1 /*
2  * Copyright (C) 2016 Felix Fietkau <nbd@nbd.name>
3  * Copyright (C) 2018 Stanislaw Gruszka <stf_xl@wp.pl>
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  */
17 
18 #include "mt76x02.h"
19 #include "mt76x02_trace.h"
20 
21 static enum mt76x02_cipher_type
22 mt76x02_mac_get_key_info(struct ieee80211_key_conf *key, u8 *key_data)
23 {
24 	memset(key_data, 0, 32);
25 	if (!key)
26 		return MT_CIPHER_NONE;
27 
28 	if (key->keylen > 32)
29 		return MT_CIPHER_NONE;
30 
31 	memcpy(key_data, key->key, key->keylen);
32 
33 	switch (key->cipher) {
34 	case WLAN_CIPHER_SUITE_WEP40:
35 		return MT_CIPHER_WEP40;
36 	case WLAN_CIPHER_SUITE_WEP104:
37 		return MT_CIPHER_WEP104;
38 	case WLAN_CIPHER_SUITE_TKIP:
39 		return MT_CIPHER_TKIP;
40 	case WLAN_CIPHER_SUITE_CCMP:
41 		return MT_CIPHER_AES_CCMP;
42 	default:
43 		return MT_CIPHER_NONE;
44 	}
45 }
46 
47 int mt76x02_mac_shared_key_setup(struct mt76x02_dev *dev, u8 vif_idx,
48 				 u8 key_idx, struct ieee80211_key_conf *key)
49 {
50 	enum mt76x02_cipher_type cipher;
51 	u8 key_data[32];
52 	u32 val;
53 
54 	cipher = mt76x02_mac_get_key_info(key, key_data);
55 	if (cipher == MT_CIPHER_NONE && key)
56 		return -EOPNOTSUPP;
57 
58 	val = mt76_rr(dev, MT_SKEY_MODE(vif_idx));
59 	val &= ~(MT_SKEY_MODE_MASK << MT_SKEY_MODE_SHIFT(vif_idx, key_idx));
60 	val |= cipher << MT_SKEY_MODE_SHIFT(vif_idx, key_idx);
61 	mt76_wr(dev, MT_SKEY_MODE(vif_idx), val);
62 
63 	mt76_wr_copy(dev, MT_SKEY(vif_idx, key_idx), key_data,
64 		     sizeof(key_data));
65 
66 	return 0;
67 }
68 EXPORT_SYMBOL_GPL(mt76x02_mac_shared_key_setup);
69 
70 int mt76x02_mac_wcid_set_key(struct mt76x02_dev *dev, u8 idx,
71 			     struct ieee80211_key_conf *key)
72 {
73 	enum mt76x02_cipher_type cipher;
74 	u8 key_data[32];
75 	u8 iv_data[8];
76 
77 	cipher = mt76x02_mac_get_key_info(key, key_data);
78 	if (cipher == MT_CIPHER_NONE && key)
79 		return -EOPNOTSUPP;
80 
81 	mt76_wr_copy(dev, MT_WCID_KEY(idx), key_data, sizeof(key_data));
82 	mt76_rmw_field(dev, MT_WCID_ATTR(idx), MT_WCID_ATTR_PKEY_MODE, cipher);
83 
84 	memset(iv_data, 0, sizeof(iv_data));
85 	if (key) {
86 		mt76_rmw_field(dev, MT_WCID_ATTR(idx), MT_WCID_ATTR_PAIRWISE,
87 			       !!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE));
88 		iv_data[3] = key->keyidx << 6;
89 		if (cipher >= MT_CIPHER_TKIP)
90 			iv_data[3] |= 0x20;
91 	}
92 
93 	mt76_wr_copy(dev, MT_WCID_IV(idx), iv_data, sizeof(iv_data));
94 
95 	return 0;
96 }
97 
98 void mt76x02_mac_wcid_setup(struct mt76x02_dev *dev, u8 idx,
99 			    u8 vif_idx, u8 *mac)
100 {
101 	struct mt76_wcid_addr addr = {};
102 	u32 attr;
103 
104 	attr = FIELD_PREP(MT_WCID_ATTR_BSS_IDX, vif_idx & 7) |
105 	       FIELD_PREP(MT_WCID_ATTR_BSS_IDX_EXT, !!(vif_idx & 8));
106 
107 	mt76_wr(dev, MT_WCID_ATTR(idx), attr);
108 
109 	if (idx >= 128)
110 		return;
111 
112 	if (mac)
113 		memcpy(addr.macaddr, mac, ETH_ALEN);
114 
115 	mt76_wr_copy(dev, MT_WCID_ADDR(idx), &addr, sizeof(addr));
116 }
117 EXPORT_SYMBOL_GPL(mt76x02_mac_wcid_setup);
118 
119 void mt76x02_mac_wcid_set_drop(struct mt76x02_dev *dev, u8 idx, bool drop)
120 {
121 	u32 val = mt76_rr(dev, MT_WCID_DROP(idx));
122 	u32 bit = MT_WCID_DROP_MASK(idx);
123 
124 	/* prevent unnecessary writes */
125 	if ((val & bit) != (bit * drop))
126 		mt76_wr(dev, MT_WCID_DROP(idx), (val & ~bit) | (bit * drop));
127 }
128 
129 static __le16
130 mt76x02_mac_tx_rate_val(struct mt76x02_dev *dev,
131 			const struct ieee80211_tx_rate *rate, u8 *nss_val)
132 {
133 	u8 phy, rate_idx, nss, bw = 0;
134 	u16 rateval;
135 
136 	if (rate->flags & IEEE80211_TX_RC_VHT_MCS) {
137 		rate_idx = rate->idx;
138 		nss = 1 + (rate->idx >> 4);
139 		phy = MT_PHY_TYPE_VHT;
140 		if (rate->flags & IEEE80211_TX_RC_80_MHZ_WIDTH)
141 			bw = 2;
142 		else if (rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
143 			bw = 1;
144 	} else if (rate->flags & IEEE80211_TX_RC_MCS) {
145 		rate_idx = rate->idx;
146 		nss = 1 + (rate->idx >> 3);
147 		phy = MT_PHY_TYPE_HT;
148 		if (rate->flags & IEEE80211_TX_RC_GREEN_FIELD)
149 			phy = MT_PHY_TYPE_HT_GF;
150 		if (rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
151 			bw = 1;
152 	} else {
153 		const struct ieee80211_rate *r;
