xref: /openbmc/linux/drivers/net/wireless/mediatek/mt76/mt7615/mac.c (revision c496daeb863093a046e0bb8db7265bf45d91775a)
1 // SPDX-License-Identifier: ISC
2 /* Copyright (C) 2019 MediaTek Inc.
3  *
4  * Author: Ryder Lee <ryder.lee@mediatek.com>
5  *         Roy Luo <royluo@google.com>
6  *         Felix Fietkau <nbd@nbd.name>
7  *         Lorenzo Bianconi <lorenzo@kernel.org>
8  */
9 
10 #include <linux/devcoredump.h>
11 #include <linux/etherdevice.h>
12 #include <linux/timekeeping.h>
13 #include "mt7615.h"
14 #include "../trace.h"
15 #include "../dma.h"
16 #include "mt7615_trace.h"
17 #include "mac.h"
18 #include "mcu.h"
19 
20 #define to_rssi(field, rxv)		((FIELD_GET(field, rxv) - 220) / 2)
21 
22 static const struct mt7615_dfs_radar_spec etsi_radar_specs = {
23 	.pulse_th = { 110, -10, -80, 40, 5200, 128, 5200 },
24 	.radar_pattern = {
25 		[5] =  { 1, 0,  6, 32, 28, 0, 17,  990, 5010, 1, 1 },
26 		[6] =  { 1, 0,  9, 32, 28, 0, 27,  615, 5010, 1, 1 },
27 		[7] =  { 1, 0, 15, 32, 28, 0, 27,  240,  445, 1, 1 },
28 		[8] =  { 1, 0, 12, 32, 28, 0, 42,  240,  510, 1, 1 },
29 		[9] =  { 1, 1,  0,  0,  0, 0, 14, 2490, 3343, 0, 0, 12, 32, 28 },
30 		[10] = { 1, 1,  0,  0,  0, 0, 14, 2490, 3343, 0, 0, 15, 32, 24 },
31 		[11] = { 1, 1,  0,  0,  0, 0, 14,  823, 2510, 0, 0, 18, 32, 28 },
32 		[12] = { 1, 1,  0,  0,  0, 0, 14,  823, 2510, 0, 0, 27, 32, 24 },
33 	},
34 };
35 
36 static const struct mt7615_dfs_radar_spec fcc_radar_specs = {
37 	.pulse_th = { 110, -10, -80, 40, 5200, 128, 5200 },
38 	.radar_pattern = {
39 		[0] = { 1, 0,  9,  32, 28, 0, 13, 508, 3076, 1,  1 },
40 		[1] = { 1, 0, 12,  32, 28, 0, 17, 140,  240, 1,  1 },
41 		[2] = { 1, 0,  8,  32, 28, 0, 22, 190,  510, 1,  1 },
42 		[3] = { 1, 0,  6,  32, 28, 0, 32, 190,  510, 1,  1 },
43 		[4] = { 1, 0,  9, 255, 28, 0, 13, 323,  343, 1, 32 },
44 	},
45 };
46 
47 static const struct mt7615_dfs_radar_spec jp_radar_specs = {
48 	.pulse_th = { 110, -10, -80, 40, 5200, 128, 5200 },
49 	.radar_pattern = {
50 		[0] =  { 1, 0,  8, 32, 28, 0, 13,  508, 3076, 1,  1 },
51 		[1] =  { 1, 0, 12, 32, 28, 0, 17,  140,  240, 1,  1 },
52 		[2] =  { 1, 0,  8, 32, 28, 0, 22,  190,  510, 1,  1 },
53 		[3] =  { 1, 0,  6, 32, 28, 0, 32,  190,  510, 1,  1 },
54 		[4] =  { 1, 0,  9, 32, 28, 0, 13,  323,  343, 1, 32 },
55 		[13] = { 1, 0, 8,  32, 28, 0, 14, 3836, 3856, 1,  1 },
56 		[14] = { 1, 0, 8,  32, 28, 0, 14, 3990, 4010, 1,  1 },
57 	},
58 };
59 
60 static enum mt76_cipher_type
61 mt7615_mac_get_cipher(int cipher)
62 {
63 	switch (cipher) {
64 	case WLAN_CIPHER_SUITE_WEP40:
65 		return MT_CIPHER_WEP40;
66 	case WLAN_CIPHER_SUITE_WEP104:
67 		return MT_CIPHER_WEP104;
68 	case WLAN_CIPHER_SUITE_TKIP:
69 		return MT_CIPHER_TKIP;
70 	case WLAN_CIPHER_SUITE_AES_CMAC:
71 		return MT_CIPHER_BIP_CMAC_128;
72 	case WLAN_CIPHER_SUITE_CCMP:
73 		return MT_CIPHER_AES_CCMP;
74 	case WLAN_CIPHER_SUITE_CCMP_256:
75 		return MT_CIPHER_CCMP_256;
76 	case WLAN_CIPHER_SUITE_GCMP:
77 		return MT_CIPHER_GCMP;
78 	case WLAN_CIPHER_SUITE_GCMP_256:
79 		return MT_CIPHER_GCMP_256;
80 	case WLAN_CIPHER_SUITE_SMS4:
81 		return MT_CIPHER_WAPI;
82 	default:
83 		return MT_CIPHER_NONE;
84 	}
85 }
86 
87 static struct mt76_wcid *mt7615_rx_get_wcid(struct mt7615_dev *dev,
88 					    u8 idx, bool unicast)
89 {
90 	struct mt7615_sta *sta;
91 	struct mt76_wcid *wcid;
92 
93 	if (idx >= MT7615_WTBL_SIZE)
94 		return NULL;
95 
96 	wcid = rcu_dereference(dev->mt76.wcid[idx]);
97 	if (unicast || !wcid)
98 		return wcid;
99 
100 	if (!wcid->sta)
101 		return NULL;
102 
103 	sta = container_of(wcid, struct mt7615_sta, wcid);
104 	if (!sta->vif)
105 		return NULL;
106 
107 	return &sta->vif->sta.wcid;
108 }
109 
110 void mt7615_mac_reset_counters(struct mt7615_phy *phy)
111 {
112 	struct mt7615_dev *dev = phy->dev;
113 	int i;
114 
115 	for (i = 0; i < 4; i++) {
116 		mt76_rr(dev, MT_TX_AGG_CNT(0, i));
117 		mt76_rr(dev, MT_TX_AGG_CNT(1, i));
118 	}
119 
120 	memset(phy->mt76->aggr_stats, 0, sizeof(phy->mt76->aggr_stats));
121 	phy->mt76->survey_time = ktime_get_boottime();
122 
123 	/* reset airtime counters */
124 	mt76_rr(dev, MT_MIB_SDR9(0));
125 	mt76_rr(dev, MT_MIB_SDR9(1));
126 
127 	mt76_rr(dev, MT_MIB_SDR36(0));
128 	mt76_rr(dev, MT_MIB_SDR36(1));
129 
130 	mt76_rr(dev, MT_MIB_SDR37(0));
131 	mt76_rr(dev, MT_MIB_SDR37(1));
132 
133 	mt76_set(dev, MT_WF_RMAC_MIB_TIME0, MT_WF_RMAC_MIB_RXTIME_CLR);
134 	mt76_set(dev, MT_WF_RMAC_MIB_AIRTIME0, MT_WF_RMAC_MIB_RXTIME_CLR);
135 }
136 
137 void mt7615_mac_set_timing(struct mt7615_phy *phy)
138 {
139 	s16 coverage_class = phy->coverage_class;
140 	struct mt7615_dev *dev = phy->dev;
141 	bool ext_phy = phy != &dev->phy;
142 	u32 val, reg_offset;
143 	u32 cck = FIELD_PREP(MT_TIMEOUT_VAL_PLCP, 231) |
144 		  FIELD_PREP(MT_TIMEOUT_VAL_CCA, 48);
145 	u32 ofdm = FIELD_PREP(MT_TIMEOUT_VAL_PLCP, 60) |
146 		   FIELD_PREP(MT_TIMEOUT_VAL_CCA, 28);
147 	int sifs, offset;
148 	bool is_5ghz = phy->mt76->chandef.chan->band == NL80211_BAND_5GHZ;
149 
150 	if (!test_bit(MT76_STATE_RUNNING, &phy->mt76->state))
151 		return;
152 
153 	if (is_5ghz)
154 		sifs = 16;
155 	else
156 		sifs = 10;
157 
158 	if (ext_phy) {
159 		coverage_class = max_t(s16, dev->phy.coverage_class,
160 				       coverage_class);
161 		mt76_set(dev, MT_ARB_SCR,
162 			 MT_ARB_SCR_TX1_DISABLE | MT_ARB_SCR_RX1_DISABLE);
163 	} else {
164 		struct mt7615_phy *phy_ext = mt7615_ext_phy(dev);
165 
166 		if (phy_ext)
167 			coverage_class = max_t(s16, phy_ext->coverage_class,
168 					       coverage_class);
169 		mt76_set(dev, MT_ARB_SCR,
170 			 MT_ARB_SCR_TX0_DISABLE | MT_ARB_SCR_RX0_DISABLE);
171 	}
172 	udelay(1);
173 
174 	offset = 3 * coverage_class;
175 	reg_offset = FIELD_PREP(MT_TIMEOUT_VAL_PLCP, offset) |
176 		     FIELD_PREP(MT_TIMEOUT_VAL_CCA, offset);
177 	mt76_wr(dev, MT_TMAC_CDTR, cck + reg_offset);
178 	mt76_wr(dev, MT_TMAC_ODTR, ofdm + reg_offset);
179 
180 	mt76_wr(dev, MT_TMAC_ICR(ext_phy),
181 		FIELD_PREP(MT_IFS_EIFS, 360) |
182 		FIELD_PREP(MT_IFS_RIFS, 2) |
183 		FIELD_PREP(MT_IFS_SIFS, sifs) |
184 		FIELD_PREP(MT_IFS_SLOT, phy->slottime));
185 
186 	if (phy->slottime < 20 || is_5ghz)
187 		val = MT7615_CFEND_RATE_DEFAULT;
188 	else
189 		val = MT7615_CFEND_RATE_11B;
190 
191 	mt76_rmw_field(dev, MT_AGG_ACR(ext_phy), MT_AGG_ACR_CFEND_RATE, val);
192 	if (ext_phy)
193 		mt76_clear(dev, MT_ARB_SCR,
194 			   MT_ARB_SCR_TX1_DISABLE | MT_ARB_SCR_RX1_DISABLE);
195 	else
196 		mt76_clear(dev, MT_ARB_SCR,
197 			   MT_ARB_SCR_TX0_DISABLE | MT_ARB_SCR_RX0_DISABLE);
198 
199 }
200 
201 static void
202 mt7615_get_status_freq_info(struct mt7615_dev *dev, struct mt76_phy *mphy,
203 			    struct mt76_rx_status *status, u8 chfreq)
204 {
205 	if (!test_bit(MT76_HW_SCANNING, &mphy->state) &&
206 	    !test_bit(MT76_HW_SCHED_SCANNING, &mphy->state) &&
207 	    !test_bit(MT76_STATE_ROC, &mphy->state)) {
208 		status->freq = mphy->chandef.chan->center_freq;
209 		status->band = mphy->chandef.chan->band;
210 		return;
211 	}
212 
213 	status->band = chfreq <= 14 ? NL80211_BAND_2GHZ : NL80211_BAND_5GHZ;
214 	status->freq = ieee80211_channel_to_frequency(chfreq, status->band);
215 }
216 
217 static void mt7615_mac_fill_tm_rx(struct mt7615_phy *phy, __le32 *rxv)
218 {
219 #ifdef CONFIG_NL80211_TESTMODE
220 	u32 rxv1 = le32_to_cpu(rxv[0]);
221 	u32 rxv3 = le32_to_cpu(rxv[2]);
222 	u32 rxv4 = le32_to_cpu(rxv[3]);
223 	u32 rxv5 = le32_to_cpu(rxv[4]);
224 	u8 cbw = FIELD_GET(MT_RXV1_FRAME_MODE, rxv1);
225 	u8 mode = FIELD_GET(MT_RXV1_TX_MODE, rxv1);
226 	s16 foe = FIELD_GET(MT_RXV5_FOE, rxv5);
227 	u32 foe_const = (BIT(cbw + 1) & 0xf) * 10000;
228 
229 	if (!mode) {
230 		/* CCK */
231 		foe &= ~BIT(11);
232 		foe *= 1000;
233 		foe >>= 11;
234 	} else {
235 		if (foe > 2048)
236 			foe -= 4096;
237 
238 		foe = (foe * foe_const) >> 15;
239 	}
240 
241 	phy->test.last_freq_offset = foe;
242 	phy->test.last_rcpi[0] = FIELD_GET(MT_RXV4_RCPI0, rxv4);
243 	phy->test.last_rcpi[1] = FIELD_GET(MT_RXV4_RCPI1, rxv4);
244 	phy->test.last_rcpi[2] = FIELD_GET(MT_RXV4_RCPI2, rxv4);
245 	phy->test.last_rcpi[3] = FIELD_GET(MT_RXV4_RCPI3, rxv4);
246 	phy->test.last_ib_rssi[0] = FIELD_GET(MT_RXV3_IB_RSSI, rxv3);
247 	phy->test.last_wb_rssi[0] = FIELD_GET(MT_RXV3_WB_RSSI, rxv3);
248 #endif
