1 // SPDX-License-Identifier: ISC 2 3 #include <linux/etherdevice.h> 4 #include <linux/timekeeping.h> 5 #include "mt7603.h" 6 #include "mac.h" 7 #include "../trace.h" 8 9 #define MT_PSE_PAGE_SIZE 128 10 11 static u32 12 mt7603_ac_queue_mask0(u32 mask) 13 { 14 u32 ret = 0; 15 16 ret |= GENMASK(3, 0) * !!(mask & BIT(0)); 17 ret |= GENMASK(8, 5) * !!(mask & BIT(1)); 18 ret |= GENMASK(13, 10) * !!(mask & BIT(2)); 19 ret |= GENMASK(19, 16) * !!(mask & BIT(3)); 20 return ret; 21 } 22 23 static void 24 mt76_stop_tx_ac(struct mt7603_dev *dev, u32 mask) 25 { 26 mt76_set(dev, MT_WF_ARB_TX_STOP_0, mt7603_ac_queue_mask0(mask)); 27 } 28 29 static void 30 mt76_start_tx_ac(struct mt7603_dev *dev, u32 mask) 31 { 32 mt76_set(dev, MT_WF_ARB_TX_START_0, mt7603_ac_queue_mask0(mask)); 33 } 34 35 void mt7603_mac_reset_counters(struct mt7603_dev *dev) 36 { 37 int i; 38 39 for (i = 0; i < 2; i++) 40 mt76_rr(dev, MT_TX_AGG_CNT(i)); 41 42 memset(dev->mt76.aggr_stats, 0, sizeof(dev->mt76.aggr_stats)); 43 } 44 45 void mt7603_mac_set_timing(struct mt7603_dev *dev) 46 { 47 u32 cck = FIELD_PREP(MT_TIMEOUT_VAL_PLCP, 231) | 48 FIELD_PREP(MT_TIMEOUT_VAL_CCA, 48); 49 u32 ofdm = FIELD_PREP(MT_TIMEOUT_VAL_PLCP, 60) | 50 FIELD_PREP(MT_TIMEOUT_VAL_CCA, 24); 51 int offset = 3 * dev->coverage_class; 52 u32 reg_offset = FIELD_PREP(MT_TIMEOUT_VAL_PLCP, offset) | 53 FIELD_PREP(MT_TIMEOUT_VAL_CCA, offset); 54 bool is_5ghz = dev->mphy.chandef.chan->band == NL80211_BAND_5GHZ; 55 int sifs; 56 u32 val; 57 58 if (is_5ghz) 59 sifs = 16; 60 else 61 sifs = 10; 62 63 mt76_set(dev, MT_ARB_SCR, 64 MT_ARB_SCR_TX_DISABLE | MT_ARB_SCR_RX_DISABLE); 65 udelay(1); 66 67 mt76_wr(dev, MT_TIMEOUT_CCK, cck + reg_offset); 68 mt76_wr(dev, MT_TIMEOUT_OFDM, ofdm + reg_offset); 69 mt76_wr(dev, MT_IFS, 70 FIELD_PREP(MT_IFS_EIFS, 360) | 71 FIELD_PREP(MT_IFS_RIFS, 2) | 72 FIELD_PREP(MT_IFS_SIFS, sifs) | 73 FIELD_PREP(MT_IFS_SLOT, dev->slottime)); 74 75 if (dev->slottime < 20 || is_5ghz) 76 val = MT7603_CFEND_RATE_DEFAULT; 77 else 78 val = MT7603_CFEND_RATE_11B; 79 80 mt76_rmw_field(dev, MT_AGG_CONTROL, MT_AGG_CONTROL_CFEND_RATE, val); 81 82 mt76_clear(dev, MT_ARB_SCR, 83 MT_ARB_SCR_TX_DISABLE | MT_ARB_SCR_RX_DISABLE); 84 } 85 86 static void 87 mt7603_wtbl_update(struct mt7603_dev *dev, int idx, u32 mask) 88 { 89 mt76_rmw(dev, MT_WTBL_UPDATE, MT_WTBL_UPDATE_WLAN_IDX, 90 FIELD_PREP(MT_WTBL_UPDATE_WLAN_IDX, idx) | mask); 91 92 mt76_poll(dev, MT_WTBL_UPDATE, MT_WTBL_UPDATE_BUSY, 0, 5000); 93 } 94 95 static u32 96 mt7603_wtbl1_addr(int idx) 97 { 98 return MT_WTBL1_BASE + idx * MT_WTBL1_SIZE; 99 } 100 101 static u32 102 mt7603_wtbl2_addr(int idx) 103 { 104 /* Mapped to WTBL2 */ 105 return MT_PCIE_REMAP_BASE_1 + idx * MT_WTBL2_SIZE; 106 } 107 108 static u32 109 mt7603_wtbl3_addr(int idx) 110 { 111 u32 base = mt7603_wtbl2_addr(MT7603_WTBL_SIZE); 112 113 return base + idx * MT_WTBL3_SIZE; 114 } 115 116 static u32 117 mt7603_wtbl4_addr(int idx) 118 { 119 u32 base = mt7603_wtbl3_addr(MT7603_WTBL_SIZE); 120 121 return base + idx * MT_WTBL4_SIZE; 122 } 123 124 void mt7603_wtbl_init(struct mt7603_dev *dev, int idx, int vif, 125 const u8 *mac_addr) 126 { 127 const void *_mac = mac_addr; 128 u32 addr = mt7603_wtbl1_addr(idx); 129 u32 w0 = 0, w1 = 0; 130 int i; 131 132 if (_mac) { 133 w0 = FIELD_PREP(MT_WTBL1_W0_ADDR_HI, 134 get_unaligned_le16(_mac + 4)); 135 w1 = FIELD_PREP(MT_WTBL1_W1_ADDR_LO, 136 get_unaligned_le32(_mac)); 137 } 138 139 if (vif < 0) 140 vif = 0; 141 else 142 w0 |= MT_WTBL1_W0_RX_CHECK_A1; 143 w0 |= FIELD_PREP(MT_WTBL1_W0_MUAR_IDX, vif); 144 145 mt76_poll(dev, MT_WTBL_UPDATE, MT_WTBL_UPDATE_BUSY, 0, 5000); 146 147 mt76_set(dev, addr + 0 * 4, w0); 148 mt76_set(dev, addr + 1 * 4, w1); 149 mt76_set(dev, addr + 2 * 4, MT_WTBL1_W2_ADMISSION_CONTROL); 150 151 mt76_stop_tx_ac(dev, GENMASK(3, 0)); 152 addr = mt7603_wtbl2_addr(idx); 153 for (i = 0; i < MT_WTBL2_SIZE; i += 4) 154 mt76_wr(dev, addr + i, 0); 155 mt7603_wtbl_update(dev, idx, MT_WTBL_UPDATE_WTBL2); 156 mt76_start_tx_ac(dev, GENMASK(3, 0)); 157 158 addr = mt7603_wtbl3_addr(idx); 159 for (i = 0; i < MT_WTBL3_SIZE; i += 4) 160 mt76_wr(dev, addr + i, 0); 161 162 addr = mt7603_wtbl4_addr(idx); 163 for (i = 0; i < MT_WTBL4_SIZE; i += 4) 164 mt76_wr(dev, addr + i, 0); 165 166 mt7603_wtbl_update(dev, idx, MT_WTBL_UPDATE_ADM_COUNT_CLEAR); 167 } 168 169 static void 170 mt7603_wtbl_set_skip_tx(struct mt7603_dev *dev, int idx, bool enabled) 171 { 172 u32 addr = mt7603_wtbl1_addr(idx); 173 u32 val = mt76_rr(dev, addr + 3 * 4); 174 175 val &= ~MT_WTBL1_W3_SKIP_TX; 176 val |= enabled * MT_WTBL1_W3_SKIP_TX; 177 178 mt76_wr(dev, addr + 3 * 4, val); 179 } 180 181 void mt7603_filter_tx(struct mt7603_dev *dev, int idx, bool abort) 182 { 183 int i, port, queue; 184 185 if (abort) { 186 port = 3; /* PSE */ 187 queue = 8; /* free queue */ 188 } else { 189 port = 0; /* HIF */ 190 queue = 1; /* MCU queue */ 191 } 192 193 mt7603_wtbl_set_skip_tx(dev, idx, true); 194 195 mt76_wr(dev, MT_TX_ABORT, MT_TX_ABORT_EN | 196 FIELD_PREP(MT_TX_ABORT_WCID, idx)); 197 198 for (i = 0; i < 4; i++) { 199 mt76_wr(dev, MT_DMA_FQCR0, MT_DMA_FQCR0_BUSY | 200 FIELD_PREP(MT_DMA_FQCR0_TARGET_WCID, idx) | 201 FIELD_PREP(MT_DMA_FQCR0_TARGET_QID, i) | 202 FIELD_PREP(MT_DMA_FQCR0_DEST_PORT_ID, port) | 203 FIELD_PREP(MT_DMA_FQCR0_DEST_QUEUE_ID, queue)); 204 205 mt76_poll(dev, MT_DMA_FQCR0, MT_DMA_FQCR0_BUSY, 0, 15000); 206 } 207 208 WARN_ON_ONCE(mt76_rr(dev, MT_DMA_FQCR0) & MT_DMA_FQCR0_BUSY); 209 210 mt76_wr(dev, MT_TX_ABORT, 0); 211 212 mt7603_wtbl_set_skip_tx(dev, idx, false); 213 } 214 215 void mt7603_wtbl_set_smps(struct mt7603_dev *dev, struct mt7603_sta *sta, 216 bool enabled) 217 { 218 u32 addr = mt7603_wtbl1_addr(sta->wcid.idx); 219 220 if (sta->smps == enabled) 221 return; 222 223 mt76_rmw_field(dev, addr + 2 * 4, MT_WTBL1_W2_SMPS, enabled); 224 sta->smps = enabled; 225 } 226 227 void mt7603_wtbl_set_ps(struct mt7603_dev *dev, struct mt7603_sta *sta, 228 bool enabled) 229 { 230 int idx = sta->wcid.idx; 231 u32 addr; 232 233 spin_lock_bh(&dev->ps_lock); 234 235 if (sta->ps == enabled) 236 goto out; 237 238 mt76_wr(dev, MT_PSE_RTA, 239 FIELD_PREP(MT_PSE_RTA_TAG_ID, idx) | 240 FIELD_PREP(MT_PSE_RTA_PORT_ID, 0) | 241 FIELD_PREP(MT_PSE_RTA_QUEUE_ID, 1) | 242 FIELD_PREP(MT_PSE_RTA_REDIRECT_EN, enabled) | 243 MT_PSE_RTA_WRITE | MT_PSE_RTA_BUSY); 244 245 mt76_poll(dev, MT_PSE_RTA, MT_PSE_RTA_BUSY, 0, 5000); 246 247 if (enabled) 248 mt7603_filter_tx(dev, idx, false); 249 250 addr = mt7603_wtbl1_addr(idx); 251 mt76_set(dev, MT_WTBL1_OR, MT_WTBL1_OR_PSM_WRITE); 252 mt76_rmw(dev, addr + 3 * 