1 // SPDX-License-Identifier: ISC
2 /*
3  * Copyright (C) 2016 Felix Fietkau <nbd@nbd.name>
4  * Copyright (C) 2018 Lorenzo Bianconi <lorenzo.bianconi83@gmail.com>
5  */
6 
7 #include <linux/kernel.h>
8 #include <linux/irq.h>
9 
10 #include "mt76x02.h"
11 #include "mt76x02_mcu.h"
12 #include "mt76x02_trace.h"
13 
14 static void mt76x02_pre_tbtt_tasklet(unsigned long arg)
15 {
16 	struct mt76x02_dev *dev = (struct mt76x02_dev *)arg;
17 	struct mt76_queue *q = dev->mt76.q_tx[MT_TXQ_PSD].q;
18 	struct beacon_bc_data data = {};
19 	struct sk_buff *skb;
20 	int i;
21 
22 	if (mt76_hw(dev)->conf.flags & IEEE80211_CONF_OFFCHANNEL)
23 		return;
24 
25 	mt76x02_resync_beacon_timer(dev);
26 
27 	ieee80211_iterate_active_interfaces_atomic(mt76_hw(dev),
28 		IEEE80211_IFACE_ITER_RESUME_ALL,
29 		mt76x02_update_beacon_iter, dev);
30 
31 	mt76_csa_check(&dev->mt76);
32 
33 	if (dev->mt76.csa_complete)
34 		return;
35 
36 	mt76x02_enqueue_buffered_bc(dev, &data, 8);
37 
38 	if (!skb_queue_len(&data.q))
39 		return;
40 
41 	for (i = 0; i < ARRAY_SIZE(data.tail); i++) {
42 		if (!data.tail[i])
43 			continue;
44 
45 		mt76_skb_set_moredata(data.tail[i], false);
46 	}
47 
48 	spin_lock_bh(&q->lock);
49 	while ((skb = __skb_dequeue(&data.q)) != NULL) {
50 		struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
51 		struct ieee80211_vif *vif = info->control.vif;
52 		struct mt76x02_vif *mvif = (struct mt76x02_vif *)vif->drv_priv;
53 
54 		mt76_tx_queue_skb(dev, MT_TXQ_PSD, skb, &mvif->group_wcid,
55 				  NULL);
56 	}
57 	spin_unlock_bh(&q->lock);
58 }
59 
60 static void mt76x02e_pre_tbtt_enable(struct mt76x02_dev *dev, bool en)
61 {
62 	if (en)
63 		tasklet_enable(&dev->mt76.pre_tbtt_tasklet);
64 	else
65 		tasklet_disable(&dev->mt76.pre_tbtt_tasklet);
66 }
67 
68 static void mt76x02e_beacon_enable(struct mt76x02_dev *dev, bool en)
69 {
70 	mt76_rmw_field(dev, MT_INT_TIMER_EN, MT_INT_TIMER_EN_PRE_TBTT_EN, en);
71 	if (en)
72 		mt76x02_irq_enable(dev, MT_INT_PRE_TBTT | MT_INT_TBTT);
73 	else
74 		mt76x02_irq_disable(dev, MT_INT_PRE_TBTT | MT_INT_TBTT);
75 }
76 
77 void mt76x02e_init_beacon_config(struct mt76x02_dev *dev)
78 {
79 	static const struct mt76x02_beacon_ops beacon_ops = {
80 		.nslots = 8,
81 		.slot_size = 1024,
82 		.pre_tbtt_enable = mt76x02e_pre_tbtt_enable,
83 		.beacon_enable = mt76x02e_beacon_enable,
84 	};
85 
86 	dev->beacon_ops = &beacon_ops;
87 
88 	/* Fire a pre-TBTT interrupt 8 ms before TBTT */
89 	mt76_rmw_field(dev, MT_INT_TIMER_CFG, MT_INT_TIMER_CFG_PRE_TBTT,
90 		       8 << 4);
91 	mt76_rmw_field(dev, MT_INT_TIMER_CFG, MT_INT_TIMER_CFG_GP_TIMER,