249 }
250 
251 /* The HW does not translate the mac header to 802.3 for mesh point */
252 static int mt7615_reverse_frag0_hdr_trans(struct sk_buff *skb, u16 hdr_gap)
253 {
254 	struct mt76_rx_status *status = (struct mt76_rx_status *)skb->cb;
255 	struct ethhdr *eth_hdr = (struct ethhdr *)(skb->data + hdr_gap);
256 	struct mt7615_sta *msta = (struct mt7615_sta *)status->wcid;
257 	__le32 *rxd = (__le32 *)skb->data;
258 	struct ieee80211_sta *sta;
259 	struct ieee80211_vif *vif;
260 	struct ieee80211_hdr hdr;
261 	u16 frame_control;
262 
263 	if (le32_get_bits(rxd[1], MT_RXD1_NORMAL_ADDR_TYPE) !=
264 	    MT_RXD1_NORMAL_U2M)
265 		return -EINVAL;
266 
267 	if (!(le32_to_cpu(rxd[0]) & MT_RXD0_NORMAL_GROUP_4))
268 		return -EINVAL;
269 
270 	if (!msta || !msta->vif)
271 		return -EINVAL;
272 
273 	sta = container_of((void *)msta, struct ieee80211_sta, drv_priv);
274 	vif = container_of((void *)msta->vif, struct ieee80211_vif, drv_priv);
275 
276 	/* store the info from RXD and ethhdr to avoid being overridden */
277 	frame_control = le32_get_bits(rxd[4], MT_RXD4_FRAME_CONTROL);
278 	hdr.frame_control = cpu_to_le16(frame_control);
279 	hdr.seq_ctrl = cpu_to_le16(le32_get_bits(rxd[6], MT_RXD6_SEQ_CTRL));
280 	hdr.duration_id = 0;
281 
282 	ether_addr_copy(hdr.addr1, vif->addr);
283 	ether_addr_copy(hdr.addr2, sta->addr);
284 	switch (frame_control & (IEEE80211_FCTL_TODS |
285 				 IEEE80211_FCTL_FROMDS)) {
286 	case 0:
287 		ether_addr_copy(hdr.addr3, vif->bss_conf.bssid);
288 		break;
289 	case IEEE80211_FCTL_FROMDS:
290 		ether_addr_copy(hdr.addr3, eth_hdr->h_source);
291 		break;
292 	case IEEE80211_FCTL_TODS:
293 		ether_addr_copy(hdr.addr3, eth_hdr->h_dest);
294 		break;
295 	case IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS:
296 		ether_addr_copy(hdr.addr3, eth_hdr->h_dest);
297 		ether_addr_copy(hdr.addr4, eth_hdr->h_source);
298 		break;
299 	default:
300 		break;
301 	}
302 
303 	skb_pull(skb, hdr_gap + sizeof(struct ethhdr) - 2);
304 	if (eth_hdr->h_proto == cpu_to_be16(ETH_P_AARP) ||
305 	    eth_hdr->h_proto == cpu_to_be16(ETH_P_IPX))
306 		ether_addr_copy(skb_push(skb, ETH_ALEN), bridge_tunnel_header);
307 	else if (be16_to_cpu(eth_hdr->h_proto) >= ETH_P_802_3_MIN)
308 		ether_addr_copy(skb_push(skb, ETH_ALEN), rfc1042_header);
309 	else
310 		skb_pull(skb, 2);
311 
312 	if (ieee80211_has_order(hdr.frame_control))
313 		memcpy(skb_push(skb, IEEE80211_HT_CTL_LEN), &rxd[7],
314 		       IEEE80211_HT_CTL_LEN);
315 
316 	if (ieee80211_is_data_qos(hdr.frame_control)) {
317 		__le16 qos_ctrl;
318 
319 		qos_ctrl = cpu_to_le16(le32_get_bits(rxd[6], MT_RXD6_QOS_CTL));
320 		memcpy(skb_push(skb, IEEE80211_QOS_CTL_LEN), &qos_ctrl,
321 		       IEEE80211_QOS_CTL_LEN);
322 	}
323 
324 	if (ieee80211_has_a4(hdr.frame_control))
325 		memcpy(skb_push(skb, sizeof(hdr)), &hdr, sizeof(hdr));
326 	else
327 		memcpy(skb_push(skb, sizeof(hdr) - 6), &hdr, sizeof(hdr) - 6);
328 
329 	status->flag &= ~(RX_FLAG_RADIOTAP_HE | RX_FLAG_RADIOTAP_HE_MU);
330 	return 0;
331 }
332 
333 static int mt7615_mac_fill_rx(struct mt7615_dev *dev, struct sk_buff *skb)
334 {
335 	struct mt76_rx_status *status = (struct mt76_rx_status *)skb->cb;
336 	struct mt76_phy *mphy = &dev->mt76.phy;
337 	struct mt7615_phy *phy = &dev->phy;
338 	struct ieee80211_supported_band *sband;
339 	struct ieee80211_hdr *hdr;
340 	struct mt7615_phy *phy2;
341 	__le32 *rxd = (__le32 *)skb->data;
342 	u32 rxd0 = le32_to_cpu(rxd[0]);
343 	u32 rxd1 = le32_to_cpu(rxd[1]);
344 	u32 rxd2 = le32_to_cpu(rxd[2]);
345 	u32 csum_mask = MT_RXD0_NORMAL_IP_SUM | MT_RXD0_NORMAL_UDP_TCP_SUM;
346 	u32 csum_status = *(u32 *)skb->cb;
347 	bool unicast, hdr_trans, remove_pad, insert_ccmp_hdr = false;
348 	u16 hdr_gap;
349 	int phy_idx;
350 	int i, idx;
351 	u8 chfreq, amsdu_info, qos_ctl = 0;
352 	u16 seq_ctrl = 0;
353 	__le16 fc = 0;
354 
355 	memset(status, 0, sizeof(*status));
356 
357 	chfreq = FIELD_GET(MT_RXD1_NORMAL_CH_FREQ, rxd1);
358 
359 	phy2 = dev->mt76.phys[MT_BAND1] ? dev->mt76.phys[MT_BAND1]->priv : NULL;
360 	if (!phy2)
361 		phy_idx = 0;
362 	else if (phy2->chfreq == phy->chfreq)
363 		phy_idx = -1;
364 	else if (phy->chfreq == chfreq)
365 		phy_idx = 0;
366 	else if (phy2->chfreq == chfreq)
367 		phy_idx = 1;
368 	else
369 		phy_idx = -1;
370 
371 	if (rxd2 & MT_RXD2_NORMAL_AMSDU_ERR)
372 		return -EINVAL;
373 
374 	hdr_trans = rxd1 & MT_RXD1_NORMAL_HDR_TRANS;
375 	if (hdr_trans && (rxd2 & MT_RXD2_NORMAL_CM))
376 		return -EINVAL;
377 
378 	/* ICV error or CCMP/BIP/WPI MIC error */
379 	if (rxd2 & MT_RXD2_NORMAL_ICV_ERR)
380 		status->flag |= RX_FLAG_ONLY_MONITOR;
381 
382 	unicast = (rxd1 & MT_RXD1_NORMAL_ADDR_TYPE) == MT_RXD1_NORMAL_U2M;
383 	idx = FIELD_GET(MT_RXD2_NORMAL_WLAN_IDX, rxd2);
384 	status->wcid = mt7615_rx_get_wcid(dev, idx, unicast);
385 
386 	if (status->wcid) {
387 		struct mt7615_sta *msta;
388 
389 		msta = container_of(status->wcid, struct mt7615_sta, wcid);
390 		spin_lock_bh(&dev->sta_poll_lock);
391 		if (list_empty(&msta->poll_list))
392 			list_add_tail(&msta->poll_list, &dev->sta_poll_list);
393 		spin_unlock_bh(&dev->sta_poll_lock);
394 	}
395 
396 	if (mt76_is_mmio(&dev->mt76) && (rxd0 & csum_mask) == csum_mask &&
397 	    !(csum_status & (BIT(0) | BIT(2) | BIT(3))))
398 		skb->ip_summed = CHECKSUM_UNNECESSARY;
399 
400 	if (rxd2 & MT_RXD2_NORMAL_FCS_ERR)
401 		status->flag |= RX_FLAG_FAILED_FCS_CRC;
402 
403 	if (rxd2 & MT_RXD2_NORMAL_TKIP_MIC_ERR)
404 		status->flag |= RX_FLAG_MMIC_ERROR;
405 
406 	if (FIELD_GET(MT_RXD2_NORMAL_SEC_MODE, rxd2) != 0 &&
407 	    !(rxd2 & (MT_RXD2_NORMAL_CLM | MT_RXD2_NORMAL_CM))) {
408 		status->flag |= RX_FLAG_DECRYPTED;
409 		status->flag |= RX_FLAG_IV_STRIPPED;
410 		status->flag |= RX_FLAG_MMIC_STRIPPED | RX_FLAG_MIC_STRIPPED;
411 	}
412 
413 	remove_pad = rxd1 & MT_RXD1_NORMAL_HDR_OFFSET;
414 
415 	if (rxd2 & MT_RXD2_NORMAL_MAX_LEN_ERROR)
416 		return -EINVAL;
417 
418 	rxd += 4;
419 	if (rxd0 & MT_RXD0_NORMAL_GROUP_4) {
420 		u32 v0 = le32_to_cpu(rxd[0]);
421 		u32 v2 = le32_to_cpu(rxd[2]);
422 
423 		fc = cpu_to_le16(FIELD_GET(MT_RXD4_FRAME_CONTROL, v0));
424 		qos_ctl = FIELD_GET(MT_RXD6_QOS_CTL, v2);
425 		seq_ctrl = FIELD_GET(MT_RXD6_SEQ_CTRL, v2);
426 
427 		rxd += 4;
428 		if ((u8 *)rxd - skb->data >= skb->len)
429 			return -EINVAL;
430 	}
431 
432 	if (rxd0 & MT_RXD0_NORMAL_GROUP_1) {
433 		u8 *data = (u8 *)rxd;
434 
435 		if (status->flag & RX_FLAG_DECRYPTED) {
436 			switch (FIELD_GET(MT_RXD2_NORMAL_SEC_MODE, rxd2)) {
437 			case MT_CIPHER_AES_CCMP:
438 			case MT_CIPHER_CCMP_CCX:
439 			case MT_CIPHER_CCMP_256:
440 				insert_ccmp_hdr =
441 					FIELD_GET(MT_RXD2_NORMAL_FRAG, rxd2);
442 				fallthrough;
443 			case MT_CIPHER_TKIP:
444 			case MT_CIPHER_TKIP_NO_MIC:
445 			case MT_CIPHER_GCMP:
446 			case MT_CIPHER_GCMP_256:
447 				status->iv[0] = data[5];
448 				status->iv[1] = data[4];
449 				status->iv[2] = data[3];
450 				status->iv[3] = data[2];
451 				status->iv[4] = data[1];
452 				status->iv[5] = data[0];
453 				break;
454 			default:
455 				break;
456 			}
457 		}
458 		rxd += 4;
459 		if ((u8 *)rxd - skb->data >= skb->len)
460 			return -EINVAL;
461 	}
462 
463 	if (rxd0 & MT_RXD0_NORMAL_GROUP_2) {
464 		status->timestamp = le32_to_cpu(rxd[0]);
465 		status->flag |= RX_FLAG_MACTIME_START;
466 
467 		if (!(rxd2 & (MT_RXD2_NORMAL_NON_AMPDU_SUB |
468 			      MT_RXD2_NORMAL_NON_AMPDU))) {
469 			status->flag |= RX_FLAG_AMPDU_DETAILS;
470 
471 			/* all subframes of an A-MPDU have the same timestamp */
472 			if (phy->rx_ampdu_ts != status->timestamp) {
473 				if (!++phy->ampdu_ref)
474 					phy->ampdu_ref++;
475 			}
476 			phy->rx_ampdu_ts = status->timestamp;
477 
478 			status->ampdu_ref = phy->ampdu_ref;
479 		}
480 
481 		rxd += 2;
482 		if ((u8 *)rxd - skb->data >= skb->len)
483 			return -EINVAL;
484 	}
485 
486 	if (rxd0 & MT_RXD0_NORMAL_GROUP_3) {
487 		u32 rxdg5 = le32_to_cpu(rxd[5]);
488 
489 		/*
490 		 * If both PHYs are on the same channel and we don't have a WCID,
491 		 * we need to figure out which PHY this packet was received on.
492 		 * On the primary PHY, the noise value for the chains belonging to the
493 		 * second PHY will be set to the noise value of the last packet from
494 		 * that PHY.
