xref: /openbmc/linux/drivers/net/wireless/mediatek/mt76/mt7615/mac.c (revision 414772b8f7d7a9ccbfb5f0f3fd51bbfb8d54501a)
1 // SPDX-License-Identifier: ISC
2 /* Copyright (C) 2019 MediaTek Inc.
3  *
4  * Author: Ryder Lee <ryder.lee@mediatek.com>
5  *         Roy Luo <royluo@google.com>
6  *         Felix Fietkau <nbd@nbd.name>
7  *         Lorenzo Bianconi <lorenzo@kernel.org>
8  */
9 
10 #include <linux/devcoredump.h>
11 #include <linux/etherdevice.h>
12 #include <linux/timekeeping.h>
13 #include "mt7615.h"
14 #include "../trace.h"
15 #include "../dma.h"
16 #include "mt7615_trace.h"
17 #include "mac.h"
18 #include "mcu.h"
19 
20 #define to_rssi(field, rxv)		((FIELD_GET(field, rxv) - 220) / 2)
21 
22 static const struct mt7615_dfs_radar_spec etsi_radar_specs = {
23 	.pulse_th = { 110, -10, -80, 40, 5200, 128, 5200 },
24 	.radar_pattern = {
25 		[5] =  { 1, 0,  6, 32, 28, 0, 17,  990, 5010, 1, 1 },
26 		[6] =  { 1, 0,  9, 32, 28, 0, 27,  615, 5010, 1, 1 },
27 		[7] =  { 1, 0, 15, 32, 28, 0, 27,  240,  445, 1, 1 },
28 		[8] =  { 1, 0, 12, 32, 28, 0, 42,  240,  510, 1, 1 },
29 		[9] =  { 1, 1,  0,  0,  0, 0, 14, 2490, 3343, 0, 0, 12, 32, 28 },
30 		[10] = { 1, 1,  0,  0,  0, 0, 14, 2490, 3343, 0, 0, 15, 32, 24 },
31 		[11] = { 1, 1,  0,  0,  0, 0, 14,  823, 2510, 0, 0, 18, 32, 28 },
32 		[12] = { 1, 1,  0,  0,  0, 0, 14,  823, 2510, 0, 0, 27, 32, 24 },
33 	},
34 };
35 
36 static const struct mt7615_dfs_radar_spec fcc_radar_specs = {
37 	.pulse_th = { 110, -10, -80, 40, 5200, 128, 5200 },
38 	.radar_pattern = {
39 		[0] = { 1, 0,  9,  32, 28, 0, 13, 508, 3076, 1,  1 },
40 		[1] = { 1, 0, 12,  32, 28, 0, 17, 140,  240, 1,  1 },
41 		[2] = { 1, 0,  8,  32, 28, 0, 22, 190,  510, 1,  1 },
42 		[3] = { 1, 0,  6,  32, 28, 0, 32, 190,  510, 1,  1 },
43 		[4] = { 1, 0,  9, 255, 28, 0, 13, 323,  343, 1, 32 },
44 	},
45 };
46 
47 static const struct mt7615_dfs_radar_spec jp_radar_specs = {
48 	.pulse_th = { 110, -10, -80, 40, 5200, 128, 5200 },
49 	.radar_pattern = {
50 		[0] =  { 1, 0,  8, 32, 28, 0, 13,  508, 3076, 1,  1 },
51 		[1] =  { 1, 0, 12, 32, 28, 0, 17,  140,  240, 1,  1 },
52 		[2] =  { 1, 0,  8, 32, 28, 0, 22,  190,  510, 1,  1 },
53 		[3] =  { 1, 0,  6, 32, 28, 0, 32,  190,  510, 1,  1 },
54 		[4] =  { 1, 0,  9, 32, 28, 0, 13,  323,  343, 1, 32 },
55 		[13] = { 1, 0, 8,  32, 28, 0, 14, 3836, 3856, 1,  1 },
56 		[14] = { 1, 0, 8,  32, 28, 0, 14, 3990, 4010, 1,  1 },
57 	},
58 };
59 
60 static enum mt76_cipher_type
61 mt7615_mac_get_cipher(int cipher)
62 {
63 	switch (cipher) {
64 	case WLAN_CIPHER_SUITE_WEP40:
65 		return MT_CIPHER_WEP40;
66 	case WLAN_CIPHER_SUITE_WEP104:
67 		return MT_CIPHER_WEP104;
68 	case WLAN_CIPHER_SUITE_TKIP:
69 		return MT_CIPHER_TKIP;
70 	case WLAN_CIPHER_SUITE_AES_CMAC:
71 		return MT_CIPHER_BIP_CMAC_128;
72 	case WLAN_CIPHER_SUITE_CCMP:
73 		return MT_CIPHER_AES_CCMP;
74 	case WLAN_CIPHER_SUITE_CCMP_256:
75 		return MT_CIPHER_CCMP_256;
76 	case WLAN_CIPHER_SUITE_GCMP:
77 		return MT_CIPHER_GCMP;
78 	case WLAN_CIPHER_SUITE_GCMP_256:
79 		return MT_CIPHER_GCMP_256;
80 	case WLAN_CIPHER_SUITE_SMS4:
81 		return MT_CIPHER_WAPI;
82 	default:
83 		return MT_CIPHER_NONE;
84 	}
85 }
86 
87 static struct mt76_wcid *mt7615_rx_get_wcid(struct mt7615_dev *dev,
88 					    u8 idx, bool unicast)
89 {
90 	struct mt7615_sta *sta;
91 	struct mt76_wcid *wcid;
92 
93 	if (idx >= MT7615_WTBL_SIZE)
94 		return NULL;
95 
96 	wcid = rcu_dereference(dev->mt76.wcid[idx]);
97 	if (unicast || !wcid)
98 		return wcid;
99 
100 	if (!wcid->sta)
101 		return NULL;
102 
103 	sta = container_of(wcid, struct mt7615_sta, wcid);
104 	if (!sta->vif)
105 		return NULL;
106 
107 	return &sta->vif->sta.wcid;
108 }
109 
110 void mt7615_mac_reset_counters(struct mt7615_phy *phy)
111 {
112 	struct mt7615_dev *dev = phy->dev;
113 	int i;
114 
115 	for (i = 0; i < 4; i++) {
116 		mt76_rr(dev, MT_TX_AGG_CNT(0, i));
117 		mt76_rr(dev, MT_TX_AGG_CNT(1, i));
118 	}
119 
120 	memset(phy->mt76->aggr_stats, 0, sizeof(phy->mt76->aggr_stats));
121 	phy->mt76->survey_time = ktime_get_boottime();
122 
123 	/* reset airtime counters */
124 	mt76_rr(dev, MT_MIB_SDR9(0));
125 	mt76_rr(dev, MT_MIB_SDR9(1));
126 
127 	mt76_rr(dev, MT_MIB_SDR36(0));
128 	mt76_rr(dev, MT_MIB_SDR36(1));
129 
130 	mt76_rr(dev, MT_MIB_SDR37(0));
131 	mt76_rr(dev, MT_MIB_SDR37(1));
132 
133 	mt76_set(dev, MT_WF_RMAC_MIB_TIME0, MT_WF_RMAC_MIB_RXTIME_CLR);
134 	mt76_set(dev, MT_WF_RMAC_MIB_AIRTIME0, MT_WF_RMAC_MIB_RXTIME_CLR);
135 }
136 
137 void mt7615_mac_set_timing(struct mt7615_phy *phy)
138 {
139 	s16 coverage_class = phy->coverage_class;
140 	struct mt7615_dev *dev = phy->dev;
141 	bool ext_phy = phy != &dev->phy;
142 	u32 val, reg_offset;
143 	u32 cck = FIELD_PREP(MT_TIMEOUT_VAL_PLCP, 231) |
144 		  FIELD_PREP(MT_TIMEOUT_VAL_CCA, 48);
145 	u32 ofdm = FIELD_PREP(MT_TIMEOUT_VAL_PLCP, 60) |
146 		   FIELD_PREP(MT_TIMEOUT_VAL_CCA, 28);
147 	int sifs, offset;
148 	bool is_5ghz = phy->mt76->chandef.chan->band == NL80211_BAND_5GHZ;
149 
150 	if (!test_bit(MT76_STATE_RUNNING, &phy->mt76->state))
151 		return;
152 
153 	if (is_5ghz)
154 		sifs = 16;
155 	else
156 		sifs = 10;
157 
158 	if (ext_phy) {
159 		coverage_class = max_t(s16, dev->phy.coverage_class,
160 				       coverage_class);
161 		mt76_set(dev, MT_ARB_SCR,
162 			 MT_ARB_SCR_TX1_DISABLE | MT_ARB_SCR_RX1_DISABLE);
163 	} else {
164 		struct mt7615_phy *phy_ext = mt7615_ext_phy(dev);
165 
166 		if (phy_ext)
167 			coverage_class = max_t(s16, phy_ext->coverage_class,
168 					       coverage_class);
169 		mt76_set(dev, MT_ARB_SCR,
170 			 MT_ARB_SCR_TX0_DISABLE | MT_ARB_SCR_RX0_DISABLE);
171 	}
172 	udelay(1);
173 
174 	offset = 3 * coverage_class;
175 	reg_offset = FIELD_PREP(MT_TIMEOUT_VAL_PLCP, offset) |
176 		     FIELD_PREP(MT_TIMEOUT_VAL_CCA, offset);
177 	mt76_wr(dev, MT_TMAC_CDTR, cck + reg_offset);
178 	mt76_wr(dev, MT_TMAC_ODTR, ofdm + reg_offset);
179 
180 	mt76_wr(dev, MT_TMAC_ICR(ext_phy),
181 		FIELD_PREP(MT_IFS_EIFS, 360) |
182 		FIELD_PREP(MT_IFS_RIFS, 2) |
183 		FIELD_PREP(MT_IFS_SIFS, sifs) |
184 		FIELD_PREP(MT_IFS_SLOT, phy->slottime));
185 
186 	if (phy->slottime < 20 || is_5ghz)
187 		val = MT7615_CFEND_RATE_DEFAULT;
188 	else
189 		val = MT7615_CFEND_RATE_11B;
190 
191 	mt76_rmw_field(dev, MT_AGG_ACR(ext_phy), MT_AGG_ACR_CFEND_RATE, val);
192 	if (ext_phy)
193 		mt76_clear(dev, MT_ARB_SCR,
194 			   MT_ARB_SCR_TX1_DISABLE | MT_ARB_SCR_RX1_DISABLE);
195 	else
196 		mt76_clear(dev, MT_ARB_SCR,
197 			   MT_ARB_SCR_TX0_DISABLE | MT_ARB_SCR_RX0_DISABLE);
198 
199 }
200 
201 static void
202 mt7615_get_status_freq_info(struct mt7615_dev *dev, struct mt76_phy *mphy,
203 			    struct mt76_rx_status *status, u8 chfreq)
204 {
205 	if (!test_bit(MT76_HW_SCANNING, &mphy->state) &&
206 	    !test_bit(MT76_HW_SCHED_SCANNING, &mphy->state) &&
207 	    !test_bit(MT76_STATE_ROC, &mphy->state)) {
208 		status->freq = mphy->chandef.chan->center_freq;
209 		status->band = mphy->chandef.chan->band;
210 		return;
211 	}
212 
213 	status->band = chfreq <= 14 ? NL80211_BAND_2GHZ : NL80211_BAND_5GHZ;
214 	status->freq = ieee80211_channel_to_frequency(chfreq, status->band);
215 }
216 
217 static void mt7615_mac_fill_tm_rx(struct mt7615_phy *phy, __le32 *rxv)
218 {
219 #ifdef CONFIG_NL80211_TESTMODE
220 	u32 rxv1 = le32_to_cpu(rxv[0]);
221 	u32 rxv3 = le32_to_cpu(rxv[2]);
222 	u32 rxv4 = le32_to_cpu(rxv[3]);
223 	u32 rxv5 = le32_to_cpu(rxv[4]);
224 	u8 cbw = FIELD_GET(MT_RXV1_FRAME_MODE, rxv1);
225 	u8 mode = FIELD_GET(MT_RXV1_TX_MODE, rxv1);
226 	s16 foe = FIELD_GET(MT_RXV5_FOE, rxv5);
227 	u32 foe_const = (BIT(cbw + 1) & 0xf) * 10000;
228 
229 	if (!mode) {
230 		/* CCK */
231 		foe &= ~BIT(11);
232 		foe *= 1000;
233 		foe >>= 11;
234 	} else {
235 		if (foe > 2048)
236 			foe -= 4096;
237 
238 		foe = (foe * foe_const) >> 15;
239 	}
240 
241 	phy->test.last_freq_offset = foe;
242 	phy->test.last_rcpi[0] = FIELD_GET(MT_RXV4_RCPI0, rxv4);
243 	phy->test.last_rcpi[1] = FIELD_GET(MT_RXV4_RCPI1, rxv4);
244 	phy->test.last_rcpi[2] = FIELD_GET(MT_RXV4_RCPI2, rxv4);
245 	phy->test.last_rcpi[3] = FIELD_GET(MT_RXV4_RCPI3, rxv4);
246 	phy->test.last_ib_rssi[0] = FIELD_GET(MT_RXV3_IB_RSSI, rxv3);
247 	phy->test.last_wb_rssi[0] = FIELD_GET(MT_RXV3_WB_RSSI, rxv3);
248 #endif