92 		       MT_DFS_GP_INTERVAL);
93 	mt76_wr(dev, MT_INT_TIMER_EN, 0);
94 
95 	mt76x02_init_beacon_config(dev);
96 }
97 EXPORT_SYMBOL_GPL(mt76x02e_init_beacon_config);
98 
99 static int
100 mt76x02_init_tx_queue(struct mt76x02_dev *dev, struct mt76_sw_queue *q,
101 		      int idx, int n_desc)
102 {
103 	struct mt76_queue *hwq;
104 	int err;
105 
106 	hwq = devm_kzalloc(dev->mt76.dev, sizeof(*hwq), GFP_KERNEL);
107 	if (!hwq)
108 		return -ENOMEM;
109 
110 	err = mt76_queue_alloc(dev, hwq, idx, n_desc, 0, MT_TX_RING_BASE);
111 	if (err < 0)
112 		return err;
113 
114 	INIT_LIST_HEAD(&q->swq);
115 	q->q = hwq;
116 
117 	mt76x02_irq_enable(dev, MT_INT_TX_DONE(idx));
118 
119 	return 0;
120 }
121 
122 static int
123 mt76x02_init_rx_queue(struct mt76x02_dev *dev, struct mt76_queue *q,
124 		      int idx, int n_desc, int bufsize)
125 {
126 	int err;
127 
128 	err = mt76_queue_alloc(dev, q, idx, n_desc, bufsize,
129 			       MT_RX_RING_BASE);
130 	if (err < 0)
131 		return err;
132 
133 	mt76x02_irq_enable(dev, MT_INT_RX_DONE(idx));
134 
135 	return 0;
136 }
137 
138 static void mt76x02_process_tx_status_fifo(struct mt76x02_dev *dev)
139 {
140 	struct mt76x02_tx_status stat;
141 	u8 update = 1;
142 
143 	while (kfifo_get(&dev->txstatus_fifo, &stat))
144 		mt76x02_send_tx_status(dev, &stat, &update);
145 }
146 
147 static void mt76x02_tx_tasklet(unsigned long data)
148 {
149 	struct mt76x02_dev *dev = (struct mt76x02_dev *)data;
150 
151 	mt76x02_mac_poll_tx_status(dev, false);
152 	mt76x02_process_tx_status_fifo(dev);
153 
154 	mt76_txq_schedule_all(&dev->mt76);
155 }
156 
157 static int mt76x02_poll_tx(struct napi_struct *napi, int budget)
158 {
159 	struct mt76x02_dev *dev = container_of(napi, struct mt76x02_dev,
160 					       mt76.tx_napi);
161 	int i;
162 
163 	mt76x02_mac_poll_tx_status(dev, false);
164 
165 	for (i = MT_TXQ_MCU; i >= 0; i--)
166 		mt76_queue_tx_cleanup(dev, i, false);
167 
168 	if (napi_complete_done(napi, 0))
169 		mt76x02_irq_enable(dev, MT_INT_TX_DONE_ALL);
170 
171 	for (i = MT_TXQ_MCU; i >= 0; i--)
172 		mt76_queue_tx_cleanup(dev, i, false);
173 
174 	tasklet_schedule(&dev->mt76.tx_tasklet);
175 
176 	return 0;
177 }
178 
179 int mt76x02_dma_init(struct mt76x02_dev *dev)
180 {
181 	struct mt76_txwi_cache __maybe_unused *t;
182 	int i, ret, fifo_size;
183 	struct mt76_queue *q;
184 	void *status_fifo;
185 
186 	BUILD_BUG_ON(sizeof(struct mt76x02_rxwi) > MT_RX_HEADROOM);
187 
188 	fifo_size = roundup_pow_of_two(32 * sizeof(struct mt76x02_tx_status));
189 	status_fifo = devm_kzalloc(dev->mt76.dev, fifo_size, GFP_KERNEL);
