1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * (c) Copyright 2002-2010, Ralink Technology, Inc. 4 * Copyright (C) 2014 Felix Fietkau <nbd@openwrt.org> 5 * Copyright (C) 2015 Jakub Kicinski <kubakici@wp.pl> 6 * Copyright (C) 2018 Stanislaw Gruszka <stf_xl@wp.pl> 7 */ 8 9 #include <linux/kernel.h> 10 #include <linux/etherdevice.h> 11 12 #include "mt76x0.h" 13 #include "mcu.h" 14 #include "eeprom.h" 15 #include "phy.h" 16 #include "initvals.h" 17 #include "initvals_phy.h" 18 #include "../mt76x02_phy.h" 19 20 static int 21 mt76x0_rf_csr_wr(struct mt76x02_dev *dev, u32 offset, u8 value) 22 { 23 int ret = 0; 24 u8 bank, reg; 25 26 if (test_bit(MT76_REMOVED, &dev->mt76.state)) 27 return -ENODEV; 28 29 bank = MT_RF_BANK(offset); 30 reg = MT_RF_REG(offset); 31 32 if (WARN_ON_ONCE(reg > 127) || WARN_ON_ONCE(bank > 8)) 33 return -EINVAL; 34 35 mutex_lock(&dev->phy_mutex); 36 37 if (!mt76_poll(dev, MT_RF_CSR_CFG, MT_RF_CSR_CFG_KICK, 0, 100)) { 38 ret = -ETIMEDOUT; 39 goto out; 40 } 41 42 mt76_wr(dev, MT_RF_CSR_CFG, 43 FIELD_PREP(MT_RF_CSR_CFG_DATA, value) | 44 FIELD_PREP(MT_RF_CSR_CFG_REG_BANK, bank) | 45 FIELD_PREP(MT_RF_CSR_CFG_REG_ID, reg) | 46 MT_RF_CSR_CFG_WR | 47 MT_RF_CSR_CFG_KICK); 48 49 out: 50 mutex_unlock(&dev->phy_mutex); 51 52 if (ret < 0) 53 dev_err(dev->mt76.dev, "Error: RF write %d:%d failed:%d!!\n", 54 bank, reg, ret); 55 56 return ret; 57 } 58 59 static int mt76x0_rf_csr_rr(struct mt76x02_dev *dev, u32 offset) 60 { 61 int ret = -ETIMEDOUT; 62 u32 val; 63 u8 bank, reg; 64 65 if (test_bit(MT76_REMOVED, &dev->mt76.state)) 66 return -ENODEV; 67 68 bank = MT_RF_BANK(offset); 69 reg = MT_RF_REG(offset); 70 71 if (WARN_ON_ONCE(reg > 127) || WARN_ON_ONCE(bank > 8)) 72 return -EINVAL; 73 74 mutex_lock(&dev->phy_mutex); 75 76 if (!mt76_poll(dev, MT_RF_CSR_CFG, MT_RF_CSR_CFG_KICK, 0, 100)) 77 goto out; 78 79 mt76_wr(dev, MT_RF_CSR_CFG, 80 FIELD_PREP(MT_RF_CSR_CFG_REG_BANK, bank) | 81 FIELD_PREP(MT_RF_CSR_CFG_REG_ID, reg) | 82 MT_RF_CSR_CFG_KICK); 83 84 if (!mt76_poll(dev, MT_RF_CSR_CFG, MT_RF_CSR_CFG_KICK, 0, 100)) 85 goto out; 86 87 val = mt76_rr(dev, MT_RF_CSR_CFG); 88 if (FIELD_GET(MT_RF_CSR_CFG_REG_ID, val) == reg && 89 FIELD_GET(MT_RF_CSR_CFG_REG_BANK, val) == bank) 90 ret = FIELD_GET(MT_RF_CSR_CFG_DATA, val); 91 92 out: 93 mutex_unlock(&dev->phy_mutex); 94 95 if (ret < 0) 96 dev_err(dev->mt76.dev, "Error: RF read %d:%d failed:%d!!\n", 97 bank, reg, ret); 98 99 return ret; 100 } 101 102 static int 103 mt76x0_rf_wr(struct mt76x02_dev *dev, u32 offset, u8 val) 104 { 105 if (mt76_is_usb(dev)) { 106 struct mt76_reg_pair pair = { 107 .reg = offset, 108 .value = val, 109 }; 110 111 WARN_ON_ONCE(!test_bit(MT76_STATE_MCU_RUNNING, 112 &dev->mt76.state)); 113 return mt76_wr_rp(dev, MT_MCU_MEMMAP_RF, &pair, 1); 114 } else { 115 return mt76x0_rf_csr_wr(dev, offset, val); 116 } 117 } 118 119 static int mt76x0_rf_rr(struct mt76x02_dev *dev, u32 offset) 120 { 121 int ret; 122 u32 val; 123 124 if (mt76_is_usb(dev)) { 125 struct mt76_reg_pair pair = { 126 .reg = offset, 127 }; 128 129 WARN_ON_ONCE(!test_bit(MT76_STATE_MCU_RUNNING, 130 &dev->mt76.state)); 131 ret = mt76_rd_rp(dev, MT_MCU_MEMMAP_RF, &pair, 1); 132 val = pair.value; 133 } else { 134 ret = val = mt76x0_rf_csr_rr(dev, offset); 135 } 136 137 return (ret < 0) ? ret : val; 138 } 139 140 static int 141 mt76x0_rf_rmw(struct mt76x02_dev *dev, u32 offset, u8 mask, u8 val) 142 { 143 int ret; 144 145 ret = mt76x0_rf_rr(dev, offset); 146 if (ret < 0) 147 return ret; 148 149 val |= ret & ~mask; 150 151 ret = mt76x0_rf_wr(dev, offset, val); 152 return ret ? ret : val; 153 } 154 155 static int 156 mt76x0_rf_set(struct mt76x02_dev *dev, u32 offset, u8 val) 157 { 158 return mt76x0_rf_rmw(dev, offset, 0, val); 159 } 160 161 static int 162 mt76x0_rf_clear(struct mt76x02_dev *dev, u32 offset, u8 mask) 163 { 164 return mt76x0_rf_rmw(dev, offset, mask, 0); 165 } 166 167 static void 168 mt76x0_phy_rf_csr_wr_rp(struct mt76x02_dev *dev, 169 const struct mt76_reg_pair *data, 170 int n) 171 { 172 while (n-- > 0) { 173 mt76x0_rf_csr_wr(dev, data->reg, data->value); 174 data++; 175 } 176 } 177 