249 }
250 
251 /* The HW does not translate the mac header to 802.3 for mesh point */
252 static int mt7615_reverse_frag0_hdr_trans(struct sk_buff *skb, u16 hdr_gap)
253 {
254 	struct mt76_rx_status *status = (struct mt76_rx_status *)skb->cb;
255 	struct ethhdr *eth_hdr = (struct ethhdr *)(skb->data + hdr_gap);
256 	struct mt7615_sta *msta = (struct mt7615_sta *)status->wcid;
257 	__le32 *rxd = (__le32 *)skb->data;
258 	struct ieee80211_sta *sta;
259 	struct ieee80211_vif *vif;
260 	struct ieee80211_hdr hdr;
261 	u16 frame_control;
262 
263 	if (le32_get_bits(rxd[1], MT_RXD1_NORMAL_ADDR_TYPE) !=
264 	    MT_RXD1_NORMAL_U2M)
265 		return -EINVAL;
266 
267 	if (!(le32_to_cpu(rxd[0]) & MT_RXD0_NORMAL_GROUP_4))
268 		return -EINVAL;
269 
270 	if (!msta || !msta->vif)
271 		return -EINVAL;
272 
273 	sta = container_of((void *)msta, struct ieee80211_sta, drv_priv);
274 	vif = container_of((void *)msta->vif, struct ieee80211_vif, drv_priv);
275 
276 	/* store the info from RXD and ethhdr to avoid being overridden */
277 	frame_control = le32_get_bits(rxd[4], MT_RXD4_FRAME_CONTROL);
278 	hdr.frame_control = cpu_to_le16(frame_control);
279 	hdr.seq_ctrl = cpu_to_le16(le32_get_bits(rxd[6], MT_RXD6_SEQ_CTRL));
280 	hdr.duration_id = 0;
281 
282 	ether_addr_copy(hdr.addr1, vif->addr);
283 	ether_addr_copy(hdr.addr2, sta->addr);
284 	switch (frame_control & (IEEE80211_FCTL_TODS |
285 				 IEEE80211_FCTL_FROMDS)) {
286 	case 0:
287 		ether_addr_copy(hdr.addr3, vif->bss_conf.bssid);
288 		break;
289 	case IEEE80211_FCTL_FROMDS:
290 		ether_addr_copy(hdr.addr3, eth_hdr->h_source);
291 		break;
292 	case IEEE80211_FCTL_TODS:
293 		ether_addr_copy(hdr.addr3, eth_hdr->h_dest);
294 		break;
295 	case IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS:
296 		ether_addr_copy(hdr.addr3, eth_hdr->h_dest);
297 		ether_addr_copy(hdr.addr4, eth_hdr->h_source);
298 		break;
299 	default:
300 		break;
301 	}
302 
303 	skb_pull(skb, hdr_gap + sizeof(struct ethhdr) - 2);
304 	if (eth_hdr->h_proto == cpu_to_be16(ETH_P_AARP) ||
305 	    eth_hdr->h_proto == cpu_to_be16(ETH_P_IPX))
306 		ether_addr_copy(skb_push(skb, ETH_ALEN), bridge_tunnel_header);
307 	else if (be16_to_cpu(eth_hdr->h_proto) >= ETH_P_802_3_MIN)
308 		ether_addr_copy(skb_push(skb, ETH_ALEN), rfc1042_header);
309 	else
310 		skb_pull(skb, 2);
311 
312 	if (ieee80211_has_order(hdr.frame_control))
313 		memcpy(skb_push(skb, IEEE80211_HT_CTL_LEN), &rxd[7],
314 		       IEEE80211_HT_CTL_LEN);
315 
316 	if (ieee80211_is_data_qos(hdr.frame_control)) {
317 		__le16 qos_ctrl;
318 
319 		qos_ctrl = cpu_to_le16(le32_get_bits(rxd[6], MT_RXD6_QOS_CTL));
320 		memcpy(skb_push(skb, IEEE80211_QOS_CTL_LEN), &qos_ctrl,
321 		       IEEE80211_QOS_CTL_LEN);
322 	}
323 
324 	if (ieee80211_has_a4(hdr.frame_control))
325 		memcpy(skb_push(skb, sizeof(hdr)), &hdr, sizeof(hdr));
326 	else
327 		memcpy(skb_push(skb, sizeof(hdr) - 6), &hdr, sizeof(hdr) - 6);
328 
329 	status->flag &= ~(RX_FLAG_RADIOTAP_HE | RX_FLAG_RADIOTAP_HE_MU);
330 	return 0;
331 }
332 
333 static int mt7615_mac_fill_rx(struct mt7615_dev *dev, struct sk_buff *skb)
334 {
335 	struct mt76_rx_status *status = (struct mt76_rx_status *)skb->cb;
336 	struct mt76_phy *mphy = &dev->mt76.phy;
337 	struct mt7615_phy *phy = &dev->phy;
338 	struct ieee80211_supported_band *sband;
339 	struct ieee80211_hdr *hdr;
340 	struct mt7615_phy *phy2;
341 	__le32 *rxd = (__le32 *)skb->data;
342 	u32 rxd0 = le32_to_cpu(rxd[0]);
343 	u32 rxd1 = le32_to_cpu(rxd[1]);
344 	u32 rxd2 = le32_to_cpu(rxd[2]);
345 	u32 csum_mask = MT_RXD0_NORMAL_IP_SUM | MT_RXD0_NORMAL_UDP_TCP_SUM;
346 	u32 csum_status = *(u32 *)skb->cb;
347 	bool unicast, hdr_trans, remove_pad, insert_ccmp_hdr = false;
348 	u16 hdr_gap;
349 	int phy_idx;
350 	int i, idx;
351 	u8 chfreq, amsdu_info, qos_ctl = 0;
352 	u16 seq_ctrl = 0;
353 	__le16 fc = 0;
354 
355 	memset(status, 0, sizeof(*status));
356 
357 	chfreq = FIELD_GET(MT_RXD1_NORMAL_CH_FREQ, rxd1);
358 
359 	phy2 = dev->mt76.phys[MT_BAND1] ? dev->mt76.phys[MT_BAND1]->priv : NULL;
360 	if (!phy2)
361 		phy_idx = 0;
362 	else if (phy2->chfreq == phy->chfreq)
363 		phy_idx = -1;
364 	else if (phy->chfreq == chfreq)
365 		phy_idx = 0;
366 	else if (phy2->chfreq == chfreq)
367 		phy_idx = 1;
368 	else
369 		phy_idx = -1;
370 
371 	if (rxd2 & MT_RXD2_NORMAL_AMSDU_ERR)
372 		return -EINVAL;
373 
374 	hdr_trans = rxd1 & MT_RXD1_NORMAL_HDR_TRANS;
375 	if (hdr_trans && (rxd2 & MT_RXD2_NORMAL_CM))
376 		return -EINVAL;
377 
378 	/* ICV error or CCMP/BIP/WPI MIC error */
379 	if (rxd2 & MT_RXD2_NORMAL_ICV_ERR)
380 		status->flag |= RX_FLAG_ONLY_MONITOR;
381 
382 	unicast = (rxd1 & MT_RXD1_NORMAL_ADDR_TYPE) == MT_RXD1_NORMAL_U2M;
383 	idx = FIELD_GET(MT_RXD2_NORMAL_WLAN_IDX, rxd2);
384 	status->wcid = mt7615_rx_get_wcid(dev, idx, unicast);
385 
386 	if (status->wcid) {
387 		struct mt7615_sta *msta;
388 
389 		msta = container_of(status->wcid, struct mt7615_sta, wcid);
390 		spin_lock_bh(&dev->sta_poll_lock);
391 		if (list_empty(&msta->poll_list))
392 			list_add_tail(&msta->poll_list, &dev->sta_poll_list);
393 		spin_unlock_bh(&dev->sta_poll_lock);
394 	}
395 
396 	if (mt76_is_mmio(&dev->mt76) && (rxd0 & csum_mask) == csum_mask &&
397 	    !(csum_status & (BIT(0) | BIT(2) | BIT(3))))
398 		skb->ip_summed = CHECKSUM_UNNECESSARY;
399 
400 	if (rxd2 & MT_RXD2_NORMAL_FCS_ERR)
401 		status->flag |= RX_FLAG_FAILED_FCS_CRC;
402 
403 	if (rxd2 & MT_RXD2_NORMAL_TKIP_MIC_ERR)
404 		status->flag |= RX_FLAG_MMIC_ERROR;
405 
406 	if (FIELD_GET(MT_RXD2_NORMAL_SEC_MODE, rxd2) != 0 &&
407 	    !(rxd2 & (MT_RXD2_NORMAL_CLM | MT_RXD2_NORMAL_CM))) {
408 		status->flag |= RX_FLAG_DECRYPTED;
409 		status->flag |= RX_FLAG_IV_STRIPPED;
410 		status->flag |= RX_FLAG_MMIC_STRIPPED | RX_FLAG_MIC_STRIPPED;
411 	}
412 
413 	remove_pad = rxd1 & MT_RXD1_NORMAL_HDR_OFFSET;
414 
415 	if (rxd2 & MT_RXD2_NORMAL_MAX_LEN_ERROR)
416 		return -EINVAL;
417 
418 	rxd += 4;
419 	if (rxd0 & MT_RXD0_NORMAL_GROUP_4) {
420 		u32 v0 = le32_to_cpu(rxd[0]);
421 		u32 v2 = le32_to_cpu(rxd[2]);
422 
423 		fc = cpu_to_le16(FIELD_GET(MT_RXD4_FRAME_CONTROL, v0));
424 		qos_ctl = FIELD_GET(MT_RXD6_QOS_CTL, v2);
425 		seq_ctrl = FIELD_GET(MT_RXD6_SEQ_CTRL, v2);
426 
427 		rxd += 4;
428 		if ((u8 *)rxd - skb->data >= skb->len)
429 			return -EINVAL;
430 	}
431 
432 	if (rxd0 & MT_RXD0_NORMAL_GROUP_1) {
433 		u8 *data = (u8 *)rxd;
434 
435 		if (status->flag & RX_FLAG_DECRYPTED) {
436 			switch (FIELD_GET(MT_RXD2_NORMAL_SEC_MODE, rxd2)) {
437 			case MT_CIPHER_AES_CCMP:
438 			case MT_CIPHER_CCMP_CCX:
439 			case MT_CIPHER_CCMP_256:
440 				insert_ccmp_hdr =
441 					FIELD_GET(MT_RXD2_NORMAL_FRAG, rxd2);
442 				fallthrough;
443 			case MT_CIPHER_TKIP:
444 			case MT_CIPHER_TKIP_NO_MIC:
445 			case MT_CIPHER_GCMP:
446 			case MT_CIPHER_GCMP_256:
447 				status->iv[0] = data[5];
448 				status->iv[1] = data[4];
449 				status->iv[2] = data[3];
450 				status->iv[3] = data[2];
451 				status->iv[4] = data[1];
452 				status->iv[5] = data[0];
453 				break;
454 			default:
455 				break;
456 			}
457 		}
458 		rxd += 4;
459 		if ((u8 *)rxd - skb->data >= skb->len)
460 			return -EINVAL;
461 	}
462 
463 	if (rxd0 & MT_RXD0_NORMAL_GROUP_2) {
464 		status->timestamp = le32_to_cpu(rxd[0]);
465 		status->flag |= RX_FLAG_MACTIME_START;
466 
467 		if (!(rxd2 & (MT_RXD2_NORMAL_NON_AMPDU_SUB |
468 			      MT_RXD2_NORMAL_NON_AMPDU))) {
469 			status->flag |= RX_FLAG_AMPDU_DETAILS;
470 
471 			/* all subframes of an A-MPDU have the same timestamp */
472 			if (phy->rx_ampdu_ts != status->timestamp) {
473 				if (!++phy->ampdu_ref)
474 					phy->ampdu_ref++;
475 			}
476 			phy->rx_ampdu_ts = status->timestamp;
477 
478 			status->ampdu_ref = phy->ampdu_ref;
479 		}
480 
481 		rxd += 2;
482 		if ((u8 *)rxd - skb->data >= skb->len)
483 			return -EINVAL;
484 	}
485 
486 	if (rxd0 & MT_RXD0_NORMAL_GROUP_3) {
487 		u32 rxdg5 = le32_to_cpu(rxd[5]);
488 
489 		/*
490 		 * If both PHYs are on the same channel and we don't have a WCID,
491 		 * we need to figure out which PHY this packet was received on.
492 		 * On the primary PHY, the noise value for the chains belonging to the
493 		 * second PHY will be set to the noise value of the last packet from
494 		 * that PHY.
