL);
280 }
281 EXPORT_SYMBOL_GPL(mt76x02_sta_remove);
282 
283 static void
284 mt76x02_vif_init(struct mt76x02_dev *dev, struct ieee80211_vif *vif,
285 		 unsigned int idx)
286 {
287 	struct mt76x02_vif *mvif = (struct mt76x02_vif *)vif->drv_priv;
288 	struct mt76_txq *mtxq;
289 
290 	memset(mvif, 0, sizeof(*mvif));
291 
292 	mvif->idx = idx;
293 	mvif->group_wcid.idx = MT_VIF_WCID(idx);
294 	mvif->group_wcid.hw_key_idx = -1;
295 	mtxq = (struct mt76_txq *)vif->txq->drv_priv;
296 	mtxq->wcid = &mvif->group_wcid;
297 
298 	mt76_txq_init(&dev->mt76, vif->txq);
299 }
300 
301 int
302 mt76x02_add_interface(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
303 {
304 	struct mt76x02_dev *dev = hw->priv;
305 	unsigned int idx = 0;
306 
307 	/* Allow to change address in HW if we create first interface. */
308 	if (!dev->vif_mask &&
309 	    (((vif->addr[0] ^ dev->mt76.macaddr[0]) & ~GENMASK(4, 1)) ||
310 	     memcmp(vif->addr + 1, dev->mt76.macaddr + 1, ETH_ALEN - 1)))
311 		mt76x02_mac_setaddr(dev, vif->addr);
312 
313 	if (vif->addr[0] & BIT(1))
314 		idx = 1 + (((dev->mt76.macaddr[0] ^ vif->addr[0]) >> 2) & 7);
315 
316 	/*
317 	 * Client mode typically only has one configurable BSSID register,
318 	 * which is used for bssidx=0. This is linked to the MAC address.
319 	 * Since mac80211 allows changing interface types, and we cannot
320 	 * force the use of the primary MAC address for a station mode
321 	 * interface, we need some other way of configuring a per-interface
322 	 * remote BSSID.
323 	 * The hardware provides an AP-Client feature, where bssidx 0-7 are
324 	 * used for AP mode and bssidx 8-15 for client mode.
325 	 * We shift the station interface bss index by 8 to force the
326 	 * hardware to recognize the BSSID.
327 	 * The resulting bssidx mismatch for unicast frames is ignored by hw.
328 	 */
329 	if (vif->type == NL80211_IFTYPE_STATION)
330 		idx += 8;
331 
332 	/* vif is already set or idx is 8 for AP/Mesh/... */
333 	if (dev->vif_mask & BIT(idx) ||
334 	    (vif->type != NL80211_IFTYPE_STATION && idx > 7))
335 		return -EBUSY;
336 
337 	dev->vif_mask |= BIT(idx);
338 
339 	mt76x02_vif_init(dev, vif, idx);
340 	return 0;
341 }
342 EXPORT_SYMBOL_GPL(mt76x02_add_interface);
343 
344 void mt76x02_remove_interface(struct ieee80211_hw *hw,
345 			      struct ieee80211_vif *vif)
346 {
347 	struct mt76x02_dev *dev = hw->priv;
348 	struct mt76x02_vif *mvif = (struct mt76x02_vif *)vif->drv_priv;
349 
350 	mt76_txq_remove(&dev->mt76, vif->txq);
351 	dev->vif_mask &= ~BIT(mvif->idx);
352 }
353 EXPORT_SYMBOL_GPL(mt76x02_remove_interface);
354 
355 int mt76x02_ampdu_action(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
356 			 struct ieee80211_ampdu_params *params)
357 {
358 	enum ieee80211_ampdu_mlme_action action = params->action;
359 	struct ieee80211_sta *sta = params->sta;