154 		int band = dev->mt76.chandef.chan->band;
155 		u16 val;
156 
157 		r = &dev->mt76.hw->wiphy->bands[band]->bitrates[rate->idx];
158 		if (rate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
159 			val = r->hw_value_short;
160 		else
161 			val = r->hw_value;
162 
163 		phy = val >> 8;
164 		rate_idx = val & 0xff;
165 		nss = 1;
166 	}
167 
168 	rateval = FIELD_PREP(MT_RXWI_RATE_INDEX, rate_idx);
169 	rateval |= FIELD_PREP(MT_RXWI_RATE_PHY, phy);
170 	rateval |= FIELD_PREP(MT_RXWI_RATE_BW, bw);
171 	if (rate->flags & IEEE80211_TX_RC_SHORT_GI)
172 		rateval |= MT_RXWI_RATE_SGI;
173 
174 	*nss_val = nss;
175 	return cpu_to_le16(rateval);
176 }
177 
178 void mt76x02_mac_wcid_set_rate(struct mt76x02_dev *dev, struct mt76_wcid *wcid,
179 			       const struct ieee80211_tx_rate *rate)
180 {
181 	spin_lock_bh(&dev->mt76.lock);
182 	wcid->tx_rate = mt76x02_mac_tx_rate_val(dev, rate, &wcid->tx_rate_nss);
183 	wcid->tx_rate_set = true;
184 	spin_unlock_bh(&dev->mt76.lock);
185 }
186 
187 void mt76x02_mac_set_short_preamble(struct mt76x02_dev *dev, bool enable)
188 {
189 	if (enable)
190 		mt76_set(dev, MT_AUTO_RSP_CFG, MT_AUTO_RSP_PREAMB_SHORT);
191 	else
192 		mt76_clear(dev, MT_AUTO_RSP_CFG, MT_AUTO_RSP_PREAMB_SHORT);
193 }
194 
195 bool mt76x02_mac_load_tx_status(struct mt76x02_dev *dev,
196 				struct mt76x02_tx_status *stat)
197 {
198 	u32 stat1, stat2;
199 
200 	stat2 = mt76_rr(dev, MT_TX_STAT_FIFO_EXT);
201 	stat1 = mt76_rr(dev, MT_TX_STAT_FIFO);
202 
203 	stat->valid = !!(stat1 & MT_TX_STAT_FIFO_VALID);
204 	if (!stat->valid)
205 		return false;
206 
207 	stat->success = !!(stat1 & MT_TX_STAT_FIFO_SUCCESS);
208 	stat->aggr = !!(stat1 & MT_TX_STAT_FIFO_AGGR);
209 	stat->ack_req = !!(stat1 & MT_TX_STAT_FIFO_ACKREQ);
210 	stat->wcid = FIELD_GET(MT_TX_STAT_FIFO_WCID, stat1);
211 	stat->rate = FIELD_GET(MT_TX_STAT_FIFO_RATE, stat1);
212 
213 	stat->retry = FIELD_GET(MT_TX_STAT_FIFO_EXT_RETRY, stat2);
214 	stat->pktid = FIELD_GET(MT_TX_STAT_FIFO_EXT_PKTID, stat2);
215 
216 	trace_mac_txstat_fetch(dev, stat);
217 
218 	return true;
219 }
220 
221 static int
222 mt76x02_mac_process_tx_rate(struct ieee80211_tx_rate *txrate, u16 rate,
223 			   enum nl80211_band band)
224 {
225 	u8 idx = FIELD_GET(MT_RXWI_RATE_INDEX, rate);
226 
227 	txrate->idx = 0;
228 	txrate->flags = 0;
229 	txrate->count = 1;
230 
231 	switch (FIELD_GET(MT_RXWI_RATE_PHY, rate)) {
232 	case MT_PHY_TYPE_OFDM:
233 		if (band == NL80211_BAND_2GHZ)
234 			idx += 4;
235 
236 		txrate->idx = idx;
237 		return 0;
238 	case MT_PHY_TYPE_CCK:
239 		if (idx >= 8)
240 			idx -= 8;
241 
242 		txrate->idx = idx;
243 		return 0;
244 	case MT_PHY_TYPE_HT_GF:
245 		txrate->flags |= IEEE80211_TX_RC_GREEN_FIELD;
246 		/* fall through */
247 	case MT_PHY_TYPE_HT:
248 		txrate->flags |= IEEE80211_TX_RC_MCS;
249 		txrate->idx = idx;
250 		break;
251 	case MT_PHY_TYPE_VHT:
252 		txrate->flags |= IEEE80211_TX_RC_VHT_MCS;
253 		txrate->idx = idx;
254 		break;
255 	default:
256 		return -EINVAL;
257 	}
258 
259 	switch (FIELD_GET(MT_RXWI_RATE_BW, rate)) {
260 	case MT_PHY_BW_20:
261 		break;
262 	case MT_PHY_BW_40:
263 		txrate->flags |= IEEE80211_TX_RC_40_MHZ_WIDTH;
264 		break;
265 	case MT_PHY_BW_80:
266 		txrate->flags |= IEEE80211_TX_RC_80_MHZ_WIDTH;
267 		break;
268 	default:
269 		return -EINVAL;
270 	}
271 
272 	if (rate & MT_RXWI_RATE_SGI)
273 		txrate->flags |= IEEE80211_TX_RC_SHORT_GI;
274 
275 	return 0;
276 }
277 
278 void mt76x02_mac_write_txwi(struct mt76x02_dev *dev, struct mt76x02_txwi *txwi,
279 			    struct sk_buff *skb, struct mt76_wcid *wcid,
280 			    struct ieee80211_sta *sta, int len)
281 {
282 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
283 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
284 	struct ieee80211_tx_rate *rate = &info->control.rates[0];
285 	struct ieee80211_key_conf *key = info->control.hw_key;
286 	u16 rate_ht_mask = FIELD_PREP(MT_RXWI_RATE_PHY, BIT(1) | BIT(2));
287 	u16 txwi_flags = 0;
288 	u8 nss;
289 	s8 txpwr_adj, max_txpwr_adj;
290 	u8 ccmp_pn[8], nstreams = dev->mt76.chainmask & 0xf;
291 
292 	memset(txwi, 0, sizeof(*txwi));
293 
294 	if (!info->control.hw_key && wcid && wcid->hw_key_idx != 0xff &&
295 	    ieee80211_has_protected(hdr->frame_control)) {
