1 // SPDX-License-Identifier: ISC 2 /* 3 * Copyright (C) 2016 Felix Fietkau <nbd@nbd.name> 4 * Copyright (C) 2018 Stanislaw Gruszka <stf_xl@wp.pl> 5 */ 6 7 #include "mt76x02.h" 8 #include "mt76x02_trace.h" 9 #include "trace.h" 10 11 void mt76x02_mac_reset_counters(struct mt76x02_dev *dev) 12 { 13 int i; 14 15 mt76_rr(dev, MT_RX_STAT_0); 16 mt76_rr(dev, MT_RX_STAT_1); 17 mt76_rr(dev, MT_RX_STAT_2); 18 mt76_rr(dev, MT_TX_STA_0); 19 mt76_rr(dev, MT_TX_STA_1); 20 mt76_rr(dev, MT_TX_STA_2); 21 22 for (i = 0; i < 16; i++) 23 mt76_rr(dev, MT_TX_AGG_CNT(i)); 24 25 for (i = 0; i < 16; i++) 26 mt76_rr(dev, MT_TX_STAT_FIFO); 27 28 memset(dev->mt76.aggr_stats, 0, sizeof(dev->mt76.aggr_stats)); 29 } 30 EXPORT_SYMBOL_GPL(mt76x02_mac_reset_counters); 31 32 static enum mt76x02_cipher_type 33 mt76x02_mac_get_key_info(struct ieee80211_key_conf *key, u8 *key_data) 34 { 35 memset(key_data, 0, 32); 36 if (!key) 37 return MT76X02_CIPHER_NONE; 38 39 if (key->keylen > 32) 40 return MT76X02_CIPHER_NONE; 41 42 memcpy(key_data, key->key, key->keylen); 43 44 switch (key->cipher) { 45 case WLAN_CIPHER_SUITE_WEP40: 46 return MT76X02_CIPHER_WEP40; 47 case WLAN_CIPHER_SUITE_WEP104: 48 return MT76X02_CIPHER_WEP104; 49 case WLAN_CIPHER_SUITE_TKIP: 50 return MT76X02_CIPHER_TKIP; 51 case WLAN_CIPHER_SUITE_CCMP: 52 return MT76X02_CIPHER_AES_CCMP; 53 default: 54 return MT76X02_CIPHER_NONE; 55 } 56 } 57 58 int mt76x02_mac_shared_key_setup(struct mt76x02_dev *dev, u8 vif_idx, 59 u8 key_idx, struct ieee80211_key_conf *key) 60 { 61 enum mt76x02_cipher_type cipher; 62 u8 key_data[32]; 63 u32 val; 64 65 cipher = mt76x02_mac_get_key_info(key, key_data); 66 if (cipher == MT76X02_CIPHER_NONE && key) 67 return -EOPNOTSUPP; 68 69 val = mt76_rr(dev, MT_SKEY_MODE(vif_idx)); 70 val &= ~(MT_SKEY_MODE_MASK << MT_SKEY_MODE_SHIFT(vif_idx, key_idx)); 71 val |= cipher << MT_SKEY_MODE_SHIFT(vif_idx, key_idx); 72 mt76_wr(dev, MT_SKEY_MODE(vif_idx), val); 73 74 mt76_wr_copy(dev, MT_SKEY(vif_idx, key_idx), key_data, 75 sizeof(key_data)); 76 77 return 0; 78 } 79 EXPORT_SYMBOL_GPL(mt76x02_mac_shared_key_setup); 80 81 void mt76x02_mac_wcid_sync_pn(struct mt76x02_dev *dev, u8 idx, 82 struct ieee80211_key_conf *key) 83 { 84 enum mt76x02_cipher_type cipher; 85 u8 key_data[32]; 86 u32 iv, eiv; 87 u64 pn; 88 89 cipher = mt76x02_mac_get_key_info(key, key_data); 90 iv = mt76_rr(dev, MT_WCID_IV(idx)); 91 eiv = mt76_rr(dev, MT_WCID_IV(idx) + 4); 92 93 pn = (u64)eiv << 16; 94 if (cipher == MT76X02_CIPHER_TKIP) { 95 pn |= (iv >> 16) & 0xff; 96 pn |= (iv & 0xff) << 8; 97 } else if (cipher >= MT76X02_CIPHER_AES_CCMP) { 98 pn |= iv & 0xffff; 99 } else { 100 return; 101 } 102 103 atomic64_set(&key->tx_pn, pn); 104 } 105 106 int mt76x02_mac_wcid_set_key(struct mt76x02_dev *dev, u8 idx, 107 struct ieee80211_key_conf *key) 108 { 109 enum mt76x02_cipher_type cipher; 110 u8 key_data[32]; 111 u8 iv_data[8]; 112 u64 pn; 113 114 cipher = mt76x02_mac_get_key_info(key, key_data); 115 if (cipher == MT76X02_CIPHER_NONE && key) 116 return -EOPNOTSUPP; 117 118 mt76_wr_copy(dev, MT_WCID_KEY(idx), key_data, sizeof(key_data)); 119 mt76_rmw_field(dev, MT_WCID_ATTR(idx), MT_WCID_ATTR_PKEY_MODE, cipher); 120 121 memset(iv_data, 0, sizeof(iv_data)); 122 if (key) { 123 mt76_rmw_field(dev, MT_WCID_ATTR(idx), MT_WCID_ATTR_PAIRWISE, 124 !!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE)); 125 126 pn = atomic64_read(&key->tx_pn); 127 128 iv_data[3] = key->keyidx << 6; 129 if (cipher >= MT76X02_CIPHER_TKIP) { 130 iv_data[3] |= 0x20; 131 put_unaligned_le32(pn >> 16, &iv_data[4]); 132 } 133 134 if (cipher == MT76X02_CIPHER_TKIP) { 135 iv_data[0] = (pn >> 8) & 0xff; 136 iv_data[1] = (iv_data[0] | 0x20) & 0x7f; 137 iv_data[2] = pn & 0xff; 138 } else if (cipher >= MT76X02_CIPHER_AES_CCMP) { 139 put_unaligned_le16((pn & 0xffff), &iv_data[0]); 140 } 141 } 142 143 mt76_wr_copy(dev, MT_WCID_IV(idx), iv_data, sizeof(iv_data)); 144 145 return 0; 146 } 147 148 void mt76x02_mac_wcid_setup(struct mt76x02_dev *dev, u8 idx, 149 u8 vif_idx, u8 *mac) 150 { 151 struct mt76_wcid_addr addr = {}; 152 u32 attr; 153 154 attr = FIELD_PREP(MT_WCID_ATTR_BSS_IDX, vif_idx & 7) | 155 FIELD_PREP(MT_WCID_ATTR_BSS_IDX_EXT, !!