495 		 */
496 		if (phy_idx < 0) {
497 			int first_chain = ffs(phy2->mt76->chainmask) - 1;
498 
499 			phy_idx = ((rxdg5 >> (first_chain * 8)) & 0xff) == 0;
500 		}
501 	}
502 
503 	if (phy_idx == 1 && phy2) {
504 		mphy = dev->mt76.phys[MT_BAND1];
505 		phy = phy2;
506 		status->phy_idx = phy_idx;
507 	}
508 
509 	if (!mt7615_firmware_offload(dev) && chfreq != phy->chfreq)
510 		return -EINVAL;
511 
512 	mt7615_get_status_freq_info(dev, mphy, status, chfreq);
513 	if (status->band == NL80211_BAND_5GHZ)
514 		sband = &mphy->sband_5g.sband;
515 	else
516 		sband = &mphy->sband_2g.sband;
517 
518 	if (!test_bit(MT76_STATE_RUNNING, &mphy->state))
519 		return -EINVAL;
520 
521 	if (!sband->channels)
522 		return -EINVAL;
523 
524 	if (rxd0 & MT_RXD0_NORMAL_GROUP_3) {
525 		u32 rxdg0 = le32_to_cpu(rxd[0]);
526 		u32 rxdg1 = le32_to_cpu(rxd[1]);
527 		u32 rxdg3 = le32_to_cpu(rxd[3]);
528 		u8 stbc = FIELD_GET(MT_RXV1_HT_STBC, rxdg0);
529 		bool cck = false;
530 
531 		i = FIELD_GET(MT_RXV1_TX_RATE, rxdg0);
532 		switch (FIELD_GET(MT_RXV1_TX_MODE, rxdg0)) {
533 		case MT_PHY_TYPE_CCK:
534 			cck = true;
535 			fallthrough;
536 		case MT_PHY_TYPE_OFDM:
537 			i = mt76_get_rate(&dev->mt76, sband, i, cck);
538 			break;
539 		case MT_PHY_TYPE_HT_GF:
540 		case MT_PHY_TYPE_HT:
541 			status->encoding = RX_ENC_HT;
542 			if (i > 31)
543 				return -EINVAL;
544 			break;
545 		case MT_PHY_TYPE_VHT:
546 			status->nss = FIELD_GET(MT_RXV2_NSTS, rxdg1) + 1;
547 			status->encoding = RX_ENC_VHT;
548 			break;
549 		default:
550 			return -EINVAL;
551 		}
552 		status->rate_idx = i;
553 
554 		switch (FIELD_GET(MT_RXV1_FRAME_MODE, rxdg0)) {
555 		case MT_PHY_BW_20:
556 			break;
557 		case MT_PHY_BW_40:
558 			status->bw = RATE_INFO_BW_40;
559 			break;
560 		case MT_PHY_BW_80:
561 			status->bw = RATE_INFO_BW_80;
562 			break;
563 		case MT_PHY_BW_160:
564 			status->bw = RATE_INFO_BW_160;
565 			break;
566 		default:
567 			return -EINVAL;
568 		}
569 
570 		if (rxdg0 & MT_RXV1_HT_SHORT_GI)
571 			status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
572 		if (rxdg0 & MT_RXV1_HT_AD_CODE)
573 			status->enc_flags |= RX_ENC_FLAG_LDPC;
574 
575 		status->enc_flags |= RX_ENC_FLAG_STBC_MASK * stbc;
576 
577 		status->chains = mphy->antenna_mask;
578 		status->chain_signal[0] = to_rssi(MT_RXV4_RCPI0, rxdg3);
579 		status->chain_signal[1] = to_rssi(MT_RXV4_RCPI1, rxdg3);
580 		status->chain_signal[2] = to_rssi(MT_RXV4_RCPI2, rxdg3);
581 		status->chain_signal[3] = to_rssi(MT_RXV4_RCPI3, rxdg3);
582 
583 		mt7615_mac_fill_tm_rx(mphy->priv, rxd);
584 
585 		rxd += 6;
586 		if ((u8 *)rxd - skb->data >= skb->len)
587 			return -EINVAL;
588 	}
589 
590 	amsdu_info = FIELD_GET(MT_RXD1_NORMAL_PAYLOAD_FORMAT, rxd1);
591 	status->amsdu = !!amsdu_info;
592 	if (status->amsdu) {
593 		status->first_amsdu = amsdu_info == MT_RXD1_FIRST_AMSDU_FRAME;
594 		status->last_amsdu = amsdu_info == MT_RXD1_LAST_AMSDU_FRAME;
595 	}
596 
597 	hdr_gap = (u8 *)rxd - skb->data + 2 * remove_pad;
598 	if (hdr_trans && ieee80211_has_morefrags(fc)) {
599 		if (mt7615_reverse_frag0_hdr_trans(skb, hdr_gap))
600 			return -EINVAL;
601 		hdr_trans = false;
602 	} else {
603 		int pad_start = 0;
604 
605 		skb_pull(skb, hdr_gap);
606 		if (!hdr_trans && status->amsdu) {
607 			pad_start = ieee80211_get_hdrlen_from_skb(skb);
608 		} else if (hdr_trans && (rxd2 & MT_RXD2_NORMAL_HDR_TRANS_ERROR)) {
609 			/*
610 			 * When header translation failure is indicated,
611 			 * the hardware will insert an extra 2-byte field
612 			 * containing the data length after the protocol
613 			 * type field. This happens either when the LLC-SNAP
614 			 * pattern did not match, or if a VLAN header was
615 			 * detected.
616 			 */
617 			pad_start = 12;
618 			if (get_unaligned_be16(skb->data + pad_start) == ETH_P_8021Q)
619 				pad_start += 4;
620 			else
621 				pad_start = 0;
622 		}
623 
624 		if (pad_start) {
625 			memmove(skb->data + 2, skb->data, pad_start);
626 			skb_pull(skb, 2);
627 		}
628 	}
629 
630 	if (insert_ccmp_hdr && !hdr_trans) {
631 		u8 key_id = FIELD_GET(MT_RXD1_NORMAL_KEY_ID, rxd1);
632 
633 		mt76_insert_ccmp_hdr(skb, key_id);
634 	}
635 
636 	if (!hdr_trans) {
637 		hdr = (struct ieee80211_hdr *)skb->data;
638 		fc = hdr->frame_control;
639 		if (ieee80211_is_data_qos(fc)) {
640 			seq_ctrl = le16_to_cpu(hdr->seq_ctrl);
641 			qos_ctl = *ieee80211_get_qos_ctl(hdr);
642 		}
643 	} else {
644 		status->flag |= RX_FLAG_8023;
645 	}
646 
647 	if (!status->wcid || !ieee80211_is_data_qos(fc))
648 		return 0;
649 
650 	status->aggr = unicast &&
651 		       !ieee80211_is_qos_nullfunc(fc);
652 	status->qos_ctl = qos_ctl;
653 	status->seqno = IEEE80211_SEQ_TO_SN(seq_ctrl);
654 
655 	return 0;
656 }
657 
658 static u16
659 mt7615_mac_tx_rate_val(struct mt7615_dev *dev,
660 		       struct mt76_phy *mphy,
661 		       const struct ieee80211_tx_rate *rate,
662 		       bool stbc, u8 *bw)
663 {
664 	u8 phy, nss, rate_idx;
665 	u16 rateval = 0;
666 
667 	*bw = 0;
668 
669 	if (rate->flags & IEEE80211_TX_RC_VHT_MCS) {
670 		rate_idx = ieee80211_rate_get_vht_mcs(rate);
671 		nss = ieee80211_rate_get_vht_nss(rate);
672 		phy = MT_PHY_TYPE_VHT;
673 		if (rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
674 			*bw = 1;
675 		else if (rate->flags & IEEE80211_TX_RC_80_MHZ_WIDTH)
676 			*bw = 2;
677 		else if (rate->flags & IEEE80211_TX_RC_160_MHZ_WIDTH)
678 			*bw = 3;
679 	} else if (rate->flags & IEEE80211_TX_RC_MCS) {
680 		rate_idx = rate->idx;
681 		nss = 1 + (rate->idx >> 3);
682 		phy = MT_PHY_TYPE_HT;
683 		if (rate->flags & IEEE80211_TX_RC_GREEN_FIELD)
684 			phy = MT_PHY_TYPE_HT_GF;
685 		if (rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
686 			*bw = 1;
687 	} else {
688 		const struct ieee80211_rate *r;
689 		int band = mphy->chandef.chan->band;
690 		u16 val;
691 
692 		nss = 1;
693 		r = &mphy->hw->wiphy->bands[band]->bitrates[rate->idx];
694 		if (rate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
695 			val = r->hw_value_short;
696 		else
697 			val = r->hw_value;
698 
699 		phy = val >> 8;
700 		rate_idx = val & 0xff;
701 	}
702 
703 	if (stbc && nss == 1) {
704 		nss++;
705 		rateval |= MT_TX_RATE_STBC;
706 	}
707 
708 	rateval |= (FIELD_PREP(MT_TX_RATE_IDX, rate_idx) |
709 		    FIELD_PREP(MT_TX_RATE_MODE, phy) |
710 		    FIELD_PREP(MT_TX_RATE_NSS, nss - 1));
711 
712 	return rateval;
713 }
714 
715 int mt7615_mac_write_txwi(struct mt7615_dev *dev, __le32 *txwi,
716 			  struct sk_buff *skb, struct mt76_wcid *wcid,
717 			  struct ieee80211_sta *sta, int pid,
718 			  struct ieee80211_key_conf *key,
719 			  enum mt76_txq_id qid, bool beacon)
720 {
721 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
722 	u8 fc_type, fc_stype, p_fmt, q_idx, omac_idx = 0, wmm_idx = 0;
723 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
724 	struct ieee80211_tx_rate *rate = &info->control.rates[0];
725 	u8 phy_idx = (info->hw_queue & MT_TX_HW_QUEUE_PHY) >> 2;
726 	bool multicast = is_multicast_ether_addr(hdr->addr1);
727 	struct ieee80211_vif *vif = info->control.vif;
728 	bool is_mmio = mt76_is_mmio(&dev->mt76);
729 	u32 val, sz_txd = is_mmio ? MT_TXD_SIZE : MT_USB_TXD_SIZE;
730 	struct mt76_phy *mphy = &dev->mphy;
731 	__le16 fc = hdr->frame_control;
732 	int tx_count = 8;
733 	u16 seqno = 0;
734 
735 	if (vif) {
736 		struct mt76_vif *mvif = (struct mt76_vif *)vif->drv_priv;
737 
738 		omac_idx = mvif->omac_idx;
739 		wmm_idx = mvif->wmm_idx;
740 	}
741 
742 	if (sta) {
743 		struct mt7615_sta *msta = (struct mt7615_sta *)sta->drv_priv;
744 
745 		tx_count = msta->rate_count;
746 	}
747 
748 	if (phy_idx && dev->mt76.phys[MT_BAND1])
749 		mphy = dev->mt76.phys[MT_BAND1];
750 
751 	fc_type = (le16_to_cpu(fc) & IEEE80211_FCTL_FTYPE) >> 2;
752 	fc_stype = (le16_to_cpu(fc) & IEEE80211_FCTL_STYPE) >> 4;
753 
754 	if (beacon) {
755 		p_fmt = MT_TX_TYPE_FW;
756 		q_idx = phy_idx ? MT_LMAC_BCN1 : MT_LMAC_BCN0;
757 	} else if (qid >= MT_TXQ_PSD) {
758 		p_fmt = is_mmio ? MT_TX_TYPE_CT : MT_TX_TYPE_SF;
759 		q_idx = phy_idx ? MT_LMAC_ALTX1 : MT_LMAC_ALTX0;
760 	} else {
761 		p_fmt = is_mmio ? MT_TX_TYPE_CT : MT_TX_TYPE_SF;
762 		q_idx = wmm_idx * MT7615_MAX_WMM_SETS +
763 			mt7615_lmac_mapping(dev, skb_get_queue_mapping(skb));
764 	}
765 
766 	val = FIELD_PREP(MT_TXD0_TX_BYTES, skb->len + sz_txd) |
767 	      FIELD_PREP(MT_TXD0_P_IDX, MT_TX_PORT_IDX_LMAC) |
768 	      FIELD_PREP(MT_TXD0_Q_IDX, q_idx);
769 	txwi[0] = cpu_to_le32(val);
770 
771 	val = MT_TXD1_LONG_FORMAT |
772 	      FIELD_PREP(MT_TXD1_WLAN_IDX, wcid->idx) |
773 	      FIELD_PREP(MT_TXD1_HDR_FORMAT, MT_HDR_FORMAT_802_11) |
774 	      FIELD_PREP(MT_TXD1_HDR_INFO,
775 			 ieee80211_get_hdrlen_from_skb(skb) / 2) |
776 	      FIELD_PREP(MT_TXD1_TID,
777 			 skb->priority & IEEE80211_QOS_CTL_TID_MASK) |
778 	      FIELD_PREP(MT_TXD1_PKT_FMT, p_fmt) |
779 	      FIELD_PREP(MT_TXD1_OWN_MAC, omac_idx);
780 	txwi[1] = cpu_to_le32(val);
781 
782 	val = FIELD_PREP(MT_TXD2_FRAME_TYPE, fc_type) |
783 	      FIELD_PREP(MT_TXD2_SUB_TYPE, fc_stype) |
784 	      FIELD_PREP(MT_TXD2_MULTICAST, multicast);
785 	if (key) {
786 		if (multicast && ieee80211_is_robust_mgmt_frame(skb) &&
787 		    key->cipher == WLAN_CIPHER_SUITE_AES_CMAC) {
788 			val |= MT_TXD2_BIP;
789 			txwi[3] = 0;
790 		} else {
791 			txwi[3] = cpu_to_le32(MT_TXD3_PROTECT_FRAME);
792 		}
793 	} else {
794 		txwi[3] = 0;
795 	}
796 	txwi[2] = cpu_to_le32(val);
797 
798 	if (!(info->flags & IEEE80211_TX_CTL_AMPDU))
799 		txwi[2] |= cpu_to_le32(MT_TXD2_BA_DISABLE);
800 
801 	txwi[4] = 0;
802 	txwi[6] = 0;
803 
804 	if (rate->idx >= 0 && rate->count &&