296 		wcid = NULL;
297 		ieee80211_get_tx_rates(info->control.vif, sta, skb,
298 		                       info->control.rates, 1);
299 	}
300 
301 	if (wcid)
302 		txwi->wcid = wcid->idx;
303 	else
304 		txwi->wcid = 0xff;
305 
306 	if (wcid && wcid->sw_iv && key) {
307 		u64 pn = atomic64_inc_return(&key->tx_pn);
308 		ccmp_pn[0] = pn;
309 		ccmp_pn[1] = pn >> 8;
310 		ccmp_pn[2] = 0;
311 		ccmp_pn[3] = 0x20 | (key->keyidx << 6);
312 		ccmp_pn[4] = pn >> 16;
313 		ccmp_pn[5] = pn >> 24;
314 		ccmp_pn[6] = pn >> 32;
315 		ccmp_pn[7] = pn >> 40;
316 		txwi->iv = *((__le32 *)&ccmp_pn[0]);
317 		txwi->eiv = *((__le32 *)&ccmp_pn[4]);
318 	}
319 
320 	spin_lock_bh(&dev->mt76.lock);
321 	if (wcid && (rate->idx < 0 || !rate->count)) {
322 		txwi->rate = wcid->tx_rate;
323 		max_txpwr_adj = wcid->max_txpwr_adj;
324 		nss = wcid->tx_rate_nss;
325 	} else {
326 		txwi->rate = mt76x02_mac_tx_rate_val(dev, rate, &nss);
327 		max_txpwr_adj = mt76x02_tx_get_max_txpwr_adj(dev, rate);
328 	}
329 	spin_unlock_bh(&dev->mt76.lock);
330 
331 	txpwr_adj = mt76x02_tx_get_txpwr_adj(dev, dev->mt76.txpower_conf,
332 					     max_txpwr_adj);
333 	txwi->ctl2 = FIELD_PREP(MT_TX_PWR_ADJ, txpwr_adj);
334 
335 	if (nstreams > 1 && mt76_rev(&dev->mt76) >= MT76XX_REV_E4)
336 		txwi->txstream = 0x13;
337 	else if (nstreams > 1 && mt76_rev(&dev->mt76) >= MT76XX_REV_E3 &&
338 		 !(txwi->rate & cpu_to_le16(rate_ht_mask)))
339 		txwi->txstream = 0x93;
340 
341 	if (is_mt76x2(dev) && (info->flags & IEEE80211_TX_CTL_LDPC))
342 		txwi->rate |= cpu_to_le16(MT_RXWI_RATE_LDPC);
343 	if ((info->flags & IEEE80211_TX_CTL_STBC) && nss == 1)
344 		txwi->rate |= cpu_to_le16(MT_RXWI_RATE_STBC);
345 	if (nss > 1 && sta && sta->smps_mode == IEEE80211_SMPS_DYNAMIC)
346 		txwi_flags |= MT_TXWI_FLAGS_MMPS;
347 	if (!(info->flags & IEEE80211_TX_CTL_NO_ACK))
348 		txwi->ack_ctl |= MT_TXWI_ACK_CTL_REQ;
349 	if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ)
350 		txwi->ack_ctl |= MT_TXWI_ACK_CTL_NSEQ;
351 	if ((info->flags & IEEE80211_TX_CTL_AMPDU) && sta) {
352 		u8 ba_size = IEEE80211_MIN_AMPDU_BUF;
353 
354 		ba_size <<= sta->ht_cap.ampdu_factor;
355 		ba_size = min_t(int, 63, ba_size - 1);
356 		if (info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE)
357 			ba_size = 0;
358 		txwi->ack_ctl |= FIELD_PREP(MT_TXWI_ACK_CTL_BA_WINDOW, ba_size);
359 
360 		txwi_flags |= MT_TXWI_FLAGS_AMPDU |
361 			 FIELD_PREP(MT_TXWI_FLAGS_MPDU_DENSITY,
362 				    sta->ht_cap.ampdu_density);
363 	}
364 
365 	if (ieee80211_is_probe_resp(hdr->frame_control) ||
366 	    ieee80211_is_beacon(hdr->frame_control))
367 		txwi_flags |= MT_TXWI_FLAGS_TS;
368 
369 	txwi->flags |= cpu_to_le16(txwi_flags);
370 	txwi->len_ctl = cpu_to_le16(len);
371 }
372 EXPORT_SYMBOL_GPL(mt76x02_mac_write_txwi);
373 
374 static void
375 mt76x02_mac_fill_tx_status(struct mt76x02_dev *dev,
376 			   struct ieee80211_tx_info *info,
377 			   struct mt76x02_tx_status *st, int n_frames)
378 {
379 	struct ieee80211_tx_rate *rate = info->status.rates;
380 	int cur_idx, last_rate;
381 	int i;
382 
383 	if (!n_frames)
384 		return;
385 
386 	last_rate = min_t(int, st->retry, IEEE80211_TX_MAX_RATES - 1);
387 	mt76x02_mac_process_tx_rate(&rate[last_rate], st->rate,
388 				    dev->mt76.chandef.chan->band);
389 	if (last_rate < IEEE80211_TX_MAX_RATES - 1)
390 		rate[last_rate + 1].idx = -1;
391 
392 	cur_idx = rate[last_rate].idx + last_rate;
393 	for (i = 0; i <= last_rate; i++) {
394 		rate[i].flags = rate[last_rate].flags;
395 		rate[i].idx = max_t(int, 0, cur_idx - i);
396 		rate[i].count = 1;
397 	}
398 	rate[last_rate].count = st->retry + 1 - last_rate;
399 
400 	info->status.ampdu_len = n_frames;
401 	info->status.ampdu_ack_len = st->success ? n_frames : 0;
402 
403 	if (st->aggr)
404 		info->flags |= IEEE80211_TX_CTL_AMPDU |
405 			       IEEE80211_TX_STAT_AMPDU;
406 
407 	if (!st->ack_req)
408 		info->flags |= IEEE80211_TX_CTL_NO_ACK;
409 	else if (st->success)
410 		info->flags |= IEEE80211_TX_STAT_ACK;
411 }
412 
413 void mt76x02_send_tx_status(struct mt76x02_dev *dev,
414 			    struct mt76x02_tx_status *stat, u8 *update)
415 {
416 	struct ieee80211_tx_info info = {};
417 	struct ieee80211_tx_status status = {