4, MT_WTBL1_W3_POWER_SAVE, 253 enabled * MT_WTBL1_W3_POWER_SAVE); 254 mt76_clear(dev, MT_WTBL1_OR, MT_WTBL1_OR_PSM_WRITE); 255 sta->ps = enabled; 256 257 out: 258 spin_unlock_bh(&dev->ps_lock); 259 } 260 261 void mt7603_wtbl_clear(struct mt7603_dev *dev, int idx) 262 { 263 int wtbl2_frame_size = MT_PSE_PAGE_SIZE / MT_WTBL2_SIZE; 264 int wtbl2_frame = idx / wtbl2_frame_size; 265 int wtbl2_entry = idx % wtbl2_frame_size; 266 267 int wtbl3_base_frame = MT_WTBL3_OFFSET / MT_PSE_PAGE_SIZE; 268 int wtbl3_frame_size = MT_PSE_PAGE_SIZE / MT_WTBL3_SIZE; 269 int wtbl3_frame = wtbl3_base_frame + idx / wtbl3_frame_size; 270 int wtbl3_entry = (idx % wtbl3_frame_size) * 2; 271 272 int wtbl4_base_frame = MT_WTBL4_OFFSET / MT_PSE_PAGE_SIZE; 273 int wtbl4_frame_size = MT_PSE_PAGE_SIZE / MT_WTBL4_SIZE; 274 int wtbl4_frame = wtbl4_base_frame + idx / wtbl4_frame_size; 275 int wtbl4_entry = idx % wtbl4_frame_size; 276 277 u32 addr = MT_WTBL1_BASE + idx * MT_WTBL1_SIZE; 278 int i; 279 280 mt76_poll(dev, MT_WTBL_UPDATE, MT_WTBL_UPDATE_BUSY, 0, 5000); 281 282 mt76_wr(dev, addr + 0 * 4, 283 MT_WTBL1_W0_RX_CHECK_A1 | 284 MT_WTBL1_W0_RX_CHECK_A2 | 285 MT_WTBL1_W0_RX_VALID); 286 mt76_wr(dev, addr + 1 * 4, 0); 287 mt76_wr(dev, addr + 2 * 4, 0); 288 289 mt76_set(dev, MT_WTBL1_OR, MT_WTBL1_OR_PSM_WRITE); 290 291 mt76_wr(dev, addr + 3 * 4, 292 FIELD_PREP(MT_WTBL1_W3_WTBL2_FRAME_ID, wtbl2_frame) | 293 FIELD_PREP(MT_WTBL1_W3_WTBL2_ENTRY_ID, wtbl2_entry) | 294 FIELD_PREP(MT_WTBL1_W3_WTBL4_FRAME_ID, wtbl4_frame) | 295 MT_WTBL1_W3_I_PSM | MT_WTBL1_W3_KEEP_I_PSM); 296 mt76_wr(dev, addr + 4 * 4, 297 FIELD_PREP(MT_WTBL1_W4_WTBL3_FRAME_ID, wtbl3_frame) | 298 FIELD_PREP(MT_WTBL1_W4_WTBL3_ENTRY_ID, wtbl3_entry) | 299 FIELD_PREP(MT_WTBL1_W4_WTBL4_ENTRY_ID, wtbl4_entry)); 300 301 mt76_clear(dev, MT_WTBL1_OR, MT_WTBL1_OR_PSM_WRITE); 302 303 addr = mt7603_wtbl2_addr(idx); 304 305 /* Clear BA information */ 306 mt76_wr(dev, addr + (15 * 4), 0); 307 308 mt76_stop_tx_ac(dev, GENMASK(3, 0)); 309 for (i = 2; i <= 4; i++) 310 mt76_wr(dev, addr + (i * 4), 0); 311 mt7603_wtbl_update(dev, idx, MT_WTBL_UPDATE_WTBL2); 312 mt76_start_tx_ac(dev, GENMASK(3, 0)); 313 314 mt7603_wtbl_update(dev, idx, MT_WTBL_UPDATE_RX_COUNT_CLEAR); 315 mt7603_wtbl_update(dev, idx, MT_WTBL_UPDATE_TX_COUNT_CLEAR); 316 mt7603_wtbl_update(dev, idx, MT_WTBL_UPDATE_ADM_COUNT_CLEAR); 317 } 318 319 void mt7603_wtbl_update_cap(struct mt7603_dev *dev, struct ieee80211_sta *sta) 320 { 321 struct mt7603_sta *msta = (struct mt7603_sta *)sta->drv_priv; 322 int idx = msta->wcid.idx; 323 u8 ampdu_density; 324 u32 addr; 325 u32 val; 326 327 addr = mt7603_wtbl1_addr(idx); 328 329 ampdu_density = sta->ht_cap.ampdu_density; 330 if (ampdu_density < IEEE80211_HT_MPDU_DENSITY_4) 331 ampdu_density = IEEE80211_HT_MPDU_DENSITY_4; 332 333 val = mt76_rr(dev, addr + 2 * 4); 334 val &= MT_WTBL1_W2_KEY_TYPE | MT_WTBL1_W2_ADMISSION_CONTROL; 335 val |= FIELD_PREP(MT_WTBL1_W2_AMPDU_FACTOR, sta->ht_cap.ampdu_factor) | 336 FIELD_PREP(MT_WTBL1_W2_MPDU_DENSITY, sta->ht_cap.ampdu_density) | 337 MT_WTBL1_W2_TXS_BAF_REPORT; 338 339 if (sta->ht_cap.cap) 340 val |= MT_WTBL1_W2_HT; 341 if (sta->vht_cap.cap) 342 val |= MT_WTBL1_W2_VHT; 343 344 mt76_wr(dev, addr + 2 * 4, val); 345 346 addr = mt7603_wtbl2_addr(idx); 347 val = mt76_rr(dev, addr + 9 * 4); 348 val &= ~(MT_WTBL2_W9_SHORT_GI_20 | MT_WTBL2_W9_SHORT_GI_40 | 349 MT_WTBL2_W9_SHORT_GI_80); 350 if (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) 351 val |= MT_WTBL2_W9_SHORT_GI_20; 352 if (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40) 353 val |= MT_WTBL2_W9_SHORT_GI_40; 354 mt76_wr(dev, addr + 9 * 4, val); 355 } 356 357 void mt7603_mac_rx_ba_reset(struct mt7603_dev *dev, void *addr, u8 tid) 358 { 359 mt76_wr(dev, MT_BA_CONTROL_0, get_unaligned_le32(addr)); 360 mt76_wr(dev, MT_BA_CONTROL_1, 361 (get_unaligned_le16(addr + 4) | 362 FIELD_PREP(MT_BA_CONTROL_1_TID, tid) | 363 MT_BA_CONTROL_1_RESET)); 364 } 365 366 void mt7603_mac_tx_ba_reset(struct mt7603_dev *dev, int wcid, int tid, 367 int ba_size) 368 { 369 u32 addr = mt7603_wtbl2_addr(wcid); 370 u32 tid_mask = FIELD_PREP(MT_WTBL2_W15_BA_EN_TIDS, BIT(tid)) | 371 (MT_WTBL2_W15_BA_WIN_SIZE << 372 (tid * MT_WTBL2_W15_BA_WIN_SIZE_SHIFT)); 373 u32 tid_val; 374 int i; 375 376 if (ba_size < 0) { 377 /* disable */ 378 mt76_clear(dev, addr + (15 * 4), tid_mask); 379 return; 380 } 381 382 for (i = 7; i > 0; i--) { 383 if (ba_size >= MT_AGG_SIZE_LIMIT(i)) 384 break; 385 } 386 387 tid_val = FIELD_PREP(MT_WTBL2_W15_BA_EN_TIDS, BIT(tid)) | 388 i << (tid * MT_WTBL2_W15_BA_WIN_SIZE_SHIFT); 389 390 mt76_rmw(dev, addr + (15 * 4), tid_mask, tid_val); 391 } 392 393 void mt7603_mac_sta_poll(struct mt7603_dev *dev) 394 { 395 static const u8 ac_to_tid[4] = { 396 [IEEE80211_AC_BE] = 0, 397 [IEEE80211_AC_BK] = 1, 398 [IEEE80211_AC_VI] = 4, 399 [IEEE80211_AC_VO] = 6 400 }; 401 struct ieee80211_sta *sta; 402 struct mt7603_sta *msta; 403 u32 total_airtime = 0; 404 u32 airtime[4]; 405 u32 addr; 406 int i; 407 408 rcu_read_lock(); 409 410 while (1) { 411 bool clear = false; 412 413 spin_lock_bh(&dev->sta_poll_lock); 414 if (list_empty(&dev->sta_poll_list)) { 415 spin_unlock_bh(&dev->sta_poll_lock); 416 break; 417 } 418 419 msta = list_first_entry(&dev->sta_poll_list, struct mt7603_sta, 420 poll_list); 421 list_del_init(&msta->poll_list); 422 spin_unlock_bh(&dev->sta_poll_lock); 423 424 addr = mt7603_wtbl4_addr(msta->wcid.idx); 425 for (i = 0; i < 4; i++) { 426 u32 airtime_last = msta->tx_airtime_ac[i]; 427 428 msta->tx_airtime_ac[i] = mt76_rr(dev, addr + i * 8); 429 airtime[i] = msta->tx_airtime_ac[i] - airtime_last; 430 airtime[i] *= 32; 431 total_airtime += airtime[i]; 432 433 if (msta->tx_airtime_ac[i] & BIT(22)) 434 clear = true; 435 } 436 437 if (clear) { 438 mt7603_wtbl_update(dev, msta->wcid.idx, 439 MT_WTBL_UPDATE_ADM_COUNT_CLEAR); 440 memset(msta->tx_airtime_ac, 0, 441 sizeof(msta->tx_airtime_ac)); 442 } 443 444 if (!msta->wcid.sta) 445 continue; 446 447 sta = container_of((void *)msta, struct ieee80211_sta, drv_priv); 448 for (i = 0; i < 4; i++) { 449 struct mt76_queue *q = dev->mphy.q_tx[i]; 450 u8 qidx = q->hw_idx; 451 u8 tid = ac_to_tid[i]; 452 u32 txtime = airtime[qidx]; 453 454 if (!txtime) 455 continue; 456 457 ieee80211_sta_register_airtime(sta, tid, txtime, 0); 458 } 459 } 460 461 rcu_read_unlock(); 462 463 if (!total_airtime) 464 return; 465 466 spin_lock_bh(&dev->mt76.cc_lock); 467 dev->mphy.chan_state->cc_tx += total_airtime; 468 spin_unlock_bh(&dev->mt76.cc_lock); 469 } 470 471 static struct mt76_wcid * 472 mt7603_rx_get_wcid(struct mt7603_dev *dev, u8 idx, bool unicast) 473 { 474 struct mt7603_sta *sta; 475 struct mt76_wcid *wcid; 476 477 if (idx >= MT7603_WTBL_SIZE) 478 return NULL; 479 480 wcid = rcu_dereference(dev->mt76.wcid[idx]); 481 if (unicast || !wcid) 482 return wcid; 483 484 if (!wcid->sta) 485 return NULL; 486 487 sta = container_of(wcid, struct mt7603_sta, wcid); 488 if (!sta->vif) 489 return NULL; 490 491 return &sta->vif->sta.wcid; 492 } 493 494 int 495 mt7603_mac_fill_rx(struct mt7603_dev *dev, struct sk_buff *skb) 496 { 497 struct mt76_rx_status *status = (struct mt76_rx_status *)skb->cb; 498 struct ieee80211_supported_band *sband; 499 struct ieee80211_hdr *hdr; 500 __le32 *rxd = (__le32 *)skb->data; 501 u32 rxd0 = le32_to_cpu(rxd[0]); 502 u32 rxd1 = le32_to_cpu(rxd[1]); 503 u32 rxd2 = le32_to_cpu(rxd[2]); 504 bool unicast = rxd1 & MT_RXD1_NORMAL_U2M; 505 bool insert_ccmp_hdr = false; 506 bool remove_pad; 507 int idx; 508 int i; 509 510 memset(status, 0, sizeof(*status)); 511 512 i = FIELD_GET(MT_RXD1_NORMAL_CH_FREQ, rxd1); 513 sband = (i & 1) ? &dev->mphy.sband_5g.sband : &dev->mphy.sband_2g.sband; 514 i >>= 1; 515 516 idx = FIELD_GET(MT_RXD2_NORMAL_WLAN_IDX, rxd2); 517 status->wcid = mt7603_rx_get_wcid(dev, idx, unicast); 518 519 status->band = sband->band; 520 if (i < sband->n_channels) 521 status->freq = sband->channels[i].center_freq; 522 523 if (rxd2 & MT_RXD2_NORMAL_FCS_ERR) 524 status->flag |= RX_FLAG_FAILED_FCS_CRC; 525 526 if (rxd2 & MT_RXD2_NORMAL_TKIP_MIC_ERR) 527 status->flag |= RX_FLAG_MMIC_ERROR; 528 529 /* ICV error or CCMP/BIP/WPI MIC error */ 530 if (rxd2 & MT_RXD2_NORMAL_ICV_ERR) 531 status->flag |= RX_FLAG_ONLY_MONITOR; 532 533 if (FIELD_GET(MT_RXD2_NORMAL_SEC_MODE, rxd2) != 0 && 534 !(rxd2 & (MT_RXD2_NORMAL_CLM | MT_RXD2_NORMAL_CM))) { 535 status->flag |= RX_FLAG_DECRYPTED; 536 status->flag |= RX_FLAG_IV_STRIPPED; 537 status->flag |= RX_FLAG_MMIC_STRIPPED | RX_FLAG_MIC_STRIPPED; 538 } 539 540 remove_pad = rxd1 & MT_RXD1_NORMAL_HDR_OFFSET; 541 542 if (rxd2 & MT_RXD2_NORMAL_MAX_LEN_ERROR) 543 return -EINVAL; 544 545 if (!sband->channels) 546 return -EINVAL; 547 548 rxd += 4; 549 if (rxd0 & MT_RXD0_NORMAL_GROUP_4) { 550 rxd += 4; 551 if ((u8 *)rxd - skb->data >= skb->len) 552 return -EINVAL; 553 } 554 if (rxd0 & MT_RXD0_NORMAL_GROUP_1) { 555 u8 *data = (u8 *)rxd; 556 557 if (status->flag & RX_FLAG_DECRYPTED) { 558 switch (FIELD_GET(MT_RXD2_NORMAL_SEC_MODE, rxd2)) { 559 case MT_CIPHER_AES_CCMP: 560 case MT_CIPHER_CCMP_CCX: 561 case MT_CIPHER_CCMP_256: 562 insert_ccmp_hdr = 563 FIELD_GET(MT_RXD2_NORMAL_FRAG, rxd2); 564 fallthrough; 565 case MT_CIPHER_TKIP: 566 case MT_CIPHER_TKIP_NO_MIC: 567 case MT_CIPHER_GCMP: 568 case MT_CIPHER_GCMP_256: 569 status->iv[0] = data[5]; 570 status->iv[1] = data[4]; 571 status->iv[2] = data[3]; 572 status->iv[3] = data[2]; 573 status->iv[4] = data[1]; 574 status->iv[5] = data[0]; 575 break; 576 default: 577 break; 578 } 579 } 580 581 rxd += 4; 582 if ((u8 *)rxd - skb->data >= skb->len) 583 return -EINVAL; 584 } 585 if (rxd0 & MT_RXD0_NORMAL_GROUP_2) { 586 status->timestamp = le32_to_cpu(rxd[0]); 587 status->flag |= RX_FLAG_MACTIME_START; 588 589 if (!(rxd2 & (MT_RXD2_NORMAL_NON_AMPDU_SUB | 590 MT_RXD2_NORMAL_NON_AMPDU))) { 591 status->flag |= RX_FLAG_AMPDU_DETAILS; 592 593 /* all subframes of an A-MPDU have the same timestamp */ 594 if (dev->rx_ampdu_ts != status->timestamp) { 595 if (!++dev->ampdu_ref) 596 dev->ampdu_ref++; 597 } 598 dev->rx_ampdu_ts = status->timestamp; 599 600 status->ampdu_ref = dev->ampdu_ref; 601 } 602 603 rxd += 2; 604 if ((u8 *)rxd - skb->data >= skb->len) 605 return -EINVAL; 606 } 607 if (rxd0 & MT_RXD0_NORMAL_GROUP_3) { 608 u32 rxdg0 = le32_to_cpu(rxd[0]); 609 u32 rxdg3 = le32_to_cpu(rxd[3]); 610 bool cck = false; 611 612 i = FIELD_GET(MT_RXV1_TX_RATE, rxdg0); 613 switch (FIELD_GET(MT_RXV1_TX_MODE, rxdg0)) { 614 case MT_PHY_TYPE_CCK: 615 cck = true; 616 fallthrough; 617 case MT_PHY_TYPE_OFDM: 618 i = mt76_get_rate(&dev->mt76, sband, i, cck); 619 break; 620 case MT_PHY_TYPE_HT_GF: 621 case MT_PHY_TYPE_HT: 622 status->encoding = RX_ENC_HT; 623 if (i > 15) 624 return -EINVAL; 625 break; 626 default: 627 return -EINVAL; 628 } 629 630 if (rxdg0 & MT_RXV1_HT_SHORT_GI) 631 status->enc_flags |= RX_ENC_FLAG_SHORT_GI; 632 if (rxdg0 & MT_RXV1_HT_AD_CODE) 633 status->enc_flags |= RX_ENC_FLAG_LDPC; 634 635 status->enc_flags |= RX_ENC_FLAG_STBC_MASK * 636 FIELD_GET(MT_RXV1_HT_STBC, rxdg0); 637 638 status->rate_idx = i; 639 640 status->chains = dev->mphy.antenna_mask; 641 status->chain_signal[0] = FIELD_GET(MT_RXV4_IB_RSSI0, rxdg3) + 642 dev->rssi_offset[0]; 643 status->chain_signal[1] = FIELD_GET(MT_RXV4_IB_RSSI1, rxdg3) + 644 dev->rssi_offset[1]; 645 646 if (FIELD_GET(MT_RXV1_FRAME_MODE, rxdg0) == 1) 647 status->bw = RATE_INFO_BW_40; 648 649 rxd += 6; 650 if ((u8 *)rxd - skb->data >= skb->len) 651 return -EINVAL; 652 } else { 653 return -EINVAL; 654 } 655 656 skb_pull(skb, (u8 *)rxd - skb->data + 2 * remove_pad); 657 658 if (insert_ccmp_hdr) { 659 u8 key_id = FIELD_GET(MT_RXD1_NORMAL_KEY_ID, rxd1); 660 661 mt76_insert_ccmp_hdr(skb, key_id); 662 } 663 664 hdr = (struct ieee80211_hdr *)skb->data; 665 if (!status->wcid || !ieee80211_is_data_qos(hdr->frame_control)) 666 return 0; 667 668 status->aggr = unicast && 669 !ieee80211_is_qos_nullfunc(hdr->frame_control); 670 status->qos_ctl = *ieee80211_get_qos_ctl(hdr); 671 status->seqno = IEEE80211_SEQ_TO_SN(le16_to_cpu(hdr->seq_ctrl)); 672 673 return 0; 674 } 675 676 static u16 677 mt7603_mac_tx_rate_val(struct mt7603_dev *dev, 678 const struct ieee80211_tx_rate *rate, bool stbc, u8 *bw) 679 { 680 u8 phy, nss, rate_idx; 681 u16 rateval; 682 683 *bw = 0; 684 if (rate->flags & IEEE80211_TX_RC_MCS) { 685 rate_idx = rate->idx; 686 nss = 1 + (rate->idx >> 3); 687 phy = MT_PHY_TYPE_HT; 688 if (rate->flags & IEEE80211_TX_RC_GREEN_FIELD) 689 phy = MT_PHY_TYPE_HT_GF; 690 if (rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) 691 *bw = 1; 692 } else { 693 const struct ieee80211_rate *r; 694 int band = dev->mphy.chandef.chan->band; 695 u16 val; 696 697 nss = 1; 698 r = &mt76_hw(dev)->wiphy->bands[band]->bitrates[rate->idx]; 699 if (rate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) 700 val = r->hw_value_short; 701 else 702 val = r->hw_value; 703 704 phy = val >> 8; 705 rate_idx = val & 0xff; 706 } 707 708 rateval = (FIELD_PREP(MT_TX_RATE_IDX, rate_idx) | 709 FIELD_PREP(MT_TX_RATE_MODE, phy)); 710 711 if (stbc && nss == 1) 712 rateval |= MT_TX_RATE_STBC; 713 714 return rateval; 715 } 716 717 void mt7603_wtbl_set_rates(struct mt7603_dev *dev, struct mt7603_sta *sta, 718 struct ieee80211_tx_rate *probe_rate, 719 struct ieee80211_tx_rate *rates) 720 { 721 struct ieee80211_tx_rate *ref; 722 int wcid = sta->wcid.idx; 723 u32 addr = mt7603_wtbl2_addr(wcid); 724 bool stbc = false; 725 int n_rates = sta->n_rates; 726 u8 bw, bw_prev, bw_idx = 0; 727 u16 val[4]; 728 u16 probe_val; 729 u32 w9 = mt76_rr(dev, addr + 9 * 4); 730 bool rateset; 731 int i, k; 732 733 if (!mt76_poll(dev, MT_WTBL_UPDATE, MT_WTBL_UPDATE_BUSY, 0, 5000)) 734 return; 735 736 for (i = n_rates; i < 4; i++) 737 rates[i] = rates[n_rates - 1]; 738 739 rateset = !