190 	if (!status_fifo)
191 		return -ENOMEM;
192 
193 	tasklet_init(&dev->mt76.tx_tasklet, mt76x02_tx_tasklet,
194 		     (unsigned long)dev);
195 	tasklet_init(&dev->mt76.pre_tbtt_tasklet, mt76x02_pre_tbtt_tasklet,
196 		     (unsigned long)dev);
197 
198 	spin_lock_init(&dev->txstatus_fifo_lock);
199 	kfifo_init(&dev->txstatus_fifo, status_fifo, fifo_size);
200 
201 	mt76_dma_attach(&dev->mt76);
202 
203 	mt76_wr(dev, MT_WPDMA_RST_IDX, ~0);
204 
205 	for (i = 0; i < IEEE80211_NUM_ACS; i++) {
206 		ret = mt76x02_init_tx_queue(dev, &dev->mt76.q_tx[i],
207 					    mt76_ac_to_hwq(i),
208 					    MT_TX_RING_SIZE);
209 		if (ret)
210 			return ret;
211 	}
212 
213 	ret = mt76x02_init_tx_queue(dev, &dev->mt76.q_tx[MT_TXQ_PSD],
214 				    MT_TX_HW_QUEUE_MGMT, MT_TX_RING_SIZE);
215 	if (ret)
216 		return ret;
217 
218 	ret = mt76x02_init_tx_queue(dev, &dev->mt76.q_tx[MT_TXQ_MCU],
219 				    MT_TX_HW_QUEUE_MCU, MT_MCU_RING_SIZE);
220 	if (ret)
221 		return ret;
222 
223 	ret = mt76x02_init_rx_queue(dev, &dev->mt76.q_rx[MT_RXQ_MCU], 1,
224 				    MT_MCU_RING_SIZE, MT_RX_BUF_SIZE);
225 	if (ret)
226 		return ret;
227 
228 	q = &dev->mt76.q_rx[MT_RXQ_MAIN];
229 	q->buf_offset = MT_RX_HEADROOM - sizeof(struct mt76x02_rxwi);
230 	ret = mt76x02_init_rx_queue(dev, q, 0, MT76X02_RX_RING_SIZE,
231 				    MT_RX_BUF_SIZE);
232 	if (ret)
233 		return ret;
234 
235 	ret = mt76_init_queues(dev);
236 	if (ret)
237 		return ret;
238 
239 	netif_tx_napi_add(&dev->mt76.napi_dev, &dev->mt76.tx_napi,
240 			  mt76x02_poll_tx, NAPI_POLL_WEIGHT);
241 	napi_enable(&dev->mt76.tx_napi);
242 
243 	return 0;
244 }
245 EXPORT_SYMBOL_GPL(mt76x02_dma_init);
246 
247 void mt76x02_rx_poll_complete(struct mt76_dev *mdev, enum mt76_rxq_id q)
248 {
249 	struct mt76x02_dev *dev;
250 
251 	dev = container_of(mdev, struct mt76x02_dev, mt76);
252 	mt76x02_irq_enable(dev, MT_INT_RX_DONE(q));
253 }
254 EXPORT_SYMBOL_GPL(mt76x02_rx_poll_complete);
255 
256 irqreturn_t mt76x02_irq_handler(int irq, void *dev_instance)
257 {
258 	struct mt76x02_dev *dev = dev_instance;
259 	u32 intr;
260 
261 	intr = mt76_rr(dev, MT_INT_SOURCE_CSR);
262 	mt76_wr(dev, MT_INT_SOURCE_CSR, intr);
263 
264 	if (!test_bit(MT76_STATE_INITIALIZED, &dev->mt76.state))
265 		return IRQ_NONE;
266 
267 	trace_dev_irq(dev, intr, dev->mt76.mmio.irqmask);
268 
269 	intr &= dev->mt76.mmio.irqmask;
270 
271 	if (intr & MT_INT_RX_DONE(0)) {
272 		mt76x02_irq_disable(dev, MT_INT_RX_DONE(0));
273 		napi_schedule(&dev->mt76.napi[0]);
274 	}
275 
276 	if (intr & MT_INT_RX_DONE(1)) {
277 		mt76x02_irq_disable(dev, MT_INT_RX_DONE(1));