495 		 */
496 		if (phy_idx < 0) {
497 			int first_chain = ffs(phy2->mt76->chainmask) - 1;
498 
499 			phy_idx = ((rxdg5 >> (first_chain * 8)) & 0xff) == 0;
500 		}
501 	}
502 
503 	if (phy_idx == 1 && phy2) {
504 		mphy = dev->mt76.phys[MT_BAND1];
505 		phy = phy2;
506 		status->phy_idx = phy_idx;
507 	}
508 
509 	if (!mt7615_firmware_offload(dev) && chfreq != phy->chfreq)
510 		return -EINVAL;
511 
512 	mt7615_get_status_freq_info(dev, mphy, status, chfreq);
513 	if (status->band == NL80211_BAND_5GHZ)
514 		sband = &mphy->sband_5g.sband;
515 	else
516 		sband = &mphy->sband_2g.sband;
517 
518 	if (!test_bit(MT76_STATE_RUNNING, &mphy->state))
519 		return -EINVAL;
520 
521 	if (!sband->channels)
522 		return -EINVAL;
523 
524 	if (rxd0 & MT_RXD0_NORMAL_GROUP_3) {
525 		u32 rxdg0 = le32_to_cpu(rxd[0]);
526 		u32 rxdg1 = le32_to_cpu(rxd[1]);
527 		u32 rxdg3 = le32_to_cpu(rxd[3]);
528 		u8 stbc = FIELD_GET(MT_RXV1_HT_STBC, rxdg0);
529 		bool cck = false;
530 
531 		i = FIELD_GET(MT_RXV1_TX_RATE, rxdg0);
532 		switch (FIELD_GET(MT_RXV1_TX_MODE, rxdg0)) {
533 		case MT_PHY_TYPE_CCK:
534 			cck = true;
535 			fallthrough;
536 		case MT_PHY_TYPE_OFDM:
537 			i = mt76_get_rate(&dev->mt76, sband, i, cck);
538 			break;
539 		case MT_PHY_TYPE_HT_GF:
540 		case MT_PHY_TYPE_HT:
541 			status->encoding = RX_ENC_HT;
542 			if (i > 31)
543 				return -EINVAL;
544 			break;
545 		case MT_PHY_TYPE_VHT:
546 			status->nss = FIELD_GET(MT_RXV2_NSTS, rxdg1) + 1;
547 			status->encoding = RX_ENC_VHT;
548 			break;
549 		default:
550 			return -EINVAL;
551 		}
552 		status->rate_idx = i;
553 
554 		switch (FIELD_GET(MT_RXV1_FRAME_MODE, rxdg0)) {
555 		case MT_PHY_BW_20:
556 			break;
557 		case MT_PHY_BW_40:
558 			status->bw = RATE_INFO_BW_40;
559 			break;
560 		case MT_PHY_BW_80:
561 			status->bw = RATE_INFO_BW_80;
562 			break;
563 		case MT_PHY_BW_160:
564 			status->bw = RATE_INFO_BW_160;
565 			break;
566 		default:
567 			return -EINVAL;
568 		}
569 
570 		if (rxdg0 & MT_RXV1_HT_SHORT_GI)
571 			status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
572 		if (rxdg0 & MT_RXV1_HT_AD_CODE)
573 			status->enc_flags |= RX_ENC_FLAG_LDPC;
574 
575 		status->enc_flags |= RX_ENC_FLAG_STBC_MASK * stbc;
576 
577 		status->chains = mphy->antenna_mask;
578 		status->chain_signal[0] = to_rssi(MT_RXV4_RCPI0, rxdg3);
579 		status->chain_signal[1] = to_rssi(MT_RXV4_RCPI1, rxdg3);
580 		status->chain_signal[2] = to_rssi(MT_RXV4_RCPI2, rxdg3);
581 		status->chain_signal[3] = to_rssi(MT_RXV4_RCPI3, rxdg3);
582 
583 		mt7615_mac_fill_tm_rx(mphy->priv, rxd);
584 
585 		rxd += 6;
586 		if ((u8 *)rxd - skb->data >= skb->len)
587 			return -EINVAL;
588 	}
589 
590 	amsdu_info = FIELD_GET(MT_RXD1_NORMAL_PAYLOAD_FORMAT, rxd1);
591 	status->amsdu = !!amsdu_info;
592 	if (status->amsdu) {
593 		status->first_amsdu = amsdu_info == MT_RXD1_FIRST_AMSDU_FRAME;
594 		status->last_amsdu = amsdu_info == MT_RXD1_LAST_AMSDU_FRAME;
595 	}
596 
597 	hdr_gap = (u8 *)rxd - skb->data + 2 * remove_pad;
598 	if (hdr_trans && ieee80211_has_morefrags(fc)) {
599 		if (mt7615_reverse_frag0_hdr_trans(skb, hdr_gap))
600 			return -EINVAL;
601 		hdr_trans = false;
602 	} else {
603 		int pad_start = 0;
604 
605 		skb_pull(skb, hdr_gap);
606 		if (!hdr_trans && status->amsdu) {
607 			pad_start = ieee80211_get_hdrlen_from_skb(skb);
608 		} else if (hdr_trans && (rxd2 & MT_RXD2_NORMAL_HDR_TRANS_ERROR)) {
609 			/*
610 			 * When header translation failure is indicated,
611 			 * the hardware will insert an extra 2-byte field
612 			 * containing the data length after the protocol
613 			 * type field. This happens either when the LLC-SNAP
614 			 * pattern did not match, or if a VLAN header was
615 			 * detected.
616 			 */
617 			pad_start = 12;
618 			if (get_unaligned_be16(skb->data + pad_start) == ETH_P_8021Q)
619 				pad_start += 4;
620 			else
621 				pad_start = 0;
622 		}
623 
624 		if (pad_start) {
625 			memmove(skb->data + 2, skb->data, pad_start);
626 			skb_pull(skb, 2);
627 		}
628 	}
629 
630 	if (insert_ccmp_hdr && !hdr_trans) {
631 		u8 key_id = FIELD_GET(MT_RXD1_NORMAL_KEY_ID, rxd1);
632 
633 		mt76_insert_ccmp_hdr(skb, key_id);
634 	}
635 
636 	if (!hdr_trans) {
637 		hdr = (struct ieee80211_hdr *)skb->data;
638 		fc = hdr->frame_control;
639 		if (ieee80211_is_data_qos(fc)) {
640 			seq_ctrl = le16_to_cpu(hdr->seq_ctrl);
641 			qos_ctl = *ieee80211_get_qos_ctl(hdr);
642 		}
643 	} else {
644 		status->flag |= RX_FLAG_8023;
645 	}
646 
647 	if (!status->wcid || !ieee80211_is_data_qos(fc))
648 		return 0;
649 
650 	status->aggr = unicast &&
651 		       !ieee80211_is_qos_nullfunc(fc);
652 	status->qos_ctl = qos_ctl;
653 	status->seqno = IEEE80211_SEQ_TO_SN(seq_ctrl);
654 
655 	return 0;
656 }
657 
658 static u16
659 mt7615_mac_tx_rate_val(struct mt7615_dev *dev,
660 		       struct mt76_phy *mphy,
661 		       const struct ieee80211_tx_rate *rate,
662 		       bool stbc, u8 *bw)
663 {
664 	u8 phy, nss, rate_idx;
665 	u16 rateval = 0;
666 
667 	*bw = 0;
668 
669 	if (rate->flags & IEEE80211_TX_RC_VHT_MCS) {
670 		rate_idx = ieee80211_rate_get_vht_mcs(rate);
671 		nss = ieee80211_rate_get_vht_nss(rate);
672 		phy = MT_PHY_TYPE_VHT;
673 		if (rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
674 			*bw = 1;
675 		else if (rate->flags & IEEE80211_TX_RC_80_MHZ_WIDTH)
676 			*bw = 2;
677 		else if (rate->flags & IEEE80211_TX_RC_160_MHZ_WIDTH)
678 			*bw = 3;
679 	} else if (rate->flags & IEEE80211_TX_RC_MCS) {
680 		rate_idx = rate->idx;
681 		nss = 1 + (rate->idx >> 3);
682 		phy = MT_PHY_TYPE_HT;
683 		if (rate->flags & IEEE80211_TX_RC_GREEN_FIELD)
684 			phy = MT_PHY_TYPE_HT_GF;
685 		if (rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
686 			*bw = 1;
687 	} else {
688 		const struct ieee80211_rate *r;
689 		int band = mphy->chandef.chan->band;
690 		u16 val;
691 
692 		nss = 1;
693 		r = &mphy->hw->wiphy->bands[band]->bitrates[rate->idx];
694 		if (rate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
695 			val = r->hw_value_short;
696 		else
697 			val = r->hw_value;
698 
699 		phy = val >> 8;
700 		rate_idx = val & 0xff;
701 	}
702 
703 	if (stbc && nss == 1) {
704 		nss++;
705 		rateval |= MT_TX_RATE_STBC;
706 	}
707 
708 	rateval |= (FIELD_PREP(MT_TX_RATE_IDX, rate_idx) |
709 		    FIELD_PREP(MT_TX_RATE_MODE, phy) |
710 		    FIELD_PREP(MT_TX_RATE_NSS, nss - 1));
711 
712 	return rateval;
713 }
714 
715 int mt7615_mac_write_txwi(struct mt7615_dev *dev, __le32 *txwi,
716 			  struct sk_buff *skb, struct mt76_wcid *wcid,
717 			  struct ieee80211_sta *sta, int pid,
718 			  struct ieee80211_key_conf *key,
719 			  enum mt76_txq_id qid, bool beacon)
720 {
721 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
722 	u8 fc_type, fc_stype, p_fmt, q_idx, omac_idx = 0, wmm_idx = 0;
723 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
724 	struct ieee80211_tx_rate *rate = &info->control.rates[0];
725 	u8 phy_idx = (info->hw_queue & MT_TX_HW_QUEUE_PHY) >> 2;
726 	bool multicast = is_multicast_ether_addr(hdr->addr1);
727 	struct ieee80211_vif *vif = info->control.vif;
728 	bool is_mmio = mt76_is_mmio(&dev->mt76);
729 	u32 val, sz_txd = is_mmio ? MT_TXD_SIZE : MT_USB_TXD_SIZE;
730 	struct mt76_phy *mphy = &dev->mphy;
731 	__le16 fc = hdr->frame_control;
732 	int tx_count = 8;
733 	u16 seqno = 0;
734 
735 	if (vif) {
736 		struct mt76_vif *mvif = (struct mt76_vif *)vif->drv_priv;
737 
738 		omac_idx = mvif->omac_idx;
739 		wmm_idx = mvif->wmm_idx;
740 	}
741 
742 	if (sta) {
743 		struct mt7615_sta *msta = (struct mt7615_sta *)sta->drv_priv;
744 
745 		tx_count = msta->rate_count;
746 	}
747 
748 	if (phy_idx && dev->mt76.phys[MT_BAND1])
749 		mphy = dev->mt76.phys[MT_BAND1];
750 
751 	fc_type = (le16_to_cpu(fc) & IEEE80211_FCTL_FTYPE) >> 2;
752 	fc_stype = (le16_to_cpu(fc) & IEEE80211_FCTL_STYPE) >> 4;
753 
754 	if (beacon) {
755 		p_fmt = MT_TX_TYPE_FW;
756 		q_idx = phy_idx ? MT_LMAC_BCN1 : MT_LMAC_BCN0;
757 	} else if (qid >= MT_TXQ_PSD) {
758 		p_fmt = is_mmio ? MT_TX_TYPE_CT : MT_TX_TYPE_SF;
759 		q_idx = phy_idx ? MT_LMAC_ALTX1 : MT_LMAC_ALTX0;
760 	} else {
761 		p_fmt = is_mmio ? MT_TX_TYPE_CT : MT_TX_TYPE_SF;
762 		q_idx = wmm_idx * MT7615_MAX_WMM_SETS +
763 			mt7615_lmac_mapping(dev, skb_get_queue_mapping(skb));
764 	}
765 
766 	val = FIELD_PREP(MT_TXD0_TX_BYTES, skb->len + sz_txd) |
767 	      FIELD_PREP(MT_TXD0_P_IDX, MT_TX_PORT_IDX_LMAC) |
768 	      FIELD_PREP(MT_TXD0_Q_IDX, q_idx);
769 	txwi[0] = cpu_to_le32(val);
770 
771 	val = MT_TXD1_LONG_FORMAT |
772 	      FIELD_PREP(MT_TXD1_WLAN_IDX, wcid->idx) |
773 	      FIELD_PREP(MT_TXD1_HDR_FORMAT, MT_HDR_FORMAT_802_11) |
774 	      FIELD_PREP(MT_TXD1_HDR_INFO,
775 			 ieee80211_get_hdrlen_from_skb(skb) / 2) |
776 	      FIELD_PREP(MT_TXD1_TID,
777 			 skb->priority & IEEE80211_QOS_CTL_TID_MASK) |
778 	      FIELD_PREP(MT_TXD1_PKT_FMT, p_fmt) |
779 	      FIELD_PREP(MT_TXD1_OWN_MAC, omac_idx);
780 	txwi[1] = cpu_to_le32(val);
781 
782 	val = FIELD_PREP(MT_TXD2_FRAME_TYPE, fc_type) |
783 	      FIELD_PREP(MT_TXD2_SUB_TYPE, fc_stype) |
784 	      FIELD_PREP(MT_TXD2_MULTICAST, multicast);
785 	if (key) {
786 		if (multicast && ieee80211_is_robust_mgmt_frame(skb) &&
787 		    key->cipher == WLAN_CIPHER_SUITE_AES_CMAC) {
788 			val |= MT_TXD2_BIP;
789 			txwi[3] = 0;
790 		} else {
791 			txwi[3] = cpu_to_le32(MT_TXD3_PROTECT_FRAME);
792 		}
793 	} else {
794 		txwi[3] = 0;
795 	}
796 	txwi[2] = cpu_to_le32(val);
797 
798 	if (!(info->flags & IEEE80211_TX_CTL_AMPDU))
799 		txwi[2] |= cpu_to_le32(MT_TXD2_BA_DISABLE);
800 
801 	txwi[4] = 0;
802 	txwi[6] = 0;
803 
804 	if (rate->idx >= 0 && rate->count &&