(vif_idx & 8)); 156 157 mt76_wr(dev, MT_WCID_ATTR(idx), attr); 158 159 if (idx >= 128) 160 return; 161 162 if (mac) 163 memcpy(addr.macaddr, mac, ETH_ALEN); 164 165 mt76_wr_copy(dev, MT_WCID_ADDR(idx), &addr, sizeof(addr)); 166 } 167 EXPORT_SYMBOL_GPL(mt76x02_mac_wcid_setup); 168 169 void mt76x02_mac_wcid_set_drop(struct mt76x02_dev *dev, u8 idx, bool drop) 170 { 171 u32 val = mt76_rr(dev, MT_WCID_DROP(idx)); 172 u32 bit = MT_WCID_DROP_MASK(idx); 173 174 /* prevent unnecessary writes */ 175 if ((val & bit) != (bit * drop)) 176 mt76_wr(dev, MT_WCID_DROP(idx), (val & ~bit) | (bit * drop)); 177 } 178 179 static __le16 180 mt76x02_mac_tx_rate_val(struct mt76x02_dev *dev, 181 const struct ieee80211_tx_rate *rate, u8 *nss_val) 182 { 183 u8 phy, rate_idx, nss, bw = 0; 184 u16 rateval; 185 186 if (rate->flags & IEEE80211_TX_RC_VHT_MCS) { 187 rate_idx = rate->idx; 188 nss = 1 + (rate->idx >> 4); 189 phy = MT_PHY_TYPE_VHT; 190 if (rate->flags & IEEE80211_TX_RC_80_MHZ_WIDTH) 191 bw = 2; 192 else if (rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) 193 bw = 1; 194 } else if (rate->flags & IEEE80211_TX_RC_MCS) { 195 rate_idx = rate->idx; 196 nss = 1 + (rate->idx >> 3); 197 phy = MT_PHY_TYPE_HT; 198 if (rate->flags & IEEE80211_TX_RC_GREEN_FIELD) 199 phy = MT_PHY_TYPE_HT_GF; 200 if (rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) 201 bw = 1; 202 } else { 203 const struct ieee80211_rate *r; 204 int band = dev->mphy.chandef.chan->band; 205 u16 val; 206 207 r = &dev->mt76.hw->wiphy->bands[band]->bitrates[rate->idx]; 208 if (rate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) 209 val = r->hw_value_short; 210 else 211 val = r->hw_value; 212 213 phy = val >> 8; 214 rate_idx = val & 0xff; 215 nss = 1; 216 } 217 218 rateval = FIELD_PREP(MT_RXWI_RATE_INDEX, rate_idx); 219 rateval |= FIELD_PREP(MT_RXWI_RATE_PHY, phy); 220 rateval |= FIELD_PREP(MT_RXWI_RATE_BW, bw); 221 if (rate->flags & IEEE80211_TX_RC_SHORT_GI) 222 rateval |= MT_RXWI_RATE_SGI; 223 224 *nss_val = nss; 225 return cpu_to_le16(rateval); 226 } 227 228 void mt76x02_mac_wcid_set_rate(struct mt76x02_dev *dev, struct mt76_wcid *wcid, 229 const struct ieee80211_tx_rate *rate) 230 { 231 s8 max_txpwr_adj = mt76x02_tx_get_max_txpwr_adj(dev, rate); 232 __le16 rateval; 233 u32 tx_info; 234 s8 nss; 235 236 rateval = mt76x02_mac_tx_rate_val(dev, rate, &nss); 237 tx_info = FIELD_PREP(MT_WCID_TX_INFO_RATE, rateval) | 238 FIELD_PREP(MT_WCID_TX_INFO_NSS, nss) | 239 FIELD_PREP(MT_WCID_TX_INFO_TXPWR_ADJ, max_txpwr_adj) | 240 MT_WCID_TX_INFO_SET; 241 wcid->tx_info = tx_info; 242 } 243 244 void mt76x02_mac_set_short_preamble(struct mt76x02_dev *dev, bool enable) 245 { 246 if (enable) 247 mt76_set(dev, MT_AUTO_RSP_CFG, MT_AUTO_RSP_PREAMB_SHORT); 248 else 249 mt76_clear(dev, MT_AUTO_RSP_CFG, MT_AUTO_RSP_PREAMB_SHORT); 250 } 251 252 bool mt76x02_mac_load_tx_status(struct mt76x02_dev *dev, 253 struct mt76x02_tx_status *stat) 254 { 255 u32 stat1, stat2; 256 257 stat2 = mt76_rr(dev, MT_TX_STAT_FIFO_EXT); 258 stat1 = mt76_rr(dev, MT_TX_STAT_FIFO); 259 260 stat->valid = !!(stat1 & MT_TX_STAT_FIFO_VALID); 261 if (!stat->valid) 262 return false; 263 264 stat->success = !!(stat1 & MT_TX_STAT_FIFO_SUCCESS); 265 stat->aggr = !!(stat1 & MT_TX_STAT_FIFO_AGGR); 266 stat->ack_req = !!(stat1 & MT_TX_STAT_FIFO_ACKREQ); 267 stat->wcid = FIELD_GET(MT_TX_STAT_FIFO_WCID, stat1); 268 stat->rate = FIELD_GET(MT_TX_STAT_FIFO_RATE, stat1); 269 270 stat->retry = FIELD_GET(MT_TX_STAT_FIFO_EXT_RETRY, stat2); 271 stat->pktid = FIELD_GET(MT_TX_STAT_FIFO_EXT_PKTID, stat2); 272 273 trace_mac_txstat_fetch(dev, stat); 274 275 return true; 276 } 277 278 static int 279 mt76x02_mac_process_tx_rate(struct ieee80211_tx_rate *txrate, u16 rate, 280 enum nl80211_band band) 281 { 282 u8 idx = FIELD_GET(MT_RXWI_RATE_INDEX, rate); 283 284 txrate->idx = 0; 285 txrate->flags = 0; 286 txrate->count = 1; 287 288 switch (FIELD_GET(MT_RXWI_RATE_PHY, rate)) { 289 case MT_PHY_TYPE_OFDM: 290 if (band == NL80211_BAND_2GHZ) 291 idx += 4; 292 293 txrate->idx = idx; 294 return 0; 295 case MT_PHY_TYPE_CCK: 296 if (idx >= 8) 297 idx -= 8; 298 299 txrate->idx = idx; 300 return 0; 301 case MT_PHY_TYPE_HT_GF: 302 txrate->flags |= IEEE80211_TX_RC_GREEN_FIELD; 303 fallthrough; 304 case MT_PHY_TYPE_HT: 305 txrate->flags |= IEEE80211_TX_RC_MCS; 306 txrate->idx = idx; 307 break; 308 case MT_PHY_TYPE_VHT: 309 txrate->flags |= IEEE80211_TX_RC_VHT_MCS; 310 txrate->idx = idx; 311 break; 312 default: 313 return -EINVAL; 314 } 315 316 switch (FIELD_GET(MT_RXWI_RATE_BW, rate)) { 317 case MT_PHY_BW_20: 318 break; 319 case MT_PHY_BW_40: 320 txrate->flags |= IEEE80211_TX_RC_40_MHZ_WIDTH; 321 break; 322 case MT_PHY_BW_80: 323 txrate->flags |= IEEE80211_TX_RC_80_MHZ_WIDTH; 324 break; 325 default: 326 return -EINVAL; 327 } 328 329 if (rate & MT_RXWI_RATE_SGI) 330 txrate->flags |= IEEE80211_TX_RC_SHORT_GI; 331 332 return 0; 333 } 334 335 void mt76x02_mac_write_txwi(struct mt76x02_dev *dev, struct mt76x02_txwi *txwi, 336 struct sk_buff *skb, struct mt76_wcid *wcid, 337 struct ieee80211_sta *sta, int len) 338 { 339 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 340 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 341 struct ieee80211_tx_rate *rate = &info->control.rates[0]; 342 struct ieee80211_key_conf *key = info->control.hw_key; 343 u32 wcid_tx_info; 344 u16 rate_ht_mask = FIELD_PREP(MT_RXWI_RATE_PHY, BIT(1) | BIT(2)); 345 u16 txwi_flags = 0; 346 u8 nss; 347 s8 txpwr_adj, max_txpwr_adj; 348 u8 ccmp_pn[8], nstreams = dev->mphy.chainmask & 0xf; 349 350 memset(txwi, 0, sizeof(*txwi)); 351 352 mt76_tx_check_agg_ssn(sta, skb); 353 354 if (!info->control.hw_key && wcid && wcid->hw_key_idx != 0xff && 355 ieee80211_has_protected(hdr->frame_control)) { 356 wcid = NULL; 357 ieee80211_get_tx_rates(info->control.vif, sta, skb, 358 info->control.rates, 1); 359 } 360 361 if (wcid) 362 txwi->wcid = wcid->idx; 363 else 364 txwi->wcid = 0xff; 365 366 if (wcid && wcid->sw_iv && key) { 367 u64 pn = atomic64_inc_return(&key->tx_pn); 368 369 ccmp_pn[0] = pn; 370 ccmp_pn[1] = pn >> 8; 371 ccmp_pn[2] = 0; 372 ccmp_pn[3] = 0x20 | (key->keyidx << 6); 373 ccmp_pn[4] = pn >> 16; 374 ccmp_pn[5] = pn >> 24; 375 ccmp_pn[6] = pn >> 32; 376 ccmp_pn[7] = pn >> 40; 377 txwi->iv = *((__le32 *)&ccmp_pn[0]); 378 txwi->eiv = *((__le32 *)&ccmp_pn[4]); 379 } 380 381 if (wcid && (rate->idx < 0 || !rate->count)) { 382 wcid_tx_info = wcid->tx_info; 383 txwi->rate = FIELD_GET(MT_WCID_TX_INFO_RATE, wcid_tx_info); 384 max_txpwr_adj = FIELD_GET(MT_WCID_TX_INFO_TXPWR_ADJ, 385 wcid_tx_info); 386 nss = FIELD_GET(MT_WCID_TX_INFO_NSS, wcid_tx_info); 387 } else { 388 txwi->rate = mt76x02_mac_tx_rate_val(dev, rate, &nss); 389 max_txpwr_adj = mt76x02_tx_get_max_txpwr_adj(dev, rate); 390 } 391 392 txpwr_adj = mt76x02_tx_get_txpwr_adj(dev, dev->txpower_conf, 393 max_txpwr_adj); 394 txwi->ctl2 = FIELD_PREP(MT_TX_PWR_ADJ, txpwr_adj); 395 396 if (nstreams > 1 && mt76_rev(&dev->mt76) >= MT76XX_REV_E4) 397 txwi->txstream = 0x13; 398 else if (nstreams > 1 && mt76_rev(&dev->mt76) >= MT76XX_REV_E3 && 399 !(txwi->rate & cpu_to_le16(rate_ht_mask))) 400 txwi->txstream = 0x93; 401 402 if (is_mt76x2(dev) && (info->flags & IEEE80211_TX_CTL_LDPC)) 403 txwi->rate |= cpu_to_le16(MT_RXWI_RATE_LDPC); 404 if ((info->flags & IEEE80211_TX_CTL_STBC) && nss == 1) 405 txwi->rate |= cpu_to_le16(MT_RXWI_RATE_STBC); 406 if (nss > 1 && sta && sta->smps_mode == IEEE80211_SMPS_DYNAMIC) 407 txwi_flags |= MT_TXWI_FLAGS_MMPS; 408 if (!(info->flags & IEEE80211_TX_CTL_NO_ACK)) 409 txwi->ack_ctl |= MT_TXWI_ACK_CTL_REQ; 410 if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) 411 txwi->ack_ctl |= MT_TXWI_ACK_CTL_NSEQ; 412 if ((info->flags & IEEE80211_TX_CTL_AMPDU) && sta) { 413 u8 ba_size = IEEE80211_MIN_AMPDU_BUF; 414 u8 ampdu_density = sta->ht_cap.ampdu_density; 415 416 ba_size <<= sta->ht_cap.ampdu_factor; 417 ba_size = min_t(int, 63, ba_size - 1); 418 if (info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE) 419 ba_size = 0; 420 txwi->ack_ctl |= FIELD_PREP(MT_TXWI_ACK_CTL_BA_WINDOW, ba_size); 421 422 if (ampdu_density < IEEE80211_HT_MPDU_DENSITY_4) 423 ampdu_density = IEEE80211_HT_MPDU_DENSITY_4; 424 425 txwi_flags |= MT_TXWI_FLAGS_AMPDU | 426 FIELD_PREP(MT_TXWI_FLAGS_MPDU_DENSITY, ampdu_density); 427 } 428 429 if (ieee80211_is_probe_resp(hdr->frame_control) || 430 ieee80211_is_beacon(hdr->frame_control)) 431 txwi_flags |= MT_TXWI_FLAGS_TS; 432 433 txwi->flags |= cpu_to_le16(txwi_flags); 434 txwi->len_ctl = cpu_to_le16(len); 435 } 436 EXPORT_SYMBOL_GPL(mt76x02_mac_write_txwi); 437 438 static void 439 mt76x02_tx_rate_fallback(struct ieee80211_tx_rate *rates, int idx, int phy) 440 { 441 u8 mcs, nss; 442 443 if (!idx) 444 return; 445 446 rates += idx - 1; 447 rates[1] = rates[0]; 448 switch (phy) { 449 case MT_PHY_TYPE_VHT: 