418 		.info = &info
419 	};
420 	struct mt76_wcid *wcid = NULL;
421 	struct mt76x02_sta *msta = NULL;
422 	struct mt76_dev *mdev = &dev->mt76;
423 	struct sk_buff_head list;
424 
425 	if (stat->pktid == MT_PACKET_ID_NO_ACK)
426 		return;
427 
428 	rcu_read_lock();
429 	mt76_tx_status_lock(mdev, &list);
430 
431 	if (stat->wcid < ARRAY_SIZE(dev->mt76.wcid))
432 		wcid = rcu_dereference(dev->mt76.wcid[stat->wcid]);
433 
434 	if (wcid && wcid->sta) {
435 		void *priv;
436 
437 		priv = msta = container_of(wcid, struct mt76x02_sta, wcid);
438 		status.sta = container_of(priv, struct ieee80211_sta,
439 					  drv_priv);
440 	}
441 
442 	if (wcid) {
443 		if (stat->pktid >= MT_PACKET_ID_FIRST)
444 			status.skb = mt76_tx_status_skb_get(mdev, wcid,
445 							    stat->pktid, &list);
446 		if (status.skb)
447 			status.info = IEEE80211_SKB_CB(status.skb);
448 	}
449 
450 	if (msta && stat->aggr && !status.skb) {
451 		u32 stat_val, stat_cache;
452 
453 		stat_val = stat->rate;
454 		stat_val |= ((u32) stat->retry) << 16;
455 		stat_cache = msta->status.rate;
456 		stat_cache |= ((u32) msta->status.retry) << 16;
457 
458 		if (*update == 0 && stat_val == stat_cache &&
459 		    stat->wcid == msta->status.wcid && msta->n_frames < 32) {
460 			msta->n_frames++;
461 			goto out;
462 		}
463 
464 		mt76x02_mac_fill_tx_status(dev, status.info, &msta->status,
465 					   msta->n_frames);
466 
467 		msta->status = *stat;
468 		msta->n_frames = 1;
469 		*update = 0;
470 	} else {
471 		mt76x02_mac_fill_tx_status(dev, status.info, stat, 1);
472 		*update = 1;
473 	}
474 
475 	if (status.skb)
476 		mt76_tx_status_skb_done(mdev, status.skb, &list);
477 	else
478 		ieee80211_tx_status_ext(mt76_hw(dev), &status);
479 
480 out:
481 	mt76_tx_status_unlock(mdev, &list);
482 	rcu_read_unlock();
483 }
484 
485 static int
486 mt76x02_mac_process_rate(struct mt76x02_dev *dev,
487 			 struct mt76_rx_status *status,
488 			 u16 rate)
489 {
490 	u8 idx = FIELD_GET(MT_RXWI_RATE_INDEX, rate);
491 
492 	switch (FIELD_GET(MT_RXWI_RATE_PHY, rate)) {
493 	case MT_PHY_TYPE_OFDM:
494 		if (idx >= 8)
495 			idx = 0;
496 
497 		if (status->band == NL80211_BAND_2GHZ)
498 			idx += 4;
499 
500 		status->rate_idx = idx;
501 		return 0;
502 	case MT_PHY_TYPE_CCK:
503 		if (idx >= 8) {
504 			idx -= 8;
505 			status->enc_flags |= RX_ENC_FLAG_SHORTPRE;
506 		}
507 
508 		if (idx >= 4)
509 			idx = 0;
510 
511 		status->rate_idx = idx;
512 		return 0;
513 	case MT_PHY_TYPE_HT_GF:
514 		status->enc_flags |= RX_ENC_FLAG_HT_GF;
515 		/* fall through */
516 	case MT_PHY_TYPE_HT:
517 		status->encoding = RX_ENC_HT;
518 		status->rate_idx = idx;
519 		break;
520 	case MT_PHY_TYPE_VHT: {
521 		u8 n_rxstream = dev->mt76.chainmask & 0xf;
522 
523 		status->encoding = RX_ENC_VHT;
524 		status->rate_idx = FIELD_GET(MT_RATE_INDEX_VHT_IDX, idx);
525 		status->nss = min_t(u8, n_rxstream,
526 				    FIELD_GET(MT_RATE_INDEX_VHT_NSS, idx) + 1);
527 		break;
528 	}
529 	default:
530 		return -EINVAL;
531 	}
532 
533 	if (rate & MT_RXWI_RATE_LDPC)
534 		status->enc_flags |= RX_ENC_FLAG_LDPC;
535 
536 	if (rate & MT_RXWI_RATE_SGI)
537 		status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
538 
539 	if (rate & MT_RXWI_RATE_STBC)
540 		status->enc_flags |= 1 << RX_ENC_FLAG_STBC_SHIFT;
541 
542 	switch (FIELD_GET(MT_RXWI_RATE_BW, rate)) {
543 	case MT_PHY_BW_20:
544 		break;
545 	case MT_PHY_BW_40:
546 		status->bw = RATE_INFO_BW_40;
547 		break;
548 	case MT_PHY_BW_80:
549 		status->bw = RATE_INFO_BW_80;
550 		break;
551 	default:
552 		break;
553 	}
554 
555 	return 0;
556 }
557 
558 void mt76x02_mac_setaddr(struct mt76x02_dev *dev, const u8 *addr)
559 {
560 	static const u8 null_addr[ETH_ALEN] = {};
561 	int i;
562 
563 	ether_addr_copy(dev->mt76.macaddr, addr);
564 
565 	if (!is_valid_ether_addr(dev->mt76.macaddr)) {
566 		eth_random_addr(dev->mt76.macaddr);
567 		dev_info(dev->mt76.dev,
568 			 "Invalid MAC address, using random address %pM\n",
569 			 dev->mt76.macaddr);
570 	}
571 
572 	mt76_wr(dev, MT_MAC_ADDR_DW0, get_unaligned_le32(dev->mt76.macaddr));
573 	mt76_wr(dev, MT_MAC_ADDR_DW1,
574 		get_unaligned_le16(dev->mt76.macaddr + 4) |
575 		FIELD_PREP(MT_MAC_ADDR_DW1_U2ME_MASK, 0xff));
576 