805 	    !(info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE)) {
806 		bool stbc = info->flags & IEEE80211_TX_CTL_STBC;
807 		u8 bw;
808 		u16 rateval = mt7615_mac_tx_rate_val(dev, mphy, rate, stbc,
809 						     &bw);
810 
811 		txwi[2] |= cpu_to_le32(MT_TXD2_FIX_RATE);
812 
813 		val = MT_TXD6_FIXED_BW |
814 		      FIELD_PREP(MT_TXD6_BW, bw) |
815 		      FIELD_PREP(MT_TXD6_TX_RATE, rateval);
816 		txwi[6] |= cpu_to_le32(val);
817 
818 		if (rate->flags & IEEE80211_TX_RC_SHORT_GI)
819 			txwi[6] |= cpu_to_le32(MT_TXD6_SGI);
820 
821 		if (info->flags & IEEE80211_TX_CTL_LDPC)
822 			txwi[6] |= cpu_to_le32(MT_TXD6_LDPC);
823 
824 		if (!(rate->flags & (IEEE80211_TX_RC_MCS |
825 				     IEEE80211_TX_RC_VHT_MCS)))
826 			txwi[2] |= cpu_to_le32(MT_TXD2_BA_DISABLE);
827 
828 		tx_count = rate->count;
829 	}
830 
831 	if (!ieee80211_is_beacon(fc)) {
832 		struct ieee80211_hw *hw = mt76_hw(dev);
833 
834 		val = MT_TXD5_TX_STATUS_HOST | FIELD_PREP(MT_TXD5_PID, pid);
835 		if (!ieee80211_hw_check(hw, SUPPORTS_PS))
836 			val |= MT_TXD5_SW_POWER_MGMT;
837 		txwi[5] = cpu_to_le32(val);
838 	} else {
839 		txwi[5] = 0;
840 		/* use maximum tx count for beacons */
841 		tx_count = 0x1f;
842 	}
843 
844 	val = FIELD_PREP(MT_TXD3_REM_TX_COUNT, tx_count);
845 	if (info->flags & IEEE80211_TX_CTL_INJECTED) {
846 		seqno = le16_to_cpu(hdr->seq_ctrl);
847 
848 		if (ieee80211_is_back_req(hdr->frame_control)) {
849 			struct ieee80211_bar *bar;
850 
851 			bar = (struct ieee80211_bar *)skb->data;
852 			seqno = le16_to_cpu(bar->start_seq_num);
853 		}
854 
855 		val |= MT_TXD3_SN_VALID |
856 		       FIELD_PREP(MT_TXD3_SEQ, IEEE80211_SEQ_TO_SN(seqno));
857 	}
858 
859 	txwi[3] |= cpu_to_le32(val);
860 
861 	if (info->flags & IEEE80211_TX_CTL_NO_ACK)
862 		txwi[3] |= cpu_to_le32(MT_TXD3_NO_ACK);
863 
864 	val = FIELD_PREP(MT_TXD7_TYPE, fc_type) |
865 	      FIELD_PREP(MT_TXD7_SUB_TYPE, fc_stype) |
866 	      FIELD_PREP(MT_TXD7_SPE_IDX, 0x18);
867 	txwi[7] = cpu_to_le32(val);
868 	if (!is_mmio) {
869 		val = FIELD_PREP(MT_TXD8_L_TYPE, fc_type) |
870 		      FIELD_PREP(MT_TXD8_L_SUB_TYPE, fc_stype);
871 		txwi[8] = cpu_to_le32(val);
872 	}
873 
874 	return 0;
875 }
876 EXPORT_SYMBOL_GPL(mt7615_mac_write_txwi);
877 
878 bool mt7615_mac_wtbl_update(struct mt7615_dev *dev, int idx, u32 mask)
879 {
880 	mt76_rmw(dev, MT_WTBL_UPDATE, MT_WTBL_UPDATE_WLAN_IDX,
881 		 FIELD_PREP(MT_WTBL_UPDATE_WLAN_IDX, idx) | mask);
882 
883 	return mt76_poll(dev, MT_WTBL_UPDATE, MT_WTBL_UPDATE_BUSY,
884 			 0, 5000);
885 }
886 
887 void mt7615_mac_sta_poll(struct mt7615_dev *dev)
888 {
889 	static const u8 ac_to_tid[4] = {
890 		[IEEE80211_AC_BE] = 0,
891 		[IEEE80211_AC_BK] = 1,
892 		[IEEE80211_AC_VI] = 4,
893 		[IEEE80211_AC_VO] = 6
894 	};
895 	static const u8 hw_queue_map[] = {
896 		[IEEE80211_AC_BK] = 0,
897 		[IEEE80211_AC_BE] = 1,
898 		[IEEE80211_AC_VI] = 2,
899 		[IEEE80211_AC_VO] = 3,
900 	};
901 	struct ieee80211_sta *sta;
902 	struct mt7615_sta *msta;
903 	u32 addr, tx_time[4], rx_time[4];
904 	struct list_head sta_poll_list;
905 	int i;
906 
907 	INIT_LIST_HEAD(&sta_poll_list);
908 	spin_lock_bh(&dev->sta_poll_lock);
909 	list_splice_init(&dev->sta_poll_list, &sta_poll_list);
910 	spin_unlock_bh(&dev->sta_poll_lock);
911 
912 	while (!list_empty(&sta_poll_list)) {
913 		bool clear = false;
914 
915 		msta = list_first_entry(&sta_poll_list, struct mt7615_sta,
916 					poll_list);
917 		list_del_init(&msta->poll_list);
918 
919 		addr = mt7615_mac_wtbl_addr(dev, msta->wcid.idx) + 19 * 4;
920 
921 		for (i = 0; i < 4; i++, addr += 8) {
922 			u32 tx_last = msta->airtime_ac[i];
923 			u32 rx_last = msta->airtime_ac[i + 4];
924 
925 			msta->airtime_ac[i] = mt76_rr(dev, addr);
926 			msta->airtime_ac[i + 4] = mt76_rr(dev, addr + 4);
927 			tx_time[i] = msta->airtime_ac[i] - tx_last;
928 			rx_time[i] = msta->airtime_ac[i + 4] - rx_last;
929 
930 			if ((tx_last | rx_last) & BIT(30))
931 				clear = true;
932 		}
933 
934 		if (clear) {
935 			mt7615_mac_wtbl_update(dev, msta->wcid.idx,
936 					       MT_WTBL_UPDATE_ADM_COUNT_CLEAR);
937 			memset(msta->airtime_ac, 0, sizeof(msta->airtime_ac));
938 		}
939 
940 		if (!msta->wcid.sta)
941 			continue;
942 
943 		sta = container_of((void *)msta, struct ieee80211_sta,
944 				   drv_priv);
945 		for (i = 0; i < 4; i++) {
946 			u32 tx_cur = tx_time[i];
947 			u32 rx_cur = rx_time[hw_queue_map[i]];
948 			u8 tid = ac_to_tid[i];
949 
950 			if (!tx_cur && !rx_cur)
951 				continue;
952 
953 			ieee80211_sta_register_airtime(sta, tid, tx_cur,
954 						       rx_cur);
955 		}
956 	}
957 }
958 EXPORT_SYMBOL_GPL(mt7615_mac_sta_poll);
959 
960 static void
961 mt7615_mac_update_rate_desc(struct mt7615_phy *phy, struct mt7615_sta *sta,
962 			    struct ieee80211_tx_rate *probe_rate,
963 			    struct ieee80211_tx_rate *rates,
964 			    struct mt7615_rate_desc *rd)
965 {
966 	struct mt7615_dev *dev = phy->dev;
967 	struct mt76_phy *mphy = phy->mt76;
968 	struct ieee80211_tx_rate *ref;
969 	bool rateset, stbc = false;
970 	int n_rates = sta->n_rates;
971 	u8 bw, bw_prev;
972 	int i, j;
973 
974 	for (i = n_rates; i < 4; i++)
975 		rates[i] = rates[n_rates - 1];
976 
977 	rateset = !(sta->rate_set_tsf & BIT(0));
978 	memcpy(sta->rateset[rateset].rates, rates,
979 	       sizeof(sta->rateset[rateset].rates));
980 	if (probe_rate) {
981 		sta->rateset[rateset].probe_rate = *probe_rate;
982 		ref = &sta->rateset[rateset].probe_rate;
983 	} else {
984 		sta->rateset[rateset].probe_rate.idx = -1;
985 		ref = &sta->rateset[rateset].rates[0];
986 	}
987 
988 	rates = sta->rateset[rateset].rates;
989 	for (i = 0; i < ARRAY_SIZE(sta->rateset[rateset].rates); i++) {
990 		/*
991 		 * We don't support switching between short and long GI
992 		 * within the rate set. For accurate tx status reporting, we
993 		 * need to make sure that flags match.
994 		 * For improved performance, avoid duplicate entries by
995 		 * decrementing the MCS index if necessary
996 		 */
997 		if ((ref->flags ^ rates[i].flags) & IEEE80211_TX_RC_SHORT_GI)
998 			rates[i].flags ^= IEEE80211_TX_RC_SHORT_GI;
999 
1000 		for (j = 0; j < i; j++) {
1001 			if (rates[i].idx != rates[j].idx)
1002 				continue;
1003 			if ((rates[i].flags ^ rates[j].flags) &
1004 			    (IEEE80211_TX_RC_40_MHZ_WIDTH |
1005 			     IEEE80211_TX_RC_80_MHZ_WIDTH |
1006 			     IEEE80211_TX_RC_160_MHZ_WIDTH))
1007 				continue;
1008 
1009 			if (!rates[i].idx)
1010 				continue;
1011 
1012 			rates[i].idx--;
1013 		}
1014 	}
1015 
1016 	rd->val[0] = mt7615_mac_tx_rate_val(dev, mphy, &rates[0], stbc, &bw);
1017 	bw_prev = bw;
1018 
1019 	if (probe_rate) {
1020 		rd->probe_val = mt7615_mac_tx_rate_val(dev, mphy, probe_rate,
1021 						       stbc, &bw);
1022 		if (bw)
1023 			rd->bw_idx = 1;
1024 		else
1025 			bw_prev = 0;
1026 	} else {
1027 		rd->probe_val = rd->val[0];
1028 	}
1029 
1030 	rd->val[1] = mt7615_mac_tx_rate_val(dev, mphy, &rates[1], stbc, &bw);
1031 	if (bw_prev) {
1032 		rd->bw_idx = 3;
1033 		bw_prev = bw;
1034 	}
1035 
1036 	rd->val[2] = mt7615_mac_tx_rate_val(dev, mphy, &rates[2], stbc, &bw);
1037 	if (bw_prev) {
1038 		rd->bw_idx = 5;
1039 		bw_prev = bw;
1040 	}
1041 
1042 	rd->val[3] = mt7615_mac_tx_rate_val(dev, mphy, &rates[3], stbc, &bw);
1043 	if (bw_prev)
1044 		rd->bw_idx = 7;
1045 
1046 	rd->rateset = rateset;
1047 	rd->bw = bw;
1048 }
1049 
1050 static int
1051 mt7615_mac_queue_rate_update(struct mt7615_phy *phy, struct mt7615_sta *sta,
1052 			     struct ieee80211_tx_rate *probe_rate,
1053 			     struct ieee80211_tx_rate *rates)
1054 {
1055 	struct mt7615_dev *dev = phy->dev;
1056 	struct mt7615_wtbl_rate_desc *wrd;
1057 
1058 	if (work_pending(&dev->rate_work))
1059 		return -EBUSY;
1060 
1061 	wrd = kzalloc(sizeof(*wrd), GFP_ATOMIC);
1062 	if (!wrd)
1063 		return -ENOMEM;
1064 
1065 	wrd->sta = sta;
1066 	mt7615_mac_update_rate_desc(phy, sta, probe_rate, rates,
1067 				    &wrd->rate);
1068 	list_add_tail(&wrd->node, &dev->wrd_head);
1069 	queue_work(dev->mt76.wq, &dev->rate_work);
1070 
1071 	return 0;
1072 }
1073 
1074 u32 mt7615_mac_get_sta_tid_sn(struct mt7615_dev *dev, int wcid, u8 tid)
1075 {
1076 	u32 addr, val, val2;
1077 	u8 offset;
1078 
1079 	addr = mt7615_mac_wtbl_addr(dev, wcid) + 11 * 4;
1080 
1081 	offset = tid * 12;
1082 	addr += 4 * (offset / 32);
1083 	offset %= 32;
1084 
1085 	val = mt76_rr(dev, addr);
1086 	val >>= offset;
1087 
1088 	if (offset > 20) {
1089 		addr += 4;
1090 		val2 = mt76_rr(dev, addr);
1091 		val |= val2 << (32 - offset);
1092 	}
1093 
1094 	return val & GENMASK(11, 0);
1095 }
1096 
1097 void mt7615_mac_set_rates(struct mt7615_phy *phy, struct mt7615_sta *sta,
1098 			  struct ieee80211_tx_rate *probe_rate,
1099 			  struct ieee80211_tx_rate *rates)
1100 {
1101 	int wcid = sta->wcid.idx, n_rates = sta->n_rates;
1102 	struct mt7615_dev *dev = phy->dev;
1103 	struct mt7615_rate_desc rd;
1104 	u32 w5, w27, addr;
1105 	u16 idx = sta->vif->mt76.omac_idx;
1106 
1107 	if (!mt76_is_mmio(&dev->mt76)) {
1108 		mt7615_mac_queue_rate_update(phy, sta, probe_rate, rates);
1109 		return;
1110 	}
1111 
1112 	if (!mt76_poll(dev, MT_WTBL_UPDATE, MT_WTBL_UPDATE_BUSY, 0, 5000))
1113 		return;
1114 
1115 	memset(&rd, 0, sizeof(struct mt7615_rate_desc));
1116 	mt7615_mac_update_rate_desc(phy, sta, probe_rate, rates, &rd);
1117 
1118 	addr = mt7615_mac_wtbl_addr(dev, wcid);
1119 	w27 = mt76_rr(dev, addr + 27 * 4);
1120 	w27 &= ~MT_WTBL_W27_CC_BW_SEL;
1121 	w27 |= FIELD_PREP(MT_WTBL_W27_CC_BW_SEL, rd.bw);
1122 
1123 	w5 = mt76_rr(dev, addr + 5 * 4);
1124 	w5 &= ~(MT_WTBL_W5_BW_CAP | MT_WTBL_W5_CHANGE_BW_RATE |
