1 // SPDX-License-Identifier: ISC
2 
3 #include <linux/etherdevice.h>
4 #include <linux/timekeeping.h>
5 #include "mt7603.h"
6 #include "mac.h"
7 #include "../trace.h"
8 
9 #define MT_PSE_PAGE_SIZE	128
10 
11 static u32
12 mt7603_ac_queue_mask0(u32 mask)
13 {
14 	u32 ret = 0;
15 
16 	ret |= GENMASK(3, 0) * !!(mask & BIT(0));
17 	ret |= GENMASK(8, 5) * !!(mask & BIT(1));
18 	ret |= GENMASK(13, 10) * !!(mask & BIT(2));
19 	ret |= GENMASK(19, 16) * !!(mask & BIT(3));
20 	return ret;
21 }
22 
23 static void
24 mt76_stop_tx_ac(struct mt7603_dev *dev, u32 mask)
25 {
26 	mt76_set(dev, MT_WF_ARB_TX_STOP_0, mt7603_ac_queue_mask0(mask));
27 }
28 
29 static void
30 mt76_start_tx_ac(struct mt7603_dev *dev, u32 mask)
31 {
32 	mt76_set(dev, MT_WF_ARB_TX_START_0, mt7603_ac_queue_mask0(mask));
33 }
34 
35 void mt7603_mac_reset_counters(struct mt7603_dev *dev)
36 {
37 	int i;
38 
39 	for (i = 0; i < 2; i++)
40 		mt76_rr(dev, MT_TX_AGG_CNT(i));
41 
42 	memset(dev->mphy.aggr_stats, 0, sizeof(dev->mphy.aggr_stats));
43 }
44 
45 void mt7603_mac_set_timing(struct mt7603_dev *dev)
46 {
47 	u32 cck = FIELD_PREP(MT_TIMEOUT_VAL_PLCP, 231) |
48 		  FIELD_PREP(MT_TIMEOUT_VAL_CCA, 48);
49 	u32 ofdm = FIELD_PREP(MT_TIMEOUT_VAL_PLCP, 60) |
50 		   FIELD_PREP(MT_TIMEOUT_VAL_CCA, 24);
51 	int offset = 3 * dev->coverage_class;
52 	u32 reg_offset = FIELD_PREP(MT_TIMEOUT_VAL_PLCP, offset) |
53 			 FIELD_PREP(MT_TIMEOUT_VAL_CCA, offset);
54 	bool is_5ghz = dev->mphy.chandef.chan->band == NL80211_BAND_5GHZ;
55 	int sifs;
56 	u32 val;
57 
58 	if (is_5ghz)
59 		sifs = 16;
60 	else
61 		sifs = 10;
62 
63 	mt76_set(dev, MT_ARB_SCR,
64 		 MT_ARB_SCR_TX_DISABLE | MT_ARB_SCR_RX_DISABLE);
65 	udelay(1);
66 
67 	mt76_wr(dev, MT_TIMEOUT_CCK, cck + reg_offset);
68 	mt76_wr(dev, MT_TIMEOUT_OFDM, ofdm + reg_offset);
69 	mt76_wr(dev, MT_IFS,
70 		FIELD_PREP(MT_IFS_EIFS, 360) |
71 		FIELD_PREP(MT_IFS_RIFS, 2) |
72 		FIELD_PREP(MT_IFS_SIFS, sifs) |
73 		FIELD_PREP(MT_IFS_SLOT, dev->slottime));
74 
75 	if (dev->slottime < 20 || is_5ghz)
76 		val = MT7603_CFEND_RATE_DEFAULT;
77 	else
78 		val = MT7603_CFEND_RATE_11B;
79 
80 	mt76_rmw_field(dev, MT_AGG_CONTROL, MT_AGG_CONTROL_CFEND_RATE, val);
81 
82 	mt76_clear(dev, MT_ARB_SCR,
83 		   MT_ARB_SCR_TX_DISABLE | MT_ARB_SCR_RX_DISABLE);
84 }
85 
86 static void
87 mt7603_wtbl_update(struct mt7603_dev *dev, int idx, u32 mask)
88 {
89 	mt76_rmw(dev, MT_WTBL_UPDATE, MT_WTBL_UPDATE_WLAN_IDX,
90 		 FIELD_PREP(MT_WTBL_UPDATE_WLAN_IDX, idx) | mask);
91 
92 	mt76_poll(dev, MT_WTBL_UPDATE, MT_WTBL_UPDATE_BUSY, 0, 5000);
93 }
94 
95 static u32
96 mt7603_wtbl1_addr(int idx)
97 {
98 	return MT_WTBL1_BASE + idx * MT_WTBL1_SIZE;
99 }
100 