577 	mt76_wr(dev, MT_MAC_BSSID_DW0,
578 		get_unaligned_le32(dev->mt76.macaddr));
579 	mt76_wr(dev, MT_MAC_BSSID_DW1,
580 		get_unaligned_le16(dev->mt76.macaddr + 4) |
581 		FIELD_PREP(MT_MAC_BSSID_DW1_MBSS_MODE, 3) | /* 8 APs + 8 STAs */
582 		MT_MAC_BSSID_DW1_MBSS_LOCAL_BIT);
583 
584 	for (i = 0; i < 16; i++)
585 		mt76x02_mac_set_bssid(dev, i, null_addr);
586 }
587 EXPORT_SYMBOL_GPL(mt76x02_mac_setaddr);
588 
589 static int
590 mt76x02_mac_get_rssi(struct mt76x02_dev *dev, s8 rssi, int chain)
591 {
592 	struct mt76x02_rx_freq_cal *cal = &dev->cal.rx;
593 
594 	rssi += cal->rssi_offset[chain];
595 	rssi -= cal->lna_gain;
596 
597 	return rssi;
598 }
599 
600 int mt76x02_mac_process_rx(struct mt76x02_dev *dev, struct sk_buff *skb,
601 			   void *rxi)
602 {
603 	struct mt76_rx_status *status = (struct mt76_rx_status *) skb->cb;
604 	struct mt76x02_rxwi *rxwi = rxi;
605 	struct mt76x02_sta *sta;
606 	u32 rxinfo = le32_to_cpu(rxwi->rxinfo);
607 	u32 ctl = le32_to_cpu(rxwi->ctl);
608 	u16 rate = le16_to_cpu(rxwi->rate);
609 	u16 tid_sn = le16_to_cpu(rxwi->tid_sn);
610 	bool unicast = rxwi->rxinfo & cpu_to_le32(MT_RXINFO_UNICAST);
611 	int pad_len = 0, nstreams = dev->mt76.chainmask & 0xf;
612 	s8 signal;
613 	u8 pn_len;
614 	u8 wcid;
615 	int len;
616 
617 	if (!test_bit(MT76_STATE_RUNNING, &dev->mt76.state))
618 		return -EINVAL;
619 
620 	if (rxinfo & MT_RXINFO_L2PAD)
621 		pad_len += 2;
622 
623 	if (rxinfo & MT_RXINFO_DECRYPT) {
624 		status->flag |= RX_FLAG_DECRYPTED;
625 		status->flag |= RX_FLAG_MMIC_STRIPPED;
626 		status->flag |= RX_FLAG_MIC_STRIPPED;
627 		status->flag |= RX_FLAG_IV_STRIPPED;
628 	}
629 
630 	wcid = FIELD_GET(MT_RXWI_CTL_WCID, ctl);
631 	sta = mt76x02_rx_get_sta(&dev->mt76, wcid);
632 	status->wcid = mt76x02_rx_get_sta_wcid(sta, unicast);
633 
634 	len = FIELD_GET(MT_RXWI_CTL_MPDU_LEN, ctl);
635 	pn_len = FIELD_GET(MT_RXINFO_PN_LEN, rxinfo);
636 	if (pn_len) {
637 		int offset = ieee80211_get_hdrlen_from_skb(skb) + pad_len;
638 		u8 *data = skb->data + offset;
639 
640 		status->iv[0] = data[7];
641 		status->iv[1] = data[6];
642 		status->iv[2] = data[5];
643 		status->iv[3] = data[4];
644 		status->iv[4] = data[1];
645 		status->iv[5] = data[0];
646 
647 		/*
648 		 * Driver CCMP validation can't deal with fragments.
649 		 * Let mac80211 take care of it.
650 		 */
651 		if (rxinfo & MT_RXINFO_FRAG) {
652 			status->flag &= ~RX_FLAG_IV_STRIPPED;
653 		} else {
654 			pad_len += pn_len << 2;
655 			len -= pn_len << 2;
656 		}
657 	}
658 
659 	mt76x02_remove_hdr_pad(skb, pad_len);
660 
661 	if ((rxinfo & MT_RXINFO_BA) && !(rxinfo & MT_RXINFO_NULL))
662 		status->aggr = true;
663 
664 	if (WARN_ON_ONCE(len > skb->len))
665 		return -EINVAL;
666 
667 	pskb_trim(skb, len);
668 
669 	status->chains = BIT(0);
670 	signal = mt76x02_mac_get_rssi(dev, rxwi->rssi[0], 0);
671 	status->chain_signal[0] = signal;
672 	if (nstreams > 1) {
673 		status->chains |= BIT(1);
674 		status->chain_signal[1] = mt76x02_mac_get_rssi(dev,
675 							       rxwi->rssi[1],
676 							       1);
677 		signal = max_t(s8, signal, status->chain_signal[1]);
678 	}
679 	status->signal = signal;
680 	status->freq = dev->mt76.chandef.chan->center_freq;
681 	status->band = dev->mt76.chandef.chan->band;
682 
683 	status->tid = FIELD_GET(MT_RXWI_TID, tid_sn);
684 	status->seqno = FIELD_GET(MT_RXWI_SN, tid_sn);
685 
686 	return mt76x02_mac_process_rate(dev, status, rate);
687 }
688 
689 void mt76x02_mac_poll_tx_status(struct mt76x02_dev *dev, bool irq)
690 {
691 	struct mt76x02_tx_status stat = {};
692 	unsigned long flags;
693 	u8 update = 1;
694 	bool ret;
695 
696 	if (!test_bit(MT76_STATE_RUNNING, &dev->mt76.state))
697 		return;
698 
699 	trace_mac_txstat_poll(dev);
700 
701 	while (!irq || !kfifo_is_full(&dev->txstatus_fifo)) {
702 		spin_lock_irqsave(&dev->mt76.mmio.irq_lock, flags);
703 		ret = mt76x02_mac_load_tx_status(dev, &stat);
704 		spin_unlock_irqrestore(&dev->mt76.mmio.irq_lock, flags);
705 
706 		if (!ret)
707 			break;
708 
709 		if (!irq) {
710 			mt76x02_send_tx_status(dev, &stat, &update);
711 			continue;
712 		}
713 
714 		kfifo_put(&dev->txstatus_fifo, stat);
715 	}
716 }
717 
718 void mt76x02_tx_complete_skb(struct mt76_dev *mdev, struct mt76_queue *q,