178 #define RF_RANDOM_WRITE(dev, tab) do { \ 179 if (mt76_is_mmio(dev)) \ 180 mt76x0_phy_rf_csr_wr_rp(dev, tab, ARRAY_SIZE(tab)); \ 181 else \ 182 mt76_wr_rp(dev, MT_MCU_MEMMAP_RF, tab, ARRAY_SIZE(tab));\ 183 } while (0) 184 185 int mt76x0_phy_wait_bbp_ready(struct mt76x02_dev *dev) 186 { 187 int i = 20; 188 u32 val; 189 190 do { 191 val = mt76_rr(dev, MT_BBP(CORE, 0)); 192 if (val && ~val) 193 break; 194 } while (--i); 195 196 if (!i) { 197 dev_err(dev->mt76.dev, "Error: BBP is not ready\n"); 198 return -EIO; 199 } 200 201 dev_dbg(dev->mt76.dev, "BBP version %08x\n", val); 202 return 0; 203 } 204 205 static void 206 mt76x0_phy_set_band(struct mt76x02_dev *dev, enum nl80211_band band) 207 { 208 switch (band) { 209 case NL80211_BAND_2GHZ: 210 RF_RANDOM_WRITE(dev, mt76x0_rf_2g_channel_0_tab); 211 212 mt76x0_rf_wr(dev, MT_RF(5, 0), 0x45); 213 mt76x0_rf_wr(dev, MT_RF(6, 0), 0x44); 214 215 mt76_wr(dev, MT_TX_ALC_VGA3, 0x00050007); 216 mt76_wr(dev, MT_TX0_RF_GAIN_CORR, 0x003E0002); 217 break; 218 case NL80211_BAND_5GHZ: 219 RF_RANDOM_WRITE(dev, mt76x0_rf_5g_channel_0_tab); 220 221 mt76x0_rf_wr(dev, MT_RF(5, 0), 0x44); 222 mt76x0_rf_wr(dev, MT_RF(6, 0), 0x45); 223 224 mt76_wr(dev, MT_TX_ALC_VGA3, 0x00000005); 225 mt76_wr(dev, MT_TX0_RF_GAIN_CORR, 0x01010102); 226 break; 227 default: 228 break; 229 } 230 } 231 232 static void 233 mt76x0_phy_set_chan_rf_params(struct mt76x02_dev *dev, u8 channel, 234 u16 rf_bw_band) 235 { 236 const struct mt76x0_freq_item *freq_item; 237 u16 rf_band = rf_bw_band & 0xff00; 238 u16 rf_bw = rf_bw_band & 0x00ff; 239 enum nl80211_band band; 240 bool b_sdm = false; 241 u32 mac_reg; 242 int i; 243 244 for (i = 0; i < ARRAY_SIZE(mt76x0_sdm_channel); i++) { 245 if (channel == mt76x0_sdm_channel[i]) { 246 b_sdm = true; 247 break; 248 } 249 } 250 251 for (i = 0; i < ARRAY_SIZE(mt76x0_frequency_plan); i++) { 252 if (channel == mt76x0_frequency_plan[i].channel) { 253 rf_band = mt76x0_frequency_plan[i].band; 254 255 if (b_sdm) 256 freq_item = &mt76x0_sdm_frequency_plan[i]; 257 else 258 freq_item = &mt76x0_frequency_plan[i]; 259 260 mt76x0_rf_wr(dev, MT_RF(0, 37), freq_item->pllR37); 261 mt76x0_rf_wr(dev, MT_RF(0, 36), freq_item->pllR36); 262 mt76x0_rf_wr(dev, MT_RF(0, 35), freq_item->pllR35); 263 mt76x0_rf_wr(dev, MT_RF(0, 34), freq_item->pllR34); 264 mt76x0_rf_wr(dev, MT_RF(0, 33), freq_item->pllR33); 265 266 mt76x0_rf_rmw(dev, MT_RF(0, 32), 0xe0, 267 freq_item->pllR32_b7b5); 268 269 /* R32<4:0> pll_den: (Denomina - 8) */ 270 mt76x0_rf_rmw(dev, MT_RF(0, 32), MT_RF_PLL_DEN_MASK, 271 freq_item->pllR32_b4b0); 272 273 /* R31<7:5> */ 274 mt76x0_rf_rmw(dev, MT_RF(0, 31), 0xe0, 275 freq_item->pllR31_b7b5); 276 277 /* R31<4:0> pll_k(Nominator) */ 278 mt76x0_rf_rmw(dev, MT_RF(0, 31), MT_RF_PLL_K_MASK, 279 freq_item->pllR31_b4b0); 280 281 /* R30<7> sdm_reset_n */ 282 if (b_sdm) { 283 mt76x0_rf_clear(dev, MT_RF(0, 30), 284 MT_RF_SDM_RESET_MASK); 285 mt76x0_rf_set(dev, MT_RF(0, 30), 286 MT_RF_SDM_RESET_MASK); 287 } else { 288 mt76x0_rf_rmw(dev, MT_RF(0, 30), 289 MT_RF_SDM_RESET_MASK, 290 freq_item->pllR30_b7); 291 } 292 293 /* R30<6:2> sdmmash_prbs,sin */ 294 mt76x0_rf_rmw(dev, MT_RF(0, 30), 295 MT_RF_SDM_MASH_PRBS_MASK, 296 freq_item->pllR30_b6b2); 297 298 /* R30<1> sdm_bp */ 299 mt76x0_rf_rmw(dev, MT_RF(0, 30), MT_RF_SDM_BP_MASK, 300 freq_item->pllR30_b1 << 1); 301 302 /* R30<0> R29<7:0> (hex) pll_n */ 303 mt76x0_rf_wr(dev, MT_RF(0, 29), 304 freq_item->pll_n & 0xff); 305 306 mt76x0_rf_rmw(dev, MT_RF(0, 30), 0x1, 307 (freq_item->pll_n >> 8) & 0x1); 308 309 /* R28<7:6> isi_iso */ 310 mt76x0_rf_rmw(dev, MT_RF(0, 28), MT_RF_ISI_ISO_MASK, 311 freq_item->pllR28_b7b6); 312 313 /* R28<5:4> pfd_dly */ 314 mt76x0_rf_rmw(dev, MT_RF(0, 28), MT_RF_PFD_DLY_MASK, 315 freq_item->pllR28_b5b4); 316 317 /* R28<3:2> clksel option */ 318 mt76x0_rf_rmw(dev, MT_RF(0, 28), MT_RF_CLK_SEL_MASK, 319 freq_item->pllR28_b3b2); 320 321 /* R28<1:0> R27<7:0> R26<7:0> (hex) sdm_k */ 322 mt76x0_rf_wr(dev, MT_RF(0, 26), 323 freq_item->pll_sdm_k & 0xff); 324 mt76x0_rf_wr(dev, MT_RF(0, 27), 325 (freq_item->pll_sdm_k >> 8) & 0xff); 326 327 mt76x0_rf_rmw(dev, MT_RF(0, 