805 	    !(info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE)) {
806 		bool stbc = info->flags & IEEE80211_TX_CTL_STBC;
807 		u8 bw;
808 		u16 rateval = mt7615_mac_tx_rate_val(dev, mphy, rate, stbc,
809 						     &bw);
810 
811 		txwi[2] |= cpu_to_le32(MT_TXD2_FIX_RATE);
812 
813 		val = MT_TXD6_FIXED_BW |
814 		      FIELD_PREP(MT_TXD6_BW, bw) |
815 		      FIELD_PREP(MT_TXD6_TX_RATE, rateval);
816 		txwi[6] |= cpu_to_le32(val);
817 
818 		if (rate->flags & IEEE80211_TX_RC_SHORT_GI)
819 			txwi[6] |= cpu_to_le32(MT_TXD6_SGI);
820 
821 		if (info->flags & IEEE80211_TX_CTL_LDPC)
822 			txwi[6] |= cpu_to_le32(MT_TXD6_LDPC);
823 
824 		if (!(rate->flags & (IEEE80211_TX_RC_MCS |
825 				     IEEE80211_TX_RC_VHT_MCS)))
826 			txwi[2] |= cpu_to_le32(MT_TXD2_BA_DISABLE);
827 
828 		tx_count = rate->count;
829 	}
830 
831 	if (!ieee80211_is_beacon(fc)) {
832 		struct ieee80211_hw *hw = mt76_hw(dev);
833 
834 		val = MT_TXD5_TX_STATUS_HOST | FIELD_PREP(MT_TXD5_PID, pid);
835 		if (!ieee80211_hw_check(hw, SUPPORTS_PS))
836 			val |= MT_TXD5_SW_POWER_MGMT;
837 		txwi[5] = cpu_to_le32(val);
838 	} else {
839 		txwi[5] = 0;
840 		/* use maximum tx count for beacons */
841 		tx_count = 0x1f;
842 	}
843 
844 	val = FIELD_PREP(MT_TXD3_REM_TX_COUNT, tx_count);
845 	if (info->flags & IEEE80211_TX_CTL_INJECTED) {
846 		seqno = le16_to_cpu(hdr->seq_ctrl);
847 
848 		if (ieee80211_is_back_req(hdr->frame_control)) {
849 			struct ieee80211_bar *bar;
850 
851 			bar = (struct ieee80211_bar *)skb->data;
852 			seqno = le16_to_cpu(bar->start_seq_num);
853 		}
854 
855 		val |= MT_TXD3_SN_VALID |
856 		       FIELD_PREP(MT_TXD3_SEQ, IEEE80211_SEQ_TO_SN(seqno));
857 	}
858 
859 	txwi[3] |= cpu_to_le32(val);
860 
861 	if (info->flags & IEEE80211_TX_CTL_NO_ACK)
862 		txwi[3] |= cpu_to_le32(MT_TXD3_NO_ACK);
863 
864 	val = FIELD_PREP(MT_TXD7_TYPE, fc_type) |
865 	      FIELD_PREP(MT_TXD7_SUB_TYPE, fc_stype) |
866 	      FIELD_PREP(MT_TXD7_SPE_IDX, 0x18);
867 	txwi[7] = cpu_to_le32(val);
868 	if (!is_mmio) {
869 		val = FIELD_PREP(MT_TXD8_L_TYPE, fc_type) |
870 		      FIELD_PREP(MT_TXD8_L_SUB_TYPE, fc_stype);
871 		txwi[8] = cpu_to_le32(val);
872 	}
873 
874 	return 0;
875 }
876 EXPORT_SYMBOL_GPL(mt7615_mac_write_txwi);
877 
878 bool mt7615_mac_wtbl_update(struct mt7615_dev *dev, int idx, u32 mask)
879 {
880 	mt76_rmw(dev, MT_WTBL_UPDATE, MT_WTBL_UPDATE_WLAN_IDX,
881 		 FIELD_PREP(MT_WTBL_UPDATE_WLAN_IDX, idx) | mask);
882 
883 	return mt76_poll(dev, MT_WTBL_UPDATE, MT_WTBL_UPDATE_BUSY,
884 			 0, 5000);
885 }
886 
887 void mt7615_mac_sta_poll(struct mt7615_dev *dev)
888 {
889 	static const u8 ac_to_tid[4] = {
890 		[IEEE80211_AC_BE] = 0,
891 		[IEEE80211_AC_BK] = 1,
892 		[IEEE80211_AC_VI] = 4,
893 		[IEEE80211_AC_VO] = 6
894 	};
895 	static const u8 hw_queue_map[] = {
896 		[IEEE80211_AC_BK] = 0,
897 		[IEEE80211_AC_BE] = 1,
898 		[IEEE80211_AC_VI] = 2,
899 		[IEEE80211_AC_VO] = 3,
900 	};
901 	struct ieee80211_sta *sta;
902 	struct mt7615_sta *msta;
903 	u32 addr, tx_time[4], rx_time[4];
904 	struct list_head sta_poll_list;
905 	int i;
906 
907 	INIT_LIST_HEAD(&sta_poll_list);
908 	spin_lock_bh(&dev->sta_poll_lock);
909 	list_splice_init(&dev->sta_poll_list, &sta_poll_list);
910 	spin_unlock_bh(&dev->sta_poll_lock);
911 
912 	while (!list_empty(&sta_poll_list)) {
913 		bool clear = false;
914 
915 		msta = list_first_entry(&sta_poll_list, struct mt7615_sta,
916 					poll_list);
917 
918 		spin_lock_bh(&dev->sta_poll_lock);
919 		list_del_init(&msta->poll_list);
920 		spin_unlock_bh(&dev->sta_poll_lock);
921 
922 		addr = mt7615_mac_wtbl_addr(dev, msta->wcid.idx) + 19 * 4;
923 
924 		for (i = 0; i < 4; i++, addr += 8) {
925 			u32 tx_last = msta->airtime_ac[i];
926 			u32 rx_last = msta->airtime_ac[i + 4];
927 
928 			msta->airtime_ac[i] = mt76_rr(dev, addr);
929 			msta->airtime_ac[i + 4] = mt76_rr(dev, addr + 4);
930 			tx_time[i] = msta->airtime_ac[i] - tx_last;
931 			rx_time[i] = msta->airtime_ac[i + 4] - rx_last;
932 
933 			if ((tx_last | rx_last) & BIT(30))
934 				clear = true;
935 		}
936 
937 		if (clear) {
938 			mt7615_mac_wtbl_update(dev, msta->wcid.idx,
939 					       MT_WTBL_UPDATE_ADM_COUNT_CLEAR);
940 			memset(msta->airtime_ac, 0, sizeof(msta->airtime_ac));
941 		}
942 
943 		if (!msta->wcid.sta)
944 			continue;
945 
946 		sta = container_of((void *)msta, struct ieee80211_sta,
947 				   drv_priv);
948 		for (i = 0; i < 4; i++) {
949 			u32 tx_cur = tx_time[i];
950 			u32 rx_cur = rx_time[hw_queue_map[i]];
951 			u8 tid = ac_to_tid[i];
952 
953 			if (!tx_cur && !rx_cur)
954 				continue;
955 
956 			ieee80211_sta_register_airtime(sta, tid, tx_cur,
957 						       rx_cur);
958 		}
959 	}
960 }
961 EXPORT_SYMBOL_GPL(mt7615_mac_sta_poll);
962 
963 static void
964 mt7615_mac_update_rate_desc(struct mt7615_phy *phy, struct mt7615_sta *sta,
965 			    struct ieee80211_tx_rate *probe_rate,
966 			    struct ieee80211_tx_rate *rates,
967 			    struct mt7615_rate_desc *rd)
968 {
969 	struct mt7615_dev *dev = phy->dev;
970 	struct mt76_phy *mphy = phy->mt76;
971 	struct ieee80211_tx_rate *ref;
972 	bool rateset, stbc = false;
973 	int n_rates = sta->n_rates;
974 	u8 bw, bw_prev;
975 	int i, j;
976 
977 	for (i = n_rates; i < 4; i++)
978 		rates[i] = rates[n_rates - 1];
979 
980 	rateset = !(sta->rate_set_tsf & BIT(0));
981 	memcpy(sta->rateset[rateset].rates, rates,
982 	       sizeof(sta->rateset[rateset].rates));
983 	if (probe_rate) {
984 		sta->rateset[rateset].probe_rate = *probe_rate;
985 		ref = &sta->rateset[rateset].probe_rate;
986 	} else {
987 		sta->rateset[rateset].probe_rate.idx = -1;
988 		ref = &sta->rateset[rateset].rates[0];
989 	}
990 
991 	rates = sta->rateset[rateset].rates;
992 	for (i = 0; i < ARRAY_SIZE(sta->rateset[rateset].rates); i++) {
993 		/*
994 		 * We don't support switching between short and long GI
995 		 * within the rate set. For accurate tx status reporting, we
996 		 * need to make sure that flags match.
997 		 * For improved performance, avoid duplicate entries by
998 		 * decrementing the MCS index if necessary
999 		 */
1000 		if ((ref->flags ^ rates[i].flags) & IEEE80211_TX_RC_SHORT_GI)
1001 			rates[i].flags ^= IEEE80211_TX_RC_SHORT_GI;
1002 
1003 		for (j = 0; j < i; j++) {
1004 			if (rates[i].idx != rates[j].idx)
1005 				continue;
1006 			if ((rates[i].flags ^ rates[j].flags) &
1007 			    (IEEE80211_TX_RC_40_MHZ_WIDTH |
1008 			     IEEE80211_TX_RC_80_MHZ_WIDTH |
1009 			     IEEE80211_TX_RC_160_MHZ_WIDTH))
1010 				continue;
1011 
1012 			if (!rates[i].idx)
1013 				continue;
1014 
1015 			rates[i].idx--;
1016 		}
1017 	}
1018 
1019 	rd->val[0] = mt7615_mac_tx_rate_val(dev, mphy, &rates[0], stbc, &bw);
1020 	bw_prev = bw;
1021 
1022 	if (probe_rate) {
1023 		rd->probe_val = mt7615_mac_tx_rate_val(dev, mphy, probe_rate,
1024 						       stbc, &bw);
1025 		if (bw)
1026 			rd->bw_idx = 1;
1027 		else
1028 			bw_prev = 0;
1029 	} else {
1030 		rd->probe_val = rd->val[0];
1031 	}
1032 
1033 	rd->val[1] = mt7615_mac_tx_rate_val(dev, mphy, &rates[1], stbc, &bw);
1034 	if (bw_prev) {
1035 		rd->bw_idx = 3;
1036 		bw_prev = bw;
1037 	}
1038 
1039 	rd->val[2] = mt7615_mac_tx_rate_val(dev, mphy, &rates[2], stbc, &bw);
1040 	if (bw_prev) {
1041 		rd->bw_idx = 5;
1042 		bw_prev = bw;
1043 	}
1044 
1045 	rd->val[3] = mt7615_mac_tx_rate_val(dev, mphy, &rates[3], stbc, &bw);
1046 	if (bw_prev)
1047 		rd->bw_idx = 7;
1048 
1049 	rd->rateset = rateset;
1050 	rd->bw = bw;
1051 }
1052 
1053 static int
1054 mt7615_mac_queue_rate_update(struct mt7615_phy *phy, struct mt7615_sta *sta,
1055 			     struct ieee80211_tx_rate *probe_rate,
1056 			     struct ieee80211_tx_rate *rates)
1057 {
1058 	struct mt7615_dev *dev = phy->dev;
1059 	struct mt7615_wtbl_rate_desc *wrd;
1060 
1061 	if (work_pending(&dev->rate_work))
1062 		return -EBUSY;
1063 
1064 	wrd = kzalloc(sizeof(*wrd), GFP_ATOMIC);
1065 	if (!wrd)
1066 		return -ENOMEM;
1067 
1068 	wrd->sta = sta;
1069 	mt7615_mac_update_rate_desc(phy, sta, probe_rate, rates,
1070 				    &wrd->rate);
1071 	list_add_tail(&wrd->node, &dev->wrd_head);
1072 	queue_work(dev->mt76.wq, &dev->rate_work);
1073 
1074 	return 0;
1075 }
1076 
1077 u32 mt7615_mac_get_sta_tid_sn(struct mt7615_dev *dev, int wcid, u8 tid)
1078 {
1079 	u32 addr, val, val2;
1080 	u8 offset;
1081 
1082 	addr = mt7615_mac_wtbl_addr(dev, wcid) + 11 * 4;
1083 
1084 	offset = tid * 12;
1085 	addr += 4 * (offset / 32);
1086 	offset %= 32;
1087 
1088 	val = mt76_rr(dev, addr);
1089 	val >>= offset;
1090 
1091 	if (offset > 20) {
1092 		addr += 4;
1093 		val2 = mt76_rr(dev, addr);
1094 		val |= val2 << (32 - offset);
1095 	}
1096 
1097 	return val & GENMASK(11, 0);
1098 }
1099 
1100 void mt7615_mac_set_rates(struct mt7615_phy *phy, struct mt7615_sta *sta,
1101 			  struct ieee80211_tx_rate *probe_rate,
1102 			  struct ieee80211_tx_rate *rates)
1103 {
1104 	int wcid = sta->wcid.idx, n_rates = sta->n_rates;
1105 	struct mt7615_dev *dev = phy->dev;
1106 	struct mt7615_rate_desc rd;
1107 	u32 w5, w27, addr;
1108 	u16 idx = sta->vif->mt76.omac_idx;
1109 
1110 	if (!mt76_is_mmio(&dev->mt76)) {
1111 		mt7615_mac_queue_rate_update(phy, sta, probe_rate, rates);
1112 		return;
1113 	}
1114 
1115 	if (!mt76_poll(dev, MT_WTBL_UPDATE, MT_WTBL_UPDATE_BUSY, 0, 5000))
1116 		return;
1117 
1118 	memset(&rd, 0, sizeof(struct mt7615_rate_desc));
1119 	mt7615_mac_update_rate_desc(phy, sta, probe_rate, rates, &rd);
1120 
1121 	addr = mt7615_mac_wtbl_addr(dev, wcid);
1122 	w27 = mt76_rr(dev, addr + 27 * 4);
1123 	w27 &= ~MT_WTBL_W27_CC_BW_SEL;
1124 	w27 |= FIELD_PREP(MT_WTBL_W27_CC_BW_SEL, rd.bw);
1125 
1126 	w5 = mt76_rr(dev, addr + 5 * 4);