360 	struct mt76x02_dev *dev = hw->priv;
361 	struct mt76x02_sta *msta = (struct mt76x02_sta *)sta->drv_priv;
362 	struct ieee80211_txq *txq = sta->txq[params->tid];
363 	u16 tid = params->tid;
364 	u16 ssn = params->ssn;
365 	struct mt76_txq *mtxq;
366 	int ret = 0;
367 
368 	if (!txq)
369 		return -EINVAL;
370 
371 	mtxq = (struct mt76_txq *)txq->drv_priv;
372 
373 	mutex_lock(&dev->mt76.mutex);
374 	switch (action) {
375 	case IEEE80211_AMPDU_RX_START:
376 		mt76_rx_aggr_start(&dev->mt76, &msta->wcid, tid,
377 				   ssn, params->buf_size);
378 		mt76_set(dev, MT_WCID_ADDR(msta->wcid.idx) + 4, BIT(16 + tid));
379 		break;
380 	case IEEE80211_AMPDU_RX_STOP:
381 		mt76_rx_aggr_stop(&dev->mt76, &msta->wcid, tid);
382 		mt76_clear(dev, MT_WCID_ADDR(msta->wcid.idx) + 4,
383 			   BIT(16 + tid));
384 		break;
385 	case IEEE80211_AMPDU_TX_OPERATIONAL:
386 		mtxq->aggr = true;
387 		mtxq->send_bar = false;
388 		ieee80211_send_bar(vif, sta->addr, tid, mtxq->agg_ssn);
389 		break;
390 	case IEEE80211_AMPDU_TX_STOP_FLUSH:
391 	case IEEE80211_AMPDU_TX_STOP_FLUSH_CONT:
392 		mtxq->aggr = false;
393 		break;
394 	case IEEE80211_AMPDU_TX_START:
395 		mtxq->agg_ssn = IEEE80211_SN_TO_SEQ(ssn);
396 		ret = IEEE80211_AMPDU_TX_START_IMMEDIATE;
397 		break;
398 	case IEEE80211_AMPDU_TX_STOP_CONT:
399 		mtxq->aggr = false;
400 		ieee80211_stop_tx_ba_cb_irqsafe(vif, sta->addr, tid);
401 		break;
402 	}
403 	mutex_unlock(&dev->mt76.mutex);
404 
405 	return ret;
406 }
407 EXPORT_SYMBOL_GPL(mt76x02_ampdu_action);
408 
409 int mt76x02_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd,
410 		    struct ieee80211_vif *vif, struct ieee80211_sta *sta,
411 		    struct ieee80211_key_conf *key)
412 {
413 	struct mt76x02_dev *dev = hw->priv;
414 	struct mt76x02_vif *mvif = (struct mt76x02_vif *)vif->drv_priv;
415 	struct mt76x02_sta *msta;
416 	struct mt76_wcid *wcid;
417 	int idx = key->keyidx;
418 	int ret;
419 
420 	/* fall back to sw encryption for unsupported ciphers */
421 	switch (key->cipher) {
422 	case WLAN_CIPHER_SUITE_WEP40:
423 	case WLAN_CIPHER_SUITE_WEP104:
424 	case WLAN_CIPHER_SUITE_TKIP:
425 	case WLAN_CIPHER_SUITE_CCMP:
426 		break;
427 	default:
428 		return -EOPNOTSUPP;
429 	}
430 
431 	/*
432 	 * The hardware does not support per-STA RX GTK, fall back
433 	 * to software mode for these.
434 	 */
435 	if ((vif->type == NL80211_IFTYPE_ADHOC ||
436 	     vif->type == NL80211_IFTYPE_MESH_POINT) &&
437 	    (key->cipher == WLAN_CIPHER_SUITE_TKIP ||
438 	     key->cipher == WLAN_CIPHER_SUITE_CCMP) &&
439 	    !(key->flags & IEEE80211_KEY_FLAG_PAIRWISE))
440 		return -EOPNOTSUPP;
441 
442 	/*
443 	 * In USB AP mode, broadcast/multicast frames are setup in beacon
444 	 * data registers and sent via HW beacons engine, they require to
445 	 * be already encrypted.