28), 0x3, 328 (freq_item->pll_sdm_k >> 16) & 0x3); 329 330 /* R24<1:0> xo_div */ 331 mt76x0_rf_rmw(dev, MT_RF(0, 24), MT_RF_XO_DIV_MASK, 332 freq_item->pllR24_b1b0); 333 334 break; 335 } 336 } 337 338 for (i = 0; i < ARRAY_SIZE(mt76x0_rf_bw_switch_tab); i++) { 339 if (rf_bw == mt76x0_rf_bw_switch_tab[i].bw_band) { 340 mt76x0_rf_wr(dev, 341 mt76x0_rf_bw_switch_tab[i].rf_bank_reg, 342 mt76x0_rf_bw_switch_tab[i].value); 343 } else if ((rf_bw == (mt76x0_rf_bw_switch_tab[i].bw_band & 0xFF)) && 344 (rf_band & mt76x0_rf_bw_switch_tab[i].bw_band)) { 345 mt76x0_rf_wr(dev, 346 mt76x0_rf_bw_switch_tab[i].rf_bank_reg, 347 mt76x0_rf_bw_switch_tab[i].value); 348 } 349 } 350 351 for (i = 0; i < ARRAY_SIZE(mt76x0_rf_band_switch_tab); i++) { 352 if (mt76x0_rf_band_switch_tab[i].bw_band & rf_band) { 353 mt76x0_rf_wr(dev, 354 mt76x0_rf_band_switch_tab[i].rf_bank_reg, 355 mt76x0_rf_band_switch_tab[i].value); 356 } 357 } 358 359 mt76_clear(dev, MT_RF_MISC, 0xc); 360 361 band = (rf_band & RF_G_BAND) ? NL80211_BAND_2GHZ : NL80211_BAND_5GHZ; 362 if (mt76x02_ext_pa_enabled(dev, band)) { 363 /* MT_RF_MISC (offset: 0x0518) 364 * [2]1'b1: enable external A band PA 365 * 1'b0: disable external A band PA 366 * [3]1'b1: enable external G band PA 367 * 1'b0: disable external G band PA 368 */ 369 if (rf_band & RF_A_BAND) 370 mt76_set(dev, MT_RF_MISC, BIT(2)); 371 else 372 mt76_set(dev, MT_RF_MISC, BIT(3)); 373 374 /* External PA */ 375 for (i = 0; i < ARRAY_SIZE(mt76x0_rf_ext_pa_tab); i++) 376 if (mt76x0_rf_ext_pa_tab[i].bw_band & rf_band) 377 mt76x0_rf_wr(dev, 378 mt76x0_rf_ext_pa_tab[i].rf_bank_reg, 379 mt76x0_rf_ext_pa_tab[i].value); 380 } 381 382 if (rf_band & RF_G_BAND) { 383 mt76_wr(dev, MT_TX0_RF_GAIN_ATTEN, 0x63707400); 384 /* Set Atten mode = 2 For G band, Disable Tx Inc dcoc. */ 385 mac_reg = mt76_rr(dev, MT_TX_ALC_CFG_1); 386 mac_reg &= 0x896400FF; 387 mt76_wr(dev, MT_TX_ALC_CFG_1, mac_reg); 388 } else { 389 mt76_wr(dev, MT_TX0_RF_GAIN_ATTEN, 0x686A7800); 390 /* Set Atten mode = 0 391 * For Ext A band, Disable Tx Inc dcoc Cal. 392 */ 393 mac_reg = mt76_rr(dev, MT_TX_ALC_CFG_1); 394 mac_reg &= 0x890400FF; 395 mt76_wr(dev, MT_TX_ALC_CFG_1, mac_reg); 396 } 397 } 398 399 static void 400 mt76x0_phy_set_chan_bbp_params(struct mt76x02_dev *dev, u16 rf_bw_band) 401 { 402 int i; 403 404 for (i = 0; i < ARRAY_SIZE(mt76x0_bbp_switch_tab); i++) { 405 const struct mt76x0_bbp_switch_item *item = &mt76x0_bbp_switch_tab[i]; 406 const struct mt76_reg_pair *pair = &item->reg_pair; 407 408 if ((rf_bw_band & item->bw_band) != rf_bw_band) 409 continue; 410 411 if (pair->reg == MT_BBP(AGC, 8)) { 412 u32 val = pair->value; 413 u8 gain; 414 415 gain = FIELD_GET(MT_BBP_AGC_GAIN, val); 416 gain -= dev->cal.rx.lna_gain * 2; 417 val &= ~MT_BBP_AGC_GAIN; 418 val |= FIELD_PREP(MT_BBP_AGC_GAIN, gain); 419 mt76_wr(dev, pair->reg, val); 420 } else { 421 mt76_wr(dev, pair->reg, pair->value); 422 } 423 } 424 } 425 426 static void mt76x0_phy_ant_select(struct mt76x02_dev *dev) 427 { 428 u16 ee_ant = mt76x02_eeprom_get(dev, MT_EE_ANTENNA); 429 u16 ee_cfg1 = mt76x02_eeprom_get(dev, MT_EE_CFG1_INIT); 430 u16 nic_conf2 = mt76x02_eeprom_get(dev, MT_EE_NIC_CONF_2); 431 u32 wlan, coex3; 432 bool ant_div; 433 434 wlan = mt76_rr(dev, MT_WLAN_FUN_CTRL); 435 coex3 = mt76_rr(dev, MT_COEXCFG3); 436 437 ee_ant &= ~(BIT(14) | BIT(12)); 438 wlan &= ~(BIT(6) | BIT(5)); 439 coex3 &= ~GENMASK(5, 2); 440 441 if (ee_ant & MT_EE_ANTENNA_DUAL) { 442 /* dual antenna mode */ 443 ant_div = !