1127 	w5 &= ~(MT_WTBL_W5_BW_CAP | MT_WTBL_W5_CHANGE_BW_RATE |
1128 		MT_WTBL_W5_MPDU_OK_COUNT |
1129 		MT_WTBL_W5_MPDU_FAIL_COUNT |
1130 		MT_WTBL_W5_RATE_IDX);
1131 	w5 |= FIELD_PREP(MT_WTBL_W5_BW_CAP, rd.bw) |
1132 	      FIELD_PREP(MT_WTBL_W5_CHANGE_BW_RATE,
1133 			 rd.bw_idx ? rd.bw_idx - 1 : 7);
1134 
1135 	mt76_wr(dev, MT_WTBL_RIUCR0, w5);
1136 
1137 	mt76_wr(dev, MT_WTBL_RIUCR1,
1138 		FIELD_PREP(MT_WTBL_RIUCR1_RATE0, rd.probe_val) |
1139 		FIELD_PREP(MT_WTBL_RIUCR1_RATE1, rd.val[0]) |
1140 		FIELD_PREP(MT_WTBL_RIUCR1_RATE2_LO, rd.val[1]));
1141 
1142 	mt76_wr(dev, MT_WTBL_RIUCR2,
1143 		FIELD_PREP(MT_WTBL_RIUCR2_RATE2_HI, rd.val[1] >> 8) |
1144 		FIELD_PREP(MT_WTBL_RIUCR2_RATE3, rd.val[1]) |
1145 		FIELD_PREP(MT_WTBL_RIUCR2_RATE4, rd.val[2]) |
1146 		FIELD_PREP(MT_WTBL_RIUCR2_RATE5_LO, rd.val[2]));
1147 
1148 	mt76_wr(dev, MT_WTBL_RIUCR3,
1149 		FIELD_PREP(MT_WTBL_RIUCR3_RATE5_HI, rd.val[2] >> 4) |
1150 		FIELD_PREP(MT_WTBL_RIUCR3_RATE6, rd.val[3]) |
1151 		FIELD_PREP(MT_WTBL_RIUCR3_RATE7, rd.val[3]));
1152 
1153 	mt76_wr(dev, MT_WTBL_UPDATE,
1154 		FIELD_PREP(MT_WTBL_UPDATE_WLAN_IDX, wcid) |
1155 		MT_WTBL_UPDATE_RATE_UPDATE |
1156 		MT_WTBL_UPDATE_TX_COUNT_CLEAR);
1157 
1158 	mt76_wr(dev, addr + 27 * 4, w27);
1159 
1160 	idx = idx > HW_BSSID_MAX ? HW_BSSID_0 : idx;
1161 	addr = idx > 1 ? MT_LPON_TCR2(idx): MT_LPON_TCR0(idx);
1162 
1163 	mt76_rmw(dev, addr, MT_LPON_TCR_MODE, MT_LPON_TCR_READ); /* TSF read */
1164 	sta->rate_set_tsf = mt76_rr(dev, MT_LPON_UTTR0) & ~BIT(0);
1165 	sta->rate_set_tsf |= rd.rateset;
1166 
1167 	if (!(sta->wcid.tx_info & MT_WCID_TX_INFO_SET))
1168 		mt76_poll(dev, MT_WTBL_UPDATE, MT_WTBL_UPDATE_BUSY, 0, 5000);
1169 
1170 	sta->rate_count = 2 * MT7615_RATE_RETRY * n_rates;
1171 	sta->wcid.tx_info |= MT_WCID_TX_INFO_SET;
1172 	sta->rate_probe = !!probe_rate;
1173 }
1174 EXPORT_SYMBOL_GPL(mt7615_mac_set_rates);
1175 
1176 void mt7615_mac_enable_rtscts(struct mt7615_dev *dev,
1177 			      struct ieee80211_vif *vif, bool enable)
1178 {
1179 	struct mt7615_vif *mvif = (struct mt7615_vif *)vif->drv_priv;
1180 	u32 addr;
1181 
1182 	addr = mt7615_mac_wtbl_addr(dev, mvif->sta.wcid.idx) + 3 * 4;
1183 
1184 	if (enable)
1185 		mt76_set(dev, addr, MT_WTBL_W3_RTS);
1186 	else
1187 		mt76_clear(dev, addr, MT_WTBL_W3_RTS);
1188 }
1189 EXPORT_SYMBOL_GPL(mt7615_mac_enable_rtscts);
1190 
1191 static int
1192 mt7615_mac_wtbl_update_key(struct mt7615_dev *dev, struct mt76_wcid *wcid,
1193 			   struct ieee80211_key_conf *key,
1194 			   enum mt76_cipher_type cipher, u16 cipher_mask)
1195 {
1196 	u32 addr = mt7615_mac_wtbl_addr(dev, wcid->idx) + 30 * 4;
1197 	u8 data[32] = {};
1198 
1199 	if (key->keylen > sizeof(data))
1200 		return -EINVAL;
1201 
1202 	mt76_rr_copy(dev, addr, data, sizeof(data));
1203 	if (cipher == MT_CIPHER_TKIP) {
1204 		/* Rx/Tx MIC keys are swapped */
1205 		memcpy(data, key->key, 16);
1206 		memcpy(data + 16, key->key + 24, 8);
1207 		memcpy(data + 24, key->key + 16, 8);
1208 	} else {
1209 		if (cipher_mask == BIT(cipher))
1210 			memcpy(data, key->key, key->keylen);
1211 		else if (cipher != MT_CIPHER_BIP_CMAC_128)
1212 			memcpy(data, key->key, 16);
1213 		if (cipher == MT_CIPHER_BIP_CMAC_128)
1214 			memcpy(data + 16, key->key, 16);
1215 	}
1216 
1217 	mt76_wr_copy(dev, addr, data, sizeof(data));
1218 
1219 	return 0;
1220 }
1221 
1222 static int
1223 mt7615_mac_wtbl_update_pk(struct mt7615_dev *dev, struct mt76_wcid *wcid,
1224 			  enum mt76_cipher_type cipher, u16 cipher_mask,
1225 			  int keyidx)
1226 {
1227 	u32 addr = mt7615_mac_wtbl_addr(dev, wcid->idx), w0, w1;
1228 
1229 	if (!mt76_poll(dev, MT_WTBL_UPDATE, MT_WTBL_UPDATE_BUSY, 0, 5000))
1230 		return -ETIMEDOUT;
1231 
1232 	w0 = mt76_rr(dev, addr);
1233 	w1 = mt76_rr(dev, addr + 4);
1234 
1235 	if (cipher_mask)
1236 		w0 |= MT_WTBL_W0_RX_KEY_VALID;
1237 	else
1238 		w0 &= ~(MT_WTBL_W0_RX_KEY_VALID | MT_WTBL_W0_KEY_IDX);
1239 	if (cipher_mask & BIT(MT_CIPHER_BIP_CMAC_128))
1240 		w0 |= MT_WTBL_W0_RX_IK_VALID;
1241 	else
1242 		w0 &= ~MT_WTBL_W0_RX_IK_VALID;
1243 
1244 	if (cipher != MT_CIPHER_BIP_CMAC_128 || cipher_mask == BIT(cipher)) {
1245 		w0 &= ~MT_WTBL_W0_KEY_IDX;
1246 		w0 |= FIELD_PREP(MT_WTBL_W0_KEY_IDX, keyidx);
1247 	}
1248 
1249 	mt76_wr(dev, MT_WTBL_RICR0, w0);
1250 	mt76_wr(dev, MT_WTBL_RICR1, w1);
1251 
1252 	if (!mt7615_mac_wtbl_update(dev, wcid->idx,
1253 				    MT_WTBL_UPDATE_RXINFO_UPDATE))
1254 		return -ETIMEDOUT;
1255 
1256 	return 0;
1257 }
1258 
1259 static void
1260 mt7615_mac_wtbl_update_cipher(struct mt7615_dev *dev, struct mt76_wcid *wcid,
1261 			      enum mt76_cipher_type cipher, u16 cipher_mask)
1262 {
1263 	u32 addr = mt7615_mac_wtbl_addr(dev, wcid->idx);
1264 
1265 	if (cipher == MT_CIPHER_BIP_CMAC_128 &&
1266 	    cipher_mask & ~BIT(MT_CIPHER_BIP_CMAC_128))
1267 		return;
1268 
1269 	mt76_rmw(dev, addr + 2 * 4, MT_WTBL_W2_KEY_TYPE,
1270 		 FIELD_PREP(MT_WTBL_W2_KEY_TYPE, cipher));
1271 }
1272 
1273 int __mt7615_mac_wtbl_set_key(struct mt7615_dev *dev,
1274 			      struct mt76_wcid *wcid,
1275 			      struct ieee80211_key_conf *key)
1276 {
1277 	enum mt76_cipher_type cipher;
1278 	u16 cipher_mask = wcid->cipher;
1279 	int err;
1280 
1281 	cipher = mt7615_mac_get_cipher(key->cipher);
1282 	if (cipher == MT_CIPHER_NONE)
1283 		return -EOPNOTSUPP;
1284 
1285 	cipher_mask |= BIT(cipher);
1286 	mt7615_mac_wtbl_update_cipher(dev, wcid, cipher, cipher_mask);
1287 	err = mt7615_mac_wtbl_update_key(dev, wcid, key, cipher, cipher_mask);
1288 	if (err < 0)
1289 		return err;
1290 
1291 	err = mt7615_mac_wtbl_update_pk(dev, wcid, cipher, cipher_mask,
1292 					key->keyidx);
1293 	if (err < 0)
1294 		return err;
1295 
1296 	wcid->cipher = cipher_mask;
1297 
1298 	return 0;
1299 }
1300 
1301 int mt7615_mac_wtbl_set_key(struct mt7615_dev *dev,
1302 			    struct mt76_wcid *wcid,
1303 			    struct ieee80211_key_conf *key)
1304 {
1305 	int err;
1306 
1307 	spin_lock_bh(&dev->mt76.lock);
1308 	err = __mt7615_mac_wtbl_set_key(dev, wcid, key);
1309 	spin_unlock_bh(&dev->mt76.lock);
1310 
1311 	return err;
1312 }
1313 
1314 static bool mt7615_fill_txs(struct mt7615_dev *dev, struct mt7615_sta *sta,
1315 			    struct ieee80211_tx_info *info, __le32 *txs_data)
1316 {
1317 	struct ieee80211_supported_band *sband;
1318 	struct mt7615_rate_set *rs;
1319 	struct mt76_phy *mphy;
1320 	int first_idx = 0, last_idx;
1321 	int i, idx, count;
1322 	bool fixed_rate, ack_timeout;
1323 	bool ampdu, cck = false;
1324 	bool rs_idx;
1325 	u32 rate_set_tsf;
1326 	u32 final_rate, final_rate_flags, final_nss, txs;
1327 
1328 	txs = le32_to_cpu(txs_data[1]);
1329 	ampdu = txs & MT_TXS1_AMPDU;
1330 
1331 	txs = le32_to_cpu(txs_data[3]);
1332 	count = FIELD_GET(MT_TXS3_TX_COUNT, txs);
1333 	last_idx = FIELD_GET(MT_TXS3_LAST_TX_RATE, txs);
1334 
1335 	txs = le32_to_cpu(txs_data[0]);
1336 	fixed_rate = txs & MT_TXS0_FIXED_RATE;
1337 	final_rate = FIELD_GET(MT_TXS0_TX_RATE, txs);
1338 	ack_timeout = txs & MT_TXS0_ACK_TIMEOUT;
1339 
1340 	if (!ampdu && (txs & MT_TXS0_RTS_TIMEOUT))
1341 		return false;
1342 
1343 	if (txs & MT_TXS0_QUEUE_TIMEOUT)
1344 		return false;
1345 
1346 	if (!ack_timeout)
1347 		info->flags |= IEEE80211_TX_STAT_ACK;
1348 
1349 	info->status.ampdu_len = 1;
1350 	info->status.ampdu_ack_len = !!(info->flags &
1351 					IEEE80211_TX_STAT_ACK);
1352 
1353 	if (ampdu || (info->flags & IEEE80211_TX_CTL_AMPDU))
1354 		info->flags |= IEEE80211_TX_STAT_AMPDU | IEEE80211_TX_CTL_AMPDU;
1355 
1356 	first_idx = max_t(int, 0, last_idx - (count - 1) / MT7615_RATE_RETRY);
1357 
1358 	if (fixed_rate) {
1359 		info->status.rates[0].count = count;
1360 		i = 0;
1361 		goto out;
1362 	}
1363 
1364 	rate_set_tsf = READ_ONCE(sta->rate_set_tsf);
1365 	rs_idx = !((u32)(le32_get_bits(txs_data[4], MT_TXS4_F0_TIMESTAMP) -
1366 			 rate_set_tsf) < 1000000);
1367 	rs_idx ^= rate_set_tsf & BIT(0);
1368 	rs = &sta->rateset[rs_idx];
1369 
1370 	if (!first_idx && rs->probe_rate.idx >= 0) {
1371 		info->status.rates[0] = rs->probe_rate;
1372 
1373 		spin_lock_bh(&dev->mt76.lock);
1374 		if (sta->rate_probe) {
1375 			struct mt7615_phy *phy = &dev->phy;
1376 
1377 			if (sta->wcid.phy_idx && dev->mt76.phys[MT_BAND1])
1378 				phy = dev->mt76.phys[MT_BAND1]->priv;
1379 
1380 			mt7615_mac_set_rates(phy, sta, NULL, sta->rates);
1381 		}
1382 		spin_unlock_bh(&dev->mt76.lock);
1383 	} else {
1384 		info->status.rates[0] = rs->rates[first_idx / 2];
1385 	}
1386 	info->status.rates[0].count = 0;
1387 
1388 	for (i = 0, idx = first_idx; count && idx <= last_idx; idx++) {
1389 		struct ieee80211_tx_rate *cur_rate;
1390 		int cur_count;
1391 
1392 		cur_rate = &rs->rates[idx / 2];
1393 		cur_count = min_t(int, MT7615_RATE_RETRY, count);
1394 		count -= cur_count;
1395 
1396 		if (idx && (cur_rate->idx != info->status.rates[i].idx ||
1397 			    cur_rate->flags != info->status.rates[i].flags)) {
1398 			i++;
1399 			if (i == ARRAY_SIZE(info->status.rates)) {
1400 				i--;
1401 				break;
1402 			}
1403 
1404 			info->status.rates[i] = *cur_rate;
1405 			info->status.rates[i].count = 0;
1406 		}
1407 
1408 		info->status.rates[i].count += cur_count;
1409 	}
1410 
1411 out:
1412 	final_rate_flags = info->status.rates[i].flags;
1413 
1414 	switch (FIELD_GET(MT_TX_RATE_MODE, final_rate)) {
1415 	case MT_PHY_TYPE_CCK:
1416 		cck = true;
1417 		fallthrough;
1418 	case MT_PHY_TYPE_OFDM:
1419 		mphy = &dev->mphy;
1420 		if (sta->wcid.phy_idx && dev->mt76.phys[MT_BAND1])
1421 			mphy = dev->mt76.phys[MT_BAND1];
1422 
1423 		if (mphy->chandef.chan->band == NL80211_BAND_5GHZ)
1424 			sband = &mphy->sband_5g.sband;
1425 		else
1426 			sband = &mphy->sband_2g.sband;
1427 		final_rate &= MT_TX_RATE_IDX;