(sta->rate_set_tsf & BIT(0)); 740 memcpy(sta->rateset[rateset].rates, rates, 741 sizeof(sta->rateset[rateset].rates)); 742 if (probe_rate) { 743 sta->rateset[rateset].probe_rate = *probe_rate; 744 ref = &sta->rateset[rateset].probe_rate; 745 } else { 746 sta->rateset[rateset].probe_rate.idx = -1; 747 ref = &sta->rateset[rateset].rates[0]; 748 } 749 750 rates = sta->rateset[rateset].rates; 751 for (i = 0; i < ARRAY_SIZE(sta->rateset[rateset].rates); i++) { 752 /* 753 * We don't support switching between short and long GI 754 * within the rate set. For accurate tx status reporting, we 755 * need to make sure that flags match. 756 * For improved performance, avoid duplicate entries by 757 * decrementing the MCS index if necessary 758 */ 759 if ((ref->flags ^ rates[i].flags) & IEEE80211_TX_RC_SHORT_GI) 760 rates[i].flags ^= IEEE80211_TX_RC_SHORT_GI; 761 762 for (k = 0; k < i; k++) { 763 if (rates[i].idx != rates[k].idx) 764 continue; 765 if ((rates[i].flags ^ rates[k].flags) & 766 IEEE80211_TX_RC_40_MHZ_WIDTH) 767 continue; 768 769 if (!rates[i].idx) 770 continue; 771 772 rates[i].idx--; 773 } 774 } 775 776 w9 &= MT_WTBL2_W9_SHORT_GI_20 | MT_WTBL2_W9_SHORT_GI_40 | 777 MT_WTBL2_W9_SHORT_GI_80; 778 779 val[0] = mt7603_mac_tx_rate_val(dev, &rates[0], stbc, &bw); 780 bw_prev = bw; 781 782 if (probe_rate) { 783 probe_val = mt7603_mac_tx_rate_val(dev, probe_rate, stbc, &bw); 784 if (bw) 785 bw_idx = 1; 786 else 787 bw_prev = 0; 788 } else { 789 probe_val = val[0]; 790 } 791 792 w9 |= FIELD_PREP(MT_WTBL2_W9_CC_BW_SEL, bw); 793 w9 |= FIELD_PREP(MT_WTBL2_W9_BW_CAP, bw); 794 795 val[1] = mt7603_mac_tx_rate_val(dev, &rates[1], stbc, &bw); 796 if (bw_prev) { 797 bw_idx = 3; 798 bw_prev = bw; 799 } 800 801 val[2] = mt7603_mac_tx_rate_val(dev, &rates[2], stbc, &bw); 802 if (bw_prev) { 803 bw_idx = 5; 804 bw_prev = bw; 805 } 806 807 val[3] = mt7603_mac_tx_rate_val(dev, &rates[3], stbc, &bw); 808 if (bw_prev) 809 bw_idx = 7; 810 811 w9 |= FIELD_PREP(MT_WTBL2_W9_CHANGE_BW_RATE, 812 bw_idx ? bw_idx - 1 : 7); 813 814 mt76_wr(dev, MT_WTBL_RIUCR0, w9); 815 816 mt76_wr(dev, MT_WTBL_RIUCR1, 817 FIELD_PREP(MT_WTBL_RIUCR1_RATE0, probe_val) | 818 FIELD_PREP(MT_WTBL_RIUCR1_RATE1, val[0]) | 819 FIELD_PREP(MT_WTBL_RIUCR1_RATE2_LO, val[1])); 820 821 mt76_wr(dev, MT_WTBL_RIUCR2, 822 FIELD_PREP(MT_WTBL_RIUCR2_RATE2_HI, val[1] >> 8) | 823 FIELD_PREP(MT_WTBL_RIUCR2_RATE3, val[1]) | 824 FIELD_PREP(MT_WTBL_RIUCR2_RATE4, val[2]) | 825 FIELD_PREP(MT_WTBL_RIUCR2_RATE5_LO, val[2])); 826 827 mt76_wr(dev, MT_WTBL_RIUCR3, 828 FIELD_PREP(MT_WTBL_RIUCR3_RATE5_HI, val[2] >> 4) | 829 FIELD_PREP(MT_WTBL_RIUCR3_RATE6, val[3]) | 830 FIELD_PREP(MT_WTBL_RIUCR3_RATE7, val[3])); 831 832 mt76_set(dev, MT_LPON_T0CR, MT_LPON_T0CR_MODE); /* TSF read */ 833 sta->rate_set_tsf = (mt76_rr(dev, MT_LPON_UTTR0) & ~BIT(0)) | rateset; 834 835 mt76_wr(dev, MT_WTBL_UPDATE, 836 FIELD_PREP(MT_WTBL_UPDATE_WLAN_IDX, wcid) | 837 MT_WTBL_UPDATE_RATE_UPDATE | 838 MT_WTBL_UPDATE_TX_COUNT_CLEAR); 839 840 if (!(sta->wcid.tx_info & MT_WCID_TX_INFO_SET)) 841 mt76_poll(dev, MT_WTBL_UPDATE, MT_WTBL_UPDATE_BUSY, 0, 5000); 842 843 sta->rate_count = 2 * MT7603_RATE_RETRY * n_rates; 844 sta->wcid.tx_info |= MT_WCID_TX_INFO_SET; 845 } 846 847 static enum mt76_cipher_type 848 mt7603_mac_get_key_info(struct ieee80211_key_conf *key, u8 *key_data) 849 { 850 memset(key_data, 0, 32); 851 if (!key) 852 return MT_CIPHER_NONE; 853 854 if (key->keylen > 32) 855 return MT_CIPHER_NONE; 856 857 memcpy(key_data, key->key, key->keylen); 858 859 switch (key->cipher) { 860 case WLAN_CIPHER_SUITE_WEP40: 861 return MT_CIPHER_WEP40; 862 case WLAN_CIPHER_SUITE_WEP104: 863 return MT_CIPHER_WEP104; 864 case WLAN_CIPHER_SUITE_TKIP: 865 /* Rx/Tx MIC keys are swapped */ 866 memcpy(key_data + 16, key->key + 24, 8); 867 memcpy(key_data + 24, key->key + 16, 8); 868 return MT_CIPHER_TKIP; 869 case WLAN_CIPHER_SUITE_CCMP: 870 return MT_CIPHER_AES_CCMP; 871 default: 872 return MT_CIPHER_NONE; 873 } 874 } 875 876 int mt7603_wtbl_set_key(struct mt7603_dev *dev, int wcid, 877 struct ieee80211_key_conf *key) 878 { 879 enum mt76_cipher_type cipher; 880 u32 addr = mt7603_wtbl3_addr(wcid); 881 u8 key_data[32]; 882 int key_len = sizeof(key_data); 883 884 cipher = mt7603_mac_get_key_info(key, key_data); 885 if (cipher == MT_CIPHER_NONE && key) 886 return -EOPNOTSUPP; 887 888 if (key && (cipher == MT_CIPHER_WEP40 || cipher == MT_CIPHER_WEP104)) { 889 addr += key->keyidx * 16; 890 key_len = 16; 891 } 892 893 mt76_wr_copy(dev, addr, key_data, key_len); 894 895 addr = mt7603_wtbl1_addr(wcid); 896 mt76_rmw_field(dev, addr + 2 * 4, MT_WTBL1_W2_KEY_TYPE, cipher); 897 if (key) 898 mt76_rmw_field(dev, addr, MT_WTBL1_W0_KEY_IDX, key->keyidx); 899 mt76_rmw_field(dev, addr, MT_WTBL1_W0_RX_KEY_VALID, !!key); 900 901 return 0; 902 } 903 904 static int 905 mt7603_mac_write_txwi(struct mt7603_dev *dev, __le32 *txwi, 906 struct sk_buff *skb, enum mt76_txq_id qid, 907 struct mt76_wcid *wcid, struct ieee80211_sta *sta, 908 int pid, struct ieee80211_key_conf *key) 909 { 910 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 911 struct ieee80211_tx_rate *rate = &info->control.rates[0]; 912 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 913 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data; 914 struct ieee80211_vif *vif = info->control.vif; 915 struct mt76_queue *q = dev->mphy.q_tx[qid]; 916 struct mt7603_vif *mvif; 917 int wlan_idx; 918 int hdr_len = ieee80211_get_hdrlen_from_skb(skb); 919 int tx_count = 8; 920 u8 frame_type, frame_subtype; 921 u16 fc = le16_to_cpu(hdr->frame_control); 922 u16 seqno = 0; 923 u8 vif_idx = 0; 924 u32 val; 925 u8 bw; 926 927 if (vif) { 928 mvif = (struct mt7603_vif *)vif->drv_priv; 929 vif_idx = mvif->idx; 930 if (vif_idx && qid >= MT_TXQ_BEACON) 931 vif_idx += 0x10; 932 } 933 934 if (sta) { 935 struct mt7603_sta *msta = (struct mt7603_sta *)sta->drv_priv; 936 937 tx_count = msta->rate_count; 938 } 939 940 if (wcid) 941 wlan_idx = wcid->idx; 942 