450 mcs = ieee80211_rate_get_vht_mcs(rates); 451 nss = ieee80211_rate_get_vht_nss(rates); 452 453 if (mcs == 0) 454 nss = max_t(int, nss - 1, 1); 455 else 456 mcs--; 457 458 ieee80211_rate_set_vht(rates + 1, mcs, nss); 459 break; 460 case MT_PHY_TYPE_HT_GF: 461 case MT_PHY_TYPE_HT: 462 /* MCS 8 falls back to MCS 0 */ 463 if (rates[0].idx == 8) { 464 rates[1].idx = 0; 465 break; 466 } 467 fallthrough; 468 default: 469 rates[1].idx = max_t(int, rates[0].idx - 1, 0); 470 break; 471 } 472 } 473 474 static void 475 mt76x02_mac_fill_tx_status(struct mt76x02_dev *dev, struct mt76x02_sta *msta, 476 struct ieee80211_tx_info *info, 477 struct mt76x02_tx_status *st, int n_frames) 478 { 479 struct ieee80211_tx_rate *rate = info->status.rates; 480 struct ieee80211_tx_rate last_rate; 481 u16 first_rate; 482 int retry = st->retry; 483 int phy; 484 int i; 485 486 if (!n_frames) 487 return; 488 489 phy = FIELD_GET(MT_RXWI_RATE_PHY, st->rate); 490 491 if (st->pktid & MT_PACKET_ID_HAS_RATE) { 492 first_rate = st->rate & ~MT_PKTID_RATE; 493 first_rate |= st->pktid & MT_PKTID_RATE; 494 495 mt76x02_mac_process_tx_rate(&rate[0], first_rate, 496 dev->mphy.chandef.chan->band); 497 } else if (rate[0].idx < 0) { 498 if (!msta) 499 return; 500 501 mt76x02_mac_process_tx_rate(&rate[0], msta->wcid.tx_info, 502 dev->mphy.chandef.chan->band); 503 } 504 505 mt76x02_mac_process_tx_rate(&last_rate, st->rate, 506 dev->mphy.chandef.chan->band); 507 508 for (i = 0; i < ARRAY_SIZE(info->status.rates); i++) { 509 retry--; 510 if (i + 1 == ARRAY_SIZE(info->status.rates)) { 511 info->status.rates[i] = last_rate; 512 info->status.rates[i].count = max_t(int, retry, 1); 513 break; 514 } 515 516 mt76x02_tx_rate_fallback(info->status.rates, i, phy); 517 if (info->status.rates[i].idx == last_rate.idx) 518 break; 519 } 520 521 if (i + 1 < ARRAY_SIZE(info->status.rates)) { 522 info->status.rates[i + 1].idx = -1; 523 info->status.rates[i + 1].count = 0; 524 } 525 526 info->status.ampdu_len = n_frames; 527 info->status.ampdu_ack_len = st->success ? n_frames : 0; 528 529 if (st->aggr) 530 info->flags |= IEEE80211_TX_CTL_AMPDU | 531 IEEE80211_TX_STAT_AMPDU; 532 533 if (!st->ack_req) 534 info->flags |= IEEE80211_TX_CTL_NO_ACK; 535 else if (st->success) 536 info->flags |= IEEE80211_TX_STAT_ACK; 537 } 538 539 void mt76x02_send_tx_status(struct mt76x02_dev *dev, 540 struct mt76x02_tx_status *stat, u8 *update) 541 { 542 struct ieee80211_tx_info info = {}; 543 struct ieee80211_tx_status status = { 544 .info = &info 545 }; 546 static const u8 ac_to_tid[4] = { 547 [IEEE80211_AC_BE] = 0, 548 [IEEE80211_AC_BK] = 1, 549 [IEEE80211_AC_VI] = 4, 550 [IEEE80211_AC_VO] = 6 551 }; 552 struct mt76_wcid *wcid = NULL; 553 struct mt76x02_sta *msta = NULL; 554 struct mt76_dev *mdev = &dev->mt76; 555 struct sk_buff_head list; 556 u32 duration = 0; 557 u8 cur_pktid; 558 u32 ac = 0; 559 int len = 0; 560 561 if (stat->pktid == MT_PACKET_ID_NO_ACK) 562 return; 563 564 rcu_read_lock(); 565 566 if (stat->wcid < MT76x02_N_WCIDS) 567 wcid = rcu_dereference(dev->mt76.wcid[stat->wcid]); 568 569 if (wcid && wcid->sta) { 570 void *priv; 571 572 priv = msta = container_of(wcid, struct mt76x02_sta, wcid); 573 status.sta = container_of(priv, struct ieee80211_sta, 574 drv_priv); 575 } 576 577 mt76_tx_status_lock(mdev, &list); 578 579 if (wcid) { 580 if (mt76_is_skb_pktid(stat->pktid)) 581 status.skb = mt76_tx_status_skb_get(mdev, wcid, 582 stat->pktid, &list); 583 if (status.skb) 584 status.info = IEEE80211_SKB_CB(status.skb); 585 } 586 587 if (!status.skb && !(stat->pktid & MT_PACKET_ID_HAS_RATE)) { 588 mt76_tx_status_unlock(mdev, &list); 589 goto out; 590 } 591 592 593 if (msta && stat->aggr && !status.skb) { 594 u32 stat_val, stat_cache; 595 596 stat_val = stat->rate; 597 stat_val |= ((u32)stat->retry) << 16; 598 stat_cache = msta->status.rate; 599 stat_cache |= ((u32)msta->status.retry) << 16; 600 601 if (*update == 0 && stat_val == stat_cache && 602 stat->wcid == msta->status.wcid && msta->n_frames < 32) { 603 msta->n_frames++; 604 mt76_tx_status_unlock(mdev, &list); 605 goto out; 606 } 607 608 cur_pktid = msta->status.pktid; 609 mt76x02_mac_fill_tx_status(dev, msta, status.info, 610 &msta->status, msta->n_frames); 611 612 msta->status = *stat; 613 msta->n_frames = 1; 614 *update = 0; 615 } else { 616 cur_pktid = stat->pktid; 617 mt76x02_mac_fill_tx_status(dev, msta, status.info, stat, 1); 618 *update = 1; 619 } 620 621 if (status.skb) { 622 info = *status.info; 623 len = status.skb->len; 624 ac = skb_get_queue_mapping(status.skb); 625 mt76_tx_status_skb_done(mdev, status.skb, &list); 626 } else if (msta) { 627 len = status.info->status.ampdu_len * ewma_pktlen_read(&msta->pktlen); 628 ac = FIELD_GET(MT_PKTID_AC, cur_pktid); 629 } 630 631 mt76_tx_status_unlock(mdev, &list); 632 633 if (!status.skb) 634 ieee80211_tx_status_ext(mt76_hw(dev), &status); 635 636 if (!len) 637 goto out; 638 639 duration = ieee80211_calc_tx_airtime(mt76_hw(dev), &info, len); 640 641 spin_lock_bh(&dev->mt76.cc_lock); 642 dev->tx_airtime += duration; 643 spin_unlock_bh(&dev->mt76.cc_lock); 644 645 if (msta) 646 ieee80211_sta_register_airtime(status.sta, ac_to_tid[ac], duration, 0); 647 648 out: 649 rcu_read_unlock(); 650 } 651 652 static int 653 mt76x02_mac_process_rate(struct mt76x02_dev *dev, 654 struct mt76_rx_status *status, 655 u16 rate) 656 { 657 u8 idx = FIELD_GET(MT_RXWI_RATE_INDEX, rate); 658 659 switch (FIELD_GET(MT_RXWI_RATE_PHY, rate)) { 660 case MT_PHY_TYPE_OFDM: 661 if (idx >= 8) 662 idx = 0; 663 664 if (status->band == NL80211_BAND_2GHZ) 665 idx += 4; 666 667 status->rate_idx = idx; 668 return 0; 669 case MT_PHY_TYPE_CCK: 670 if (idx >= 8) { 671 idx -= 8; 672 status->enc_flags |= RX_ENC_FLAG_SHORTPRE; 673 } 674 675 if (idx >= 4) 676 idx = 0; 677 678 status->rate_idx = idx; 679 return 0; 680 case MT_PHY_TYPE_HT_GF: 681 status->enc_flags |= RX_ENC_FLAG_HT_GF; 682 fallthrough; 683 case MT_PHY_TYPE_HT: 684 status->encoding = RX_ENC_HT; 685 status->rate_idx = idx; 686 break; 687 case MT_PHY_TYPE_VHT: { 688 u8 n_rxstream = dev->mphy.chainmask & 0xf; 689 690 status->encoding = RX_ENC_VHT; 691 status->rate_idx = FIELD_GET(MT_RATE_INDEX_VHT_IDX, idx); 692 status->nss = min_t(u8, n_rxstream, 693 FIELD_GET(MT_RATE_INDEX_VHT_NSS, idx) + 1); 694 break; 695 } 696 default: 697 return -EINVAL; 698 } 699 700 if (rate & MT_RXWI_RATE_LDPC) 701 status->enc_flags |= RX_ENC_FLAG_LDPC; 702 703 if (rate & MT_RXWI_RATE_SGI) 704 status->enc_flags |= RX_ENC_FLAG_SHORT_GI; 705 706 if (rate & MT_RXWI_RATE_STBC) 707 status->enc_flags |= 1 << RX_ENC_FLAG_STBC_SHIFT; 708 709 switch (FIELD_GET(MT_RXWI_RATE_BW, rate)) { 710 case MT_PHY_BW_20: 711 break; 712 case MT_PHY_BW_40: 713 status->bw = RATE_INFO_BW_40; 714 break; 715 case MT_PHY_BW_80: 716 status->bw = RATE_INFO_BW_80; 717 break; 718 default: 719 break; 720 } 721 722 return 0; 723 } 724 725 void mt76x02_mac_setaddr(struct mt76x02_dev *dev, const u8 *addr) 726 { 727 static const u8 null_addr[ETH_ALEN] = {}; 728 int i; 729 730 ether_addr_copy(dev->mphy.macaddr, addr); 731 732 if (!is_valid_ether_addr(dev->mphy.macaddr)) { 733 eth_random_addr(dev->mphy.macaddr); 734 dev_info(dev->mt76.dev, 735 "Invalid MAC address, using random address %pM\n", 736 dev->mphy.macaddr); 737 } 738 739 mt76_wr(dev, MT_MAC_ADDR_DW0, get_unaligned_le32(dev->mphy.macaddr)); 740 mt76_wr(dev, MT_MAC_ADDR_DW1, 741 get_unaligned_le16(dev->mphy.macaddr + 4) | 742 FIELD_PREP(MT_MAC_ADDR_DW1_U2ME_MASK, 0xff)); 743 744 mt76_wr(dev, MT_MAC_BSSID_DW0, 745 get_unaligned_le32(dev->mphy.macaddr)); 746 mt76_wr(dev, MT_MAC_BSSID_DW1, 747 get_unaligned_le16(dev->mphy.macaddr + 4) | 748 FIELD_PREP(MT_MAC_BSSID_DW1_MBSS_MODE, 3) | /* 8 APs + 8 STAs */ 749 MT_MAC_BSSID_DW1_MBSS_LOCAL_BIT); 750 /* enable 7 additional beacon slots and control them with bypass mask */ 751 mt76_rmw_field(dev, MT_MAC_BSSID_DW1, MT_MAC_BSSID_DW1_MBEACON_N, 7); 752 753 for (i = 0; i < 16; i++) 754 mt76x02_mac_set_bssid(dev, i, null_addr); 755 } 756 EXPORT_SYMBOL_GPL(mt76x02_mac_setaddr); 757 758 static int 759 mt76x02_mac_get_rssi(struct mt76x02_dev *dev, s8 rssi, int chain) 760 { 761 struct mt76x02_rx_freq_cal *cal = &dev->cal.rx; 762 763 rssi += cal->rssi_offset[chain]; 764 rssi -= cal->lna_gain; 765 766 return rssi; 767 } 768 769 int mt76x02_mac_process_rx(struct mt76x02_dev *dev, struct sk_buff *skb, 770 void *rxi) 771 { 772 struct mt76_rx_status *status = (struct mt76_rx_status *)skb->cb; 773 struct ieee80211_hdr *hdr; 774 struct mt76x02_rxwi *rxwi = rxi; 775 struct mt76x02_sta *sta; 776 u32 rxinfo = le32_to_cpu(rxwi->rxinfo); 777 u32 ctl = le32_to_cpu(rxwi->ctl); 778 u16 rate = le16_to_cpu(rxwi->rate); 