1125 		MT_WTBL_W5_MPDU_OK_COUNT |
1126 		MT_WTBL_W5_MPDU_FAIL_COUNT |
1127 		MT_WTBL_W5_RATE_IDX);
1128 	w5 |= FIELD_PREP(MT_WTBL_W5_BW_CAP, rd.bw) |
1129 	      FIELD_PREP(MT_WTBL_W5_CHANGE_BW_RATE,
1130 			 rd.bw_idx ? rd.bw_idx - 1 : 7);
1131 
1132 	mt76_wr(dev, MT_WTBL_RIUCR0, w5);
1133 
1134 	mt76_wr(dev, MT_WTBL_RIUCR1,
1135 		FIELD_PREP(MT_WTBL_RIUCR1_RATE0, rd.probe_val) |
1136 		FIELD_PREP(MT_WTBL_RIUCR1_RATE1, rd.val[0]) |
1137 		FIELD_PREP(MT_WTBL_RIUCR1_RATE2_LO, rd.val[1]));
1138 
1139 	mt76_wr(dev, MT_WTBL_RIUCR2,
1140 		FIELD_PREP(MT_WTBL_RIUCR2_RATE2_HI, rd.val[1] >> 8) |
1141 		FIELD_PREP(MT_WTBL_RIUCR2_RATE3, rd.val[1]) |
1142 		FIELD_PREP(MT_WTBL_RIUCR2_RATE4, rd.val[2]) |
1143 		FIELD_PREP(MT_WTBL_RIUCR2_RATE5_LO, rd.val[2]));
1144 
1145 	mt76_wr(dev, MT_WTBL_RIUCR3,
1146 		FIELD_PREP(MT_WTBL_RIUCR3_RATE5_HI, rd.val[2] >> 4) |
1147 		FIELD_PREP(MT_WTBL_RIUCR3_RATE6, rd.val[3]) |
1148 		FIELD_PREP(MT_WTBL_RIUCR3_RATE7, rd.val[3]));
1149 
1150 	mt76_wr(dev, MT_WTBL_UPDATE,
1151 		FIELD_PREP(MT_WTBL_UPDATE_WLAN_IDX, wcid) |
1152 		MT_WTBL_UPDATE_RATE_UPDATE |
1153 		MT_WTBL_UPDATE_TX_COUNT_CLEAR);
1154 
1155 	mt76_wr(dev, addr + 27 * 4, w27);
1156 
1157 	idx = idx > HW_BSSID_MAX ? HW_BSSID_0 : idx;
1158 	addr = idx > 1 ? MT_LPON_TCR2(idx): MT_LPON_TCR0(idx);
1159 
1160 	mt76_rmw(dev, addr, MT_LPON_TCR_MODE, MT_LPON_TCR_READ); /* TSF read */
1161 	sta->rate_set_tsf = mt76_rr(dev, MT_LPON_UTTR0) & ~BIT(0);
1162 	sta->rate_set_tsf |= rd.rateset;
1163 
1164 	if (!(sta->wcid.tx_info & MT_WCID_TX_INFO_SET))
1165 		mt76_poll(dev, MT_WTBL_UPDATE, MT_WTBL_UPDATE_BUSY, 0, 5000);
1166 
1167 	sta->rate_count = 2 * MT7615_RATE_RETRY * n_rates;
1168 	sta->wcid.tx_info |= MT_WCID_TX_INFO_SET;
1169 	sta->rate_probe = !!probe_rate;
1170 }
1171 EXPORT_SYMBOL_GPL(mt7615_mac_set_rates);
1172 
1173 void mt7615_mac_enable_rtscts(struct mt7615_dev *dev,
1174 			      struct ieee80211_vif *vif, bool enable)
1175 {
1176 	struct mt7615_vif *mvif = (struct mt7615_vif *)vif->drv_priv;
1177 	u32 addr;
1178 
1179 	addr = mt7615_mac_wtbl_addr(dev, mvif->sta.wcid.idx) + 3 * 4;
1180 
1181 	if (enable)
1182 		mt76_set(dev, addr, MT_WTBL_W3_RTS);
1183 	else
1184 		mt76_clear(dev, addr, MT_WTBL_W3_RTS);
1185 }
1186 EXPORT_SYMBOL_GPL(mt7615_mac_enable_rtscts);
1187 
1188 static int
1189 mt7615_mac_wtbl_update_key(struct mt7615_dev *dev, struct mt76_wcid *wcid,
1190 			   struct ieee80211_key_conf *key,
1191 			   enum mt76_cipher_type cipher, u16 cipher_mask)
1192 {
1193 	u32 addr = mt7615_mac_wtbl_addr(dev, wcid->idx) + 30 * 4;
1194 	u8 data[32] = {};
1195 
1196 	if (key->keylen > sizeof(data))
1197 		return -EINVAL;
1198 
1199 	mt76_rr_copy(dev, addr, data, sizeof(data));
1200 	if (cipher == MT_CIPHER_TKIP) {
1201 		/* Rx/Tx MIC keys are swapped */
1202 		memcpy(data, key->key, 16);
1203 		memcpy(data + 16, key->key + 24, 8);
1204 		memcpy(data + 24, key->key + 16, 8);
1205 	} else {
1206 		if (cipher_mask == BIT(cipher))
1207 			memcpy(data, key->key, key->keylen);
1208 		else if (cipher != MT_CIPHER_BIP_CMAC_128)
1209 			memcpy(data, key->key, 16);
1210 		if (cipher == MT_CIPHER_BIP_CMAC_128)
1211 			memcpy(data + 16, key->key, 16);
1212 	}
1213 
1214 	mt76_wr_copy(dev, addr, data, sizeof(data));
1215 
1216 	return 0;
1217 }
1218 
1219 static int
1220 mt7615_mac_wtbl_update_pk(struct mt7615_dev *dev, struct mt76_wcid *wcid,
1221 			  enum mt76_cipher_type cipher, u16 cipher_mask,
1222 			  int keyidx)
1223 {
1224 	u32 addr = mt7615_mac_wtbl_addr(dev, wcid->idx), w0, w1;
1225 
1226 	if (!mt76_poll(dev, MT_WTBL_UPDATE, MT_WTBL_UPDATE_BUSY, 0, 5000))
1227 		return -ETIMEDOUT;
1228 
1229 	w0 = mt76_rr(dev, addr);
1230 	w1 = mt76_rr(dev, addr + 4);
1231 
1232 	if (cipher_mask)
1233 		w0 |= MT_WTBL_W0_RX_KEY_VALID;
1234 	else
1235 		w0 &= ~(MT_WTBL_W0_RX_KEY_VALID | MT_WTBL_W0_KEY_IDX);
1236 	if (cipher_mask & BIT(MT_CIPHER_BIP_CMAC_128))
1237 		w0 |= MT_WTBL_W0_RX_IK_VALID;
1238 	else
1239 		w0 &= ~MT_WTBL_W0_RX_IK_VALID;
1240 
1241 	if (cipher != MT_CIPHER_BIP_CMAC_128 || cipher_mask == BIT(cipher)) {
1242 		w0 &= ~MT_WTBL_W0_KEY_IDX;
1243 		w0 |= FIELD_PREP(MT_WTBL_W0_KEY_IDX, keyidx);
1244 	}
1245 
1246 	mt76_wr(dev, MT_WTBL_RICR0, w0);
1247 	mt76_wr(dev, MT_WTBL_RICR1, w1);
1248 
1249 	if (!mt7615_mac_wtbl_update(dev, wcid->idx,
1250 				    MT_WTBL_UPDATE_RXINFO_UPDATE))
1251 		return -ETIMEDOUT;
1252 
1253 	return 0;
1254 }
1255 
1256 static void
1257 mt7615_mac_wtbl_update_cipher(struct mt7615_dev *dev, struct mt76_wcid *wcid,
1258 			      enum mt76_cipher_type cipher, u16 cipher_mask)
1259 {
1260 	u32 addr = mt7615_mac_wtbl_addr(dev, wcid->idx);
1261 
1262 	if (cipher == MT_CIPHER_BIP_CMAC_128 &&
1263 	    cipher_mask & ~BIT(MT_CIPHER_BIP_CMAC_128))
1264 		return;
1265 
1266 	mt76_rmw(dev, addr + 2 * 4, MT_WTBL_W2_KEY_TYPE,
1267 		 FIELD_PREP(MT_WTBL_W2_KEY_TYPE, cipher));
1268 }
1269 
1270 int __mt7615_mac_wtbl_set_key(struct mt7615_dev *dev,
1271 			      struct mt76_wcid *wcid,
1272 			      struct ieee80211_key_conf *key)
1273 {
1274 	enum mt76_cipher_type cipher;
1275 	u16 cipher_mask = wcid->cipher;
1276 	int err;
1277 
1278 	cipher = mt7615_mac_get_cipher(key->cipher);
1279 	if (cipher == MT_CIPHER_NONE)
1280 		return -EOPNOTSUPP;
1281 
1282 	cipher_mask |= BIT(cipher);
1283 	mt7615_mac_wtbl_update_cipher(dev, wcid, cipher, cipher_mask);
1284 	err = mt7615_mac_wtbl_update_key(dev, wcid, key, cipher, cipher_mask);
1285 	if (err < 0)
1286 		return err;
1287 
1288 	err = mt7615_mac_wtbl_update_pk(dev, wcid, cipher, cipher_mask,
1289 					key->keyidx);
1290 	if (err < 0)
1291 		return err;
1292 
1293 	wcid->cipher = cipher_mask;
1294 
1295 	return 0;
1296 }
1297 
1298 int mt7615_mac_wtbl_set_key(struct mt7615_dev *dev,
1299 			    struct mt76_wcid *wcid,
1300 			    struct ieee80211_key_conf *key)
1301 {
1302 	int err;
1303 
1304 	spin_lock_bh(&dev->mt76.lock);
1305 	err = __mt7615_mac_wtbl_set_key(dev, wcid, key);
1306 	spin_unlock_bh(&dev->mt76.lock);
1307 
1308 	return err;
1309 }
1310 
1311 static bool mt7615_fill_txs(struct mt7615_dev *dev, struct mt7615_sta *sta,
1312 			    struct ieee80211_tx_info *info, __le32 *txs_data)
1313 {
1314 	struct ieee80211_supported_band *sband;
1315 	struct mt7615_rate_set *rs;
1316 	struct mt76_phy *mphy;
1317 	int first_idx = 0, last_idx;
1318 	int i, idx, count;
1319 	bool fixed_rate, ack_timeout;
1320 	bool ampdu, cck = false;
1321 	bool rs_idx;
1322 	u32 rate_set_tsf;
1323 	u32 final_rate, final_rate_flags, final_nss, txs;
1324 
1325 	txs = le32_to_cpu(txs_data[1]);
1326 	ampdu = txs & MT_TXS1_AMPDU;
1327 
1328 	txs = le32_to_cpu(txs_data[3]);
1329 	count = FIELD_GET(MT_TXS3_TX_COUNT, txs);
1330 	last_idx = FIELD_GET(MT_TXS3_LAST_TX_RATE, txs);
1331 
1332 	txs = le32_to_cpu(txs_data[0]);
1333 	fixed_rate = txs & MT_TXS0_FIXED_RATE;
1334 	final_rate = FIELD_GET(MT_TXS0_TX_RATE, txs);
1335 	ack_timeout = txs & MT_TXS0_ACK_TIMEOUT;
1336 
1337 	if (!ampdu && (txs & MT_TXS0_RTS_TIMEOUT))
1338 		return false;
1339 
1340 	if (txs & MT_TXS0_QUEUE_TIMEOUT)
1341 		return false;
1342 
1343 	if (!ack_timeout)
1344 		info->flags |= IEEE80211_TX_STAT_ACK;
1345 
1346 	info->status.ampdu_len = 1;
1347 	info->status.ampdu_ack_len = !!(info->flags &
1348 					IEEE80211_TX_STAT_ACK);
1349 
1350 	if (ampdu || (info->flags & IEEE80211_TX_CTL_AMPDU))
1351 		info->flags |= IEEE80211_TX_STAT_AMPDU | IEEE80211_TX_CTL_AMPDU;
1352 
1353 	first_idx = max_t(int, 0, last_idx - (count - 1) / MT7615_RATE_RETRY);
1354 
1355 	if (fixed_rate) {
1356 		info->status.rates[0].count = count;
1357 		i = 0;
1358 		goto out;
1359 	}
1360 
1361 	rate_set_tsf = READ_ONCE(sta->rate_set_tsf);
1362 	rs_idx = !((u32)(le32_get_bits(txs_data[4], MT_TXS4_F0_TIMESTAMP) -
1363 			 rate_set_tsf) < 1000000);
1364 	rs_idx ^= rate_set_tsf & BIT(0);
1365 	rs = &sta->rateset[rs_idx];
1366 
1367 	if (!first_idx && rs->probe_rate.idx >= 0) {
1368 		info->status.rates[0] = rs->probe_rate;
1369 
1370 		spin_lock_bh(&dev->mt76.lock);
1371 		if (sta->rate_probe) {
1372 			struct mt7615_phy *phy = &dev->phy;
1373 
1374 			if (sta->wcid.phy_idx && dev->mt76.phys[MT_BAND1])
1375 				phy = dev->mt76.phys[MT_BAND1]->priv;
1376 
1377 			mt7615_mac_set_rates(phy, sta, NULL, sta->rates);
1378 		}
1379 		spin_unlock_bh(&dev->mt76.lock);
1380 	} else {
1381 		info->status.rates[0] = rs->rates[first_idx / 2];
1382 	}
1383 	info->status.rates[0].count = 0;
1384 
1385 	for (i = 0, idx = first_idx; count && idx <= last_idx; idx++) {
1386 		struct ieee80211_tx_rate *cur_rate;
1387 		int cur_count;
1388 
1389 		cur_rate = &rs->rates[idx / 2];
1390 		cur_count = min_t(int, MT7615_RATE_RETRY, count);
1391 		count -= cur_count;
1392 
1393 		if (idx && (cur_rate->idx != info->status.rates[i].idx ||
1394 			    cur_rate->flags != info->status.rates[i].flags)) {
1395 			i++;
1396 			if (i == ARRAY_SIZE(info->status.rates)) {
1397 				i--;
1398 				break;
1399 			}
1400 
1401 			info->status.rates[i] = *cur_rate;
1402 			info->status.rates[i].count = 0;
1403 		}
1404 
1405 		info->status.rates[i].count += cur_count;
1406 	}
1407 
1408 out:
1409 	final_rate_flags = info->status.rates[i].flags;
1410 
1411 	switch (FIELD_GET(MT_TX_RATE_MODE, final_rate)) {
1412 	case MT_PHY_TYPE_CCK:
1413 		cck = true;
1414 		fallthrough;
1415 	case MT_PHY_TYPE_OFDM:
1416 		mphy = &dev->mphy;
1417 		if (sta->wcid.phy_idx && dev->mt76.phys[MT_BAND1])
1418 			mphy = dev->mt76.phys[MT_BAND1];
1419 
1420 		if (mphy->chandef.chan->band == NL80211_BAND_5GHZ)
1421 			sband = &mphy->sband_5g.sband;
1422 		else
1423 			sband = &mphy->sband_2g.sband;
1424 		final_rate &= MT_TX_RATE_IDX;
1425 		final_rate = mt76_get_rate(&dev->mt76, sband, final_rate,