719 			     struct mt76_queue_entry *e, bool flush)
720 {
721 	struct mt76x02_dev *dev = container_of(mdev, struct mt76x02_dev, mt76);
722 	struct mt76x02_txwi *txwi;
723 
724 	if (!e->txwi) {
725 		dev_kfree_skb_any(e->skb);
726 		return;
727 	}
728 
729 	mt76x02_mac_poll_tx_status(dev, false);
730 
731 	txwi = (struct mt76x02_txwi *) &e->txwi->txwi;
732 	trace_mac_txdone_add(dev, txwi->wcid, txwi->pktid);
733 
734 	mt76_tx_complete_skb(mdev, e->skb);
735 }
736 EXPORT_SYMBOL_GPL(mt76x02_tx_complete_skb);
737 
738 void mt76x02_mac_set_rts_thresh(struct mt76x02_dev *dev, u32 val)
739 {
740 	u32 data = 0;
741 
742 	if (val != ~0)
743 		data = FIELD_PREP(MT_PROT_CFG_CTRL, 1) |
744 		       MT_PROT_CFG_RTS_THRESH;
745 
746 	mt76_rmw_field(dev, MT_TX_RTS_CFG, MT_TX_RTS_CFG_THRESH, val);
747 
748 	mt76_rmw(dev, MT_CCK_PROT_CFG,
749 		 MT_PROT_CFG_CTRL | MT_PROT_CFG_RTS_THRESH, data);
750 	mt76_rmw(dev, MT_OFDM_PROT_CFG,
751 		 MT_PROT_CFG_CTRL | MT_PROT_CFG_RTS_THRESH, data);
752 }
753 
754 void mt76x02_mac_set_tx_protection(struct mt76x02_dev *dev, bool legacy_prot,
755 				   int ht_mode)
756 {
757 	int mode = ht_mode & IEEE80211_HT_OP_MODE_PROTECTION;
758 	bool non_gf = !!(ht_mode & IEEE80211_HT_OP_MODE_NON_GF_STA_PRSNT);
759 	u32 prot[6];
760 	u32 vht_prot[3];
761 	int i;
762 	u16 rts_thr;
763 
764 	for (i = 0; i < ARRAY_SIZE(prot); i++) {
765 		prot[i] = mt76_rr(dev, MT_CCK_PROT_CFG + i * 4);
766 		prot[i] &= ~MT_PROT_CFG_CTRL;
767 		if (i >= 2)
768 			prot[i] &= ~MT_PROT_CFG_RATE;
769 	}
770 
771 	for (i = 0; i < ARRAY_SIZE(vht_prot); i++) {
772 		vht_prot[i] = mt76_rr(dev, MT_TX_PROT_CFG6 + i * 4);
773 		vht_prot[i] &= ~(MT_PROT_CFG_CTRL | MT_PROT_CFG_RATE);
774 	}
775 
776 	rts_thr = mt76_get_field(dev, MT_TX_RTS_CFG, MT_TX_RTS_CFG_THRESH);
777 
778 	if (rts_thr != 0xffff)
779 		prot[0] |= MT_PROT_CTRL_RTS_CTS;
780 
781 	if (legacy_prot) {
782 		prot[1] |= MT_PROT_CTRL_CTS2SELF;
783 
784 		prot[2] |= MT_PROT_RATE_CCK_11;
785 		prot[3] |= MT_PROT_RATE_CCK_11;
786 		prot[4] |= MT_PROT_RATE_CCK_11;
787 		prot[5] |= MT_PROT_RATE_CCK_11;
788 
789 		vht_prot[0] |= MT_PROT_RATE_CCK_11;
790 		vht_prot[1] |= MT_PROT_RATE_CCK_11;
791 		vht_prot[2] |= MT_PROT_RATE_CCK_11;
792 	} else {
793 		if (rts_thr != 0xffff)
794 			prot[1] |= MT_PROT_CTRL_RTS_CTS;
795 
796 		prot[2] |= MT_PROT_RATE_OFDM_24;
797 		prot[3] |= MT_PROT_RATE_DUP_OFDM_24;
798 		prot[4] |= MT_PROT_RATE_OFDM_24;
799 		prot[5] |= MT_PROT_RATE_DUP_OFDM_24;
800 
801 		vht_prot[0] |= MT_PROT_RATE_OFDM_24;
802 		vht_prot[1] |= MT_PROT_RATE_DUP_OFDM_24;
803 		vht_prot[2] |= MT_PROT_RATE_SGI_OFDM_24;
804 	}
805 
806 	switch (mode) {
807 	case IEEE80211_HT_OP_MODE_PROTECTION_NONMEMBER:
808 	case IEEE80211_HT_OP_MODE_PROTECTION_NONHT_MIXED:
809 		prot[2] |= MT_PROT_CTRL_RTS_CTS;
810 		prot[3] |= MT_PROT_CTRL_RTS_CTS;
811 		prot[4] |= MT_PROT_CTRL_RTS_CTS;
812 		prot[5] |= MT_PROT_CTRL_RTS_CTS;
813 		vht_prot[0] |= MT_PROT_CTRL_RTS_CTS;
814 		vht_prot[1] |= MT_PROT_CTRL_RTS_CTS;
815 		vht_prot[2] |= MT_PROT_CTRL_RTS_CTS;
816 		break;
817 	case IEEE80211_HT_OP_MODE_PROTECTION_20MHZ:
818 		prot[3] |= MT_PROT_CTRL_RTS_CTS;
819 		prot[5] |= MT_PROT_CTRL_RTS_CTS;
820 		vht_prot[1] |= MT_PROT_CTRL_RTS_CTS;
821 		vht_prot[2] |= MT_PROT_CTRL_RTS_CTS;
822 		break;
823 	}
824 
825 	if (non_gf) {
826 		prot[4] |= MT_PROT_CTRL_RTS_CTS;
827 		prot[5] |= MT_PROT_CTRL_RTS_CTS;
828 	}
829 
830 	for (i = 0; i < ARRAY_SIZE(prot); i++)
831 		mt76_wr(dev, MT_CCK_PROT_CFG + i * 4, prot[i]);
832 
833 	for (i = 0; i < ARRAY_SIZE(vht_prot); i++)
834 		mt76_wr(dev, MT_TX_PROT_CFG6 + i * 4, vht_prot[i]);
835 }
836 
837 void mt76x02_update_channel(struct mt76_dev *mdev)
838 {
839 	struct mt76x02_dev *dev = container_of(mdev, struct mt76x02_dev, mt76);
840 	struct mt76_channel_state *state;
841 	u32 active, busy;
842 
843 	state = mt76_channel_state(&dev->mt76, dev->mt76.chandef.chan);
844 
845 	busy = mt76_rr(dev, MT_CH_BUSY);
846 	active = busy + mt76_rr(dev, MT_CH_IDLE);
847 
848 	spin_lock_bh(&dev->mt76.cc_lock);
849 	state->cc_busy += busy;
850 	state->cc_active += active;
851 	spin_unlock_bh(&dev->mt76.cc_lock);
852 }
853 EXPORT_SYMBOL_GPL(mt76x02_update_channel);
854 