779 u16 tid_sn = le16_to_cpu(rxwi->tid_sn); 780 bool unicast = rxwi->rxinfo & cpu_to_le32(MT_RXINFO_UNICAST); 781 int pad_len = 0, nstreams = dev->mphy.chainmask & 0xf; 782 s8 signal; 783 u8 pn_len; 784 u8 wcid; 785 int len; 786 787 if (!test_bit(MT76_STATE_RUNNING, &dev->mphy.state)) 788 return -EINVAL; 789 790 if (rxinfo & MT_RXINFO_L2PAD) 791 pad_len += 2; 792 793 if (rxinfo & MT_RXINFO_DECRYPT) { 794 status->flag |= RX_FLAG_DECRYPTED; 795 status->flag |= RX_FLAG_MMIC_STRIPPED; 796 status->flag |= RX_FLAG_MIC_STRIPPED; 797 status->flag |= RX_FLAG_IV_STRIPPED; 798 } 799 800 wcid = FIELD_GET(MT_RXWI_CTL_WCID, ctl); 801 sta = mt76x02_rx_get_sta(&dev->mt76, wcid); 802 status->wcid = mt76x02_rx_get_sta_wcid(sta, unicast); 803 804 len = FIELD_GET(MT_RXWI_CTL_MPDU_LEN, ctl); 805 pn_len = FIELD_GET(MT_RXINFO_PN_LEN, rxinfo); 806 if (pn_len) { 807 int offset = ieee80211_get_hdrlen_from_skb(skb) + pad_len; 808 u8 *data = skb->data + offset; 809 810 status->iv[0] = data[7]; 811 status->iv[1] = data[6]; 812 status->iv[2] = data[5]; 813 status->iv[3] = data[4]; 814 status->iv[4] = data[1]; 815 status->iv[5] = data[0]; 816 817 /* 818 * Driver CCMP validation can't deal with fragments. 819 * Let mac80211 take care of it. 820 */ 821 if (rxinfo & MT_RXINFO_FRAG) { 822 status->flag &= ~RX_FLAG_IV_STRIPPED; 823 } else { 824 pad_len += pn_len << 2; 825 len -= pn_len << 2; 826 } 827 } 828 829 mt76x02_remove_hdr_pad(skb, pad_len); 830 831 if ((rxinfo & MT_RXINFO_BA) && !(rxinfo & MT_RXINFO_NULL)) 832 status->aggr = true; 833 834 if (rxinfo & MT_RXINFO_AMPDU) { 835 status->flag |= RX_FLAG_AMPDU_DETAILS; 836 status->ampdu_ref = dev->ampdu_ref; 837 838 /* 839 * When receiving an A-MPDU subframe and RSSI info is not valid, 840 * we can assume that more subframes belonging to the same A-MPDU 841 * are coming. The last one will have valid RSSI info 842 */ 843 if (rxinfo & MT_RXINFO_RSSI) { 844 if (!++dev->ampdu_ref) 845 dev->ampdu_ref++; 846 } 847 } 848 849 if (WARN_ON_ONCE(len > skb->len)) 850 return -EINVAL; 851 852 pskb_trim(skb, len); 853 854 status->chains = BIT(0); 855 signal = mt76x02_mac_get_rssi(dev, rxwi->rssi[0], 0); 856 status->chain_signal[0] = signal; 857 if (nstreams > 1) { 858 status->chains |= BIT(1); 859 status->chain_signal[1] = mt76x02_mac_get_rssi(dev, 860 rxwi->rssi[1], 861 1); 862 signal = max_t(s8, signal, status->chain_signal[1]); 863 } 864 status->signal = signal; 865 status->freq = dev->mphy.chandef.chan->center_freq; 866 status->band = dev->mphy.chandef.chan->band; 867 868 hdr = (struct ieee80211_hdr *)skb->data; 869 status->qos_ctl = *ieee80211_get_qos_ctl(hdr); 870 status->seqno = FIELD_GET(MT_RXWI_SN, tid_sn); 871 872 return mt76x02_mac_process_rate(dev, status, rate); 873 } 874 875 void mt76x02_mac_poll_tx_status(struct mt76x02_dev *dev, bool irq) 876 { 877 struct mt76x02_tx_status stat = {}; 878 u8 update = 1; 879 bool ret; 880 881 if (!test_bit(MT76_STATE_RUNNING, &dev->mphy.state)) 882 return; 883 884 trace_mac_txstat_poll(dev); 885 886 while (!irq || !kfifo_is_full(&dev->txstatus_fifo)) { 887 if (!spin_trylock(&dev->txstatus_fifo_lock)) 888 break; 889 890 ret = mt76x02_mac_load_tx_status(dev, &stat); 891 spin_unlock(&dev->txstatus_fifo_lock); 892 893 if (!ret) 894 break; 895 896 if (!irq) { 897 mt76x02_send_tx_status(dev, &stat, &update); 898 continue; 899 } 900 901 kfifo_put(&dev->txstatus_fifo, stat); 902 } 903 } 904 905 void mt76x02_tx_complete_skb(struct mt76_dev *mdev, struct mt76_queue_entry *e) 906 { 907 struct mt76x02_dev *dev = container_of(mdev, struct mt76x02_dev, mt76); 908 struct mt76x02_txwi *txwi; 909 u8 *txwi_ptr; 910 911 if (!e->txwi) { 912 dev_kfree_skb_any(e->skb); 913 return; 914 } 915 916 mt76x02_mac_poll_tx_status(dev, false); 917 918 txwi_ptr = mt76_get_txwi_ptr(mdev, e->txwi); 919 txwi = (struct mt76x02_txwi *)txwi_ptr; 920 trace_mac_txdone(mdev, txwi->wcid, txwi->pktid); 921 922 mt76_tx_complete_skb(mdev, e->wcid, e->skb); 923 } 924 EXPORT_SYMBOL_GPL(mt76x02_tx_complete_skb); 925 926 void mt76x02_mac_set_rts_thresh(struct mt76x02_dev *dev, u32 val) 927 { 928 u32 data = 0; 929 930 if (val != ~0) 931 data = FIELD_PREP(MT_PROT_CFG_CTRL, 1) | 932 MT_PROT_CFG_RTS_THRESH; 933 934 mt76_rmw_field(dev, MT_TX_RTS_CFG, MT_TX_RTS_CFG_THRESH, val); 935 936 mt76_rmw(dev, MT_CCK_PROT_CFG, 937 MT_PROT_CFG_CTRL | MT_PROT_CFG_RTS_THRESH, data); 938 mt76_rmw(dev, MT_OFDM_PROT_CFG, 939 MT_PROT_CFG_CTRL | MT_PROT_CFG_RTS_THRESH, data); 940 } 941 942 void mt76x02_mac_set_tx_protection(struct mt76x02_dev *dev, bool legacy_prot, 943 int ht_mode) 944 { 945 int mode = ht_mode & IEEE80211_HT_OP_MODE_PROTECTION; 946 bool non_gf = !!