1426 					   cck);
1427 		final_rate_flags = 0;
1428 		break;
1429 	case MT_PHY_TYPE_HT_GF:
1430 	case MT_PHY_TYPE_HT:
1431 		final_rate_flags |= IEEE80211_TX_RC_MCS;
1432 		final_rate &= MT_TX_RATE_IDX;
1433 		if (final_rate > 31)
1434 			return false;
1435 		break;
1436 	case MT_PHY_TYPE_VHT:
1437 		final_nss = FIELD_GET(MT_TX_RATE_NSS, final_rate);
1438 
1439 		if ((final_rate & MT_TX_RATE_STBC) && final_nss)
1440 			final_nss--;
1441 
1442 		final_rate_flags |= IEEE80211_TX_RC_VHT_MCS;
1443 		final_rate = (final_rate & MT_TX_RATE_IDX) | (final_nss << 4);
1444 		break;
1445 	default:
1446 		return false;
1447 	}
1448 
1449 	info->status.rates[i].idx = final_rate;
1450 	info->status.rates[i].flags = final_rate_flags;
1451 
1452 	return true;
1453 }
1454 
1455 static bool mt7615_mac_add_txs_skb(struct mt7615_dev *dev,
1456 				   struct mt7615_sta *sta, int pid,
1457 				   __le32 *txs_data)
1458 {
1459 	struct mt76_dev *mdev = &dev->mt76;
1460 	struct sk_buff_head list;
1461 	struct sk_buff *skb;
1462 
1463 	if (pid < MT_PACKET_ID_FIRST)
1464 		return false;
1465 
1466 	trace_mac_txdone(mdev, sta->wcid.idx, pid);
1467 
1468 	mt76_tx_status_lock(mdev, &list);
1469 	skb = mt76_tx_status_skb_get(mdev, &sta->wcid, pid, &list);
1470 	if (skb) {
1471 		struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1472 
1473 		if (!mt7615_fill_txs(dev, sta, info, txs_data)) {
1474 			info->status.rates[0].count = 0;
1475 			info->status.rates[0].idx = -1;
1476 		}
1477 
1478 		mt76_tx_status_skb_done(mdev, skb, &list);
1479 	}
1480 	mt76_tx_status_unlock(mdev, &list);
1481 
1482 	return !!skb;
1483 }
1484 
1485 static void mt7615_mac_add_txs(struct mt7615_dev *dev, void *data)
1486 {
1487 	struct ieee80211_tx_info info = {};
1488 	struct ieee80211_sta *sta = NULL;
1489 	struct mt7615_sta *msta = NULL;
1490 	struct mt76_wcid *wcid;
1491 	struct mt76_phy *mphy = &dev->mt76.phy;
1492 	__le32 *txs_data = data;
1493 	u8 wcidx;
1494 	u8 pid;
1495 
1496 	pid = le32_get_bits(txs_data[0], MT_TXS0_PID);
1497 	wcidx = le32_get_bits(txs_data[2], MT_TXS2_WCID);
1498 
1499 	if (pid == MT_PACKET_ID_NO_ACK)
1500 		return;
1501 
1502 	if (wcidx >= MT7615_WTBL_SIZE)
1503 		return;
1504 
1505 	rcu_read_lock();
1506 
1507 	wcid = rcu_dereference(dev->mt76.wcid[wcidx]);
1508 	if (!wcid)
1509 		goto out;
1510 
1511 	msta = container_of(wcid, struct mt7615_sta, wcid);
1512 	sta = wcid_to_sta(wcid);
1513 
1514 	spin_lock_bh(&dev->sta_poll_lock);
1515 	if (list_empty(&msta->poll_list))
1516 		list_add_tail(&msta->poll_list, &dev->sta_poll_list);
1517 	spin_unlock_bh(&dev->sta_poll_lock);
1518 
1519 	if (mt7615_mac_add_txs_skb(dev, msta, pid, txs_data))
1520 		goto out;
1521 
1522 	if (wcidx >= MT7615_WTBL_STA || !sta)
1523 		goto out;
1524 
1525 	if (wcid->phy_idx && dev->mt76.phys[MT_BAND1])
1526 		mphy = dev->mt76.phys[MT_BAND1];
1527 
1528 	if (mt7615_fill_txs(dev, msta, &info, txs_data)) {
1529 		spin_lock_bh(&dev->mt76.rx_lock);
1530 		ieee80211_tx_status_noskb(mphy->hw, sta, &info);
1531 		spin_unlock_bh(&dev->mt76.rx_lock);
1532 	}
1533 
1534 out:
1535 	rcu_read_unlock();
1536 }
1537 
1538 static void
1539 mt7615_txwi_free(struct mt7615_dev *dev, struct mt76_txwi_cache *txwi)
1540 {
1541 	struct mt76_dev *mdev = &dev->mt76;
1542 	__le32 *txwi_data;
1543 	u32 val;
1544 	u8 wcid;
1545 
1546 	mt76_connac_txp_skb_unmap(mdev, txwi);
1547 	if (!txwi->skb)
1548 		goto out;
1549 
1550 	txwi_data = (__le32 *)mt76_get_txwi_ptr(mdev, txwi);
1551 	val = le32_to_cpu(txwi_data[1]);
1552 	wcid = FIELD_GET(MT_TXD1_WLAN_IDX, val);
1553 	mt76_tx_complete_skb(mdev, wcid, txwi->skb);
1554 
1555 out:
1556 	txwi->skb = NULL;
1557 	mt76_put_txwi(mdev, txwi);
1558 }
1559 
1560 static void
1561 mt7615_mac_tx_free_token(struct mt7615_dev *dev, u16 token)
1562 {
1563 	struct mt76_dev *mdev = &dev->mt76;
1564 	struct mt76_txwi_cache *txwi;
1565 
1566 	trace_mac_tx_free(dev, token);
1567 	txwi = mt76_token_put(mdev, token);
1568 	if (!txwi)
1569 		return;
1570 
1571 	mt7615_txwi_free(dev, txwi);
1572 }
1573 
1574 static void mt7615_mac_tx_free(struct mt7615_dev *dev, void *data, int len)
1575 {
1576 	struct mt76_connac_tx_free *free = data;
1577 	void *tx_token = data + sizeof(*free);
1578 	void *end = data + len;
1579 	u8 i, count;
1580 
1581 	mt76_queue_tx_cleanup(dev, dev->mphy.q_tx[MT_TXQ_PSD], false);
1582 	if (is_mt7615(&dev->mt76)) {
1583 		mt76_queue_tx_cleanup(dev, dev->mphy.q_tx[MT_TXQ_BE], false);
1584 	} else {
1585 		for (i = 0; i < IEEE80211_NUM_ACS; i++)
1586 			mt76_queue_tx_cleanup(dev, dev->mphy.q_tx[i], false);
1587 	}
1588 
1589 	count = le16_get_bits(free->ctrl, MT_TX_FREE_MSDU_ID_CNT);
1590 	if (is_mt7615(&dev->mt76)) {
1591 		__le16 *token = tx_token;
1592 
1593 		if (WARN_ON_ONCE((void *)&token[count] > end))
1594 			return;
1595 
1596 		for (i = 0; i < count; i++)
1597 			mt7615_mac_tx_free_token(dev, le16_to_cpu(token[i]));
1598 	} else {
1599 		__le32 *token = tx_token;
1600 
1601 		if (WARN_ON_ONCE((void *)&token[count] > end))
1602 			return;
1603 
1604 		for (i = 0; i < count; i++)
1605 			mt7615_mac_tx_free_token(dev, le32_to_cpu(token[i]));
1606 	}
1607 
1608 	rcu_read_lock();
1609 	mt7615_mac_sta_poll(dev);
1610 	rcu_read_unlock();
1611 
1612 	mt76_worker_schedule(&dev->mt76.tx_worker);
1613 }
1614 
1615 bool mt7615_rx_check(struct mt76_dev *mdev, void *data, int len)
1616 {
1617 	struct mt7615_dev *dev = container_of(mdev, struct mt7615_dev, mt76);
1618 	__le32 *rxd = (__le32 *)data;
1619 	__le32 *end = (__le32 *)&rxd[len / 4];
1620 	enum rx_pkt_type type;
1621 
1622 	type = le32_get_bits(rxd[0], MT_RXD0_PKT_TYPE);
1623 
1624 	switch (type) {
1625 	case PKT_TYPE_TXRX_NOTIFY:
1626 		mt7615_mac_tx_free(dev, data, len);
1627 		return false;
1628 	case PKT_TYPE_TXS:
1629 		for (rxd++; rxd + 7 <= end; rxd += 7)
1630 			mt7615_mac_add_txs(dev, rxd);
1631 		return false;
1632 	default:
1633 		return true;
1634 	}
1635 }
1636 EXPORT_SYMBOL_GPL(mt7615_rx_check);
1637 
1638 void mt7615_queue_rx_skb(struct mt76_dev *mdev, enum mt76_rxq_id q,
1639 			 struct sk_buff *skb, u32 *info)
1640 {
1641 	struct mt7615_dev *dev = container_of(mdev, struct mt7615_dev, mt76);
1642 	__le32 *rxd = (__le32 *)skb->data;
1643 	__le32 *end = (__le32 *)&skb->data[skb->len];
1644 	enum rx_pkt_type type;
1645 	u16 flag;
1646 
1647 	type = le32_get_bits(rxd[0], MT_RXD0_PKT_TYPE);
1648 	flag = le32_get_bits(rxd[0], MT_RXD0_PKT_FLAG);
1649 	if (type == PKT_TYPE_RX_EVENT && flag == 0x1)
1650 		type = PKT_TYPE_NORMAL_MCU;
1651 
1652 	switch (type) {
1653 	case PKT_TYPE_TXS:
1654 		for (rxd++; rxd + 7 <= end; rxd += 7)
1655 			mt7615_mac_add_txs(dev, rxd);
1656 		dev_kfree_skb(skb);
1657 		break;
1658 	case PKT_TYPE_TXRX_NOTIFY:
1659 		mt7615_mac_tx_free(dev, skb->data, skb->len);
1660 		dev_kfree_skb(skb);
1661 		break;
1662 	case PKT_TYPE_RX_EVENT:
1663 		mt7615_mcu_rx_event(dev, skb);
1664 		break;
1665 	case PKT_TYPE_NORMAL_MCU:
1666 	case PKT_TYPE_NORMAL:
1667 		if (!mt7615_mac_fill_rx(dev, skb)) {
1668 			mt76_rx(&dev->mt76, q, skb);
1669 			return;
1670 		}
1671 		fallthrough;
1672 	default:
1673 		dev_kfree_skb(skb);
1674 		break;
1675 	}
1676 }
1677 EXPORT_SYMBOL_GPL(mt7615_queue_rx_skb);
1678 
1679 static void
1680 mt7615_mac_set_sensitivity(struct mt7615_phy *phy, int val, bool ofdm)
1681 {
1682 	struct mt7615_dev *dev = phy->dev;
1683 	bool ext_phy = phy != &dev->phy;
1684 
1685 	if (is_mt7663(&dev->mt76)) {
1686 		if (ofdm)
1687 			mt76_rmw(dev, MT7663_WF_PHY_MIN_PRI_PWR(ext_phy),
1688 				 MT_WF_PHY_PD_OFDM_MASK(0),
1689 				 MT_WF_PHY_PD_OFDM(0, val));
1690 		else
1691 			mt76_rmw(dev, MT7663_WF_PHY_RXTD_CCK_PD(ext_phy),
1692 				 MT_WF_PHY_PD_CCK_MASK(ext_phy),
1693 				 MT_WF_PHY_PD_CCK(ext_phy, val));
1694 		return;
1695 	}
1696 
1697 	if (ofdm)
1698 		mt76_rmw(dev, MT_WF_PHY_MIN_PRI_PWR(ext_phy),
1699 			 MT_WF_PHY_PD_OFDM_MASK(ext_phy),
1700 			 MT_WF_PHY_PD_OFDM(ext_phy, val));
1701 	else
1702 		mt76_rmw(dev, MT_WF_PHY_RXTD_CCK_PD(ext_phy),
1703 			 MT_WF_PHY_PD_CCK_MASK(ext_phy),
1704 			 MT_WF_PHY_PD_CCK(ext_phy, val));
1705 }
1706 
1707 static void
1708 mt7615_mac_set_default_sensitivity(struct mt7615_phy *phy)
1709 {
1710 	/* ofdm */
1711 	mt7615_mac_set_sensitivity(phy, 0x13c, true);
1712 	/* cck */
1713 	mt7615_mac_set_sensitivity(phy, 0x92, false);
1714 
1715 	phy->ofdm_sensitivity = -98;
1716 	phy->cck_sensitivity = -110;
1717 	phy->last_cca_adj = jiffies;
1718 }
1719 
1720 void mt7615_mac_set_scs(struct mt7615_phy *phy, bool enable)
1721 {
1722 	struct mt7615_dev *dev = phy->dev;
1723 	bool ext_phy = phy != &dev->phy;
1724 	u32 reg, mask;
1725 
1726 	mt7615_mutex_acquire(dev);
1727 
1728 	if (phy->scs_en == enable)
1729 		goto out;
1730 
1731 	if (is_mt7663(&dev->mt76)) {
1732 		reg = MT7663_WF_PHY_MIN_PRI_PWR(ext_phy);
1733 		mask = MT_WF_PHY_PD_BLK(0);
1734 	} else {
1735 		reg = MT_WF_PHY_MIN_PRI_PWR(ext_phy);
1736 		mask = MT_WF_PHY_PD_BLK(ext_phy);
1737 	}
1738 
1739 	if (enable) {
1740 		mt76_set(dev, reg, mask);
1741 		if (is_mt7622(&dev->mt76)) {
1742 			mt76_set(dev, MT_MIB_M0_MISC_CR(0), 0x7 << 8);
1743 			mt76_set(dev, MT_MIB_M0_MISC_CR(0), 0x7);
1744 		}
1745 	} else {
1746 		mt76_clear(dev, reg, mask);
1747 	}
1748 
1749 	mt7615_mac_set_default_sensitivity(phy);
1750 	phy->scs_en = enable;
1751 
1752 out:
1753 	mt7615_mutex_release(dev);
1754 }
1755 
1756 void mt7615_mac_enable_nf(struct mt7615_dev *dev, bool ext_phy)
1757 {
1758 	u32 rxtd, reg;
1759 
1760 	if (is_mt7663(&dev->mt76))
1761 		reg = MT7663_WF_PHY_R0_PHYMUX_5;
1762 	else
1763 		reg = MT_WF_PHY_R0_PHYMUX_5(ext_phy);
1764 
1765 	if (ext_phy)
1766 		rxtd = MT_WF_PHY_RXTD2(10);