855 static void mt76x02_check_mac_err(struct mt76x02_dev *dev)
856 {
857 	u32 val = mt76_rr(dev, 0x10f4);
858 
859 	if (!(val & BIT(29)) || !(val & (BIT(7) | BIT(5))))
860 		return;
861 
862 	dev_err(dev->mt76.dev, "mac specific condition occurred\n");
863 
864 	mt76_set(dev, MT_MAC_SYS_CTRL, MT_MAC_SYS_CTRL_RESET_CSR);
865 	udelay(10);
866 	mt76_wr(dev, MT_MAC_SYS_CTRL,
867 		MT_MAC_SYS_CTRL_ENABLE_TX | MT_MAC_SYS_CTRL_ENABLE_RX);
868 }
869 
870 static void
871 mt76x02_edcca_tx_enable(struct mt76x02_dev *dev, bool enable)
872 {
873 	if (enable) {
874 		u32 data;
875 
876 		mt76_set(dev, MT_MAC_SYS_CTRL, MT_MAC_SYS_CTRL_ENABLE_TX);
877 		mt76_set(dev, MT_AUTO_RSP_CFG, MT_AUTO_RSP_EN);
878 		/* enable pa-lna */
879 		data = mt76_rr(dev, MT_TX_PIN_CFG);
880 		data |= MT_TX_PIN_CFG_TXANT |
881 			MT_TX_PIN_CFG_RXANT |
882 			MT_TX_PIN_RFTR_EN |
883 			MT_TX_PIN_TRSW_EN;
884 		mt76_wr(dev, MT_TX_PIN_CFG, data);
885 	} else {
886 		mt76_clear(dev, MT_MAC_SYS_CTRL, MT_MAC_SYS_CTRL_ENABLE_TX);
887 		mt76_clear(dev, MT_AUTO_RSP_CFG, MT_AUTO_RSP_EN);
888 		/* disable pa-lna */
889 		mt76_clear(dev, MT_TX_PIN_CFG, MT_TX_PIN_CFG_TXANT);
890 		mt76_clear(dev, MT_TX_PIN_CFG, MT_TX_PIN_CFG_RXANT);
891 	}
892 	dev->ed_tx_blocked = !enable;
893 }
894 
895 void mt76x02_edcca_init(struct mt76x02_dev *dev, bool enable)
896 {
897 	dev->ed_trigger = 0;
898 	dev->ed_silent = 0;
899 
900 	if (dev->ed_monitor && enable) {
901 		struct ieee80211_channel *chan = dev->mt76.chandef.chan;
902 		u8 ed_th = chan->band == NL80211_BAND_5GHZ ? 0x0e : 0x20;
903 
904 		mt76_clear(dev, MT_TX_LINK_CFG, MT_TX_CFACK_EN);
905 		mt76_set(dev, MT_TXOP_CTRL_CFG, MT_TXOP_ED_CCA_EN);
906 		mt76_rmw(dev, MT_BBP(AGC, 2), GENMASK(15, 0),
907 			 ed_th << 8 | ed_th);
908 		mt76_set(dev, MT_TXOP_HLDR_ET, MT_TXOP_HLDR_TX40M_BLK_EN);
909 	} else {
910 		mt76_set(dev, MT_TX_LINK_CFG, MT_TX_CFACK_EN);
911 		mt76_clear(dev, MT_TXOP_CTRL_CFG, MT_TXOP_ED_CCA_EN);
912 		if (is_mt76x2(dev)) {
913 			mt76_wr(dev, MT_BBP(AGC, 2), 0x00007070);
914 			mt76_set(dev, MT_TXOP_HLDR_ET,
915 				 MT_TXOP_HLDR_TX40M_BLK_EN);
916 		} else {
917 			mt76_wr(dev, MT_BBP(AGC, 2), 0x003a6464);
918 			mt76_clear(dev, MT_TXOP_HLDR_ET,
919 				   MT_TXOP_HLDR_TX40M_BLK_EN);
920 		}
921 	}
922 	mt76x02_edcca_tx_enable(dev, true);
923 
924 	/* clear previous CCA timer value */
925 	mt76_rr(dev, MT_ED_CCA_TIMER);
926 	dev->ed_time = ktime_get_boottime();
927 }
928 EXPORT_SYMBOL_GPL(mt76x02_edcca_init);
929 
930 #define MT_EDCCA_TH		92
931 #define MT_EDCCA_BLOCK_TH	2
932 static void mt76x02_edcca_check(struct mt76x02_dev *dev)
933 {
934 	ktime_t cur_time;
935 	u32 active, val, busy;
936 
937 	cur_time = ktime_get_boottime();
938 	val = mt76_rr(dev, MT_ED_CCA_TIMER);
939 
940 	active = ktime_to_us(ktime_sub(cur_time, dev->ed_time));
941 	dev->ed_time = cur_time;
942 
943 	busy = (val * 100) / active;
944 	busy = min_t(u32, busy, 100);
945 
946 	if (busy > MT_EDCCA_TH) {
947 		dev->ed_trigger++;
948 		dev->ed_silent = 0;
949 	} else {
950 		dev->ed_silent++;
951 		dev->ed_trigger = 0;
952 	}
953 
954 	if (dev->ed_trigger > MT_EDCCA_BLOCK_TH &&
955 	    !dev->ed_tx_blocked)
956 		mt76x02_edcca_tx_enable(dev, false);
957 	else if (dev->ed_silent > MT_EDCCA_BLOCK_TH &&
958 		 dev->ed_tx_blocked)
959 		mt76x02_edcca_tx_enable(dev, true);
960 }
961 
962 void mt76x02_mac_work(struct work_struct *work)
963 {
964 	struct mt76x02_dev *dev = container_of(work, struct mt76x02_dev,
965 					       mac_work.work);
966 	int i, idx;
967 
968 	mutex_lock(&dev->mt76.mutex);
969 
970 	mt76x02_update_channel(&dev->mt76);
971 	for (i = 0, idx = 0; i < 16; i++) {
972 		u32 val = mt76_rr(dev, MT_TX_AGG_CNT(i));
973 
974 		dev->aggr_stats[idx++] += val & 0xffff;
975 		dev->aggr_stats[idx++] += val >> 16;
976 	}
977 
978 	if (!dev->beacon_mask)
979 		mt76x02_check_mac_err(dev);
980 
981 	if (dev->ed_monitor)
982 		mt76x02_edcca_check(dev);
983 
984 	mutex_unlock(&dev->mt76.mutex);
985 
986 	mt76_tx_status_check(&dev->mt76, NULL, false);
987 
988 	ieee80211_queue_delayed_work(mt76_hw(dev), &dev->mac_work,
989 				     MT_MAC_WORK_INTERVAL);
990 }
991 
992 void mt76x02_mac_set_bssid(struct mt76x02_dev *dev, u8 idx, const u8 *addr)
993 {
994 	idx &= 7;