1428 		final_rate = mt76_get_rate(&dev->mt76, sband, final_rate,
1429 					   cck);
1430 		final_rate_flags = 0;
1431 		break;
1432 	case MT_PHY_TYPE_HT_GF:
1433 	case MT_PHY_TYPE_HT:
1434 		final_rate_flags |= IEEE80211_TX_RC_MCS;
1435 		final_rate &= MT_TX_RATE_IDX;
1436 		if (final_rate > 31)
1437 			return false;
1438 		break;
1439 	case MT_PHY_TYPE_VHT:
1440 		final_nss = FIELD_GET(MT_TX_RATE_NSS, final_rate);
1441 
1442 		if ((final_rate & MT_TX_RATE_STBC) && final_nss)
1443 			final_nss--;
1444 
1445 		final_rate_flags |= IEEE80211_TX_RC_VHT_MCS;
1446 		final_rate = (final_rate & MT_TX_RATE_IDX) | (final_nss << 4);
1447 		break;
1448 	default:
1449 		return false;
1450 	}
1451 
1452 	info->status.rates[i].idx = final_rate;
1453 	info->status.rates[i].flags = final_rate_flags;
1454 
1455 	return true;
1456 }
1457 
1458 static bool mt7615_mac_add_txs_skb(struct mt7615_dev *dev,
1459 				   struct mt7615_sta *sta, int pid,
1460 				   __le32 *txs_data)
1461 {
1462 	struct mt76_dev *mdev = &dev->mt76;
1463 	struct sk_buff_head list;
1464 	struct sk_buff *skb;
1465 
1466 	if (pid < MT_PACKET_ID_FIRST)
1467 		return false;
1468 
1469 	trace_mac_txdone(mdev, sta->wcid.idx, pid);
1470 
1471 	mt76_tx_status_lock(mdev, &list);
1472 	skb = mt76_tx_status_skb_get(mdev, &sta->wcid, pid, &list);
1473 	if (skb) {
1474 		struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1475 
1476 		if (!mt7615_fill_txs(dev, sta, info, txs_data)) {
1477 			info->status.rates[0].count = 0;
1478 			info->status.rates[0].idx = -1;
1479 		}
1480 
1481 		mt76_tx_status_skb_done(mdev, skb, &list);
1482 	}
1483 	mt76_tx_status_unlock(mdev, &list);
1484 
1485 	return !!skb;
1486 }
1487 
1488 static void mt7615_mac_add_txs(struct mt7615_dev *dev, void *data)
1489 {
1490 	struct ieee80211_tx_info info = {};
1491 	struct ieee80211_sta *sta = NULL;
1492 	struct mt7615_sta *msta = NULL;
1493 	struct mt76_wcid *wcid;
1494 	struct mt76_phy *mphy = &dev->mt76.phy;
1495 	__le32 *txs_data = data;
1496 	u8 wcidx;
1497 	u8 pid;
1498 
1499 	pid = le32_get_bits(txs_data[0], MT_TXS0_PID);
1500 	wcidx = le32_get_bits(txs_data[2], MT_TXS2_WCID);
1501 
1502 	if (pid == MT_PACKET_ID_NO_ACK)
1503 		return;
1504 
1505 	if (wcidx >= MT7615_WTBL_SIZE)
1506 		return;
1507 
1508 	rcu_read_lock();
1509 
1510 	wcid = rcu_dereference(dev->mt76.wcid[wcidx]);
1511 	if (!wcid)
1512 		goto out;
1513 
1514 	msta = container_of(wcid, struct mt7615_sta, wcid);
1515 	sta = wcid_to_sta(wcid);
1516 
1517 	spin_lock_bh(&dev->sta_poll_lock);
1518 	if (list_empty(&msta->poll_list))
1519 		list_add_tail(&msta->poll_list, &dev->sta_poll_list);
1520 	spin_unlock_bh(&dev->sta_poll_lock);
1521 
1522 	if (mt7615_mac_add_txs_skb(dev, msta, pid, txs_data))
1523 		goto out;
1524 
1525 	if (wcidx >= MT7615_WTBL_STA || !sta)
1526 		goto out;
1527 
1528 	if (wcid->phy_idx && dev->mt76.phys[MT_BAND1])
1529 		mphy = dev->mt76.phys[MT_BAND1];
1530 
1531 	if (mt7615_fill_txs(dev, msta, &info, txs_data)) {
1532 		spin_lock_bh(&dev->mt76.rx_lock);
1533 		ieee80211_tx_status_noskb(mphy->hw, sta, &info);
1534 		spin_unlock_bh(&dev->mt76.rx_lock);
1535 	}
1536 
1537 out:
1538 	rcu_read_unlock();
1539 }
1540 
1541 static void
1542 mt7615_txwi_free(struct mt7615_dev *dev, struct mt76_txwi_cache *txwi)
1543 {
1544 	struct mt76_dev *mdev = &dev->mt76;
1545 	__le32 *txwi_data;
1546 	u32 val;
1547 	u8 wcid;
1548 
1549 	mt76_connac_txp_skb_unmap(mdev, txwi);
1550 	if (!txwi->skb)
1551 		goto out;
1552 
1553 	txwi_data = (__le32 *)mt76_get_txwi_ptr(mdev, txwi);
1554 	val = le32_to_cpu(txwi_data[1]);
1555 	wcid = FIELD_GET(MT_TXD1_WLAN_IDX, val);
1556 	mt76_tx_complete_skb(mdev, wcid, txwi->skb);
1557 
1558 out:
1559 	txwi->skb = NULL;
1560 	mt76_put_txwi(mdev, txwi);
1561 }
1562 
1563 static void
1564 mt7615_mac_tx_free_token(struct mt7615_dev *dev, u16 token)
1565 {
1566 	struct mt76_dev *mdev = &dev->mt76;
1567 	struct mt76_txwi_cache *txwi;
1568 
1569 	trace_mac_tx_free(dev, token);
1570 	txwi = mt76_token_put(mdev, token);
1571 	if (!txwi)
1572 		return;
1573 
1574 	mt7615_txwi_free(dev, txwi);
1575 }
1576 
1577 static void mt7615_mac_tx_free(struct mt7615_dev *dev, void *data, int len)
1578 {
1579 	struct mt76_connac_tx_free *free = data;
1580 	void *tx_token = data + sizeof(*free);
1581 	void *end = data + len;
1582 	u8 i, count;
1583 
1584 	mt76_queue_tx_cleanup(dev, dev->mphy.q_tx[MT_TXQ_PSD], false);
1585 	if (is_mt7615(&dev->mt76)) {
1586 		mt76_queue_tx_cleanup(dev, dev->mphy.q_tx[MT_TXQ_BE], false);
1587 	} else {
1588 		for (i = 0; i < IEEE80211_NUM_ACS; i++)
1589 			mt76_queue_tx_cleanup(dev, dev->mphy.q_tx[i], false);
1590 	}
1591 
1592 	count = le16_get_bits(free->ctrl, MT_TX_FREE_MSDU_ID_CNT);
1593 	if (is_mt7615(&dev->mt76)) {
1594 		__le16 *token = tx_token;
1595 
1596 		if (WARN_ON_ONCE((void *)&token[count] > end))
1597 			return;
1598 
1599 		for (i = 0; i < count; i++)
1600 			mt7615_mac_tx_free_token(dev, le16_to_cpu(token[i]));
1601 	} else {
1602 		__le32 *token = tx_token;
1603 
1604 		if (WARN_ON_ONCE((void *)&token[count] > end))
1605 			return;
1606 
1607 		for (i = 0; i < count; i++)
1608 			mt7615_mac_tx_free_token(dev, le32_to_cpu(token[i]));
1609 	}
1610 
1611 	rcu_read_lock();
1612 	mt7615_mac_sta_poll(dev);
1613 	rcu_read_unlock();
1614 
1615 	mt76_worker_schedule(&dev->mt76.tx_worker);
1616 }
1617 
1618 bool mt7615_rx_check(struct mt76_dev *mdev, void *data, int len)
1619 {
1620 	struct mt7615_dev *dev = container_of(mdev, struct mt7615_dev, mt76);
1621 	__le32 *rxd = (__le32 *)data;
1622 	__le32 *end = (__le32 *)&rxd[len / 4];
1623 	enum rx_pkt_type type;
1624 
1625 	type = le32_get_bits(rxd[0], MT_RXD0_PKT_TYPE);
1626 
1627 	switch (type) {
1628 	case PKT_TYPE_TXRX_NOTIFY:
1629 		mt7615_mac_tx_free(dev, data, len);
1630 		return false;
1631 	case PKT_TYPE_TXS:
1632 		for (rxd++; rxd + 7 <= end; rxd += 7)
1633 			mt7615_mac_add_txs(dev, rxd);
1634 		return false;
1635 	default:
1636 		return true;
1637 	}
1638 }
1639 EXPORT_SYMBOL_GPL(mt7615_rx_check);
1640 
1641 void mt7615_queue_rx_skb(struct mt76_dev *mdev, enum mt76_rxq_id q,
1642 			 struct sk_buff *skb, u32 *info)
1643 {
1644 	struct mt7615_dev *dev = container_of(mdev, struct mt7615_dev, mt76);
1645 	__le32 *rxd = (__le32 *)skb->data;
1646 	__le32 *end = (__le32 *)&skb->data[skb->len];
1647 	enum rx_pkt_type type;
1648 	u16 flag;
1649 
1650 	type = le32_get_bits(rxd[0], MT_RXD0_PKT_TYPE);
1651 	flag = le32_get_bits(rxd[0], MT_RXD0_PKT_FLAG);
1652 	if (type == PKT_TYPE_RX_EVENT && flag == 0x1)
1653 		type = PKT_TYPE_NORMAL_MCU;
1654 
1655 	switch (type) {
1656 	case PKT_TYPE_TXS:
1657 		for (rxd++; rxd + 7 <= end; rxd += 7)
1658 			mt7615_mac_add_txs(dev, rxd);
1659 		dev_kfree_skb(skb);
1660 		break;
1661 	case PKT_TYPE_TXRX_NOTIFY:
1662 		mt7615_mac_tx_free(dev, skb->data, skb->len);
1663 		dev_kfree_skb(skb);
1664 		break;
1665 	case PKT_TYPE_RX_EVENT:
1666 		mt7615_mcu_rx_event(dev, skb);
1667 		break;
1668 	case PKT_TYPE_NORMAL_MCU:
1669 	case PKT_TYPE_NORMAL:
1670 		if (!mt7615_mac_fill_rx(dev, skb)) {
1671 			mt76_rx(&dev->mt76, q, skb);
1672 			return;
1673 		}
1674 		fallthrough;
1675 	default:
1676 		dev_kfree_skb(skb);
1677 		break;
1678 	}
1679 }
1680 EXPORT_SYMBOL_GPL(mt7615_queue_rx_skb);
1681 
1682 static void
1683 mt7615_mac_set_sensitivity(struct mt7615_phy *phy, int val, bool ofdm)
1684 {
1685 	struct mt7615_dev *dev = phy->dev;
1686 	bool ext_phy = phy != &dev->phy;
1687 
1688 	if (is_mt7663(&dev->mt76)) {
1689 		if (ofdm)
1690 			mt76_rmw(dev, MT7663_WF_PHY_MIN_PRI_PWR(ext_phy),
1691 				 MT_WF_PHY_PD_OFDM_MASK(0),
1692 				 MT_WF_PHY_PD_OFDM(0, val));
1693 		else
1694 			mt76_rmw(dev, MT7663_WF_PHY_RXTD_CCK_PD(ext_phy),
1695 				 MT_WF_PHY_PD_CCK_MASK(ext_phy),
1696 				 MT_WF_PHY_PD_CCK(ext_phy, val));
1697 		return;
1698 	}
1699 
1700 	if (ofdm)
1701 		mt76_rmw(dev, MT_WF_PHY_MIN_PRI_PWR(ext_phy),
1702 			 MT_WF_PHY_PD_OFDM_MASK(ext_phy),
1703 			 MT_WF_PHY_PD_OFDM(ext_phy, val));
1704 	else
1705 		mt76_rmw(dev, MT_WF_PHY_RXTD_CCK_PD(ext_phy),
1706 			 MT_WF_PHY_PD_CCK_MASK(ext_phy),
1707 			 MT_WF_PHY_PD_CCK(ext_phy, val));
1708 }
1709 
1710 static void
1711 mt7615_mac_set_default_sensitivity(struct mt7615_phy *phy)
1712 {
1713 	/* ofdm */
1714 	mt7615_mac_set_sensitivity(phy, 0x13c, true);
1715 	/* cck */
1716 	mt7615_mac_set_sensitivity(phy, 0x92, false);
1717 
1718 	phy->ofdm_sensitivity = -98;
1719 	phy->cck_sensitivity = -110;
1720 	phy->last_cca_adj = jiffies;
1721 }
1722 
1723 void mt7615_mac_set_scs(struct mt7615_phy *phy, bool enable)
1724 {
1725 	struct mt7615_dev *dev = phy->dev;
1726 	bool ext_phy = phy != &dev->phy;
1727 	u32 reg, mask;
1728 
1729 	mt7615_mutex_acquire(dev);
1730 
1731 	if (phy->scs_en == enable)
1732 		goto out;
1733 
1734 	if (is_mt7663(&dev->mt76)) {
1735 		reg = MT7663_WF_PHY_MIN_PRI_PWR(ext_phy);
1736 		mask = MT_WF_PHY_PD_BLK(0);
1737 	} else {
1738 		reg = MT_WF_PHY_MIN_PRI_PWR(ext_phy);
1739 		mask = MT_WF_PHY_PD_BLK(ext_phy);
1740 	}
1741 
1742 	if (enable) {
1743 		mt76_set(dev, reg, mask);
1744 		if (is_mt7622(&dev->mt76)) {
1745 			mt76_set(dev, MT_MIB_M0_MISC_CR(0), 0x7 << 8);
1746 			mt76_set(dev, MT_MIB_M0_MISC_CR(0), 0x7);
1747 		}
1748 	} else {
1749 		mt76_clear(dev, reg, mask);
1750 	}
1751 
1752 	mt7615_mac_set_default_sensitivity(phy);
1753 	phy->scs_en = enable;
1754 
1755 out:
1756 	mt7615_mutex_release(dev);
1757 }
1758 
1759 void mt7615_mac_enable_nf(struct mt7615_dev *dev, bool ext_phy)
1760 {
1761 	u32 rxtd, reg;
1762 
1763 	if (is_mt7663(&dev->mt76))
1764 		reg = MT7663_WF_PHY_R0_PHYMUX_5;
1765 	else
1766 		reg = MT_WF_PHY_R0_PHYMUX_5(ext_phy);
1767 
1768 	if (ext_phy)