446 	 */
447 	if (mt76_is_usb(&dev->mt76) &&
448 	    vif->type == NL80211_IFTYPE_AP &&
449 	    !(key->flags & IEEE80211_KEY_FLAG_PAIRWISE))
450 		return -EOPNOTSUPP;
451 
452 	msta = sta ? (struct mt76x02_sta *)sta->drv_priv : NULL;
453 	wcid = msta ? &msta->wcid : &mvif->group_wcid;
454 
455 	if (cmd == SET_KEY) {
456 		key->hw_key_idx = wcid->idx;
457 		wcid->hw_key_idx = idx;
458 		if (key->flags & IEEE80211_KEY_FLAG_RX_MGMT) {
459 			key->flags |= IEEE80211_KEY_FLAG_SW_MGMT_TX;
460 			wcid->sw_iv = true;
461 		}
462 	} else {
463 		if (idx == wcid->hw_key_idx) {
464 			wcid->hw_key_idx = -1;
465 			wcid->sw_iv = false;
466 		}
467 
468 		key = NULL;
469 	}
470 	mt76_wcid_key_setup(&dev->mt76, wcid, key);
471 
472 	if (!msta) {
473 		if (key || wcid->hw_key_idx == idx) {
474 			ret = mt76x02_mac_wcid_set_key(dev, wcid->idx, key);
475 			if (ret)
476 				return ret;
477 		}
478 
479 		return mt76x02_mac_shared_key_setup(dev, mvif->idx, idx, key);
480 	}
481 
482 	return mt76x02_mac_wcid_set_key(dev, msta->wcid.idx, key);
483 }
484 EXPORT_SYMBOL_GPL(mt76x02_set_key);
485 
486 int mt76x02_conf_tx(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
487 		    u16 queue, const struct ieee80211_tx_queue_params *params)
488 {
489 	struct mt76x02_dev *dev = hw->priv;
490 	u8 cw_min = 5, cw_max = 10, qid;
491 	u32 val;
492 
493 	qid = dev->mt76.q_tx[queue].q->hw_idx;
494 
495 	if (params->cw_min)
496 		cw_min = fls(params->cw_min);
497 	if (params->cw_max)
498 		cw_max = fls(params->cw_max);
499 
500 	val = FIELD_PREP(MT_EDCA_CFG_TXOP, params->txop) |
501 	      FIELD_PREP(MT_EDCA_CFG_AIFSN, params->aifs) |
502 	      FIELD_PREP(MT_EDCA_CFG_CWMIN, cw_min) |
503 	      FIELD_PREP(MT_EDCA_CFG_CWMAX, cw_max);
504 	mt76_wr(dev, MT_EDCA_CFG_AC(qid), val);
505 
506 	val = mt76_rr(dev, MT_WMM_TXOP(qid));
507 	val &= ~(MT_WMM_TXOP_MASK << MT_WMM_TXOP_SHIFT(qid));
508 	val |= params->txop << MT_WMM_TXOP_SHIFT(qid);
509 	mt76_wr(dev, MT_WMM_TXOP(qid), val);
510 
511 	val = mt76_rr(dev, MT_WMM_AIFSN);
512 	val &= ~(MT_WMM_AIFSN_MASK << MT_WMM_AIFSN_SHIFT(qid));
513 	val |= params->aifs << MT_WMM_AIFSN_SHIFT(qid);
514 	mt76_wr(dev, MT_WMM_AIFSN, val);
515 
516 	val = mt76_rr(dev, MT_WMM_CWMIN);
517 	val &= ~(MT_WMM_CWMIN_MASK << MT_WMM_CWMIN_SHIFT(qid));
518 	val |= cw_min << MT_WMM_CWMIN_SHIFT(qid);
519 	mt76_wr(dev, MT_WMM_CWMIN, val);
520 
521 	val = mt76_rr(dev, MT_WMM_CWMAX);
522 	val &= ~(MT_WMM_CWMAX_MASK << MT_WMM_CWMAX_SHIFT(qid));
523 	val |= cw_max << MT_WMM_CWMAX_SHIFT(qid);
524 	mt76_wr(dev, MT_WMM_CWMAX, val);
525 
526 	return 0;
527 }