1767 	else
1768 		rxtd = MT_WF_PHY_RXTD(12);
1769 
1770 	mt76_set(dev, rxtd, BIT(18) | BIT(29));
1771 	mt76_set(dev, reg, 0x5 << 12);
1772 }
1773 
1774 void mt7615_mac_cca_stats_reset(struct mt7615_phy *phy)
1775 {
1776 	struct mt7615_dev *dev = phy->dev;
1777 	bool ext_phy = phy != &dev->phy;
1778 	u32 reg;
1779 
1780 	if (is_mt7663(&dev->mt76))
1781 		reg = MT7663_WF_PHY_R0_PHYMUX_5;
1782 	else
1783 		reg = MT_WF_PHY_R0_PHYMUX_5(ext_phy);
1784 
1785 	/* reset PD and MDRDY counters */
1786 	mt76_clear(dev, reg, GENMASK(22, 20));
1787 	mt76_set(dev, reg, BIT(22) | BIT(20));
1788 }
1789 
1790 static void
1791 mt7615_mac_adjust_sensitivity(struct mt7615_phy *phy,
1792 			      u32 rts_err_rate, bool ofdm)
1793 {
1794 	struct mt7615_dev *dev = phy->dev;
1795 	int false_cca = ofdm ? phy->false_cca_ofdm : phy->false_cca_cck;
1796 	bool ext_phy = phy != &dev->phy;
1797 	s16 def_th = ofdm ? -98 : -110;
1798 	bool update = false;
1799 	s8 *sensitivity;
1800 	int signal;
1801 
1802 	sensitivity = ofdm ? &phy->ofdm_sensitivity : &phy->cck_sensitivity;
1803 	signal = mt76_get_min_avg_rssi(&dev->mt76, ext_phy);
1804 	if (!signal) {
1805 		mt7615_mac_set_default_sensitivity(phy);
1806 		return;
1807 	}
1808 
1809 	signal = min(signal, -72);
1810 	if (false_cca > 500) {
1811 		if (rts_err_rate > MT_FRAC(40, 100))
1812 			return;
1813 
1814 		/* decrease coverage */
1815 		if (*sensitivity == def_th && signal > -90) {
1816 			*sensitivity = -90;
1817 			update = true;
1818 		} else if (*sensitivity + 2 < signal) {
1819 			*sensitivity += 2;
1820 			update = true;
1821 		}
1822 	} else if ((false_cca > 0 && false_cca < 50) ||
1823 		   rts_err_rate > MT_FRAC(60, 100)) {
1824 		/* increase coverage */
1825 		if (*sensitivity - 2 >= def_th) {
1826 			*sensitivity -= 2;
1827 			update = true;
1828 		}
1829 	}
1830 
1831 	if (*sensitivity > signal) {
1832 		*sensitivity = signal;
1833 		update = true;
1834 	}
1835 
1836 	if (update) {
1837 		u16 val = ofdm ? *sensitivity * 2 + 512 : *sensitivity + 256;
1838 
1839 		mt7615_mac_set_sensitivity(phy, val, ofdm);
1840 		phy->last_cca_adj = jiffies;
1841 	}
1842 }
1843 
1844 static void
1845 mt7615_mac_scs_check(struct mt7615_phy *phy)
1846 {
1847 	struct mt7615_dev *dev = phy->dev;
1848 	struct mib_stats *mib = &phy->mib;
1849 	u32 val, rts_err_rate = 0;
1850 	u32 mdrdy_cck, mdrdy_ofdm, pd_cck, pd_ofdm;
1851 	bool ext_phy = phy != &dev->phy;
1852 
1853 	if (!phy->scs_en)
1854 		return;
1855 
1856 	if (is_mt7663(&dev->mt76))
1857 		val = mt76_rr(dev, MT7663_WF_PHY_R0_PHYCTRL_STS0(ext_phy));
1858 	else
1859 		val = mt76_rr(dev, MT_WF_PHY_R0_PHYCTRL_STS0(ext_phy));
1860 	pd_cck = FIELD_GET(MT_WF_PHYCTRL_STAT_PD_CCK, val);
1861 	pd_ofdm = FIELD_GET(MT_WF_PHYCTRL_STAT_PD_OFDM, val);
1862 
1863 	if (is_mt7663(&dev->mt76))
1864 		val = mt76_rr(dev, MT7663_WF_PHY_R0_PHYCTRL_STS5(ext_phy));
1865 	else
1866 		val = mt76_rr(dev, MT_WF_PHY_R0_PHYCTRL_STS5(ext_phy));
1867 	mdrdy_cck = FIELD_GET(MT_WF_PHYCTRL_STAT_MDRDY_CCK, val);
1868 	mdrdy_ofdm = FIELD_GET(MT_WF_PHYCTRL_STAT_MDRDY_OFDM, val);
1869 
1870 	phy->false_cca_ofdm = pd_ofdm - mdrdy_ofdm;
1871 	phy->false_cca_cck = pd_cck - mdrdy_cck;
1872 	mt7615_mac_cca_stats_reset(phy);
1873 
1874 	if (mib->rts_cnt + mib->rts_retries_cnt)
1875 		rts_err_rate = MT_FRAC(mib->rts_retries_cnt,
1876 				       mib->rts_cnt + mib->rts_retries_cnt);
1877 
1878 	/* cck */
1879 	mt7615_mac_adjust_sensitivity(phy, rts_err_rate, false);
1880 	/* ofdm */
1881 	mt7615_mac_adjust_sensitivity(phy, rts_err_rate, true);
1882 
1883 	if (time_after(jiffies, phy->last_cca_adj + 10 * HZ))
1884 		mt7615_mac_set_default_sensitivity(phy);
1885 }
1886 
1887 static u8
1888 mt7615_phy_get_nf(struct mt7615_dev *dev, int idx)
1889 {
1890 	static const u8 nf_power[] = { 92, 89, 86, 83, 80, 75, 70, 65, 60, 55, 52 };
1891 	u32 reg, val, sum = 0, n = 0;
1892 	int i;
1893 
1894 	if (is_mt7663(&dev->mt76))
1895 		reg = MT7663_WF_PHY_RXTD(20);
1896 	else
1897 		reg = idx ? MT_WF_PHY_RXTD2(17) : MT_WF_PHY_RXTD(20);
1898 
1899 	for (i = 0; i < ARRAY_SIZE(nf_power); i++, reg += 4) {
1900 		val = mt76_rr(dev, reg);
1901 		sum += val * nf_power[i];
1902 		n += val;
1903 	}
1904 
1905 	if (!n)
1906 		return 0;
1907 
1908 	return sum / n;
1909 }
1910 
1911 static void
1912 mt7615_phy_update_channel(struct mt76_phy *mphy, int idx)
1913 {
1914 	struct mt7615_dev *dev = container_of(mphy->dev, struct mt7615_dev, mt76);
1915 	struct mt7615_phy *phy = mphy->priv;
1916 	struct mt76_channel_state *state;
1917 	u64 busy_time, tx_time, rx_time, obss_time;
1918 	u32 obss_reg = idx ? MT_WF_RMAC_MIB_TIME6 : MT_WF_RMAC_MIB_TIME5;
1919 	int nf;
1920 
1921 	busy_time = mt76_get_field(dev, MT_MIB_SDR9(idx),
1922 				   MT_MIB_SDR9_BUSY_MASK);
1923 	tx_time = mt76_get_field(dev, MT_MIB_SDR36(idx),
1924 				 MT_MIB_SDR36_TXTIME_MASK);
1925 	rx_time = mt76_get_field(dev, MT_MIB_SDR37(idx),
1926 				 MT_MIB_SDR37_RXTIME_MASK);
1927 	obss_time = mt76_get_field(dev, obss_reg, MT_MIB_OBSSTIME_MASK);
1928 
1929 	nf = mt7615_phy_get_nf(dev, idx);
1930 	if (!phy->noise)
1931 		phy->noise = nf << 4;
1932 	else if (nf)
1933 		phy->noise += nf - (phy->noise >> 4);
1934 
1935 	state = mphy->chan_state;
1936 	state->cc_busy += busy_time;
1937 	state->cc_tx += tx_time;
1938 	state->cc_rx += rx_time + obss_time;
1939 	state->cc_bss_rx += rx_time;
1940 	state->noise = -(phy->noise >> 4);
1941 }
1942 
1943 static void mt7615_update_survey(struct mt7615_dev *dev)
1944 {
1945 	struct mt76_dev *mdev = &dev->mt76;
1946 	struct mt76_phy *mphy_ext = mdev->phys[MT_BAND1];
1947 	ktime_t cur_time;
1948 
1949 	/* MT7615 can only update both phys simultaneously
1950 	 * since some reisters are shared across bands.
1951 	 */
1952 
1953 	mt7615_phy_update_channel(&mdev->phy, 0);
1954 	if (mphy_ext)
1955 		mt7615_phy_update_channel(mphy_ext, 1);
1956 
1957 	cur_time = ktime_get_boottime();
1958 
1959 	mt76_update_survey_active_time(&mdev->phy, cur_time);
1960 	if (mphy_ext)
1961 		mt76_update_survey_active_time(mphy_ext, cur_time);
1962 
1963 	/* reset obss airtime */
1964 	mt76_set(dev, MT_WF_RMAC_MIB_TIME0, MT_WF_RMAC_MIB_RXTIME_CLR);
1965 }
1966 
1967 void mt7615_update_channel(struct mt76_phy *mphy)
1968 {
1969 	struct mt7615_dev *dev = container_of(mphy->dev, struct mt7615_dev, mt76);
1970 
1971 	if (mt76_connac_pm_wake(&dev->mphy, &dev->pm))
1972 		return;
1973 
1974 	mt7615_update_survey(dev);
1975 	mt76_connac_power_save_sched(&dev->mphy, &dev->pm);
1976 }
1977 EXPORT_SYMBOL_GPL(mt7615_update_channel);
1978 
1979 static void
1980 mt7615_mac_update_mib_stats(struct mt7615_phy *phy)
1981 {
1982 	struct mt7615_dev *dev = phy->dev;
1983 	struct mib_stats *mib = &phy->mib;
1984 	bool ext_phy = phy != &dev->phy;
1985 	int i, aggr = 0;
1986 	u32 val, val2;
1987 
1988 	mib->fcs_err_cnt += mt76_get_field(dev, MT_MIB_SDR3(ext_phy),
1989 					   MT_MIB_SDR3_FCS_ERR_MASK);
1990 
1991 	val = mt76_get_field(dev, MT_MIB_SDR14(ext_phy),
1992 			     MT_MIB_AMPDU_MPDU_COUNT);
1993 	if (val) {
1994 		val2 = mt76_get_field(dev, MT_MIB_SDR15(ext_phy),
1995 				      MT_MIB_AMPDU_ACK_COUNT);
1996 		mib->aggr_per = 1000 * (val - val2) / val;
1997 	}
1998 
1999 	for (i = 0; i < 4; i++) {
2000 		val = mt76_rr(dev, MT_MIB_MB_SDR1(ext_phy, i));
2001 		mib->ba_miss_cnt += FIELD_GET(MT_MIB_BA_MISS_COUNT_MASK, val);
2002 		mib->ack_fail_cnt += FIELD_GET(MT_MIB_ACK_FAIL_COUNT_MASK,
2003 					       val);
2004 
2005 		val = mt76_rr(dev, MT_MIB_MB_SDR0(ext_phy, i));
2006 		mib->rts_cnt += FIELD_GET(MT_MIB_RTS_COUNT_MASK, val);
2007 		mib->rts_retries_cnt += FIELD_GET(MT_MIB_RTS_RETRIES_COUNT_MASK,
2008 						  val);
2009 
2010 		val = mt76_rr(dev, MT_TX_AGG_CNT(ext_phy, i));
2011 		phy->mt76->aggr_stats[aggr++] += val & 0xffff;
2012 		phy->mt76->aggr_stats[aggr++] += val >> 16;
2013 	}
2014 }
2015 
2016 void mt7615_pm_wake_work(struct work_struct *work)
2017 {
2018 	struct mt7615_dev *dev;
2019 	struct mt76_phy *mphy;
2020 
2021 	dev = (struct mt7615_dev *)container_of(work, struct mt7615_dev,
2022 						pm.wake_work);
2023 	mphy = dev->phy.mt76;
2024 
2025 	if (!mt7615_mcu_set_drv_ctrl(dev)) {
2026 		struct mt76_dev *mdev = &dev->mt76;
2027 		int i;
2028 
2029 		if (mt76_is_sdio(mdev)) {
2030 			mt76_connac_pm_dequeue_skbs(mphy, &dev->pm);
2031 			mt76_worker_schedule(&mdev->sdio.txrx_worker);
2032 		} else {
2033 			local_bh_disable();
2034 			mt76_for_each_q_rx(mdev, i)
2035 				napi_schedule(&mdev->napi[i]);
2036 			local_bh_enable();
2037 			mt76_connac_pm_dequeue_skbs(mphy, &dev->pm);
2038 			mt76_queue_tx_cleanup(dev, mdev->q_mcu[MT_MCUQ_WM],
2039 					      false);
2040 		}
2041 
2042 		if (test_bit(MT76_STATE_RUNNING, &mphy->state)) {
2043 			unsigned long timeout;
2044 
2045 			timeout = mt7615_get_macwork_timeout(dev);
2046 			ieee80211_queue_delayed_work(mphy->hw, &mphy->mac_work,
2047 						     timeout);
2048 		}
2049 	}
2050 
2051 	ieee80211_wake_queues(mphy->hw);
2052 	wake_up(&dev->pm.wait);
2053 }
2054 
2055 void mt7615_pm_power_save_work(struct work_struct *work)
2056 {
2057 	struct mt7615_dev *dev;
2058 	unsigned long delta;
2059 
2060 	dev = (struct mt7615_dev *)container_of(work, struct mt7615_dev,
2061 						pm.ps_work.work);
2062 
2063 	delta = dev->pm.idle_timeout;
2064 	if (test_bit(MT76_HW_SCANNING, &dev->mphy.state) ||
2065 	    test_bit(MT76_HW_SCHED_SCANNING, &dev->mphy.state))
2066 		goto out;
2067 
2068 	if (mutex_is_locked(&dev->mt76.mutex))
2069 		/* if mt76 mutex is held we should not put the device
2070 		 * to sleep since we are currently accessing device
2071 		 * register map. We need to wait for the next power_save
2072 		 * trigger.