else 943 wlan_idx = MT7603_WTBL_RESERVED; 944 945 frame_type = (fc & IEEE80211_FCTL_FTYPE) >> 2; 946 frame_subtype = (fc & IEEE80211_FCTL_STYPE) >> 4; 947 948 val = FIELD_PREP(MT_TXD0_TX_BYTES, skb->len + MT_TXD_SIZE) | 949 FIELD_PREP(MT_TXD0_Q_IDX, q->hw_idx); 950 txwi[0] = cpu_to_le32(val); 951 952 val = MT_TXD1_LONG_FORMAT | 953 FIELD_PREP(MT_TXD1_OWN_MAC, vif_idx) | 954 FIELD_PREP(MT_TXD1_TID, 955 skb->priority & IEEE80211_QOS_CTL_TID_MASK) | 956 FIELD_PREP(MT_TXD1_HDR_FORMAT, MT_HDR_FORMAT_802_11) | 957 FIELD_PREP(MT_TXD1_HDR_INFO, hdr_len / 2) | 958 FIELD_PREP(MT_TXD1_WLAN_IDX, wlan_idx) | 959 FIELD_PREP(MT_TXD1_PROTECTED, !!key); 960 txwi[1] = cpu_to_le32(val); 961 962 if (info->flags & IEEE80211_TX_CTL_NO_ACK) 963 txwi[1] |= cpu_to_le32(MT_TXD1_NO_ACK); 964 965 val = FIELD_PREP(MT_TXD2_FRAME_TYPE, frame_type) | 966 FIELD_PREP(MT_TXD2_SUB_TYPE, frame_subtype) | 967 FIELD_PREP(MT_TXD2_MULTICAST, 968 is_multicast_ether_addr(hdr->addr1)); 969 txwi[2] = cpu_to_le32(val); 970 971 if (!(info->flags & IEEE80211_TX_CTL_AMPDU)) 972 txwi[2] |= cpu_to_le32(MT_TXD2_BA_DISABLE); 973 974 txwi[4] = 0; 975 976 val = MT_TXD5_TX_STATUS_HOST | MT_TXD5_SW_POWER_MGMT | 977 FIELD_PREP(MT_TXD5_PID, pid); 978 txwi[5] = cpu_to_le32(val); 979 980 txwi[6] = 0; 981 982 if (rate->idx >= 0 && rate->count && 983 !(info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE)) { 984 bool stbc = info->flags & IEEE80211_TX_CTL_STBC; 985 u16 rateval = mt7603_mac_tx_rate_val(dev, rate, stbc, &bw); 986 987 txwi[2] |= cpu_to_le32(MT_TXD2_FIX_RATE); 988 989 val = MT_TXD6_FIXED_BW | 990 FIELD_PREP(MT_TXD6_BW, bw) | 991 FIELD_PREP(MT_TXD6_TX_RATE, rateval); 992 txwi[6] |= cpu_to_le32(val); 993 994 if (rate->flags & IEEE80211_TX_RC_SHORT_GI) 995 txwi[6] |= cpu_to_le32(MT_TXD6_SGI); 996 997 if (!(rate->flags & IEEE80211_TX_RC_MCS)) 998 txwi[2] |= cpu_to_le32(MT_TXD2_BA_DISABLE); 999 1000 tx_count = rate->count; 1001 } 1002 1003 /* use maximum tx count for beacons and buffered multicast */ 1004 if (qid >= MT_TXQ_BEACON) 1005 tx_count = 0x1f; 1006 1007 val = FIELD_PREP(MT_TXD3_REM_TX_COUNT, tx_count) | 1008 MT_TXD3_SN_VALID; 1009 1010 if (ieee80211_is_data_qos(hdr->frame_control)) 1011 seqno = le16_to_cpu(hdr->seq_ctrl); 1012 else if (ieee80211_is_back_req(hdr->frame_control)) 1013 seqno = le16_to_cpu(bar->start_seq_num); 1014 else 1015 val &= ~MT_TXD3_SN_VALID; 1016 1017 val |= FIELD_PREP(MT_TXD3_SEQ, seqno >> 4); 1018 1019 txwi[3] = cpu_to_le32(val); 1020 1021 if (key) { 1022 u64 pn = atomic64_inc_return(&key->tx_pn); 1023 1024 txwi[3] |= cpu_to_le32(MT_TXD3_PN_VALID); 1025 txwi[4] = cpu_to_le32(pn & GENMASK(31, 0)); 1026 txwi[5] |= cpu_to_le32(FIELD_PREP(MT_TXD5_PN_HIGH, pn >> 32)); 1027 } 1028 1029 txwi[7] = 0; 1030 1031 return 0; 1032 } 1033 1034 int mt7603_tx_prepare_skb(struct mt76_dev *mdev, void *txwi_ptr, 1035 enum mt76_txq_id qid, struct mt76_wcid *wcid, 1036 struct ieee80211_sta *sta, 1037 struct mt76_tx_info *tx_info) 1038 { 1039 struct mt7603_dev *dev = container_of(mdev, struct mt7603_dev, mt76); 1040 struct mt7603_sta *msta = container_of(wcid, struct mt7603_sta, wcid); 1041 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx_info->skb); 1042 struct ieee80211_key_conf *key = info->control.hw_key; 1043 int pid; 1044 1045 if (!wcid) 1046 wcid = &dev->global_sta.wcid; 1047 1048 if (sta) { 1049 msta = (struct mt7603_sta *)sta->drv_priv; 1050 1051 if ((info->flags & (IEEE80211_TX_CTL_NO_PS_BUFFER | 1052 IEEE80211_TX_CTL_CLEAR_PS_FILT)) || 1053 (info->control.flags & IEEE80211_TX_CTRL_PS_RESPONSE)) 1054 mt7603_wtbl_set_ps(dev, msta, false); 1055 1056 mt76_tx_check_agg_ssn(sta, tx_info->skb); 1057 } 1058 1059 pid = mt76_tx_status_skb_add(mdev, wcid, tx_info->skb); 1060 1061 if (info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE) { 1062 spin_lock_bh(&dev->mt76.lock); 1063 mt7603_wtbl_set_rates(dev, msta, &info->control.rates[0], 1064 msta->rates); 1065 msta->rate_probe = true; 1066 spin_unlock_bh(&dev->mt76.lock); 1067 } 1068 1069 mt7603_mac_write_txwi(dev, txwi_ptr, tx_info->skb, qid, wcid, 1070 sta, pid, key); 1071 1072 return 0; 1073 } 1074 1075 static bool 1076 mt7603_fill_txs(struct mt7603_dev *dev, struct mt7603_sta *sta, 1077 struct ieee80211_tx_info *info, __le32 *txs_data) 1078 { 1079 struct ieee80211_supported_band *sband; 1080 struct mt7603_rate_set *rs; 1081 int first_idx = 0, last_idx; 1082 u32 rate_set_tsf; 1083 u32 final_rate; 1084 u32 final_rate_flags; 1085 bool rs_idx; 1086 bool ack_timeout; 1087 bool fixed_rate; 1088 bool probe; 1089 bool ampdu; 1090 bool cck = false; 1091 int count; 1092 u32 txs; 1093 int idx; 1094 int i; 1095 1096 fixed_rate = info->status.rates[0].count; 1097 probe = !!(info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE); 1098 1099 txs = le32_to_cpu(txs_data[4]); 1100 ampdu = !fixed_rate && (txs & MT_TXS4_AMPDU); 1101 count = FIELD_GET(MT_TXS4_TX_COUNT, txs); 1102 last_idx = FIELD_GET(MT_TXS4_LAST_TX_RATE, txs); 1103 1104 txs = le32_to_cpu(txs_data[0]); 1105 final_rate = FIELD_GET(MT_TXS0_TX_RATE, txs); 1106 ack_timeout = txs & MT_TXS0_ACK_TIMEOUT; 1107 1108 if (!ampdu && (txs & MT_TXS0_RTS_TIMEOUT)) 1109 return false; 1110 1111 if (txs & MT_TXS0_QUEUE_TIMEOUT) 1112 return false; 1113 1114 if (!ack_timeout) 1115 info->flags |= IEEE80211_TX_STAT_ACK; 1116 1117 info->status.ampdu_len = 1; 1118 info->status.ampdu_ack_len = !!(info->flags & 1119 IEEE80211_TX_STAT_ACK); 1120 1121 if (ampdu || (info->flags & IEEE80211_TX_CTL_AMPDU)) 1122 info->flags |= IEEE80211_TX_STAT_AMPDU | IEEE80211_TX_CTL_AMPDU; 1123 1124 first_idx = max_t(int, 0, last_idx - (count - 1) / MT7603_RATE_RETRY); 1125 1126 if (fixed_rate && !probe) { 1127 info->status.rates[0].count = count; 1128 i = 0; 1129 goto out; 1130 } 1131 1132 rate_set_tsf = READ_ONCE(sta->rate_set_tsf); 1133 rs_idx = !