278 		napi_schedule(&dev->mt76.napi[1]);
279 	}
280 
281 	if (intr & MT_INT_PRE_TBTT)
282 		tasklet_schedule(&dev->mt76.pre_tbtt_tasklet);
283 
284 	/* send buffered multicast frames now */
285 	if (intr & MT_INT_TBTT) {
286 		if (dev->mt76.csa_complete)
287 			mt76_csa_finish(&dev->mt76);
288 		else
289 			mt76_queue_kick(dev, dev->mt76.q_tx[MT_TXQ_PSD].q);
290 	}
291 
292 	if (intr & MT_INT_TX_STAT)
293 		mt76x02_mac_poll_tx_status(dev, true);
294 
295 	if (intr & (MT_INT_TX_STAT | MT_INT_TX_DONE_ALL)) {
296 		mt76x02_irq_disable(dev, MT_INT_TX_DONE_ALL);
297 		napi_schedule(&dev->mt76.tx_napi);
298 	}
299 
300 	if (intr & MT_INT_GPTIMER) {
301 		mt76x02_irq_disable(dev, MT_INT_GPTIMER);
302 		tasklet_schedule(&dev->dfs_pd.dfs_tasklet);
303 	}
304 
305 	return IRQ_HANDLED;
306 }
307 EXPORT_SYMBOL_GPL(mt76x02_irq_handler);
308 
309 static void mt76x02_dma_enable(struct mt76x02_dev *dev)
310 {
311 	u32 val;
312 
313 	mt76_wr(dev, MT_MAC_SYS_CTRL, MT_MAC_SYS_CTRL_ENABLE_TX);
314 	mt76x02_wait_for_wpdma(&dev->mt76, 1000);
315 	usleep_range(50, 100);
316 
317 	val = FIELD_PREP(MT_WPDMA_GLO_CFG_DMA_BURST_SIZE, 3) |
318 	      MT_WPDMA_GLO_CFG_TX_DMA_EN |
319 	      MT_WPDMA_GLO_CFG_RX_DMA_EN;
320 	mt76_set(dev, MT_WPDMA_GLO_CFG, val);
321 	mt76_clear(dev, MT_WPDMA_GLO_CFG,
322 		   MT_WPDMA_GLO_CFG_TX_WRITEBACK_DONE);
323 }
324 
325 void mt76x02_dma_cleanup(struct mt76x02_dev *dev)
326 {
327 	tasklet_kill(&dev->mt76.tx_tasklet);
328 	mt76_dma_cleanup(&dev->mt76);
329 }
330 EXPORT_SYMBOL_GPL(mt76x02_dma_cleanup);
331 
332 void mt76x02_dma_disable(struct mt76x02_dev *dev)
333 {
334 	u32 val = mt76_rr(dev, MT_WPDMA_GLO_CFG);
335 
336 	val &= MT_WPDMA_GLO_CFG_DMA_BURST_SIZE |
337 	       MT_WPDMA_GLO_CFG_BIG_ENDIAN |
338 	       MT_WPDMA_GLO_CFG_HDR_SEG_LEN;
339 	val |= MT_WPDMA_GLO_CFG_TX_WRITEBACK_DONE;
340 	mt76_wr(dev, MT_WPDMA_GLO_CFG, val);
341 }
342 EXPORT_SYMBOL_GPL(mt76x02_dma_disable);
343 
344 void mt76x02_mac_start(struct mt76x02_dev *dev)
345 {
346 	mt76x02_mac_reset_counters(dev);
347 	mt76x02_dma_enable(dev);
348 	mt76_wr(dev, MT_RX_FILTR_CFG, dev->mt76.rxfilter);
349 	mt76_wr(dev, MT_MAC_SYS_CTRL,
350 		MT_MAC_SYS_CTRL_ENABLE_TX |
351 		MT_MAC_SYS_CTRL_ENABLE_RX);
352 	mt76x02_irq_enable(dev,
353 			   MT_INT_RX_DONE_ALL | MT_INT_TX_DONE_ALL |
354 			   MT_INT_TX_STAT);
355 }
356 EXPORT_SYMBOL_GPL(mt76x02_mac_start);
357 
358 static bool mt76x02_tx_hang(struct mt76x02_dev *dev)
359 {
360 	u32 dma_idx, prev_dma_idx;
361 	struct mt76_queue *q;
362 	int i;
363 
364 	for (i = 0; i < 4; i++) {
365 		q = dev->mt76.q_tx[i].q;