1769 		rxtd = MT_WF_PHY_RXTD2(10);
1770 	else
1771 		rxtd = MT_WF_PHY_RXTD(12);
1772 
1773 	mt76_set(dev, rxtd, BIT(18) | BIT(29));
1774 	mt76_set(dev, reg, 0x5 << 12);
1775 }
1776 
1777 void mt7615_mac_cca_stats_reset(struct mt7615_phy *phy)
1778 {
1779 	struct mt7615_dev *dev = phy->dev;
1780 	bool ext_phy = phy != &dev->phy;
1781 	u32 reg;
1782 
1783 	if (is_mt7663(&dev->mt76))
1784 		reg = MT7663_WF_PHY_R0_PHYMUX_5;
1785 	else
1786 		reg = MT_WF_PHY_R0_PHYMUX_5(ext_phy);
1787 
1788 	/* reset PD and MDRDY counters */
1789 	mt76_clear(dev, reg, GENMASK(22, 20));
1790 	mt76_set(dev, reg, BIT(22) | BIT(20));
1791 }
1792 
1793 static void
1794 mt7615_mac_adjust_sensitivity(struct mt7615_phy *phy,
1795 			      u32 rts_err_rate, bool ofdm)
1796 {
1797 	struct mt7615_dev *dev = phy->dev;
1798 	int false_cca = ofdm ? phy->false_cca_ofdm : phy->false_cca_cck;
1799 	bool ext_phy = phy != &dev->phy;
1800 	s16 def_th = ofdm ? -98 : -110;
1801 	bool update = false;
1802 	s8 *sensitivity;
1803 	int signal;
1804 
1805 	sensitivity = ofdm ? &phy->ofdm_sensitivity : &phy->cck_sensitivity;
1806 	signal = mt76_get_min_avg_rssi(&dev->mt76, ext_phy);
1807 	if (!signal) {
1808 		mt7615_mac_set_default_sensitivity(phy);
1809 		return;
1810 	}
1811 
1812 	signal = min(signal, -72);
1813 	if (false_cca > 500) {
1814 		if (rts_err_rate > MT_FRAC(40, 100))
1815 			return;
1816 
1817 		/* decrease coverage */
1818 		if (*sensitivity == def_th && signal > -90) {
1819 			*sensitivity = -90;
1820 			update = true;
1821 		} else if (*sensitivity + 2 < signal) {
1822 			*sensitivity += 2;
1823 			update = true;
1824 		}
1825 	} else if ((false_cca > 0 && false_cca < 50) ||
1826 		   rts_err_rate > MT_FRAC(60, 100)) {
1827 		/* increase coverage */
1828 		if (*sensitivity - 2 >= def_th) {
1829 			*sensitivity -= 2;
1830 			update = true;
1831 		}
1832 	}
1833 
1834 	if (*sensitivity > signal) {
1835 		*sensitivity = signal;
1836 		update = true;
1837 	}
1838 
1839 	if (update) {
1840 		u16 val = ofdm ? *sensitivity * 2 + 512 : *sensitivity + 256;
1841 
1842 		mt7615_mac_set_sensitivity(phy, val, ofdm);
1843 		phy->last_cca_adj = jiffies;
1844 	}
1845 }
1846 
1847 static void
1848 mt7615_mac_scs_check(struct mt7615_phy *phy)
1849 {
1850 	struct mt7615_dev *dev = phy->dev;
1851 	struct mib_stats *mib = &phy->mib;
1852 	u32 val, rts_err_rate = 0;
1853 	u32 mdrdy_cck, mdrdy_ofdm, pd_cck, pd_ofdm;
1854 	bool ext_phy = phy != &dev->phy;
1855 
1856 	if (!phy->scs_en)
1857 		return;
1858 
1859 	if (is_mt7663(&dev->mt76))
1860 		val = mt76_rr(dev, MT7663_WF_PHY_R0_PHYCTRL_STS0(ext_phy));
1861 	else
1862 		val = mt76_rr(dev, MT_WF_PHY_R0_PHYCTRL_STS0(ext_phy));
1863 	pd_cck = FIELD_GET(MT_WF_PHYCTRL_STAT_PD_CCK, val);
1864 	pd_ofdm = FIELD_GET(MT_WF_PHYCTRL_STAT_PD_OFDM, val);
1865 
1866 	if (is_mt7663(&dev->mt76))
1867 		val = mt76_rr(dev, MT7663_WF_PHY_R0_PHYCTRL_STS5(ext_phy));
1868 	else
1869 		val = mt76_rr(dev, MT_WF_PHY_R0_PHYCTRL_STS5(ext_phy));
1870 	mdrdy_cck = FIELD_GET(MT_WF_PHYCTRL_STAT_MDRDY_CCK, val);
1871 	mdrdy_ofdm = FIELD_GET(MT_WF_PHYCTRL_STAT_MDRDY_OFDM, val);
1872 
1873 	phy->false_cca_ofdm = pd_ofdm - mdrdy_ofdm;
1874 	phy->false_cca_cck = pd_cck - mdrdy_cck;
1875 	mt7615_mac_cca_stats_reset(phy);
1876 
1877 	if (mib->rts_cnt + mib->rts_retries_cnt)
1878 		rts_err_rate = MT_FRAC(mib->rts_retries_cnt,
1879 				       mib->rts_cnt + mib->rts_retries_cnt);
1880 
1881 	/* cck */
1882 	mt7615_mac_adjust_sensitivity(phy, rts_err_rate, false);
1883 	/* ofdm */
1884 	mt7615_mac_adjust_sensitivity(phy, rts_err_rate, true);
1885 
1886 	if (time_after(jiffies, phy->last_cca_adj + 10 * HZ))
1887 		mt7615_mac_set_default_sensitivity(phy);
1888 }
1889 
1890 static u8
1891 mt7615_phy_get_nf(struct mt7615_dev *dev, int idx)
1892 {
1893 	static const u8 nf_power[] = { 92, 89, 86, 83, 80, 75, 70, 65, 60, 55, 52 };
1894 	u32 reg, val, sum = 0, n = 0;
1895 	int i;
1896 
1897 	if (is_mt7663(&dev->mt76))
1898 		reg = MT7663_WF_PHY_RXTD(20);
1899 	else
1900 		reg = idx ? MT_WF_PHY_RXTD2(17) : MT_WF_PHY_RXTD(20);
1901 
1902 	for (i = 0; i < ARRAY_SIZE(nf_power); i++, reg += 4) {
1903 		val = mt76_rr(dev, reg);
1904 		sum += val * nf_power[i];
1905 		n += val;
1906 	}
1907 
1908 	if (!n)
1909 		return 0;
1910 
1911 	return sum / n;
1912 }
1913 
1914 static void
1915 mt7615_phy_update_channel(struct mt76_phy *mphy, int idx)
1916 {
1917 	struct mt7615_dev *dev = container_of(mphy->dev, struct mt7615_dev, mt76);
1918 	struct mt7615_phy *phy = mphy->priv;
1919 	struct mt76_channel_state *state;
1920 	u64 busy_time, tx_time, rx_time, obss_time;
1921 	u32 obss_reg = idx ? MT_WF_RMAC_MIB_TIME6 : MT_WF_RMAC_MIB_TIME5;
1922 	int nf;
1923 
1924 	busy_time = mt76_get_field(dev, MT_MIB_SDR9(idx),
1925 				   MT_MIB_SDR9_BUSY_MASK);
1926 	tx_time = mt76_get_field(dev, MT_MIB_SDR36(idx),
1927 				 MT_MIB_SDR36_TXTIME_MASK);
1928 	rx_time = mt76_get_field(dev, MT_MIB_SDR37(idx),
1929 				 MT_MIB_SDR37_RXTIME_MASK);
1930 	obss_time = mt76_get_field(dev, obss_reg, MT_MIB_OBSSTIME_MASK);
1931 
1932 	nf = mt7615_phy_get_nf(dev, idx);
1933 	if (!phy->noise)
1934 		phy->noise = nf << 4;
1935 	else if (nf)
1936 		phy->noise += nf - (phy->noise >> 4);
1937 
1938 	state = mphy->chan_state;
1939 	state->cc_busy += busy_time;
1940 	state->cc_tx += tx_time;
1941 	state->cc_rx += rx_time + obss_time;
1942 	state->cc_bss_rx += rx_time;
1943 	state->noise = -(phy->noise >> 4);
1944 }
1945 
1946 static void mt7615_update_survey(struct mt7615_dev *dev)
1947 {
1948 	struct mt76_dev *mdev = &dev->mt76;
1949 	struct mt76_phy *mphy_ext = mdev->phys[MT_BAND1];
1950 	ktime_t cur_time;
1951 
1952 	/* MT7615 can only update both phys simultaneously
1953 	 * since some reisters are shared across bands.
1954 	 */
1955 
1956 	mt7615_phy_update_channel(&mdev->phy, 0);
1957 	if (mphy_ext)
1958 		mt7615_phy_update_channel(mphy_ext, 1);
1959 
1960 	cur_time = ktime_get_boottime();
1961 
1962 	mt76_update_survey_active_time(&mdev->phy, cur_time);
1963 	if (mphy_ext)
1964 		mt76_update_survey_active_time(mphy_ext, cur_time);
1965 
1966 	/* reset obss airtime */
1967 	mt76_set(dev, MT_WF_RMAC_MIB_TIME0, MT_WF_RMAC_MIB_RXTIME_CLR);
1968 }
1969 
1970 void mt7615_update_channel(struct mt76_phy *mphy)
1971 {
1972 	struct mt7615_dev *dev = container_of(mphy->dev, struct mt7615_dev, mt76);
1973 
1974 	if (mt76_connac_pm_wake(&dev->mphy, &dev->pm))
1975 		return;
1976 
1977 	mt7615_update_survey(dev);
1978 	mt76_connac_power_save_sched(&dev->mphy, &dev->pm);
1979 }
1980 EXPORT_SYMBOL_GPL(mt7615_update_channel);
1981 
1982 static void
1983 mt7615_mac_update_mib_stats(struct mt7615_phy *phy)
1984 {
1985 	struct mt7615_dev *dev = phy->dev;
1986 	struct mib_stats *mib = &phy->mib;
1987 	bool ext_phy = phy != &dev->phy;
1988 	int i, aggr = 0;
1989 	u32 val, val2;
1990 
1991 	mib->fcs_err_cnt += mt76_get_field(dev, MT_MIB_SDR3(ext_phy),
1992 					   MT_MIB_SDR3_FCS_ERR_MASK);
1993 
1994 	val = mt76_get_field(dev, MT_MIB_SDR14(ext_phy),
1995 			     MT_MIB_AMPDU_MPDU_COUNT);
1996 	if (val) {
1997 		val2 = mt76_get_field(dev, MT_MIB_SDR15(ext_phy),
1998 				      MT_MIB_AMPDU_ACK_COUNT);
1999 		mib->aggr_per = 1000 * (val - val2) / val;
2000 	}
2001 
2002 	for (i = 0; i < 4; i++) {
2003 		val = mt76_rr(dev, MT_MIB_MB_SDR1(ext_phy, i));
2004 		mib->ba_miss_cnt += FIELD_GET(MT_MIB_BA_MISS_COUNT_MASK, val);
2005 		mib->ack_fail_cnt += FIELD_GET(MT_MIB_ACK_FAIL_COUNT_MASK,
2006 					       val);
2007 
2008 		val = mt76_rr(dev, MT_MIB_MB_SDR0(ext_phy, i));
2009 		mib->rts_cnt += FIELD_GET(MT_MIB_RTS_COUNT_MASK, val);
2010 		mib->rts_retries_cnt += FIELD_GET(MT_MIB_RTS_RETRIES_COUNT_MASK,
2011 						  val);
2012 
2013 		val = mt76_rr(dev, MT_TX_AGG_CNT(ext_phy, i));
2014 		phy->mt76->aggr_stats[aggr++] += val & 0xffff;
2015 		phy->mt76->aggr_stats[aggr++] += val >> 16;
2016 	}
2017 }
2018 
2019 void mt7615_pm_wake_work(struct work_struct *work)
2020 {
2021 	struct mt7615_dev *dev;
2022 	struct mt76_phy *mphy;
2023 
2024 	dev = (struct mt7615_dev *)container_of(work, struct mt7615_dev,
2025 						pm.wake_work);
2026 	mphy = dev->phy.mt76;
2027 
2028 	if (!mt7615_mcu_set_drv_ctrl(dev)) {
2029 		struct mt76_dev *mdev = &dev->mt76;
2030 		int i;
2031 
2032 		if (mt76_is_sdio(mdev)) {
2033 			mt76_connac_pm_dequeue_skbs(mphy, &dev->pm);
2034 			mt76_worker_schedule(&mdev->sdio.txrx_worker);
2035 		} else {
2036 			local_bh_disable();
2037 			mt76_for_each_q_rx(mdev, i)
2038 				napi_schedule(&mdev->napi[i]);
2039 			local_bh_enable();
2040 			mt76_connac_pm_dequeue_skbs(mphy, &dev->pm);
2041 			mt76_queue_tx_cleanup(dev, mdev->q_mcu[MT_MCUQ_WM],
2042 					      false);
2043 		}
2044 
2045 		if (test_bit(MT76_STATE_RUNNING, &mphy->state)) {
2046 			unsigned long timeout;
2047 
2048 			timeout = mt7615_get_macwork_timeout(dev);
2049 			ieee80211_queue_delayed_work(mphy->hw, &mphy->mac_work,
2050 						     timeout);
2051 		}
2052 	}
2053 
2054 	ieee80211_wake_queues(mphy->hw);
2055 	wake_up(&dev->pm.wait);
2056 }
2057 
2058 void mt7615_pm_power_save_work(struct work_struct *work)
2059 {
2060 	struct mt7615_dev *dev;
2061 	unsigned long delta;
2062 
2063 	dev = (struct mt7615_dev *)container_of(work, struct mt7615_dev,
2064 						pm.ps_work.work);
2065 
2066 	delta = dev->pm.idle_timeout;
2067 	if (test_bit(MT76_HW_SCANNING, &dev->mphy.state) ||
2068 	    test_bit(MT76_HW_SCHED_SCANNING, &dev->mphy.state))
2069 		goto out;
2070 
2071 	if (mutex_is_locked(&dev->mt76.mutex))
2072 		/* if mt76 mutex is held we should not put the device
2073 		 * to sleep since we are currently accessing device
2074 		 * register map. We need to wait for the next power_save
2075 		 * trigger.