2073 		 */
2074 		goto out;
2075 
2076 	if (time_is_after_jiffies(dev->pm.last_activity + delta)) {
2077 		delta = dev->pm.last_activity + delta - jiffies;
2078 		goto out;
2079 	}
2080 
2081 	if (!mt7615_mcu_set_fw_ctrl(dev))
2082 		return;
2083 out:
2084 	queue_delayed_work(dev->mt76.wq, &dev->pm.ps_work, delta);
2085 }
2086 
2087 void mt7615_mac_work(struct work_struct *work)
2088 {
2089 	struct mt7615_phy *phy;
2090 	struct mt76_phy *mphy;
2091 	unsigned long timeout;
2092 
2093 	mphy = (struct mt76_phy *)container_of(work, struct mt76_phy,
2094 					       mac_work.work);
2095 	phy = mphy->priv;
2096 
2097 	mt7615_mutex_acquire(phy->dev);
2098 
2099 	mt7615_update_survey(phy->dev);
2100 	if (++mphy->mac_work_count == 5) {
2101 		mphy->mac_work_count = 0;
2102 
2103 		mt7615_mac_update_mib_stats(phy);
2104 		mt7615_mac_scs_check(phy);
2105 	}
2106 
2107 	mt7615_mutex_release(phy->dev);
2108 
2109 	mt76_tx_status_check(mphy->dev, false);
2110 
2111 	timeout = mt7615_get_macwork_timeout(phy->dev);
2112 	ieee80211_queue_delayed_work(mphy->hw, &mphy->mac_work, timeout);
2113 }
2114 
2115 void mt7615_tx_token_put(struct mt7615_dev *dev)
2116 {
2117 	struct mt76_txwi_cache *txwi;
2118 	int id;
2119 
2120 	spin_lock_bh(&dev->mt76.token_lock);
2121 	idr_for_each_entry(&dev->mt76.token, txwi, id)
2122 		mt7615_txwi_free(dev, txwi);
2123 	spin_unlock_bh(&dev->mt76.token_lock);
2124 	idr_destroy(&dev->mt76.token);
2125 }
2126 EXPORT_SYMBOL_GPL(mt7615_tx_token_put);
2127 
2128 static void mt7615_dfs_stop_radar_detector(struct mt7615_phy *phy)
2129 {
2130 	struct mt7615_dev *dev = phy->dev;
2131 
2132 	if (phy->rdd_state & BIT(0))
2133 		mt76_connac_mcu_rdd_cmd(&dev->mt76, RDD_STOP, 0,
2134 					MT_RX_SEL0, 0);
2135 	if (phy->rdd_state & BIT(1))
2136 		mt76_connac_mcu_rdd_cmd(&dev->mt76, RDD_STOP, 1,
2137 					MT_RX_SEL0, 0);
2138 }
2139 
2140 static int mt7615_dfs_start_rdd(struct mt7615_dev *dev, int chain)
2141 {
2142 	int err;
2143 
2144 	err = mt76_connac_mcu_rdd_cmd(&dev->mt76, RDD_START, chain,
2145 				      MT_RX_SEL0, 0);
2146 	if (err < 0)
2147 		return err;
2148 
2149 	return mt76_connac_mcu_rdd_cmd(&dev->mt76, RDD_DET_MODE, chain,
2150 				       MT_RX_SEL0, 1);
2151 }
2152 
2153 static int mt7615_dfs_start_radar_detector(struct mt7615_phy *phy)
2154 {
2155 	struct cfg80211_chan_def *chandef = &phy->mt76->chandef;
2156 	struct mt7615_dev *dev = phy->dev;
2157 	bool ext_phy = phy != &dev->phy;
2158 	int err;
2159 
2160 	/* start CAC */
2161 	err = mt76_connac_mcu_rdd_cmd(&dev->mt76, RDD_CAC_START, ext_phy,
2162 				      MT_RX_SEL0, 0);
2163 	if (err < 0)
2164 		return err;
2165 
2166 	err = mt7615_dfs_start_rdd(dev, ext_phy);
2167 	if (err < 0)
2168 		return err;
2169 
2170 	phy->rdd_state |= BIT(ext_phy);
2171 
2172 	if (chandef->width == NL80211_CHAN_WIDTH_160 ||
2173 	    chandef->width == NL80211_CHAN_WIDTH_80P80) {
2174 		err = mt7615_dfs_start_rdd(dev, 1);
2175 		if (err < 0)
2176 			return err;
2177 
2178 		phy->rdd_state |= BIT(1);
2179 	}
2180 
2181 	return 0;
2182 }
2183 
2184 static int
2185 mt7615_dfs_init_radar_specs(struct mt7615_phy *phy)
2186 {
2187 	const struct mt7615_dfs_radar_spec *radar_specs;
2188 	struct mt7615_dev *dev = phy->dev;
2189 	int err, i, lpn = 500;
2190 
2191 	switch (dev->mt76.region) {
2192 	case NL80211_DFS_FCC:
2193 		radar_specs = &fcc_radar_specs;
2194 		lpn = 8;
2195 		break;
2196 	case NL80211_DFS_ETSI:
2197 		radar_specs = &etsi_radar_specs;
2198 		break;
2199 	case NL80211_DFS_JP:
2200 		radar_specs = &jp_radar_specs;
2201 		break;
2202 	default:
2203 		return -EINVAL;
2204 	}
2205 
2206 	/* avoid FCC radar detection in non-FCC region */
2207 	err = mt7615_mcu_set_fcc5_lpn(dev, lpn);
2208 	if (err < 0)
2209 		return err;
2210 
2211 	for (i = 0; i < ARRAY_SIZE(radar_specs->radar_pattern); i++) {
2212 		err = mt7615_mcu_set_radar_th(dev, i,
2213 					      &radar_specs->radar_pattern[i]);
2214 		if (err < 0)
2215 			return err;
2216 	}
2217 
2218 	return mt7615_mcu_set_pulse_th(dev, &radar_specs->pulse_th);
2219 }
2220 
2221 int mt7615_dfs_init_radar_detector(struct mt7615_phy *phy)
2222 {
2223 	struct cfg80211_chan_def *chandef = &phy->mt76->chandef;
2224 	struct mt7615_dev *dev = phy->dev;
2225 	bool ext_phy = phy != &dev->phy;
2226 	enum mt76_dfs_state dfs_state, prev_state;
2227 	int err;
2228 
2229 	if (is_mt7663(&dev->mt76))
2230 		return 0;
2231 
2232 	prev_state = phy->mt76->dfs_state;
2233 	dfs_state = mt76_phy_dfs_state(phy->mt76);
2234 	if ((chandef->chan->flags & IEEE80211_CHAN_RADAR) &&
2235 	    dfs_state < MT_DFS_STATE_CAC)
2236 		dfs_state = MT_DFS_STATE_ACTIVE;
2237 
2238 	if (prev_state == dfs_state)
2239 		return 0;
2240 
2241 	if (dfs_state == MT_DFS_STATE_DISABLED)
2242 		goto stop;
2243 
2244 	if (prev_state <= MT_DFS_STATE_DISABLED) {
2245 		err = mt7615_dfs_init_radar_specs(phy);
2246 		if (err < 0)
2247 			return err;
2248 
2249 		err = mt7615_dfs_start_radar_detector(phy);
2250 		if (err < 0)
2251 			return err;
2252 
2253 		phy->mt76->dfs_state = MT_DFS_STATE_CAC;
2254 	}
2255 
2256 	if (dfs_state == MT_DFS_STATE_CAC)
2257 		return 0;
2258 
2259 	err = mt76_connac_mcu_rdd_cmd(&dev->mt76, RDD_CAC_END,
2260 				      ext_phy, MT_RX_SEL0, 0);
2261 	if (err < 0) {
2262 		phy->mt76->dfs_state = MT_DFS_STATE_UNKNOWN;
2263 		return err;
2264 	}
2265 
2266 	phy->mt76->dfs_state = MT_DFS_STATE_ACTIVE;
2267 	return 0;
2268 
2269 stop:
2270 	err = mt76_connac_mcu_rdd_cmd(&dev->mt76, RDD_NORMAL_START, ext_phy,
2271 				      MT_RX_SEL0, 0);
2272 	if (err < 0)
2273 		return err;
2274 
2275 	mt7615_dfs_stop_radar_detector(phy);
2276 	phy->mt76->dfs_state = MT_DFS_STATE_DISABLED;
2277 
2278 	return 0;
2279 }
2280 
2281 int mt7615_mac_set_beacon_filter(struct mt7615_phy *phy,
2282 				 struct ieee80211_vif *vif,
2283 				 bool enable)
2284 {
2285 	struct mt7615_dev *dev = phy->dev;
2286 	bool ext_phy = phy != &dev->phy;
2287 	int err;
2288 
2289 	if (!mt7615_firmware_offload(dev))
2290 		return -EOPNOTSUPP;
2291 
2292 	switch (vif->type) {
2293 	case NL80211_IFTYPE_MONITOR:
2294 		return 0;
2295 	case NL80211_IFTYPE_MESH_POINT:
2296 	case NL80211_IFTYPE_ADHOC:
2297 	case NL80211_IFTYPE_AP:
2298 		if (enable)
2299 			phy->n_beacon_vif++;
2300 		else
2301 			phy->n_beacon_vif--;
2302 		fallthrough;
2303 	default:
2304 		break;
2305 	}
2306 
2307 	err = mt7615_mcu_set_bss_pm(dev, vif, !phy->n_beacon_vif);
2308 	if (err)
2309 		return err;
2310 
2311 	if (phy->n_beacon_vif) {
2312 		vif->driver_flags &= ~IEEE80211_VIF_BEACON_FILTER;
2313 		mt76_clear(dev, MT_WF_RFCR(ext_phy),
2314 			   MT_WF_RFCR_DROP_OTHER_BEACON);
2315 	} else {
2316 		vif->driver_flags |= IEEE80211_VIF_BEACON_FILTER;
2317 		mt76_set(dev, MT_WF_RFCR(ext_phy),
2318 			 MT_WF_RFCR_DROP_OTHER_BEACON);
2319 	}
2320 
2321 	return 0;
2322 }
2323 
2324 void mt7615_coredump_work(struct work_struct *work)
2325 {
2326 	struct mt7615_dev *dev;
2327 	char *dump, *data;
2328 
2329 	dev = (struct mt7615_dev *)container_of(work, struct mt7615_dev,
2330 						coredump.work.work);
2331 
2332 	if (time_is_after_jiffies(dev->coredump.last_activity +
2333 				  4 * MT76_CONNAC_COREDUMP_TIMEOUT)) {
2334 		queue_delayed_work(dev->mt76.wq, &dev->coredump.work,
2335 				   MT76_CONNAC_COREDUMP_TIMEOUT);
2336 		return;
2337 	}
2338 
2339 	dump = vzalloc(MT76_CONNAC_COREDUMP_SZ);
2340 	data = dump;
2341 
2342 	while (true) {
2343 		struct sk_buff *skb;
2344 
2345 		spin_lock_bh(&dev->mt76.lock);
2346 		skb = __skb_dequeue(&dev->coredump.msg_list);
2347 		spin_unlock_bh(&dev->mt76.lock);
2348 
2349 		if (!skb)
2350 			break;
2351 
2352 		skb_pull(skb, sizeof(struct mt7615_mcu_rxd));
2353 		if (!dump || data + skb->len - dump > MT76_CONNAC_COREDUMP_SZ) {
2354 			dev_kfree_skb(skb);
2355 			continue;
2356 		}
2357 
2358 		memcpy(data, skb->data, skb->len);
2359 		data += skb->len;
2360 
2361 		dev_kfree_skb(skb);
2362 	}
2363 
2364 	if (dump)
2365 		dev_coredumpv(dev->mt76.dev, dump, MT76_CONNAC_COREDUMP_SZ,
2366 			      GFP_KERNEL);
2367 }
2368