528 EXPORT_SYMBOL_GPL(mt76x02_conf_tx);
529 
530 void mt76x02_set_tx_ackto(struct mt76x02_dev *dev)
531 {
532 	u8 ackto, sifs, slottime = dev->slottime;
533 
534 	/* As defined by IEEE 802.11-2007 17.3.8.6 */
535 	slottime += 3 * dev->coverage_class;
536 	mt76_rmw_field(dev, MT_BKOFF_SLOT_CFG,
537 		       MT_BKOFF_SLOT_CFG_SLOTTIME, slottime);
538 
539 	sifs = mt76_get_field(dev, MT_XIFS_TIME_CFG,
540 			      MT_XIFS_TIME_CFG_OFDM_SIFS);
541 
542 	ackto = slottime + sifs;
543 	mt76_rmw_field(dev, MT_TX_TIMEOUT_CFG,
544 		       MT_TX_TIMEOUT_CFG_ACKTO, ackto);
545 }
546 EXPORT_SYMBOL_GPL(mt76x02_set_tx_ackto);
547 
548 void mt76x02_set_coverage_class(struct ieee80211_hw *hw,
549 				s16 coverage_class)
550 {
551 	struct mt76x02_dev *dev = hw->priv;
552 
553 	mutex_lock(&dev->mt76.mutex);
554 	dev->coverage_class = max_t(s16, coverage_class, 0);
555 	mt76x02_set_tx_ackto(dev);
556 	mutex_unlock(&dev->mt76.mutex);
557 }
558 EXPORT_SYMBOL_GPL(mt76x02_set_coverage_class);
559 
560 int mt76x02_set_rts_threshold(struct ieee80211_hw *hw, u32 val)
561 {
562 	struct mt76x02_dev *dev = hw->priv;
563 
564 	if (val != ~0 && val > 0xffff)
565 		return -EINVAL;
566 
567 	mutex_lock(&dev->mt76.mutex);
568 	mt76x02_mac_set_rts_thresh(dev, val);
569 	mutex_unlock(&dev->mt76.mutex);
570 
571 	return 0;
572 }
573 EXPORT_SYMBOL_GPL(mt76x02_set_rts_threshold);
574 
575 void mt76x02_sta_rate_tbl_update(struct ieee80211_hw *hw,
576 				 struct ieee80211_vif *vif,
577 				 struct ieee80211_sta *sta)
578 {
579 	struct mt76x02_dev *dev = hw->priv;
580 	struct mt76x02_sta *msta = (struct mt76x02_sta *)sta->drv_priv;
581 	struct ieee80211_sta_rates *rates = rcu_dereference(sta->rates);
582 	struct ieee80211_tx_rate rate = {};
583 
584 	if (!rates)
585 		return;
586 
587 	rate.idx = rates->rate[0].idx;
588 	rate.flags = rates->rate[0].flags;
589 	mt76x02_mac_wcid_set_rate(dev, &msta->wcid, &rate);
590 }
591 EXPORT_SYMBOL_GPL(mt76x02_sta_rate_tbl_update);
592 
593 void mt76x02_remove_hdr_pad(struct sk_buff *skb, int len)
594 {
595 	int hdrlen;
596 
597 	if (!len)
598 		return;
599 
600 	hdrlen = ieee80211_get_hdrlen_from_skb(skb);
601 	memmove(skb->data + len, skb->data, hdrlen);
602 	skb_pull(skb, len);
603 }
604 EXPORT_SYMBOL_GPL(mt76x02_remove_hdr_pad);
605 
606 void mt76x02_sw_scan_complete(struct ieee80211_hw *hw,
607 			      struct ieee80211_vif *vif)
608 {
609 	struct mt76x02_dev *dev = hw->priv;
610 
611 	clear_bit(MT76_SCANNING, &dev->mphy.state);
612 	if (dev->cal.gain_init_done) {
613 		/* Restore AGC gain and resume calibration after scanning. */