101 static u32
102 mt7603_wtbl2_addr(int idx)
103 {
104 	/* Mapped to WTBL2 */
105 	return MT_PCIE_REMAP_BASE_1 + idx * MT_WTBL2_SIZE;
106 }
107 
108 static u32
109 mt7603_wtbl3_addr(int idx)
110 {
111 	u32 base = mt7603_wtbl2_addr(MT7603_WTBL_SIZE);
112 
113 	return base + idx * MT_WTBL3_SIZE;
114 }
115 
116 static u32
117 mt7603_wtbl4_addr(int idx)
118 {
119 	u32 base = mt7603_wtbl3_addr(MT7603_WTBL_SIZE);
120 
121 	return base + idx * MT_WTBL4_SIZE;
122 }
123 
124 void mt7603_wtbl_init(struct mt7603_dev *dev, int idx, int vif,
125 		      const u8 *mac_addr)
126 {
127 	const void *_mac = mac_addr;
128 	u32 addr = mt7603_wtbl1_addr(idx);
129 	u32 w0 = 0, w1 = 0;
130 	int i;
131 
132 	if (_mac) {
133 		w0 = FIELD_PREP(MT_WTBL1_W0_ADDR_HI,
134 				get_unaligned_le16(_mac + 4));
135 		w1 = FIELD_PREP(MT_WTBL1_W1_ADDR_LO,
136 				get_unaligned_le32(_mac));
137 	}
138 
139 	if (vif < 0)
140 		vif = 0;
141 	else
142 		w0 |= MT_WTBL1_W0_RX_CHECK_A1;
143 	w0 |= FIELD_PREP(MT_WTBL1_W0_MUAR_IDX, vif);
144 
145 	mt76_poll(dev, MT_WTBL_UPDATE, MT_WTBL_UPDATE_BUSY, 0, 5000);
146 
147 	mt76_set(dev, addr + 0 * 4, w0);
148 	mt76_set(dev, addr + 1 * 4, w1);
149 	mt76_set(dev, addr + 2 * 4, MT_WTBL1_W2_ADMISSION_CONTROL);
150 
151 	mt76_stop_tx_ac(dev, GENMASK(3, 0));
152 	addr = mt7603_wtbl2_addr(idx);
153 	for (i = 0; i < MT_WTBL2_SIZE; i += 4)
154 		mt76_wr(dev, addr + i, 0);
155 	mt7603_wtbl_update(dev, idx, MT_WTBL_UPDATE_WTBL2);
156 	mt76_start_tx_ac(dev, GENMASK(3, 0));
157 
158 	addr = mt7603_wtbl3_addr(idx);
159 	for (i = 0; i < MT_WTBL3_SIZE; i += 4)
160 		mt76_wr(dev, addr + i, 0);
161 
162 	addr = mt7603_wtbl4_addr(idx);
163 	for (i = 0; i < MT_WTBL4_SIZE; i += 4)
164 		mt76_wr(dev, addr + i, 0);
165 
166 	mt7603_wtbl_update(dev, idx, MT_WTBL_UPDATE_ADM_COUNT_CLEAR);
167 }
168 
169 static void
170 mt7603_wtbl_set_skip_tx(struct mt7603_dev *dev, int idx, bool enabled)
171 {
172 	u32 addr = mt7603_wtbl1_addr(idx);
173 	u32 val = mt76_rr(dev, addr + 3 * 4);
174 
175 	val &= ~MT_WTBL1_W3_SKIP_TX;
176 	val |= enabled * MT_WTBL1_W3_SKIP_TX;
177 
178 	mt76_wr(dev, addr + 3 * 4, val);
179 }
180 
181 void mt7603_filter_tx(struct mt7603_dev *dev, int mac_idx, int idx, bool abort)
182 {
183 	u32 flush_mask;
184 	int i, port, queue;
185 
186 	if (abort) {
187 		port = 3; /* PSE */
188 		queue = 8; /* free queue */
189 	} else {
190 		port = 0; /* HIF */
191 		queue = 1; /* MCU queue */
192 	}
193 
194 	mt7603_wtbl_set_skip_tx(dev, idx, true);
195 
196 	mt76_wr(dev, MT_TX_ABORT, MT_TX_ABORT_EN |
197 			FIELD_PREP(MT_TX_ABORT_WCID, idx));
198 
199 	flush_mask = MT_WF_ARB_TX_FLUSH_AC0 |
200 		     MT_WF_ARB_TX_FLUSH_AC1 |
201 		     MT_WF_ARB_TX_FLUSH_AC2 |