2076 		 */
2077 		goto out;
2078 
2079 	if (time_is_after_jiffies(dev->pm.last_activity + delta)) {
2080 		delta = dev->pm.last_activity + delta - jiffies;
2081 		goto out;
2082 	}
2083 
2084 	if (!mt7615_mcu_set_fw_ctrl(dev))
2085 		return;
2086 out:
2087 	queue_delayed_work(dev->mt76.wq, &dev->pm.ps_work, delta);
2088 }
2089 
2090 void mt7615_mac_work(struct work_struct *work)
2091 {
2092 	struct mt7615_phy *phy;
2093 	struct mt76_phy *mphy;
2094 	unsigned long timeout;
2095 
2096 	mphy = (struct mt76_phy *)container_of(work, struct mt76_phy,
2097 					       mac_work.work);
2098 	phy = mphy->priv;
2099 
2100 	mt7615_mutex_acquire(phy->dev);
2101 
2102 	mt7615_update_survey(phy->dev);
2103 	if (++mphy->mac_work_count == 5) {
2104 		mphy->mac_work_count = 0;
2105 
2106 		mt7615_mac_update_mib_stats(phy);
2107 		mt7615_mac_scs_check(phy);
2108 	}
2109 
2110 	mt7615_mutex_release(phy->dev);
2111 
2112 	mt76_tx_status_check(mphy->dev, false);
2113 
2114 	timeout = mt7615_get_macwork_timeout(phy->dev);
2115 	ieee80211_queue_delayed_work(mphy->hw, &mphy->mac_work, timeout);
2116 }
2117 
2118 void mt7615_tx_token_put(struct mt7615_dev *dev)
2119 {
2120 	struct mt76_txwi_cache *txwi;
2121 	int id;
2122 
2123 	spin_lock_bh(&dev->mt76.token_lock);
2124 	idr_for_each_entry(&dev->mt76.token, txwi, id)
2125 		mt7615_txwi_free(dev, txwi);
2126 	spin_unlock_bh(&dev->mt76.token_lock);
2127 	idr_destroy(&dev->mt76.token);
2128 }
2129 EXPORT_SYMBOL_GPL(mt7615_tx_token_put);
2130 
2131 static void mt7615_dfs_stop_radar_detector(struct mt7615_phy *phy)
2132 {
2133 	struct mt7615_dev *dev = phy->dev;
2134 
2135 	if (phy->rdd_state & BIT(0))
2136 		mt76_connac_mcu_rdd_cmd(&dev->mt76, RDD_STOP, 0,
2137 					MT_RX_SEL0, 0);
2138 	if (phy->rdd_state & BIT(1))
2139 		mt76_connac_mcu_rdd_cmd(&dev->mt76, RDD_STOP, 1,
2140 					MT_RX_SEL0, 0);
2141 }
2142 
2143 static int mt7615_dfs_start_rdd(struct mt7615_dev *dev, int chain)
2144 {
2145 	int err;
2146 
2147 	err = mt76_connac_mcu_rdd_cmd(&dev->mt76, RDD_START, chain,
2148 				      MT_RX_SEL0, 0);
2149 	if (err < 0)
2150 		return err;
2151 
2152 	return mt76_connac_mcu_rdd_cmd(&dev->mt76, RDD_DET_MODE, chain,
2153 				       MT_RX_SEL0, 1);
2154 }
2155 
2156 static int mt7615_dfs_start_radar_detector(struct mt7615_phy *phy)
2157 {
2158 	struct cfg80211_chan_def *chandef = &phy->mt76->chandef;
2159 	struct mt7615_dev *dev = phy->dev;
2160 	bool ext_phy = phy != &dev->phy;
2161 	int err;
2162 
2163 	/* start CAC */
2164 	err = mt76_connac_mcu_rdd_cmd(&dev->mt76, RDD_CAC_START, ext_phy,
2165 				      MT_RX_SEL0, 0);
2166 	if (err < 0)
2167 		return err;
2168 
2169 	err = mt7615_dfs_start_rdd(dev, ext_phy);
2170 	if (err < 0)
2171 		return err;
2172 
2173 	phy->rdd_state |= BIT(ext_phy);
2174 
2175 	if (chandef->width == NL80211_CHAN_WIDTH_160 ||
2176 	    chandef->width == NL80211_CHAN_WIDTH_80P80) {
2177 		err = mt7615_dfs_start_rdd(dev, 1);
2178 		if (err < 0)
2179 			return err;
2180 
2181 		phy->rdd_state |= BIT(1);
2182 	}
2183 
2184 	return 0;
2185 }
2186 
2187 static int
2188 mt7615_dfs_init_radar_specs(struct mt7615_phy *phy)
2189 {
2190 	const struct mt7615_dfs_radar_spec *radar_specs;
2191 	struct mt7615_dev *dev = phy->dev;
2192 	int err, i, lpn = 500;
2193 
2194 	switch (dev->mt76.region) {
2195 	case NL80211_DFS_FCC:
2196 		radar_specs = &fcc_radar_specs;
2197 		lpn = 8;
2198 		break;
2199 	case NL80211_DFS_ETSI:
2200 		radar_specs = &etsi_radar_specs;
2201 		break;
2202 	case NL80211_DFS_JP:
2203 		radar_specs = &jp_radar_specs;
2204 		break;
2205 	default:
2206 		return -EINVAL;
2207 	}
2208 
2209 	/* avoid FCC radar detection in non-FCC region */
2210 	err = mt7615_mcu_set_fcc5_lpn(dev, lpn);
2211 	if (err < 0)
2212 		return err;
2213 
2214 	for (i = 0; i < ARRAY_SIZE(radar_specs->radar_pattern); i++) {
2215 		err = mt7615_mcu_set_radar_th(dev, i,
2216 					      &radar_specs->radar_pattern[i]);
2217 		if (err < 0)
2218 			return err;
2219 	}
2220 
2221 	return mt7615_mcu_set_pulse_th(dev, &radar_specs->pulse_th);
2222 }
2223 
2224 int mt7615_dfs_init_radar_detector(struct mt7615_phy *phy)
2225 {
2226 	struct cfg80211_chan_def *chandef = &phy->mt76->chandef;
2227 	struct mt7615_dev *dev = phy->dev;
2228 	bool ext_phy = phy != &dev->phy;
2229 	enum mt76_dfs_state dfs_state, prev_state;
2230 	int err;
2231 
2232 	if (is_mt7663(&dev->mt76))
2233 		return 0;
2234 
2235 	prev_state = phy->mt76->dfs_state;
2236 	dfs_state = mt76_phy_dfs_state(phy->mt76);
2237 	if ((chandef->chan->flags & IEEE80211_CHAN_RADAR) &&
2238 	    dfs_state < MT_DFS_STATE_CAC)
2239 		dfs_state = MT_DFS_STATE_ACTIVE;
2240 
2241 	if (prev_state == dfs_state)
2242 		return 0;
2243 
2244 	if (dfs_state == MT_DFS_STATE_DISABLED)
2245 		goto stop;
2246 
2247 	if (prev_state <= MT_DFS_STATE_DISABLED) {
2248 		err = mt7615_dfs_init_radar_specs(phy);
2249 		if (err < 0)
2250 			return err;
2251 
2252 		err = mt7615_dfs_start_radar_detector(phy);
2253 		if (err < 0)
2254 			return err;
2255 
2256 		phy->mt76->dfs_state = MT_DFS_STATE_CAC;
2257 	}
2258 
2259 	if (dfs_state == MT_DFS_STATE_CAC)
2260 		return 0;
2261 
2262 	err = mt76_connac_mcu_rdd_cmd(&dev->mt76, RDD_CAC_END,
2263 				      ext_phy, MT_RX_SEL0, 0);
2264 	if (err < 0) {
2265 		phy->mt76->dfs_state = MT_DFS_STATE_UNKNOWN;
2266 		return err;
2267 	}
2268 
2269 	phy->mt76->dfs_state = MT_DFS_STATE_ACTIVE;
2270 	return 0;
2271 
2272 stop:
2273 	err = mt76_connac_mcu_rdd_cmd(&dev->mt76, RDD_NORMAL_START, ext_phy,
2274 				      MT_RX_SEL0, 0);
2275 	if (err < 0)
2276 		return err;
2277 
2278 	mt7615_dfs_stop_radar_detector(phy);
2279 	phy->mt76->dfs_state = MT_DFS_STATE_DISABLED;
2280 
2281 	return 0;
2282 }
2283 
2284 int mt7615_mac_set_beacon_filter(struct mt7615_phy *phy,
2285 				 struct ieee80211_vif *vif,
2286 				 bool enable)
2287 {
2288 	struct mt7615_dev *dev = phy->dev;
2289 	bool ext_phy = phy != &dev->phy;
2290 	int err;
2291 
2292 	if (!mt7615_firmware_offload(dev))
2293 		return -EOPNOTSUPP;
2294 
2295 	switch (vif->type) {
2296 	case NL80211_IFTYPE_MONITOR:
2297 		return 0;
2298 	case NL80211_IFTYPE_MESH_POINT:
2299 	case NL80211_IFTYPE_ADHOC:
2300 	case NL80211_IFTYPE_AP:
2301 		if (enable)
2302 			phy->n_beacon_vif++;
2303 		else
2304 			phy->n_beacon_vif--;
2305 		fallthrough;
2306 	default:
2307 		break;
2308 	}
2309 
2310 	err = mt7615_mcu_set_bss_pm(dev, vif, !phy->n_beacon_vif);
2311 	if (err)
2312 		return err;
2313 
2314 	if (phy->n_beacon_vif) {
2315 		vif->driver_flags &= ~IEEE80211_VIF_BEACON_FILTER;
2316 		mt76_clear(dev, MT_WF_RFCR(ext_phy),
2317 			   MT_WF_RFCR_DROP_OTHER_BEACON);
2318 	} else {
2319 		vif->driver_flags |= IEEE80211_VIF_BEACON_FILTER;
2320 		mt76_set(dev, MT_WF_RFCR(ext_phy),
2321 			 MT_WF_RFCR_DROP_OTHER_BEACON);
2322 	}
2323 
2324 	return 0;
2325 }
2326 
2327 void mt7615_coredump_work(struct work_struct *work)
2328 {
2329 	struct mt7615_dev *dev;
2330 	char *dump, *data;
2331 
2332 	dev = (struct mt7615_dev *)container_of(work, struct mt7615_dev,
2333 						coredump.work.work);
2334 
2335 	if (time_is_after_jiffies(dev->coredump.last_activity +
2336 				  4 * MT76_CONNAC_COREDUMP_TIMEOUT)) {
2337 		queue_delayed_work(dev->mt76.wq, &dev->coredump.work,
2338 				   MT76_CONNAC_COREDUMP_TIMEOUT);
2339 		return;
2340 	}
2341 
2342 	dump = vzalloc(MT76_CONNAC_COREDUMP_SZ);
2343 	data = dump;
2344 
2345 	while (true) {
2346 		struct sk_buff *skb;
2347 
2348 		spin_lock_bh(&dev->mt76.lock);
2349 		skb = __skb_dequeue(&dev->coredump.msg_list);
2350 		spin_unlock_bh(&dev->mt76.lock);
2351 
2352 		if (!skb)
2353 			break;
2354 
2355 		skb_pull(skb, sizeof(struct mt7615_mcu_rxd));
2356 		if (!dump || data + skb->len - dump > MT76_CONNAC_COREDUMP_SZ) {
2357 			dev_kfree_skb(skb);
2358 			continue;
2359 		}
2360 
2361 		memcpy(data, skb->data, skb->len);
2362 		data += skb->len;
2363 
2364 		dev_kfree_skb(skb);
2365 	}
2366 
2367 	if (dump)
2368 		dev_coredumpv(dev->mt76.dev, dump, MT76_CONNAC_COREDUMP_SZ,
2369 			      GFP_KERNEL);
2370 }
2371