(nic_conf2 & MT_EE_NIC_CONF_2_ANT_OPT) && 444 (nic_conf2 & MT_EE_NIC_CONF_2_ANT_DIV); 445 if (ant_div) 446 ee_ant |= BIT(12); 447 else 448 coex3 |= BIT(4); 449 coex3 |= BIT(3); 450 if (dev->mt76.cap.has_2ghz) 451 wlan |= BIT(6); 452 } else { 453 /* sigle antenna mode */ 454 if (dev->mt76.cap.has_5ghz) { 455 coex3 |= BIT(3) | BIT(4); 456 } else { 457 wlan |= BIT(6); 458 coex3 |= BIT(1); 459 } 460 } 461 462 if (is_mt7630(dev)) 463 ee_ant |= BIT(14) | BIT(11); 464 465 mt76_wr(dev, MT_WLAN_FUN_CTRL, wlan); 466 mt76_rmw(dev, MT_CMB_CTRL, GENMASK(15, 0), ee_ant); 467 mt76_rmw(dev, MT_CSR_EE_CFG1, GENMASK(15, 0), ee_cfg1); 468 mt76_clear(dev, MT_COEXCFG0, BIT(2)); 469 mt76_wr(dev, MT_COEXCFG3, coex3); 470 } 471 472 static void 473 mt76x0_phy_bbp_set_bw(struct mt76x02_dev *dev, enum nl80211_chan_width width) 474 { 475 enum { BW_20 = 0, BW_40 = 1, BW_80 = 2, BW_10 = 4}; 476 int bw; 477 478 switch (width) { 479 default: 480 case NL80211_CHAN_WIDTH_20_NOHT: 481 case NL80211_CHAN_WIDTH_20: 482 bw = BW_20; 483 break; 484 case NL80211_CHAN_WIDTH_40: 485 bw = BW_40; 486 break; 487 case NL80211_CHAN_WIDTH_80: 488 bw = BW_80; 489 break; 490 case NL80211_CHAN_WIDTH_10: 491 bw = BW_10; 492 break; 493 case NL80211_CHAN_WIDTH_80P80: 494 case NL80211_CHAN_WIDTH_160: 495 case NL80211_CHAN_WIDTH_5: 496 /* TODO error */ 497 return; 498 } 499 500 mt76x02_mcu_function_select(dev, BW_SETTING, bw); 501 } 502 503 static void mt76x0_phy_tssi_dc_calibrate(struct mt76x02_dev *dev) 504 { 505 struct ieee80211_channel *chan = dev->mt76.chandef.chan; 506 u32 val; 507 508 if (chan->band == NL80211_BAND_5GHZ) 509 mt76x0_rf_clear(dev, MT_RF(0, 67), 0xf); 510 511 /* bypass ADDA control */ 512 mt76_wr(dev, MT_RF_SETTING_0, 0x60002237); 513 mt76_wr(dev, MT_RF_BYPASS_0, 0xffffffff); 514 515 /* bbp sw reset */ 516 mt76_set(dev, MT_BBP(CORE, 4), BIT(0)); 517 usleep_range(500, 1000); 518 mt76_clear(dev, MT_BBP(CORE, 4), BIT(0)); 519 520 val = (chan->band == NL80211_BAND_5GHZ) ? 0x80055 : 0x80050; 521 mt76_wr(dev, MT_BBP(CORE, 34), val); 522 523 /* enable TX with DAC0 input */ 524 mt76_wr(dev, MT_BBP(TXBE, 6), BIT(31)); 525 526 mt76_poll_msec(dev, MT_BBP(CORE, 34), BIT(4), 0, 200); 527 dev->cal.tssi_dc = mt76_rr(dev, MT_BBP(CORE, 35)) & 0xff; 528 529 /* stop bypass ADDA */ 530 mt76_wr(dev, MT_RF_BYPASS_0, 0); 531 /* stop TX */ 532 mt76_wr(dev, MT_BBP(TXBE, 6), 0); 533 /* bbp sw reset */ 534 mt76_set(dev, MT_BBP(CORE, 4), BIT(0)); 535 usleep_range(500, 1000); 536 mt76_clear(dev, MT_BBP(CORE, 4), BIT(0)); 537 538 if (chan->band == NL80211_BAND_5GHZ) 539 mt76x0_rf_rmw(dev, MT_RF(0, 67), 0xf, 0x4); 540 } 541 542 static int 543 mt76x0_phy_tssi_adc_calibrate(struct mt76x02_dev *dev, s16 *ltssi, 544 u8 *info) 545 { 546 struct ieee80211_channel *chan = dev->mt76.chandef.chan; 547 u32 val; 548 549 val = (chan->band == NL80211_BAND_5GHZ) ? 0x80055 : 0x80050; 550 mt76_wr(dev, MT_BBP(CORE, 34), val); 551 552 if (!mt76_poll_msec(dev, MT_BBP(CORE, 34), BIT(4), 0, 200)) { 553 mt76_clear(dev, MT_BBP(CORE, 34), BIT(4)); 554 return -ETIMEDOUT; 555 } 556 557 *ltssi = mt76_rr(dev, MT_BBP(CORE, 35)) & 0xff; 558 if (chan->band == NL80211_BAND_5GHZ) 559 *ltssi += 128; 560 561 /* set packet info#1 mode */ 562 mt76_wr(dev, MT_BBP(CORE, 34), 0x80041); 563 info[0] = mt76_rr(dev, MT_BBP(CORE, 35)) & 0xff; 564 565 /* set packet info#2 mode */ 566 mt76_wr(dev, MT_BBP(CORE, 34), 0x80042); 567 info[1] = mt76_rr(dev, MT_BBP(CORE, 35)) & 0xff; 568 569 /* set packet info#3 mode */ 570 mt76_wr(dev, MT_BBP(CORE, 34), 0x80043); 571 info[2] = mt76_rr(dev, MT_BBP(CORE, 35)) & 0xff; 572 573 return 0; 574 } 575 576 static u8 mt76x0_phy_get_rf_pa_mode(struct mt76x02_dev *dev, 577 int index, u8 tx_rate) 578 { 579 u32 val, reg; 580 581 reg = (index == 1) ? MT_RF_PA_MODE_CFG1 : MT_RF_PA_MODE_CFG0; 582 val = mt76_rr(dev, reg); 583 return (val & (3 << (tx_rate * 2))) >> (tx_rate * 2); 584 } 585 586 static int 587 mt76x0_phy_get_target_power(struct mt76x02_dev *dev, u8 tx_mode, 588 u8 *info, s8 *target_power, 589 s8 *target_pa_power) 590 { 591 u8 tx_rate, cur_power; 592 593 cur_power = mt76_rr(dev, MT_TX_ALC_CFG_0) & MT_TX_ALC_CFG_0_CH_INIT_0; 594 switch (tx_mode) { 595 case 0: 596 /* cck rates */ 597 tx_rate = (info[0] & 0x60) >> 5; 598 if (tx_rate > 3) 599 return -EINVAL; 600 601 *target_power = cur_power + dev->mt76.rate_power.cck[tx_rate]; 602 *target_pa_power = mt76x0_phy_get_rf_pa_mode(dev, 0, tx_rate); 603 break; 604 case 1: { 605 u8 index; 606 607 /* ofdm rates */ 608 tx_rate = (info[0] & 0xf0) >> 4; 609 switch (tx_rate) { 610 case 0xb: 611 index = 0; 612 break; 613 case 0xf: 614 index = 1; 615 break; 616 case 0xa: 617 index = 2; 618 break; 619 case 0xe: 620 index = 3; 621 break; 622 case 0x9: 623 index = 4; 624 break; 625 case 0xd: 626 index = 5; 627 break; 628 case 0x8: 629 index = 6; 630 break; 631 case 0xc: 632 index = 7; 633 break; 634 default: 635 return -EINVAL; 636 } 637 638 *target_power = cur_power + dev->mt76.rate_power.ofdm[index]; 639 *target_pa_power = mt76x0_phy_get_rf_pa_mode(dev, 0, index + 4); 640 break; 641 } 642 case 4: 643 /* vht rates */ 644 tx_rate = info[1] & 0xf; 645 if (tx_rate > 9) 646 return -EINVAL; 647 648 *target_power = cur_power + dev->mt76.rate_power.vht[tx_rate]; 649 *target_pa_power = mt76x0_phy_get_rf_pa_mode(dev, 1, tx_rate); 650 break; 651 default: 652 /* ht rates */ 653 tx_rate = info[1] & 0x7f; 654 if (tx_rate > 9) 655 return -EINVAL; 656 657 *target_power = cur_power + dev->mt76.rate_power.ht[tx_rate]; 658 *target_pa_power = mt76x0_phy_get_rf_pa_mode(dev, 1, tx_rate); 659 break; 660 } 661 662 return 0; 663 } 664 665 static s16 mt76x0_phy_lin2db(u16 val) 666 { 667 u32 mantissa = val << 4; 668 int ret, data; 669 s16 exp = -4; 670 671 while (mantissa < BIT(15)) { 672 mantissa <<= 1; 673 if (--exp < -20) 674 return -10000; 675 } 676 while (mantissa > 0xffff) { 677 mantissa >>= 1; 678 if (++exp > 20) 679 return -10000; 680 } 681 682 /* s(15,0) */ 683 if (mantissa <= 47104) 684 data = mantissa + (mantissa >> 3) + (mantissa >> 4) - 38400; 685 else 686 data = mantissa - (mantissa >> 3) - (mantissa >> 6) - 23040; 687 data = max_t(int, 0, data); 688 689 ret = ((15 + exp) << 15) + data; 690 ret = (ret << 2) + (ret << 1) + (ret >> 6) + (ret >> 7); 691 return ret >> 10; 692 } 693 694 static int 695 mt76x0_phy_get_delta_power(struct mt76x02_dev *dev, u8 tx_mode, 696 s8 target_power, s8 target_pa_power, 697 s16 ltssi) 698 { 699 struct ieee80211_channel *chan = dev->mt76.chandef.chan; 700 int tssi_target = target_power << 12, tssi_slope; 701 int tssi_offset, tssi_db, ret; 702 u32 data; 703 u16 val; 704 705 if (chan->band == NL80211_BAND_5GHZ) { 706 u8 bound[7]; 707 int i, err; 708 709 err = mt76x02_eeprom_copy(dev, MT_EE_TSSI_BOUND1, bound, 710 sizeof(bound)); 711 if (err < 0) 712 return err; 713 714 for (i = 0; i < ARRAY_SIZE(bound); i++) { 715 if (chan->hw_value <= bound[i] || !bound[i]) 716 break; 717 } 718 val = mt76x02_eeprom_get(dev, MT_EE_TSSI_SLOPE_5G + i * 2); 719 720 tssi_offset = val >> 8; 721 if ((tssi_offset >= 64 && tssi_offset <= 127) || 722 (tssi_offset & BIT(7))) 723 tssi_offset -= BIT(8); 724 } else { 725 val = mt76x02_eeprom_get(dev, MT_EE_TSSI_SLOPE_2G); 726 727 tssi_offset = val >> 8; 728 if (tssi_offset & BIT(7)) 729 tssi_offset -= BIT(8); 730 } 731 tssi_slope = val & 0xff; 732 733 switch (target_pa_power) { 734 case 1: 735 if (chan->band == NL80211_BAND_2GHZ) 736 tssi_target += 29491; /* 3.6 * 8192 */ 737 /* fall through */ 738 case 0: 739 break; 740 default: 741 tssi_target += 4424; /* 0.54 * 8192 */ 742 break; 743 } 744 745 if (!tx_mode) { 746 data = mt76_rr(dev, MT_BBP(CORE, 1)); 747 if (is_mt7630(dev) && mt76_is_mmio(dev)) { 748 int offset; 749 750 /* 2.3 * 8192 or 1.5 * 8192 */ 751 offset = (data & BIT(5)) ? 18841 : 12288; 752 tssi_target += offset; 753 } else if (data & BIT(5)) { 754 /* 0.8 * 8192 */ 755 tssi_target += 6554; 756 } 757 } 758 759 data = mt76_rr(dev, MT_BBP(TXBE, 4)); 760 switch (data & 0x3) { 761 case 1: 762 tssi_target -= 49152; /* -6db * 8192 */ 763 break; 764 case 2: 765 tssi_target -= 98304; /* -12db * 8192 */ 766 break; 767 case 3: 768 tssi_target += 49152; /* 6db * 8192 */ 769 break; 770 default: 771 break; 772 } 773 774 tssi_db = mt76x0_phy_lin2db(ltssi - dev->cal.tssi_dc) * tssi_slope; 775 if (chan->band == NL80211_BAND_5GHZ) { 776 tssi_db += ((tssi_offset - 50) << 10); /* offset s4.3 */ 777 tssi_target -= tssi_db; 778 if (ltssi > 254 && tssi_target > 0) { 779 /* upper saturate */ 780 tssi_target = 0; 781 } 782 } else { 783 tssi_db += (tssi_offset << 9); /* offset s3.4 */ 784 tssi_target -= tssi_db; 785 /* upper-lower saturate */ 786 if ((ltssi > 126 && tssi_target > 0) || 787 ((ltssi - dev->cal.tssi_dc) < 1 && tssi_target < 0)) { 788 tssi_target = 0; 789 } 790 } 791 792 if ((dev->cal.tssi_target ^ tssi_target) < 0 && 793 dev->cal.tssi_target > -4096 && dev->cal.tssi_target < 4096 && 794 tssi_target > -4096 && tssi_target < 4096) { 795 if ((tssi_target < 0 && 796 tssi_target + dev->cal.tssi_target > 0) || 797 (tssi_target > 0 && 798 tssi_target + dev->cal.tssi_target <= 0)) 799 tssi_target = 0; 800 else 801 dev->cal.tssi_target = tssi_target; 802 } else { 803 dev->cal.tssi_target = tssi_target; 804 } 805 806 /* make the compensate value to the nearest compensate code */ 807 if (tssi_target > 0) 808 tssi_target += 2048; 809 else 810 tssi_target -= 2048; 811 tssi_target >>= 12; 812 813 ret = mt76_get_field(dev, MT_TX_ALC_CFG_1, MT_TX_ALC_CFG_1_TEMP_COMP); 814 if (ret & BIT(5)) 815 ret -= BIT(6); 816 ret += tssi_target; 817 818 ret = min_t(int, 31, ret); 819 return max_t(int, -32, ret); 820 } 821 822 static void mt76x0_phy_tssi_calibrate(struct mt76x02_dev *dev) 823 { 824 s8 target_power, target_pa_power; 825 u8 tssi_info[3], tx_mode; 826 s16 ltssi; 827 s8 val; 828 829 if (mt76x0_phy_tssi_adc_calibrate(dev, <ssi, tssi_info) < 0) 830 return; 831 832 tx_mode = tssi_info[0] & 0x7; 833 if (mt76x0_phy_get_target_power(dev, tx_mode, tssi_info, 834 &target_power, &target_pa_power) < 0) 835 return; 836 837 val = mt76x0_phy_get_delta_power(dev, tx_mode, target_power, 838 target_pa_power, ltssi); 839 mt76_rmw_field(dev, MT_TX_ALC_CFG_1, MT_TX_ALC_CFG_1_TEMP_COMP, val); 840 } 841 842 void mt76x0_phy_set_txpower(struct mt76x02_dev *dev) 843 { 844 struct mt76_rate_power *t = &dev->mt76.rate_power; 845 s8 info; 846 847 mt76x0_get_tx_power_per_rate(dev, dev->mt76.chandef.chan, t); 848 mt76x0_get_power_info(dev, dev->mt76.chandef.chan, &info); 849 850 mt76x02_add_rate_power_offset(t, info); 851 mt76x02_limit_rate_power(t, dev->mt76.txpower_conf); 852 dev->mt76.txpower_cur = mt76x02_get_max_rate_power(t); 853 mt76x02_add_rate_power_offset(t, -info); 854 855 dev->target_power = info; 856 mt76x02_phy_set_txpower(dev, info, info); 857 } 858 859 void mt76x0_phy_calibrate(struct mt76x02_dev *dev, bool power_on) 860 { 861 struct ieee80211_channel *chan = dev->mt76.chandef.chan; 862 int is_5ghz = (chan->band == NL80211_BAND_5GHZ) ? 1 : 0; 863 u32 val, tx_alc, reg_val; 864 865 if (is_mt7630(dev)) 866 return; 867 868 if (power_on) { 869 mt76x02_mcu_calibrate(dev, MCU_CAL_R, 0); 870 mt76x02_mcu_calibrate(dev, MCU_CAL_VCO, chan->hw_value); 871 usleep_range(10, 20); 872 873 if (mt76x0_tssi_enabled(dev)) { 874 mt76_wr(dev, MT_MAC_SYS_CTRL, 875 MT_MAC_SYS_CTRL_ENABLE_RX); 876 mt76x0_phy_tssi_dc_calibrate(dev); 877 mt76_wr(dev, MT_MAC_SYS_CTRL, 878 MT_MAC_SYS_CTRL_ENABLE_TX | 879 MT_MAC_SYS_CTRL_ENABLE_RX); 880 } 881 } 882 883 tx_alc = mt76_rr(dev, MT_TX_ALC_CFG_0); 884 mt76_wr(dev, MT_TX_ALC_CFG_0, 0); 885 usleep_range(500, 700); 886 887 reg_val = mt76_rr(dev, MT_BBP(IBI, 9)); 888 mt76_wr(dev, MT_BBP(IBI, 9), 0xffffff7e); 889 890 if (is_5ghz) { 891 if (chan->hw_value < 100) 892 val = 0x701; 893 else if (chan->hw_value < 140) 894 val = 0x801; 895 else 896 val = 0x901; 897 } else { 898 val = 0x600; 899 } 900 901 mt76x02_mcu_calibrate(dev, MCU_CAL_FULL, val); 902 msleep(350); 903 mt76x02_mcu_calibrate(dev, MCU_CAL_LC, is_5ghz); 904 usleep_range(15000, 20000); 905 906 mt76_wr(dev, MT_BBP(IBI, 9), reg_val); 907 mt76_wr(dev, MT_TX_ALC_CFG_0, tx_alc); 908 mt76x02_mcu_calibrate(dev, MCU_CAL_RXDCOC, 1); 909 } 910 EXPORT_SYMBOL_GPL(mt76x0_phy_calibrate); 911 912 void mt76x0_phy_set_channel(struct mt76x02_dev *dev, 913 struct cfg80211_chan_def *chandef) 914 { 915 u32 ext_cca_chan[4] = { 916 [0] = FIELD_PREP(MT_EXT_CCA_CFG_CCA0, 0) | 917 FIELD_PREP(MT_EXT_CCA_CFG_CCA1, 1) | 918 FIELD_PREP(MT_EXT_CCA_CFG_CCA2, 2) | 919 FIELD_PREP(MT_EXT_CCA_CFG_CCA3, 3) | 920 FIELD_PREP(MT_EXT_CCA_CFG_CCA_MASK, BIT(0)), 921 [1] = FIELD_PREP(MT_EXT_CCA_CFG_CCA0, 1) | 922 FIELD_PREP(MT_EXT_CCA_CFG_CCA1, 0) | 923 FIELD_PREP(MT_EXT_CCA_CFG_CCA2, 2) | 924 FIELD_PREP(MT_EXT_CCA_CFG_CCA3, 3) | 925 FIELD_PREP(MT_EXT_CCA_CFG_CCA_MASK, BIT(1)), 926 [2] = FIELD_PREP(MT_EXT_CCA_CFG_CCA0, 2) | 927 FIELD_PREP(MT_EXT_CCA_CFG_CCA1, 3) | 928 FIELD_PREP(MT_EXT_CCA_CFG_CCA2, 1) | 929 FIELD_PREP(MT_EXT_CCA_CFG_CCA3, 0) | 930 