366 
367 		if (!q->queued)
368 			continue;
369 
370 		prev_dma_idx = dev->mt76.tx_dma_idx[i];
371 		dma_idx = readl(&q->regs->dma_idx);
372 		dev->mt76.tx_dma_idx[i] = dma_idx;
373 
374 		if (prev_dma_idx == dma_idx)
375 			break;
376 	}
377 
378 	return i < 4;
379 }
380 
381 static void mt76x02_key_sync(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
382 			     struct ieee80211_sta *sta,
383 			     struct ieee80211_key_conf *key, void *data)
384 {
385 	struct mt76x02_dev *dev = hw->priv;
386 	struct mt76_wcid *wcid;
387 
388 	if (!sta)
389 		return;
390 
391 	wcid = (struct mt76_wcid *)sta->drv_priv;
392 
393 	if (wcid->hw_key_idx != key->keyidx || wcid->sw_iv)
394 		return;
395 
396 	mt76x02_mac_wcid_sync_pn(dev, wcid->idx, key);
397 }
398 
399 static void mt76x02_reset_state(struct mt76x02_dev *dev)
400 {
401 	int i;
402 
403 	lockdep_assert_held(&dev->mt76.mutex);
404 
405 	clear_bit(MT76_STATE_RUNNING, &dev->mt76.state);
406 
407 	rcu_read_lock();
408 	ieee80211_iter_keys_rcu(dev->mt76.hw, NULL, mt76x02_key_sync, NULL);
409 	rcu_read_unlock();
410 
411 	for (i = 0; i < ARRAY_SIZE(dev->mt76.wcid); i++) {
412 		struct ieee80211_sta *sta;
413 		struct ieee80211_vif *vif;
414 		struct mt76x02_sta *msta;
415 		struct mt76_wcid *wcid;
416 		void *priv;
417 
418 		wcid = rcu_dereference_protected(dev->mt76.wcid[i],
419 					lockdep_is_held(&dev->mt76.mutex));
420 		if (!wcid)
421 			continue;
422 
423 		priv = msta = container_of(wcid, struct mt76x02_sta, wcid);
424 		sta = container_of(priv, struct ieee80211_sta, drv_priv);
425 
426 		priv = msta->vif;
427 		vif = container_of(priv, struct ieee80211_vif, drv_priv);
428 
429 		__mt76_sta_remove(&dev->mt76, vif, sta);
430 		memset(msta, 0, sizeof(*msta));
431 	}
432 
433 	dev->vif_mask = 0;
434 	dev->mt76.beacon_mask = 0;
435 }
436 
437 static void mt76x02_watchdog_reset(struct mt76x02_dev *dev)
438 {
439 	u32 mask = dev->mt76.mmio.irqmask;
440 	bool restart = dev->mt76.mcu_ops->mcu_restart;
441 	int i;
442 
443 	ieee80211_stop_queues(dev->mt76.hw);
444 	set_bit(MT76_RESET, &dev->mt76.state);
445 
446 	tasklet_disable(&dev->mt76.pre_tbtt_tasklet);
447 	tasklet_disable(&dev->mt76.tx_tasklet);
448 	napi_disable(&dev->mt76.tx_napi);
449 
450 	for (i = 0; i < ARRAY_SIZE(dev->mt76.napi); i++)
451 		napi_disable(&dev->mt76.napi[i]);
452 
453 	mutex_lock(&dev->mt76.mutex);
454 
455 	if (restart)
456 		mt76x02_reset_state(dev);
457 
458 	if (dev->mt76.beacon_mask)
459 		mt76_clear(dev, MT_BEACON_TIME_CFG,
460 			   MT_BEACON_TIME_CFG_BEACON_TX |
461 			   MT_BEACON_TIME_CFG_TBTT_EN);
462 