((u32)(le32_get_bits(txs_data[1], MT_TXS1_F0_TIMESTAMP) - 1134 rate_set_tsf) < 1000000); 1135 rs_idx ^= rate_set_tsf & BIT(0); 1136 rs = &sta->rateset[rs_idx]; 1137 1138 if (!first_idx && rs->probe_rate.idx >= 0) { 1139 info->status.rates[0] = rs->probe_rate; 1140 1141 spin_lock_bh(&dev->mt76.lock); 1142 if (sta->rate_probe) { 1143 mt7603_wtbl_set_rates(dev, sta, NULL, 1144 sta->rates); 1145 sta->rate_probe = false; 1146 } 1147 spin_unlock_bh(&dev->mt76.lock); 1148 } else { 1149 info->status.rates[0] = rs->rates[first_idx / 2]; 1150 } 1151 info->status.rates[0].count = 0; 1152 1153 for (i = 0, idx = first_idx; count && idx <= last_idx; idx++) { 1154 struct ieee80211_tx_rate *cur_rate; 1155 int cur_count; 1156 1157 cur_rate = &rs->rates[idx / 2]; 1158 cur_count = min_t(int, MT7603_RATE_RETRY, count); 1159 count -= cur_count; 1160 1161 if (idx && (cur_rate->idx != info->status.rates[i].idx || 1162 cur_rate->flags != info->status.rates[i].flags)) { 1163 i++; 1164 if (i == ARRAY_SIZE(info->status.rates)) { 1165 i--; 1166 break; 1167 } 1168 1169 info->status.rates[i] = *cur_rate; 1170 info->status.rates[i].count = 0; 1171 } 1172 1173 info->status.rates[i].count += cur_count; 1174 } 1175 1176 out: 1177 final_rate_flags = info->status.rates[i].flags; 1178 1179 switch (FIELD_GET(MT_TX_RATE_MODE, final_rate)) { 1180 case MT_PHY_TYPE_CCK: 1181 cck = true; 1182 fallthrough; 1183 case MT_PHY_TYPE_OFDM: 1184 if (dev->mphy.chandef.chan->band == NL80211_BAND_5GHZ) 1185 sband = &dev->mphy.sband_5g.sband; 1186 else 1187 sband = &dev->mphy.sband_2g.sband; 1188 final_rate &= GENMASK(5, 0); 1189 final_rate = mt76_get_rate(&dev->mt76, sband, final_rate, 1190 cck); 1191 final_rate_flags = 0; 1192 break; 1193 case MT_PHY_TYPE_HT_GF: 1194 case MT_PHY_TYPE_HT: 1195 final_rate_flags |= IEEE80211_TX_RC_MCS; 1196 final_rate &= GENMASK(5, 0); 1197 if (final_rate > 15) 1198 return false; 1199 break; 1200 default: 1201 return false; 1202 } 1203 1204 info->status.rates[i].idx = final_rate; 1205 info->status.rates[i].flags = final_rate_flags; 1206 1207 return true; 1208 } 1209 1210 static bool 1211 mt7603_mac_add_txs_skb(struct mt7603_dev *dev, struct mt7603_sta *sta, int pid, 1212 __le32 *txs_data) 1213 { 1214 struct mt76_dev *mdev = &dev->mt76; 1215 struct sk_buff_head list; 1216 struct sk_buff *skb; 1217 1218 if (pid < MT_PACKET_ID_FIRST) 1219 return false; 1220 1221 trace_mac_txdone(mdev, sta->wcid.idx, pid); 1222 1223 mt76_tx_status_lock(mdev, &list); 1224 skb = mt76_tx_status_skb_get(mdev, &sta->wcid, pid, &list); 1225 if (skb) { 1226 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 1227 1228 if (!mt7603_fill_txs(dev, sta, info, txs_data)) { 1229 info->status.rates[0].count = 0; 1230 info->status.rates[0].idx = -1; 1231 } 1232 1233 mt76_tx_status_skb_done(mdev, skb, &list); 1234 } 1235 mt76_tx_status_unlock(mdev, &list); 1236 1237 return !!skb; 1238 } 1239 1240 void mt7603_mac_add_txs(struct mt7603_dev *dev, void *data) 1241 { 1242 struct ieee80211_tx_info info = {}; 1243 struct ieee80211_sta *sta = NULL; 1244 struct mt7603_sta *msta = NULL; 1245 struct mt76_wcid *wcid; 1246 __le32 *txs_data = data; 1247 u8 wcidx; 1248 u8 pid; 1249 1250 pid = le32_get_bits(txs_data[4], MT_TXS4_PID); 1251 wcidx = le32_get_bits(txs_data[3], MT_TXS3_WCID); 1252 1253 if (pid == MT_PACKET_ID_NO_ACK) 1254 return; 1255 1256 if (wcidx >= MT7603_WTBL_SIZE) 1257 return; 1258 1259 rcu_read_lock(); 1260 1261 wcid = rcu_dereference(dev->mt76.wcid[wcidx]); 1262 if (!wcid) 1263 goto out; 1264 1265 msta = container_of(wcid, struct mt7603_sta, wcid); 1266 sta = wcid_to_sta(wcid); 1267 1268 if (list_empty(&msta->poll_list)) { 1269 spin_lock_bh(&dev->sta_poll_lock); 1270 list_add_tail(&msta->poll_list, &dev->sta_poll_list); 1271 spin_unlock_bh(&dev->sta_poll_lock); 1272 } 1273 1274 if (mt7603_mac_add_txs_skb(dev, msta, pid, txs_data)) 1275 goto out; 1276 1277 if (wcidx >= MT7603_WTBL_STA || !sta) 1278 goto out; 1279 1280 if (mt7603_fill_txs(dev, msta, &info, txs_data)) 1281 ieee80211_tx_status_noskb(mt76_hw(dev), sta, &info); 1282 1283 out: 1284 rcu_read_unlock(); 1285 } 1286 1287 void mt7603_tx_complete_skb(struct mt76_dev *mdev, struct mt76_queue_entry *e) 1288 { 1289 struct mt7603_dev *dev = container_of(mdev, struct mt7603_dev, mt76); 1290 struct sk_buff *skb = e->skb; 1291 1292 if (!e->txwi) { 1293 dev_kfree_skb_any(skb); 1294 return; 1295 } 1296 1297 dev->tx_hang_check = 0; 1298 mt76_tx_complete_skb(mdev, e->wcid, skb); 1299 } 1300 1301 static bool 1302 wait_for_wpdma(struct mt7603_dev *dev) 1303 { 1304 return mt76_poll(dev, MT_WPDMA_GLO_CFG, 1305 MT_WPDMA_GLO_CFG_TX_DMA_BUSY | 1306 MT_WPDMA_GLO_CFG_RX_DMA_BUSY, 1307 0, 1000); 1308 } 1309 1310 static void mt7603_pse_reset(struct mt7603_dev *dev) 1311 { 1312 /* Clear previous reset result */ 1313 if (!dev->reset_cause[RESET_CAUSE_RESET_FAILED]) 1314 mt76_clear(dev, MT_MCU_DEBUG_RESET, MT_MCU_DEBUG_RESET_PSE_S); 1315 1316 /* Reset PSE */ 1317 mt76_set(dev, MT_MCU_DEBUG_RESET, MT_MCU_DEBUG_RESET_PSE); 1318 1319 if (!mt76_poll_msec(dev, MT_MCU_DEBUG_RESET, 1320 MT_MCU_DEBUG_RESET_PSE_S, 1321 MT_MCU_DEBUG_RESET_PSE_S, 500)) { 1322 dev->reset_cause[RESET_CAUSE_RESET_FAILED]++; 1323 mt76_clear(dev, MT_MCU_DEBUG_RESET, MT_MCU_DEBUG_RESET_PSE); 1324 } else { 1325 dev->reset_cause[RESET_CAUSE_RESET_FAILED] = 0; 1326 mt76_clear(dev, MT_MCU_DEBUG_RESET, MT_MCU_DEBUG_RESET_QUEUES); 1327 } 1328 1329 if (dev->reset_cause[RESET_CAUSE_RESET_FAILED] >= 3) 1330 dev->reset_cause[RESET_CAUSE_RESET_FAILED] = 0; 1331 } 1332 1333 void mt7603_mac_dma_start(struct mt7603_dev *dev) 1334 { 1335 mt7603_mac_start(dev); 1336 1337 wait_for_wpdma(dev); 1338 usleep_range(50, 100); 1339 1340 mt76_set(dev, MT_WPDMA_GLO_CFG, 1341 (MT_WPDMA_GLO_CFG_TX_DMA_EN | 1342 MT_WPDMA_GLO_CFG_RX_DMA_EN | 1343 FIELD_PREP(MT_WPDMA_GLO_CFG_DMA_BURST_SIZE, 3) | 1344 MT_WPDMA_GLO_CFG_TX_WRITEBACK_DONE)); 1345 1346 mt7603_irq_enable(dev, MT_INT_RX_DONE_ALL | MT_INT_TX_DONE_ALL); 1347 } 1348 1349 void mt7603_mac_start(struct mt7603_dev *dev) 1350 { 1351 mt76_clear(dev, MT_ARB_SCR, 1352 MT_ARB_SCR_TX_DISABLE | MT_ARB_SCR_RX_DISABLE); 1353 mt76_wr(dev, MT_WF_ARB_TX_START_0, ~0); 1354 mt76_set(dev, MT_WF_ARB_RQCR, MT_WF_ARB_RQCR_RX_START); 1355 } 1356 1357 void mt7603_mac_stop(struct mt7603_dev *dev) 1358 { 1359 mt76_set(dev, MT_ARB_SCR, 1360 MT_ARB_SCR_TX_DISABLE | MT_ARB_SCR_RX_DISABLE); 1361 mt76_wr(dev, MT_WF_ARB_TX_START_0, 0); 1362 mt76_clear(dev, MT_WF_ARB_RQCR, MT_WF_ARB_RQCR_RX_START); 1363 } 1364 1365 void mt7603_pse_client_reset(struct mt7603_dev *dev) 1366 { 1367 u32 addr; 1368 1369 addr = mt7603_reg_map(dev, MT_CLIENT_BASE_PHYS_ADDR + 1370 MT_CLIENT_RESET_TX); 1371 1372 /* Clear previous reset state */ 1373 mt76_clear(dev, addr, 1374 MT_CLIENT_RESET_TX_R_E_1 | 1375 MT_CLIENT_RESET_TX_R_E_2 | 1376 MT_CLIENT_RESET_TX_R_E_1_S | 1377 MT_CLIENT_RESET_TX_R_E_2_S); 1378 1379 /* Start PSE client TX abort */ 1380 mt76_set(dev, addr, MT_CLIENT_RESET_TX_R_E_1); 1381 mt76_poll_msec(dev, addr, MT_CLIENT_RESET_TX_R_E_1_S, 1382 MT_CLIENT_RESET_TX_R_E_1_S, 500); 1383 1384 mt76_set(dev, addr, MT_CLIENT_RESET_TX_R_E_2); 1385 mt76_set(dev, MT_WPDMA_GLO_CFG, MT_WPDMA_GLO_CFG_SW_RESET); 1386 1387 /* Wait for PSE client to clear TX FIFO */ 1388 mt76_poll_msec(dev, addr, MT_CLIENT_RESET_TX_R_E_2_S, 1389 MT_CLIENT_RESET_TX_R_E_2_S, 500); 