FIELD_PREP(MT_EXT_CCA_CFG_CCA_MASK, BIT(2)), 931 [3] = FIELD_PREP(MT_EXT_CCA_CFG_CCA0, 3) | 932 FIELD_PREP(MT_EXT_CCA_CFG_CCA1, 2) | 933 FIELD_PREP(MT_EXT_CCA_CFG_CCA2, 1) | 934 FIELD_PREP(MT_EXT_CCA_CFG_CCA3, 0) | 935 FIELD_PREP(MT_EXT_CCA_CFG_CCA_MASK, BIT(3)), 936 }; 937 bool scan = test_bit(MT76_SCANNING, &dev->mt76.state); 938 int ch_group_index, freq, freq1; 939 u8 channel; 940 u32 val; 941 u16 rf_bw_band; 942 943 freq = chandef->chan->center_freq; 944 freq1 = chandef->center_freq1; 945 channel = chandef->chan->hw_value; 946 rf_bw_band = (channel <= 14) ? RF_G_BAND : RF_A_BAND; 947 948 switch (chandef->width) { 949 case NL80211_CHAN_WIDTH_40: 950 if (freq1 > freq) 951 ch_group_index = 0; 952 else 953 ch_group_index = 1; 954 channel += 2 - ch_group_index * 4; 955 rf_bw_band |= RF_BW_40; 956 break; 957 case NL80211_CHAN_WIDTH_80: 958 ch_group_index = (freq - freq1 + 30) / 20; 959 if (WARN_ON(ch_group_index < 0 || ch_group_index > 3)) 960 ch_group_index = 0; 961 channel += 6 - ch_group_index * 4; 962 rf_bw_band |= RF_BW_80; 963 break; 964 default: 965 ch_group_index = 0; 966 rf_bw_band |= RF_BW_20; 967 break; 968 } 969 970 if (mt76_is_usb(dev)) { 971 mt76x0_phy_bbp_set_bw(dev, chandef->width); 972 } else { 973 if (chandef->width == NL80211_CHAN_WIDTH_80 || 974 chandef->width == NL80211_CHAN_WIDTH_40) 975 val = 0x201; 976 else 977 val = 0x601; 978 mt76_wr(dev, MT_TX_SW_CFG0, val); 979 } 980 mt76x02_phy_set_bw(dev, chandef->width, ch_group_index); 981 mt76x02_phy_set_band(dev, chandef->chan->band, 982 ch_group_index & 1); 983 984 mt76_rmw(dev, MT_EXT_CCA_CFG, 985 (MT_EXT_CCA_CFG_CCA0 | 986 MT_EXT_CCA_CFG_CCA1 | 987 MT_EXT_CCA_CFG_CCA2 | 988 MT_EXT_CCA_CFG_CCA3 | 989 MT_EXT_CCA_CFG_CCA_MASK), 990 ext_cca_chan[ch_group_index]); 991 992 mt76x0_phy_set_band(dev, chandef->chan->band); 993 mt76x0_phy_set_chan_rf_params(dev, channel, rf_bw_band); 994 995 /* set Japan Tx filter at channel 14 */ 996 if (channel == 14) 997 mt76_set(dev, MT_BBP(CORE, 1), 0x20); 998 else 999 mt76_clear(dev, MT_BBP(CORE, 1), 0x20); 1000 1001 mt76x0_read_rx_gain(dev); 1002 mt76x0_phy_set_chan_bbp_params(dev, rf_bw_band); 1003 1004 /* enable vco */ 1005 mt76x0_rf_set(dev, MT_RF(0, 4), BIT(7)); 1006 if (scan) 1007 return; 1008 1009 mt76x02_init_agc_gain(dev); 1010 mt76x0_phy_calibrate(dev, false); 1011 mt76x0_phy_set_txpower(dev); 1012 1013 ieee80211_queue_delayed_work(dev->mt76.hw, &dev->cal_work, 1014 MT_CALIBRATE_INTERVAL); 1015 } 1016 1017 static void mt76x0_phy_temp_sensor(struct mt76x02_dev *dev) 1018 { 1019 u8 rf_b7_73, rf_b0_66, rf_b0_67; 1020 s8 val; 1021 1022 rf_b7_73 = mt76x0_rf_rr(dev, MT_RF(7, 73)); 1023 rf_b0_66 = mt76x0_rf_rr(dev, MT_RF(0, 66)); 1024 rf_b0_67 = mt76x0_rf_rr(dev, MT_RF(0, 67)); 1025 1026 mt76x0_rf_wr(dev, MT_RF(7, 73), 0x02); 1027 mt76x0_rf_wr(dev, MT_RF(0, 66), 0x23); 1028 mt76x0_rf_wr(dev, MT_RF(0, 67), 0x01); 1029 1030 mt76_wr(dev, MT_BBP(CORE, 34), 0x00080055); 1031 if (!mt76_poll_msec(dev, MT_BBP(CORE, 34), BIT(4), 0, 200)) { 1032 mt76_clear(dev, MT_BBP(CORE, 34), BIT(4)); 1033 goto done; 1034 } 1035 1036 val = mt76_rr(dev, MT_BBP(CORE, 35)); 1037 val = (35 * (val - dev->cal.rx.temp_offset)) / 10 + 25; 1038 1039 if (abs(val - dev->cal.temp_vco) > 20) { 1040 mt76x02_mcu_calibrate(dev, MCU_CAL_VCO, 1041 dev->mt76.chandef.chan->hw_value); 1042 dev->cal.temp_vco = val; 1043 } 1044 if (abs(val - dev->cal.temp) > 30) { 1045 mt76x0_phy_calibrate(dev, false); 1046 dev->cal.temp = val; 1047 } 1048 1049 done: 1050 mt76x0_rf_wr(dev, MT_RF(7, 73), rf_b7_73); 1051 mt76x0_rf_wr(dev, MT_RF(0, 66), rf_b0_66); 1052 mt76x0_rf_wr(dev, MT_RF(0, 67), rf_b0_67); 1053 } 1054 1055 static void mt76x0_phy_set_gain_val(struct mt76x02_dev *dev) 1056 { 1057 u8 gain = dev->cal.agc_gain_cur[0] - dev->cal.agc_gain_adjust; 1058 1059 mt76_rmw_field(dev, MT_BBP(AGC, 8), MT_BBP_AGC_GAIN, gain); 1060 1061 if ((dev->mt76.chandef.chan->flags & IEEE80211_CHAN_RADAR) && 1062 !is_mt7630(dev)) 1063 mt76x02_phy_dfs_adjust_agc(dev); 1064 } 1065 1066 static void 1067 mt76x0_phy_update_channel_gain(struct mt76x02_dev *dev) 1068 { 1069 bool gain_change; 1070 u8 gain_delta; 1071 