(ht_mode & IEEE80211_HT_OP_MODE_NON_GF_STA_PRSNT); 947 u32 prot[6]; 948 u32 vht_prot[3]; 949 int i; 950 u16 rts_thr; 951 952 for (i = 0; i < ARRAY_SIZE(prot); i++) { 953 prot[i] = mt76_rr(dev, MT_CCK_PROT_CFG + i * 4); 954 prot[i] &= ~MT_PROT_CFG_CTRL; 955 if (i >= 2) 956 prot[i] &= ~MT_PROT_CFG_RATE; 957 } 958 959 for (i = 0; i < ARRAY_SIZE(vht_prot); i++) { 960 vht_prot[i] = mt76_rr(dev, MT_TX_PROT_CFG6 + i * 4); 961 vht_prot[i] &= ~(MT_PROT_CFG_CTRL | MT_PROT_CFG_RATE); 962 } 963 964 rts_thr = mt76_get_field(dev, MT_TX_RTS_CFG, MT_TX_RTS_CFG_THRESH); 965 966 if (rts_thr != 0xffff) 967 prot[0] |= MT_PROT_CTRL_RTS_CTS; 968 969 if (legacy_prot) { 970 prot[1] |= MT_PROT_CTRL_CTS2SELF; 971 972 prot[2] |= MT_PROT_RATE_CCK_11; 973 prot[3] |= MT_PROT_RATE_CCK_11; 974 prot[4] |= MT_PROT_RATE_CCK_11; 975 prot[5] |= MT_PROT_RATE_CCK_11; 976 977 vht_prot[0] |= MT_PROT_RATE_CCK_11; 978 vht_prot[1] |= MT_PROT_RATE_CCK_11; 979 vht_prot[2] |= MT_PROT_RATE_CCK_11; 980 } else { 981 if (rts_thr != 0xffff) 982 prot[1] |= MT_PROT_CTRL_RTS_CTS; 983 984 prot[2] |= MT_PROT_RATE_OFDM_24; 985 prot[3] |= MT_PROT_RATE_DUP_OFDM_24; 986 prot[4] |= MT_PROT_RATE_OFDM_24; 987 prot[5] |= MT_PROT_RATE_DUP_OFDM_24; 988 989 vht_prot[0] |= MT_PROT_RATE_OFDM_24; 990 vht_prot[1] |= MT_PROT_RATE_DUP_OFDM_24; 991 vht_prot[2] |= MT_PROT_RATE_SGI_OFDM_24; 992 } 993 994 switch (mode) { 995 case IEEE80211_HT_OP_MODE_PROTECTION_NONMEMBER: 996 case IEEE80211_HT_OP_MODE_PROTECTION_NONHT_MIXED: 997 prot[2] |= MT_PROT_CTRL_RTS_CTS; 998 prot[3] |= MT_PROT_CTRL_RTS_CTS; 999 prot[4] |= MT_PROT_CTRL_RTS_CTS; 1000 prot[5] |= MT_PROT_CTRL_RTS_CTS; 1001 vht_prot[0] |= MT_PROT_CTRL_RTS_CTS; 1002 vht_prot[1] |= MT_PROT_CTRL_RTS_CTS; 1003 vht_prot[2] |= MT_PROT_CTRL_RTS_CTS; 1004 break; 1005 case IEEE80211_HT_OP_MODE_PROTECTION_20MHZ: 1006 prot[3] |= MT_PROT_CTRL_RTS_CTS; 1007 prot[5] |= MT_PROT_CTRL_RTS_CTS; 1008 vht_prot[1] |= MT_PROT_CTRL_RTS_CTS; 1009 vht_prot[2] |= MT_PROT_CTRL_RTS_CTS; 1010 break; 1011 } 1012 1013 if (non_gf) { 1014 prot[4] |= MT_PROT_CTRL_RTS_CTS; 1015 prot[5] |= MT_PROT_CTRL_RTS_CTS; 1016 } 1017 1018 for (i = 0; i < ARRAY_SIZE(prot); i++) 1019 mt76_wr(dev, MT_CCK_PROT_CFG + i * 4, prot[i]); 1020 1021 for (i = 0; i < ARRAY_SIZE(vht_prot); i++) 1022 mt76_wr(dev, MT_TX_PROT_CFG6 + i * 4, vht_prot[i]); 1023 } 1024 1025 void mt76x02_update_channel(struct mt76_phy *mphy) 1026 { 1027 struct mt76x02_dev *dev = container_of(mphy->dev, struct mt76x02_dev, mt76); 1028 struct mt76_channel_state *state; 1029 1030 state = mphy->chan_state; 1031 state->cc_busy += mt76_rr(dev, MT_CH_BUSY); 1032 1033 spin_lock_bh(&dev->mt76.cc_lock); 1034 state->cc_tx += dev->tx_airtime; 1035 dev->tx_airtime = 0; 1036 spin_unlock_bh(&dev->mt76.cc_lock); 1037 } 1038 EXPORT_SYMBOL_GPL(mt76x02_update_channel); 1039 1040 static void mt76x02_check_mac_err(struct mt76x02_dev *dev) 1041 { 1042 u32 val = mt76_rr(dev, 0x10f4); 1043 1044 if (!(val & BIT(29)) || !(val & (BIT(7) | BIT(5)))) 1045 return; 1046 1047 dev_err(dev->mt76.dev, "mac specific condition occurred\n"); 1048 1049 mt76_set(dev, MT_MAC_SYS_CTRL, MT_MAC_SYS_CTRL_RESET_CSR); 1050 udelay(10); 1051 mt76_wr(dev, MT_MAC_SYS_CTRL, 1052 MT_MAC_SYS_CTRL_ENABLE_TX | MT_MAC_SYS_CTRL_ENABLE_RX); 1053 } 1054 1055 static void 1056 mt76x02_edcca_tx_enable(struct mt76x02_dev *dev, bool enable) 1057 { 1058 if (enable) { 1059 u32 data; 1060 1061 mt76_set(dev, MT_MAC_SYS_CTRL, MT_MAC_SYS_CTRL_ENABLE_TX); 1062 mt76_set(dev, MT_AUTO_RSP_CFG, MT_AUTO_RSP_EN); 1063 /* enable pa-lna */ 1064 data = mt76_rr(dev, MT_TX_PIN_CFG); 1065 data |= MT_TX_PIN_CFG_TXANT | 1066 MT_TX_PIN_CFG_RXANT | 1067 MT_TX_PIN_RFTR_EN | 1068 MT_TX_PIN_TRSW_EN; 1069 mt76_wr(dev, MT_TX_PIN_CFG, data); 1070 } else { 1071 mt76_clear(dev, MT_MAC_SYS_CTRL, MT_MAC_SYS_CTRL_ENABLE_TX); 1072 mt76_clear(dev, MT_AUTO_RSP_CFG, MT_AUTO_RSP_EN); 1073 /* disable pa-lna */ 1074 mt76_clear(dev, MT_TX_PIN_CFG, MT_TX_PIN_CFG_TXANT); 1075 mt76_clear(dev, MT_TX_PIN_CFG, MT_TX_PIN_CFG_RXANT); 1076 } 1077 dev->ed_tx_blocked = !enable; 1078 } 1079 1080 void mt76x02_edcca_init(struct mt76x02_dev *dev) 1081 { 1082 dev->ed_trigger = 0; 1083 dev->ed_silent = 0; 1084 1085 if (dev->ed_monitor) { 1086 struct ieee80211_channel *chan = dev->mphy.chandef.chan; 1087 u8 ed_th = chan->band == NL80211_BAND_5GHZ ? 