1390 1391 /* Clear PSE client TX abort state */ 1392 mt76_clear(dev, addr, 1393 MT_CLIENT_RESET_TX_R_E_1 | 1394 MT_CLIENT_RESET_TX_R_E_2); 1395 } 1396 1397 static void mt7603_dma_sched_reset(struct mt7603_dev *dev) 1398 { 1399 if (!is_mt7628(dev)) 1400 return; 1401 1402 mt76_set(dev, MT_SCH_4, MT_SCH_4_RESET); 1403 mt76_clear(dev, MT_SCH_4, MT_SCH_4_RESET); 1404 } 1405 1406 static void mt7603_mac_watchdog_reset(struct mt7603_dev *dev) 1407 { 1408 int beacon_int = dev->mt76.beacon_int; 1409 u32 mask = dev->mt76.mmio.irqmask; 1410 int i; 1411 1412 ieee80211_stop_queues(dev->mt76.hw); 1413 set_bit(MT76_RESET, &dev->mphy.state); 1414 1415 /* lock/unlock all queues to ensure that no tx is pending */ 1416 mt76_txq_schedule_all(&dev->mphy); 1417 1418 mt76_worker_disable(&dev->mt76.tx_worker); 1419 tasklet_disable(&dev->mt76.pre_tbtt_tasklet); 1420 napi_disable(&dev->mt76.napi[0]); 1421 napi_disable(&dev->mt76.napi[1]); 1422 napi_disable(&dev->mt76.tx_napi); 1423 1424 mutex_lock(&dev->mt76.mutex); 1425 1426 mt7603_beacon_set_timer(dev, -1, 0); 1427 1428 if (dev->reset_cause[RESET_CAUSE_RESET_FAILED] || 1429 dev->cur_reset_cause == RESET_CAUSE_RX_PSE_BUSY || 1430 dev->cur_reset_cause == RESET_CAUSE_BEACON_STUCK || 1431 dev->cur_reset_cause == RESET_CAUSE_TX_HANG) 1432 mt7603_pse_reset(dev); 1433 1434 if (dev->reset_cause[RESET_CAUSE_RESET_FAILED]) 1435 goto skip_dma_reset; 1436 1437 mt7603_mac_stop(dev); 1438 1439 mt76_clear(dev, MT_WPDMA_GLO_CFG, 1440 MT_WPDMA_GLO_CFG_RX_DMA_EN | MT_WPDMA_GLO_CFG_TX_DMA_EN | 1441 MT_WPDMA_GLO_CFG_TX_WRITEBACK_DONE); 1442 usleep_range(1000, 2000); 1443 1444 mt7603_irq_disable(dev, mask); 1445 1446 mt76_set(dev, MT_WPDMA_GLO_CFG, MT_WPDMA_GLO_CFG_FORCE_TX_EOF); 1447 1448 mt7603_pse_client_reset(dev); 1449 1450 mt76_queue_tx_cleanup(dev, dev->mt76.q_mcu[MT_MCUQ_WM], true); 1451 for (i = 0; i < __MT_TXQ_MAX; i++) 1452 mt76_queue_tx_cleanup(dev, dev->mphy.q_tx[i], true); 1453 1454 mt76_for_each_q_rx(&dev->mt76, i) { 1455 mt76_queue_rx_reset(dev, i); 1456 } 1457 1458 mt76_tx_status_check(&dev->mt76, true); 1459 1460 mt7603_dma_sched_reset(dev); 1461 1462 mt7603_mac_dma_start(dev); 1463 1464 mt7603_irq_enable(dev, mask); 1465 1466 skip_dma_reset: 1467 clear_bit(MT76_RESET, &dev->mphy.state); 1468 mutex_unlock(&dev->mt76.mutex); 1469 1470 mt76_worker_enable(&dev->mt76.tx_worker); 1471 1472 tasklet_enable(&dev->mt76.pre_tbtt_tasklet); 1473 mt7603_beacon_set_timer(dev, -1, beacon_int); 1474 1475 local_bh_disable(); 1476 napi_enable(&dev->mt76.tx_napi); 1477 napi_schedule(&dev->mt76.tx_napi); 1478 1479 napi_enable(&dev->mt76.napi[0]); 1480 napi_schedule(&dev->mt76.napi[0]); 1481 1482 napi_enable(&dev->mt76.napi[1]); 1483 napi_schedule(&dev->mt76.napi[1]); 1484 local_bh_enable(); 1485 1486 ieee80211_wake_queues(dev->mt76.hw); 1487 mt76_txq_schedule_all(&dev->mphy); 1488 } 1489 1490 static u32 mt7603_dma_debug(struct mt7603_dev *dev, u8 index) 1491 { 1492 u32 val; 1493 1494 mt76_wr(dev, MT_WPDMA_DEBUG, 1495 FIELD_PREP(MT_WPDMA_DEBUG_IDX, index) | 1496 MT_WPDMA_DEBUG_SEL); 1497 1498 val = mt76_rr(dev, MT_WPDMA_DEBUG); 1499 return FIELD_GET(MT_WPDMA_DEBUG_VALUE, val); 1500 } 1501 1502 static bool mt7603_rx_fifo_busy(struct mt7603_dev *dev) 1503 { 1504 if (is_mt7628(dev)) 1505 return mt7603_dma_debug(dev, 9) & BIT(9); 1506 1507 return mt7603_dma_debug(dev, 2) & BIT(8); 1508 } 1509 1510 static bool mt7603_rx_dma_busy(struct mt7603_dev *dev) 1511 { 1512 if (!(mt76_rr(dev, MT_WPDMA_GLO_CFG) & MT_WPDMA_GLO_CFG_RX_DMA_BUSY)) 1513 return false; 1514 1515 return mt7603_rx_fifo_busy(dev); 1516 } 1517 1518 static bool mt7603_tx_dma_busy(struct mt7603_dev *dev) 1519 { 1520 u32 val; 1521 1522 if (!(mt76_rr(dev, MT_WPDMA_GLO_CFG) & MT_WPDMA_GLO_CFG_TX_DMA_BUSY)) 1523 return false; 1524 1525 val = mt7603_dma_debug(dev, 9); 1526 return (val & BIT(8)) && (val & 0xf) != 0xf; 1527 } 1528 1529 static bool mt7603_tx_hang(struct mt7603_dev *dev) 1530 { 1531 struct mt76_queue *q; 1532 u32 dma_idx, prev_dma_idx; 1533 int i; 1534 1535 for (i = 0; i < 4; i++) { 1536 q = dev->mphy.q_tx[i]; 1537 1538 if (!q->queued) 1539 continue; 1540 1541 prev_dma_idx = dev->tx_dma_idx[i]; 1542 dma_idx = readl(&q->regs->dma_idx); 1543 dev->tx_dma_idx[i] = dma_idx; 1544 1545 if (dma_idx == prev_dma_idx && 1546 dma_idx != readl(&q->regs->cpu_idx)) 1547 break; 1548 } 1549 1550 return i < 4; 1551 } 1552 1553 static bool mt7603_rx_pse_busy(struct mt7603_dev *dev) 1554 { 1555 u32 addr, val; 1556 1557 if (mt76_rr(dev, MT_MCU_DEBUG_RESET) & MT_MCU_DEBUG_RESET_QUEUES) 1558 return true; 1559 1560 if (mt7603_rx_fifo_busy(dev)) 1561 return false; 1562 1563 addr = mt7603_reg_map(dev, MT_CLIENT_BASE_PHYS_ADDR + MT_CLIENT_STATUS); 1564 mt76_wr(dev, addr, 3); 1565 val = mt76_rr(dev, addr) >> 16; 1566 1567 if (is_mt7628(dev) && (val & 0x4001) == 0x4001) 1568 return true; 1569 1570 return (val & 0x8001) == 0x8001 || (val & 0xe001) == 0xe001; 1571 } 1572 1573 static bool 1574 mt7603_watchdog_check(struct mt7603_dev *dev, u8 *counter, 1575 enum mt7603_reset_cause cause, 1576 bool (*check)(struct mt7603_dev *dev)) 1577 { 1578 if (dev->reset_test == cause + 1) { 1579 dev->reset_test = 0; 1580 goto trigger; 1581 } 1582 1583 if (check) { 1584 if (!check(dev) && *counter < MT7603_WATCHDOG_TIMEOUT) { 1585 *counter = 0; 1586 return false; 1587 } 1588 1589 (*counter)++; 1590 } 1591 1592 if (*counter < MT7603_WATCHDOG_TIMEOUT) 1593 return false; 1594 trigger: 1595 dev->cur_reset_cause = cause; 1596 dev->reset_cause[cause]++; 1597 return true; 1598 } 1599 1600 void mt7603_update_channel(struct mt76_phy *mphy) 1601 { 1602 struct mt7603_dev *dev = container_of(mphy->dev, struct mt7603_dev, mt76); 1603 struct mt76_channel_state *state; 1604 1605 state = mphy->chan_state; 1606 state->cc_busy += mt76_rr(dev, MT_MIB_STAT_CCA); 1607 } 1608 1609 void 1610 mt7603_edcca_set_strict(struct mt7603_dev *dev, bool val) 1611 { 1612 u32 rxtd_6 = 0xd7c80000; 1613 1614 if (val == dev->ed_strict_mode) 1615 return; 1616 1617 dev->ed_strict_mode = val; 1618 1619 /* Ensure that ED/CCA does not trigger if disabled */ 1620 if (!dev->ed_monitor) 1621 rxtd_6 |= FIELD_PREP(MT_RXTD_6_CCAED_TH, 0x34); 1622 else 1623 rxtd_6 |= FIELD_PREP(MT_RXTD_6_CCAED_TH, 0x7d); 1624 1625 if (dev->ed_monitor && !dev->ed_strict_mode) 1626 rxtd_6 |= FIELD_PREP(MT_RXTD_6_ACI_TH, 0x0f); 1627 else 1628 rxtd_6 |= FIELD_PREP(MT_RXTD_6_ACI_TH, 0x10); 1629 1630 mt76_wr(dev, MT_RXTD(6), rxtd_6); 1631 1632 mt76_rmw_field(dev, MT_RXTD(13), MT_RXTD_13_ACI_TH_EN, 1633 dev->ed_monitor && !dev->ed_strict_mode); 1634 } 1635 1636 static void 1637 