int low_gain; 1072 1073 dev->cal.avg_rssi_all = mt76_get_min_avg_rssi(&dev->mt76); 1074 if (!dev->cal.avg_rssi_all) 1075 dev->cal.avg_rssi_all = -75; 1076 1077 low_gain = (dev->cal.avg_rssi_all > mt76x02_get_rssi_gain_thresh(dev)) + 1078 (dev->cal.avg_rssi_all > mt76x02_get_low_rssi_gain_thresh(dev)); 1079 1080 gain_change = dev->cal.low_gain < 0 || 1081 (dev->cal.low_gain & 2) ^ (low_gain & 2); 1082 dev->cal.low_gain = low_gain; 1083 1084 if (!gain_change) { 1085 if (mt76x02_phy_adjust_vga_gain(dev)) 1086 mt76x0_phy_set_gain_val(dev); 1087 return; 1088 } 1089 1090 dev->cal.agc_gain_adjust = (low_gain == 2) ? 0 : 10; 1091 gain_delta = (low_gain == 2) ? 10 : 0; 1092 1093 dev->cal.agc_gain_cur[0] = dev->cal.agc_gain_init[0] - gain_delta; 1094 mt76x0_phy_set_gain_val(dev); 1095 1096 /* clear false CCA counters */ 1097 mt76_rr(dev, MT_RX_STAT_1); 1098 } 1099 1100 static void mt76x0_phy_calibration_work(struct work_struct *work) 1101 { 1102 struct mt76x02_dev *dev = container_of(work, struct mt76x02_dev, 1103 cal_work.work); 1104 1105 mt76x0_phy_update_channel_gain(dev); 1106 if (mt76x0_tssi_enabled(dev)) 1107 mt76x0_phy_tssi_calibrate(dev); 1108 else 1109 mt76x0_phy_temp_sensor(dev); 1110 1111 ieee80211_queue_delayed_work(dev->mt76.hw, &dev->cal_work, 1112 4 * MT_CALIBRATE_INTERVAL); 1113 } 1114 1115 static void mt76x0_rf_patch_reg_array(struct mt76x02_dev *dev, 1116 const struct mt76_reg_pair *rp, int len) 1117 { 1118 int i; 1119 1120 for (i = 0; i < len; i++) { 1121 u32 reg = rp[i].reg; 1122 u8 val = rp[i].value; 1123 1124 switch (reg) { 1125 case MT_RF(0, 3): 1126 if (mt76_is_mmio(dev)) { 1127 if (is_mt7630(dev)) 1128 val = 0x70; 1129 else 1130 val = 0x63; 1131 } else { 1132 val = 0x73; 1133 } 1134 break; 1135 case MT_RF(0, 21): 1136 if (is_mt7610e(dev)) 1137 val = 0x10; 1138 else 1139 val = 0x12; 1140 break; 1141 case MT_RF(5, 2): 1142 if (is_mt7630(dev)) 1143 val = 0x1d; 1144 else if (is_mt7610e(dev)) 1145 val = 0x00; 1146 else 1147 val = 0x0c; 1148 break; 1149 default: 1150 break; 1151 } 1152 mt76x0_rf_wr(dev, reg, val); 1153 } 1154 } 1155 1156 static void mt76x0_phy_rf_init(struct mt76x02_dev *dev) 1157 { 1158 int i; 1159 u8 val; 1160 1161 mt76x0_rf_patch_reg_array(dev, mt76x0_rf_central_tab, 1162 ARRAY_SIZE(mt76x0_rf_central_tab)); 1163 mt76x0_rf_patch_reg_array(dev, mt76x0_rf_2g_channel_0_tab, 1164 ARRAY_SIZE(mt76x0_rf_2g_channel_0_tab)); 1165 RF_RANDOM_WRITE(dev, mt76x0_rf_5g_channel_0_tab); 1166 RF_RANDOM_WRITE(dev, mt76x0_rf_vga_channel_0_tab); 1167 1168 for (i = 0; i < ARRAY_SIZE(mt76x0_rf_bw_switch_tab); i++) { 1169 const struct mt76x0_rf_switch_item *item = &mt76x0_rf_bw_switch_tab[i]; 1170 1171 if (item->bw_band == RF_BW_20) 1172 mt76x0_rf_wr(dev, item->rf_bank_reg, item->value); 1173 else if (((RF_G_BAND | RF_BW_20) & item->bw_band) == 1174 (RF_G_BAND | RF_BW_20)) 1175 mt76x0_rf_wr(dev, item->rf_bank_reg, item->value); 1176 } 1177 1178 for (i = 0; i < ARRAY_SIZE(mt76x0_rf_band_switch_tab); i++) { 1179 if (mt76x0_rf_band_switch_tab[i].bw_band & RF_G_BAND) { 1180 mt76x0_rf_wr(dev, 1181 mt76x0_rf_band_switch_tab[i].rf_bank_reg, 1182 mt76x0_rf_band_switch_tab[i].value); 1183 } 1184 } 1185 1186 /* Frequency calibration 1187 * E1: B0.R22<6:0>: xo_cxo<6:0> 1188 * E2: B0.R21<0>: xo_cxo<0>, B0.R22<7:0>: xo_cxo<8:1> 1189 */ 1190 mt76x0_rf_wr(dev, MT_RF(0, 22), 1191 min_t(u8, dev->cal.rx.freq_offset, 0xbf)); 1192 val = mt76x0_rf_rr(dev, MT_RF(0, 22)); 1193 1194 /* Reset procedure DAC during power-up: 1195 * - set B0.R73<7> 1196 * - clear B0.R73<7> 1197 * - set B0.R73<7> 1198 */ 1199 mt76x0_rf_set(dev, MT_RF(0, 73), BIT(7)); 1200 mt76x0_rf_clear(dev, MT_RF(0, 73), BIT(7)); 1201 mt76x0_rf_set(dev, MT_RF(0, 73), BIT(7)); 1202 1203 /* vcocal_en: initiate VCO calibration (reset after completion)) */ 1204 mt76x0_rf_set(dev, MT_RF(0, 4), 0x80); 1205 } 1206 1207 void mt76x0_phy_init(struct mt76x02_dev *dev) 1208 { 1209 INIT_DELAYED_WORK(&dev->cal_work, mt76x0_phy_calibration_work); 1210 1211 mt76x0_phy_ant_select(dev); 1212 mt76x0_phy_rf_init(dev); 1213 mt76x02_phy_set_rxpath(dev); 1214 mt76x02_phy_set_txdac(dev); 1215 } 1216