995 	mt76_wr(dev, MT_MAC_APC_BSSID_L(idx), get_unaligned_le32(addr));
996 	mt76_rmw_field(dev, MT_MAC_APC_BSSID_H(idx), MT_MAC_APC_BSSID_H_ADDR,
997 		       get_unaligned_le16(addr + 4));
998 }
999 
1000 static int
1001 mt76x02_write_beacon(struct mt76x02_dev *dev, int offset, struct sk_buff *skb)
1002 {
1003 	int beacon_len = mt76x02_beacon_offsets[1] - mt76x02_beacon_offsets[0];
1004 	struct mt76x02_txwi txwi;
1005 
1006 	if (WARN_ON_ONCE(beacon_len < skb->len + sizeof(struct mt76x02_txwi)))
1007 		return -ENOSPC;
1008 
1009 	mt76x02_mac_write_txwi(dev, &txwi, skb, NULL, NULL, skb->len);
1010 
1011 	mt76_wr_copy(dev, offset, &txwi, sizeof(txwi));
1012 	offset += sizeof(txwi);
1013 
1014 	mt76_wr_copy(dev, offset, skb->data, skb->len);
1015 	return 0;
1016 }
1017 
1018 static int
1019 __mt76x02_mac_set_beacon(struct mt76x02_dev *dev, u8 bcn_idx,
1020 			 struct sk_buff *skb)
1021 {
1022 	int beacon_len = mt76x02_beacon_offsets[1] - mt76x02_beacon_offsets[0];
1023 	int beacon_addr = mt76x02_beacon_offsets[bcn_idx];
1024 	int ret = 0;
1025 	int i;
1026 
1027 	/* Prevent corrupt transmissions during update */
1028 	mt76_set(dev, MT_BCN_BYPASS_MASK, BIT(bcn_idx));
1029 
1030 	if (skb) {
1031 		ret = mt76x02_write_beacon(dev, beacon_addr, skb);
1032 		if (!ret)
1033 			dev->beacon_data_mask |= BIT(bcn_idx);
1034 	} else {
1035 		dev->beacon_data_mask &= ~BIT(bcn_idx);
1036 		for (i = 0; i < beacon_len; i += 4)
1037 			mt76_wr(dev, beacon_addr + i, 0);
1038 	}
1039 
1040 	mt76_wr(dev, MT_BCN_BYPASS_MASK, 0xff00 | ~dev->beacon_data_mask);
1041 
1042 	return ret;
1043 }
1044 
1045 int mt76x02_mac_set_beacon(struct mt76x02_dev *dev, u8 vif_idx,
1046 			   struct sk_buff *skb)
1047 {
1048 	bool force_update = false;
1049 	int bcn_idx = 0;
1050 	int i;
1051 
1052 	for (i = 0; i < ARRAY_SIZE(dev->beacons); i++) {
1053 		if (vif_idx == i) {
1054 			force_update = !!dev->beacons[i] ^ !!skb;
1055 
1056 			if (dev->beacons[i])
1057 				dev_kfree_skb(dev->beacons[i]);
1058 
1059 			dev->beacons[i] = skb;
1060 			__mt76x02_mac_set_beacon(dev, bcn_idx, skb);
1061 		} else if (force_update && dev->beacons[i]) {
1062 			__mt76x02_mac_set_beacon(dev, bcn_idx,
1063 						 dev->beacons[i]);
1064 		}
1065 
1066 		bcn_idx += !!dev->beacons[i];
1067 	}
1068 
1069 	for (i = bcn_idx; i < ARRAY_SIZE(dev->beacons); i++) {
1070 		if (!(dev->beacon_data_mask & BIT(i)))
1071 			break;
1072 
1073 		__mt76x02_mac_set_beacon(dev, i, NULL);
1074 	}
1075 
1076 	mt76_rmw_field(dev, MT_MAC_BSSID_DW1, MT_MAC_BSSID_DW1_MBEACON_N,
1077 		       bcn_idx - 1);
1078 	return 0;
1079 }
1080 
1081 static void
1082 __mt76x02_mac_set_beacon_enable(struct mt76x02_dev *dev, u8 vif_idx,
1083 				bool val, struct sk_buff *skb)
1084 {
1085 	u8 old_mask = dev->beacon_mask;
1086 	bool en;
1087 	u32 reg;
1088 
1089 	if (val) {
1090 		dev->beacon_mask |= BIT(vif_idx);
1091 		if (skb)
1092 			mt76x02_mac_set_beacon(dev, vif_idx, skb);
1093 	} else {
1094 		dev->beacon_mask &= ~BIT(vif_idx);
1095 		mt76x02_mac_set_beacon(dev, vif_idx, NULL);
1096 	}
1097 
1098 	if (!!old_mask == !!dev->beacon_mask)
1099 		return;
1100 
1101 	en = dev->beacon_mask;
1102 
1103 	reg = MT_BEACON_TIME_CFG_BEACON_TX |
1104 	      MT_BEACON_TIME_CFG_TBTT_EN |
1105 	      MT_BEACON_TIME_CFG_TIMER_EN;
1106 	mt76_rmw(dev, MT_BEACON_TIME_CFG, reg, reg * en);
1107 
1108 	if (mt76_is_usb(dev))
1109 		return;
1110 
1111 	mt76_rmw_field(dev, MT_INT_TIMER_EN, MT_INT_TIMER_EN_PRE_TBTT_EN, en);
1112 	if (en)
1113 		mt76x02_irq_enable(dev, MT_INT_PRE_TBTT | MT_INT_TBTT);
1114 	else
1115 		mt76x02_irq_disable(dev, MT_INT_PRE_TBTT | MT_INT_TBTT);
1116 }
1117 
1118 void mt76x02_mac_set_beacon_enable(struct mt76x02_dev *dev,
1119 				   struct ieee80211_vif *vif, bool val)
1120 {
1121 	u8 vif_idx = ((struct mt76x02_vif *)vif->drv_priv)->idx;
1122 	struct sk_buff *skb = NULL;
1123 
1124 	if (mt76_is_mmio(dev))
1125 		tasklet_disable(&dev->pre_tbtt_tasklet);
1126 	else if (val)
1127 		skb = ieee80211_beacon_get(mt76_hw(dev), vif);
1128 
1129 	if (!dev->beacon_mask)
1130 		dev->tbtt_count = 0;
1131 
1132 	__mt76x02_mac_set_beacon_enable(dev, vif_idx, val, skb);
1133 
1134 	if (mt76_is_mmio(dev))
1135 		tasklet_enable(&dev->pre_tbtt_tasklet);
1136 }
1137