mt7603_edcca_check(struct mt7603_dev *dev) 1638 { 1639 u32 val = mt76_rr(dev, MT_AGC(41)); 1640 ktime_t cur_time; 1641 int rssi0, rssi1; 1642 u32 active; 1643 u32 ed_busy; 1644 1645 if (!dev->ed_monitor) 1646 return; 1647 1648 rssi0 = FIELD_GET(MT_AGC_41_RSSI_0, val); 1649 if (rssi0 > 128) 1650 rssi0 -= 256; 1651 1652 if (dev->mphy.antenna_mask & BIT(1)) { 1653 rssi1 = FIELD_GET(MT_AGC_41_RSSI_1, val); 1654 if (rssi1 > 128) 1655 rssi1 -= 256; 1656 } else { 1657 rssi1 = rssi0; 1658 } 1659 1660 if (max(rssi0, rssi1) >= -40 && 1661 dev->ed_strong_signal < MT7603_EDCCA_BLOCK_TH) 1662 dev->ed_strong_signal++; 1663 else if (dev->ed_strong_signal > 0) 1664 dev->ed_strong_signal--; 1665 1666 cur_time = ktime_get_boottime(); 1667 ed_busy = mt76_rr(dev, MT_MIB_STAT_ED) & MT_MIB_STAT_ED_MASK; 1668 1669 active = ktime_to_us(ktime_sub(cur_time, dev->ed_time)); 1670 dev->ed_time = cur_time; 1671 1672 if (!active) 1673 return; 1674 1675 if (100 * ed_busy / active > 90) { 1676 if (dev->ed_trigger < 0) 1677 dev->ed_trigger = 0; 1678 dev->ed_trigger++; 1679 } else { 1680 if (dev->ed_trigger > 0) 1681 dev->ed_trigger = 0; 1682 dev->ed_trigger--; 1683 } 1684 1685 if (dev->ed_trigger > MT7603_EDCCA_BLOCK_TH || 1686 dev->ed_strong_signal < MT7603_EDCCA_BLOCK_TH / 2) { 1687 mt7603_edcca_set_strict(dev, true); 1688 } else if (dev->ed_trigger < -MT7603_EDCCA_BLOCK_TH) { 1689 mt7603_edcca_set_strict(dev, false); 1690 } 1691 1692 if (dev->ed_trigger > MT7603_EDCCA_BLOCK_TH) 1693 dev->ed_trigger = MT7603_EDCCA_BLOCK_TH; 1694 else if (dev->ed_trigger < -MT7603_EDCCA_BLOCK_TH) 1695 dev->ed_trigger = -MT7603_EDCCA_BLOCK_TH; 1696 } 1697 1698 void mt7603_cca_stats_reset(struct mt7603_dev *dev) 1699 { 1700 mt76_set(dev, MT_PHYCTRL(2), MT_PHYCTRL_2_STATUS_RESET); 1701 mt76_clear(dev, MT_PHYCTRL(2), MT_PHYCTRL_2_STATUS_RESET); 1702 mt76_set(dev, MT_PHYCTRL(2), MT_PHYCTRL_2_STATUS_EN); 1703 } 1704 1705 static void 1706 mt7603_adjust_sensitivity(struct mt7603_dev *dev) 1707 { 1708 u32 agc0 = dev->agc0, agc3 = dev->agc3; 1709 u32 adj; 1710 1711 if (!dev->sensitivity || dev->sensitivity < -100) { 1712 dev->sensitivity = 0; 1713 } else if (dev->sensitivity <= -84) { 1714 adj = 7 + (dev->sensitivity + 92) / 2; 1715 1716 agc0 = 0x56f0076f; 1717 agc0 |= adj << 12; 1718 agc0 |= adj << 16; 1719 agc3 = 0x81d0d5e3; 1720 } else if (dev->sensitivity <= -72) { 1721 adj = 7 + (dev->sensitivity + 80) / 2; 1722 1723 agc0 = 0x6af0006f; 1724 agc0 |= adj << 8; 1725 agc0 |= adj << 12; 1726 agc0 |= adj << 16; 1727 1728 agc3 = 0x8181d5e3; 1729 } else { 1730 if (dev->sensitivity > -54) 1731 dev->sensitivity = -54; 1732 1733 adj = 7 + (dev->sensitivity + 80) / 2; 1734 1735 agc0 = 0x7ff0000f; 1736 agc0 |= adj << 4; 1737 agc0 |= adj << 8; 1738 agc0 |= adj << 12; 1739 agc0 |= adj << 16; 1740 1741 agc3 = 0x818181e3; 1742 } 1743 1744 mt76_wr(dev, MT_AGC(0), agc0); 1745 mt76_wr(dev, MT_AGC1(0), agc0); 1746 1747 mt76_wr(dev, MT_AGC(3), agc3); 1748 mt76_wr(dev, MT_AGC1(3), agc3); 1749 } 1750 1751 static void 1752 mt7603_false_cca_check(struct mt7603_dev *dev) 1753 { 1754 int pd_cck, pd_ofdm, mdrdy_cck, mdrdy_ofdm; 1755 int false_cca; 1756 int min_signal; 1757 u32 val; 1758 1759 if (!dev->dynamic_sensitivity) 1760 return; 1761 1762 val = mt76_rr(dev, MT_PHYCTRL_STAT_PD); 1763 pd_cck = FIELD_GET(MT_PHYCTRL_STAT_PD_CCK, val); 1764 pd_ofdm = FIELD_GET(MT_PHYCTRL_STAT_PD_OFDM, val); 1765 1766 val = mt76_rr(dev, MT_PHYCTRL_STAT_MDRDY); 1767 mdrdy_cck = FIELD_GET(MT_PHYCTRL_STAT_MDRDY_CCK, val); 1768 mdrdy_ofdm = FIELD_GET(MT_PHYCTRL_STAT_MDRDY_OFDM, val); 1769 1770 dev->false_cca_ofdm = pd_ofdm - mdrdy_ofdm; 1771 dev->false_cca_cck = pd_cck - mdrdy_cck; 1772 1773 mt7603_cca_stats_reset(dev); 1774 1775 min_signal = mt76_get_min_avg_rssi(&dev->mt76, false); 1776 if (!min_signal) { 1777 dev->sensitivity = 0; 1778 dev->last_cca_adj = jiffies; 1779 goto out; 1780 } 1781 1782 min_signal -= 15; 1783 1784 false_cca = dev->false_cca_ofdm + dev->false_cca_cck; 1785 if (false_cca > 600 && 1786 dev->sensitivity < -100 + dev->sensitivity_limit) { 1787 if (!dev->sensitivity) 1788 dev->sensitivity = -92; 1789 else 1790 dev->sensitivity += 2; 1791 dev->last_cca_adj = jiffies; 1792 } else if (false_cca < 100 || 1793 time_after(jiffies, dev->last_cca_adj + 10 * HZ)) { 1794 dev->last_cca_adj = jiffies; 1795 if (!dev->sensitivity) 1796 goto out; 1797 1798 dev->sensitivity -= 2; 1799 } 1800 1801 if (dev->sensitivity && dev->sensitivity > min_signal) { 1802 dev->sensitivity = min_signal; 1803 dev->last_cca_adj = jiffies; 1804 } 1805 1806 out: 1807 mt7603_adjust_sensitivity(dev); 1808 } 1809 1810 void mt7603_mac_work(struct work_struct *work) 1811 { 1812 struct mt7603_dev *dev = container_of(work, struct mt7603_dev, 1813 mphy.mac_work.work); 1814 bool reset = false; 1815 int i, idx; 1816 1817 mt76_tx_status_check(&dev->mt76, false); 1818 1819 mutex_lock(&dev->mt76.mutex); 1820 1821 dev->mphy.mac_work_count++; 1822 mt76_update_survey(&dev->mphy); 1823 mt7603_edcca_check(dev); 1824 1825 for (i = 0, idx = 0; i < 2; i++) { 1826 u32 val = mt76_rr(dev, MT_TX_AGG_CNT(i)); 1827 1828 dev->mt76.aggr_stats[idx++] += val & 0xffff; 1829 dev->mt76.aggr_stats[idx++] += val >> 16; 1830 } 1831 1832 if (dev->mphy.mac_work_count == 10) 1833 mt7603_false_cca_check(dev); 1834 1835 if (mt7603_watchdog_check(dev, &dev->rx_pse_check, 1836 RESET_CAUSE_RX_PSE_BUSY, 1837 mt7603_rx_pse_busy) || 1838 mt7603_watchdog_check(dev, &dev->beacon_check, 1839 RESET_CAUSE_BEACON_STUCK, 1840 NULL) || 1841 mt7603_watchdog_check(dev, &dev->tx_hang_check, 1842 RESET_CAUSE_TX_HANG, 1843 mt7603_tx_hang) || 1844 mt7603_watchdog_check(dev, &dev->tx_dma_check, 1845 RESET_CAUSE_TX_BUSY, 1846 mt7603_tx_dma_busy) || 1847 mt7603_watchdog_check(dev, &dev->rx_dma_check, 1848 RESET_CAUSE_RX_BUSY, 1849 mt7603_rx_dma_busy) || 1850 mt7603_watchdog_check(dev, &dev->mcu_hang, 1851 RESET_CAUSE_MCU_HANG, 1852 NULL) || 1853 dev->reset_cause[RESET_CAUSE_RESET_FAILED]) { 1854 dev->beacon_check = 0; 1855 dev->tx_dma_check = 0; 1856 dev->tx_hang_check = 0; 1857 dev->rx_dma_check = 0; 1858 dev->rx_pse_check = 0; 1859 dev->mcu_hang = 0; 1860 dev->rx_dma_idx = ~0; 1861 memset(dev->tx_dma_idx, 0xff, sizeof(dev->tx_dma_idx)); 1862 reset = true; 1863 dev->mphy.mac_work_count = 0; 1864 } 1865 1866 if (dev->mphy.mac_work_count >= 10) 1867 dev->mphy.mac_work_count = 0; 1868 1869 mutex_unlock(&dev->mt76.mutex); 1870 1871 if (reset) 1872 mt7603_mac_watchdog_reset(dev); 1873 1874 ieee80211_queue_delayed_work(mt76_hw(dev), &dev->mphy.mac_work, 1875 msecs_to_jiffies(MT7603_WATCHDOG_TIME)); 1876 } 1877