0x0e : 0x20; 1088 1089 mt76_clear(dev, MT_TX_LINK_CFG, MT_TX_CFACK_EN); 1090 mt76_set(dev, MT_TXOP_CTRL_CFG, MT_TXOP_ED_CCA_EN); 1091 mt76_rmw(dev, MT_BBP(AGC, 2), GENMASK(15, 0), 1092 ed_th << 8 | ed_th); 1093 mt76_set(dev, MT_TXOP_HLDR_ET, MT_TXOP_HLDR_TX40M_BLK_EN); 1094 } else { 1095 mt76_set(dev, MT_TX_LINK_CFG, MT_TX_CFACK_EN); 1096 mt76_clear(dev, MT_TXOP_CTRL_CFG, MT_TXOP_ED_CCA_EN); 1097 if (is_mt76x2(dev)) { 1098 mt76_wr(dev, MT_BBP(AGC, 2), 0x00007070); 1099 mt76_set(dev, MT_TXOP_HLDR_ET, 1100 MT_TXOP_HLDR_TX40M_BLK_EN); 1101 } else { 1102 mt76_wr(dev, MT_BBP(AGC, 2), 0x003a6464); 1103 mt76_clear(dev, MT_TXOP_HLDR_ET, 1104 MT_TXOP_HLDR_TX40M_BLK_EN); 1105 } 1106 } 1107 mt76x02_edcca_tx_enable(dev, true); 1108 dev->ed_monitor_learning = true; 1109 1110 /* clear previous CCA timer value */ 1111 mt76_rr(dev, MT_ED_CCA_TIMER); 1112 dev->ed_time = ktime_get_boottime(); 1113 } 1114 EXPORT_SYMBOL_GPL(mt76x02_edcca_init); 1115 1116 #define MT_EDCCA_TH 92 1117 #define MT_EDCCA_BLOCK_TH 2 1118 #define MT_EDCCA_LEARN_TH 50 1119 #define MT_EDCCA_LEARN_CCA 180 1120 #define MT_EDCCA_LEARN_TIMEOUT (20 * HZ) 1121 1122 static void mt76x02_edcca_check(struct mt76x02_dev *dev) 1123 { 1124 ktime_t cur_time; 1125 u32 active, val, busy; 1126 1127 cur_time = ktime_get_boottime(); 1128 val = mt76_rr(dev, MT_ED_CCA_TIMER); 1129 1130 active = ktime_to_us(ktime_sub(cur_time, dev->ed_time)); 1131 dev->ed_time = cur_time; 1132 1133 busy = (val * 100) / active; 1134 busy = min_t(u32, busy, 100); 1135 1136 if (busy > MT_EDCCA_TH) { 1137 dev->ed_trigger++; 1138 dev->ed_silent = 0; 1139 } else { 1140 dev->ed_silent++; 1141 dev->ed_trigger = 0; 1142 } 1143 1144 if (dev->cal.agc_lowest_gain && 1145 dev->cal.false_cca > MT_EDCCA_LEARN_CCA && 1146 dev->ed_trigger > MT_EDCCA_LEARN_TH) { 1147 dev->ed_monitor_learning = false; 1148 dev->ed_trigger_timeout = jiffies + 20 * HZ; 1149 } else if (!dev->ed_monitor_learning && 1150 time_is_after_jiffies(dev->ed_trigger_timeout)) { 1151 dev->ed_monitor_learning = true; 1152 mt76x02_edcca_tx_enable(dev, true); 1153 } 1154 1155 if (dev->ed_monitor_learning) 1156 return; 1157 1158 if (dev->ed_trigger > MT_EDCCA_BLOCK_TH && !dev->ed_tx_blocked) 1159 mt76x02_edcca_tx_enable(dev, false); 1160 else if (dev->ed_silent > MT_EDCCA_BLOCK_TH && dev->ed_tx_blocked) 1161 mt76x02_edcca_tx_enable(dev, true); 1162 } 1163 1164 void mt76x02_mac_work(struct work_struct *work) 1165 { 1166 struct mt76x02_dev *dev = container_of(work, struct mt76x02_dev, 1167 mphy.mac_work.work); 1168 int i, idx; 1169 1170 mutex_lock(&dev->mt76.mutex); 1171 1172 mt76_update_survey(&dev->mphy); 1173 for (i = 0, idx = 0; i < 16; i++) { 1174 u32 val = mt76_rr(dev, MT_TX_AGG_CNT(i)); 1175 1176 dev->mt76.aggr_stats[idx++] += val & 0xffff; 1177 dev->mt76.aggr_stats[idx++] += val >> 16; 1178 } 1179 1180 if (!dev->mt76.beacon_mask) 1181 mt76x02_check_mac_err(dev); 1182 1183 if (dev->ed_monitor) 1184 mt76x02_edcca_check(dev); 1185 1186 mutex_unlock(&dev->mt76.mutex); 1187 1188 mt76_tx_status_check(&dev->mt76, NULL, false); 1189 1190 ieee80211_queue_delayed_work(mt76_hw(dev), &dev->mphy.mac_work, 1191 MT_MAC_WORK_INTERVAL); 1192 } 1193 1194 void mt76x02_mac_cc_reset(struct mt76x02_dev *dev) 1195 { 1196 dev->mphy.survey_time = ktime_get_boottime(); 1197 1198 mt76_wr(dev, MT_CH_TIME_CFG, 1199 MT_CH_TIME_CFG_TIMER_EN | 1200 MT_CH_TIME_CFG_TX_AS_BUSY | 1201 MT_CH_TIME_CFG_RX_AS_BUSY | 1202 MT_CH_TIME_CFG_NAV_AS_BUSY | 1203 MT_CH_TIME_CFG_EIFS_AS_BUSY | 1204 MT_CH_CCA_RC_EN | 1205 FIELD_PREP(MT_CH_TIME_CFG_CH_TIMER_CLR, 1)); 1206 1207 /* channel cycle counters read-and-clear */ 1208 mt76_rr(dev, MT_CH_BUSY); 1209 mt76_rr(dev, MT_CH_IDLE); 1210 } 1211 EXPORT_SYMBOL_GPL(mt76x02_mac_cc_reset); 1212 1213 void mt76x02_mac_set_bssid(struct mt76x02_dev *dev, u8 idx, const u8 *addr) 1214 { 1215 idx &= 7; 1216 mt76_wr(dev, MT_MAC_APC_BSSID_L(idx), get_unaligned_le32(addr)); 1217 mt76_rmw_field(dev, MT_MAC_APC_BSSID_H(idx), MT_MAC_APC_BSSID_H_ADDR, 1218 get_unaligned_le16(addr + 4)); 1219 } 1220