614 		dev->cal.low_gain = -1;
615 		ieee80211_queue_delayed_work(hw, &dev->cal_work, 0);
616 	}
617 }
618 EXPORT_SYMBOL_GPL(mt76x02_sw_scan_complete);
619 
620 void mt76x02_sta_ps(struct mt76_dev *mdev, struct ieee80211_sta *sta,
621 		    bool ps)
622 {
623 	struct mt76x02_dev *dev = container_of(mdev, struct mt76x02_dev, mt76);
624 	struct mt76x02_sta *msta = (struct mt76x02_sta *)sta->drv_priv;
625 	int idx = msta->wcid.idx;
626 
627 	mt76_stop_tx_queues(&dev->mt76, sta, true);
628 	if (mt76_is_mmio(mdev))
629 		mt76x02_mac_wcid_set_drop(dev, idx, ps);
630 }
631 EXPORT_SYMBOL_GPL(mt76x02_sta_ps);
632 
633 void mt76x02_bss_info_changed(struct ieee80211_hw *hw,
634 			      struct ieee80211_vif *vif,
635 			      struct ieee80211_bss_conf *info,
636 			      u32 changed)
637 {
638 	struct mt76x02_vif *mvif = (struct mt76x02_vif *)vif->drv_priv;
639 	struct mt76x02_dev *dev = hw->priv;
640 
641 	mutex_lock(&dev->mt76.mutex);
642 
643 	if (changed & BSS_CHANGED_BSSID)
644 		mt76x02_mac_set_bssid(dev, mvif->idx, info->bssid);
645 
646 	if (changed & BSS_CHANGED_HT || changed & BSS_CHANGED_ERP_CTS_PROT)
647 		mt76x02_mac_set_tx_protection(dev, info->use_cts_prot,
648 					      info->ht_operation_mode);
649 
650 	if (changed & BSS_CHANGED_BEACON_INT) {
651 		mt76_rmw_field(dev, MT_BEACON_TIME_CFG,
652 			       MT_BEACON_TIME_CFG_INTVAL,
653 			       info->beacon_int << 4);
654 		dev->mt76.beacon_int = info->beacon_int;
655 	}
656 
657 	if (changed & BSS_CHANGED_BEACON_ENABLED)
658 		mt76x02_mac_set_beacon_enable(dev, vif, info->enable_beacon);
659 
660 	if (changed & BSS_CHANGED_ERP_PREAMBLE)
661 		mt76x02_mac_set_short_preamble(dev, info->use_short_preamble);
662 
663 	if (changed & BSS_CHANGED_ERP_SLOT) {
664 		int slottime = info->use_short_slot ? 9 : 20;
665 
666 		dev->slottime = slottime;
667 		mt76x02_set_tx_ackto(dev);
668 	}
669 
670 	mutex_unlock(&dev->mt76.mutex);
671 }
672 EXPORT_SYMBOL_GPL(mt76x02_bss_info_changed);
673 
674 void mt76x02_config_mac_addr_list(struct mt76x02_dev *dev)
675 {
676 	struct ieee80211_hw *hw = mt76_hw(dev);
677 	struct wiphy *wiphy = hw->wiphy;
678 	int i;
679 
680 	for (i = 0; i < ARRAY_SIZE(dev->macaddr_list); i++) {
681 		u8 *addr = dev->macaddr_list[i].addr;
682 
683 		memcpy(addr, dev->mt76.macaddr, ETH_ALEN);
684 
685 		if (!i)
686 			continue;
687 
688 		addr[0] |= BIT(1);
689 		addr[0] ^= ((i - 1) << 2);
690 	}
691 	wiphy->addresses = dev->macaddr_list;
692 	wiphy->n_addresses = ARRAY_SIZE(dev->macaddr_list);
693 }
694 EXPORT_SYMBOL_GPL(mt76x02_config_mac_addr_list);
695 
696 MODULE_LICENSE("Dual BSD/GPL");
697