202 		     MT_WF_ARB_TX_FLUSH_AC3;
203 	flush_mask <<= mac_idx;
204 
205 	mt76_wr(dev, MT_WF_ARB_TX_FLUSH_0, flush_mask);
206 	mt76_poll(dev, MT_WF_ARB_TX_FLUSH_0, flush_mask, 0, 20000);
207 	mt76_wr(dev, MT_WF_ARB_TX_START_0, flush_mask);
208 
209 	mt76_wr(dev, MT_TX_ABORT, 0);
210 
211 	for (i = 0; i < 4; i++) {
212 		mt76_wr(dev, MT_DMA_FQCR0, MT_DMA_FQCR0_BUSY |
213 			FIELD_PREP(MT_DMA_FQCR0_TARGET_WCID, idx) |
214 			FIELD_PREP(MT_DMA_FQCR0_TARGET_QID, i) |
215 			FIELD_PREP(MT_DMA_FQCR0_DEST_PORT_ID, port) |
216 			FIELD_PREP(MT_DMA_FQCR0_DEST_QUEUE_ID, queue));
217 
218 		mt76_poll(dev, MT_DMA_FQCR0, MT_DMA_FQCR0_BUSY, 0, 5000);
219 	}
220 
221 	WARN_ON_ONCE(mt76_rr(dev, MT_DMA_FQCR0) & MT_DMA_FQCR0_BUSY);
222 
223 	mt7603_wtbl_set_skip_tx(dev, idx, false);
224 }
225 
226 void mt7603_wtbl_set_smps(struct mt7603_dev *dev, struct mt7603_sta *sta,
227 			  bool enabled)
228 {
229 	u32 addr = mt7603_wtbl1_addr(sta->wcid.idx);
230 
231 	if (sta->smps == enabled)
232 		return;
233 
234 	mt76_rmw_field(dev, addr + 2 * 4, MT_WTBL1_W2_SMPS, enabled);
235 	sta->smps = enabled;
236 }
237 
238 void mt7603_wtbl_set_ps(struct mt7603_dev *dev, struct mt7603_sta *sta,
239 			bool enabled)
240 {
241 	int idx = sta->wcid.idx;
242 	u32 addr;
243 
244 	spin_lock_bh(&dev->ps_lock);
245 
246 	if (sta->ps == enabled)
247 		goto out;
248 
249 	mt76_wr(dev, MT_PSE_RTA,
250 		FIELD_PREP(MT_PSE_RTA_TAG_ID, idx) |
251 		FIELD_PREP(MT_PSE_RTA_PORT_ID, 0) |
252 		FIELD_PREP(MT_PSE_RTA_QUEUE_ID, 1) |
253 		FIELD_PREP(MT_PSE_RTA_REDIRECT_EN, enabled) |
254 		MT_PSE_RTA_WRITE | MT_PSE_RTA_BUSY);
255 
256 	mt76_poll(dev, MT_PSE_RTA, MT_PSE_RTA_BUSY, 0, 5000);
257 
258 	if (enabled)
259 		mt7603_filter_tx(dev, sta->vif->idx, idx, false);
260 
261 	addr = mt7603_wtbl1_addr(idx);
262 	mt76_set(dev, MT_WTBL1_OR, MT_WTBL1_OR_PSM_WRITE);
263 	mt76_rmw(dev, addr + 3 * 4, MT_WTBL1_W3_POWER_SAVE,
264 		 enabled * MT_WTBL1_W3_POWER_SAVE);
265 	mt76_clear(dev, MT_WTBL1_OR, MT_WTBL1_OR_PSM_WRITE);
266 	sta->ps = enabled;
267 
268 out:
269 	spin_unlock_bh(&dev->ps_lock);
270 }
271 
272 void mt7603_wtbl_clear(struct mt7603_dev *dev, int idx)
273 {
274 	int wtbl2_frame_size = MT_PSE_PAGE_SIZE / MT_WTBL2_SIZE;
275 	int wtbl2_frame = idx / wtbl2_frame_size;
276 	int wtbl2_entry = idx % wtbl2_frame_size;
277 
278 	int wtbl3_base_frame = MT_WTBL3_OFFSET / MT_PSE_PAGE_SIZE;
279 	int wtbl3_frame_size = MT_PSE_PAGE_SIZE / MT_WTBL3_SIZE;
280 	int wtbl3_frame = wtbl3_base_frame + idx / wtbl3_frame_size;
281 	int wtbl3_entry = (idx % wtbl3_frame_size) * 2;
282 
283 	int wtbl4_base_frame = MT_WTBL4_OFFSET / MT_PSE_PAGE_SIZE;
284 	int wtbl4_frame_size = MT_PSE_PAGE_SIZE / MT_WTBL4_SIZE;