463 	mt76x02_irq_disable(dev, mask);
464 
465 	/* perform device reset */
466 	mt76_clear(dev, MT_TXOP_CTRL_CFG, MT_TXOP_ED_CCA_EN);
467 	mt76_wr(dev, MT_MAC_SYS_CTRL, 0);
468 	mt76_clear(dev, MT_WPDMA_GLO_CFG,
469 		   MT_WPDMA_GLO_CFG_TX_DMA_EN | MT_WPDMA_GLO_CFG_RX_DMA_EN);
470 	usleep_range(5000, 10000);
471 	mt76_wr(dev, MT_INT_SOURCE_CSR, 0xffffffff);
472 
473 	/* let fw reset DMA */
474 	mt76_set(dev, 0x734, 0x3);
475 
476 	if (restart)
477 		mt76_mcu_restart(dev);
478 
479 	for (i = 0; i < ARRAY_SIZE(dev->mt76.q_tx); i++)
480 		mt76_queue_tx_cleanup(dev, i, true);
481 
482 	for (i = 0; i < ARRAY_SIZE(dev->mt76.q_rx); i++)
483 		mt76_queue_rx_reset(dev, i);
484 
485 	mt76x02_mac_start(dev);
486 
487 	if (dev->ed_monitor)
488 		mt76_set(dev, MT_TXOP_CTRL_CFG, MT_TXOP_ED_CCA_EN);
489 
490 	if (dev->mt76.beacon_mask && !restart)
491 		mt76_set(dev, MT_BEACON_TIME_CFG,
492 			 MT_BEACON_TIME_CFG_BEACON_TX |
493 			 MT_BEACON_TIME_CFG_TBTT_EN);
494 
495 	mt76x02_irq_enable(dev, mask);
496 
497 	mutex_unlock(&dev->mt76.mutex);
498 
499 	clear_bit(MT76_RESET, &dev->mt76.state);
500 
501 	tasklet_enable(&dev->mt76.tx_tasklet);
502 	napi_enable(&dev->mt76.tx_napi);
503 	napi_schedule(&dev->mt76.tx_napi);
504 
505 	tasklet_enable(&dev->mt76.pre_tbtt_tasklet);
506 
507 	for (i = 0; i < ARRAY_SIZE(dev->mt76.napi); i++) {
508 		napi_enable(&dev->mt76.napi[i]);
509 		napi_schedule(&dev->mt76.napi[i]);
510 	}
511 
512 	if (restart) {
513 		mt76x02_mcu_function_select(dev, Q_SELECT, 1);
514 		ieee80211_restart_hw(dev->mt76.hw);
515 	} else {
516 		ieee80211_wake_queues(dev->mt76.hw);
517 		mt76_txq_schedule_all(&dev->mt76);
518 	}
519 }
520 
521 static void mt76x02_check_tx_hang(struct mt76x02_dev *dev)
522 {
523 	if (mt76x02_tx_hang(dev)) {
524 		if (++dev->tx_hang_check >= MT_TX_HANG_TH)
525 			goto restart;
526 	} else {
527 		dev->tx_hang_check = 0;
528 	}
529 
530 	if (dev->mcu_timeout)
531 		goto restart;
532 
533 	return;
534 
535 restart:
536 	mt76x02_watchdog_reset(dev);
537 
538 	mutex_lock(&dev->mt76.mmio.mcu.mutex);
539 	dev->mcu_timeout = 0;
540 	mutex_unlock(&dev->mt76.mmio.mcu.mutex);
541 
542 	dev->tx_hang_reset++;
543 	dev->tx_hang_check = 0;
544 	memset(dev->mt76.tx_dma_idx, 0xff,
545 	       sizeof(dev->mt76.tx_dma_idx));
546 }
547 
548 void mt76x02_wdt_work(struct work_struct *work)
549 {
550 	struct mt76x02_dev *dev = container_of(work, struct mt76x02_dev,
551 					       wdt_work.work);
552 
553 	mt76x02_check_tx_hang(dev);
554 
555 	ieee80211_queue_delayed_work(mt76_hw(dev), &dev->wdt_work,
556 				     MT_WATCHDOG_TIME);
557 }
558