285 	int wtbl4_frame = wtbl4_base_frame + idx / wtbl4_frame_size;
286 	int wtbl4_entry = idx % wtbl4_frame_size;
287 
288 	u32 addr = MT_WTBL1_BASE + idx * MT_WTBL1_SIZE;
289 	int i;
290 
291 	mt76_poll(dev, MT_WTBL_UPDATE, MT_WTBL_UPDATE_BUSY, 0, 5000);
292 
293 	mt76_wr(dev, addr + 0 * 4,
294 		MT_WTBL1_W0_RX_CHECK_A1 |
295 		MT_WTBL1_W0_RX_CHECK_A2 |
296 		MT_WTBL1_W0_RX_VALID);
297 	mt76_wr(dev, addr + 1 * 4, 0);
298 	mt76_wr(dev, addr + 2 * 4, 0);
299 
300 	mt76_set(dev, MT_WTBL1_OR, MT_WTBL1_OR_PSM_WRITE);
301 
302 	mt76_wr(dev, addr + 3 * 4,
303 		FIELD_PREP(MT_WTBL1_W3_WTBL2_FRAME_ID, wtbl2_frame) |
304 		FIELD_PREP(MT_WTBL1_W3_WTBL2_ENTRY_ID, wtbl2_entry) |
305 		FIELD_PREP(MT_WTBL1_W3_WTBL4_FRAME_ID, wtbl4_frame) |
306 		MT_WTBL1_W3_I_PSM | MT_WTBL1_W3_KEEP_I_PSM);
307 	mt76_wr(dev, addr + 4 * 4,
308 		FIELD_PREP(MT_WTBL1_W4_WTBL3_FRAME_ID, wtbl3_frame) |
309 		FIELD_PREP(MT_WTBL1_W4_WTBL3_ENTRY_ID, wtbl3_entry) |
310 		FIELD_PREP(MT_WTBL1_W4_WTBL4_ENTRY_ID, wtbl4_entry));
311 
312 	mt76_clear(dev, MT_WTBL1_OR, MT_WTBL1_OR_PSM_WRITE);
313 
314 	addr = mt7603_wtbl2_addr(idx);
315 
316 	/* Clear BA information */
317 	mt76_wr(dev, addr + (15 * 4), 0);
318 
319 	mt76_stop_tx_ac(dev, GENMASK(3, 0));
320 	for (i = 2; i <= 4; i++)
321 		mt76_wr(dev, addr + (i * 4), 0);
322 	mt7603_wtbl_update(dev, idx, MT_WTBL_UPDATE_WTBL2);
323 	mt76_start_tx_ac(dev, GENMASK(3, 0));
324 
325 	mt7603_wtbl_update(dev, idx, MT_WTBL_UPDATE_RX_COUNT_CLEAR);
326 	mt7603_wtbl_update(dev, idx, MT_WTBL_UPDATE_TX_COUNT_CLEAR);
327 	mt7603_wtbl_update(dev, idx, MT_WTBL_UPDATE_ADM_COUNT_CLEAR);
328 }
329 
330 void mt7603_wtbl_update_cap(struct mt7603_dev *dev, struct ieee80211_sta *sta)
331 {
332 	struct mt7603_sta *msta = (struct mt7603_sta *)sta->drv_priv;
333 	int idx = msta->wcid.idx;
334 	u8 ampdu_density;
335 	u32 addr;
336 	u32 val;
337 
338 	addr = mt7603_wtbl1_addr(idx);
339 
340 	ampdu_density = sta->deflink.ht_cap.ampdu_density;
341 	if (ampdu_density < IEEE80211_HT_MPDU_DENSITY_4)
342 		ampdu_density = IEEE80211_HT_MPDU_DENSITY_4;
343 
344 	val = mt76_rr(dev, addr + 2 * 4);
345 	val &= MT_WTBL1_W2_KEY_TYPE | MT_WTBL1_W2_ADMISSION_CONTROL;
346 	val |= FIELD_PREP(MT_WTBL1_W2_AMPDU_FACTOR,
347 			  sta->deflink.ht_cap.ampdu_factor) |
348 	       FIELD_PREP(MT_WTBL1_W2_MPDU_DENSITY,
349 			  sta->deflink.ht_cap.ampdu_density) |
350 	       MT_WTBL1_W2_TXS_BAF_REPORT;
351 
352 	if (sta->deflink.ht_cap.cap)
353 		val |= MT_WTBL1_W2_HT;
354 	if (sta->deflink.vht_cap.cap)
355 		val |= MT_WTBL1_W2_VHT;
356 
357 	mt76_wr(dev, addr + 2 * 4, val);
358 
359 	addr = mt7603_wtbl2_addr(idx);
360 	val = mt76_rr(dev, addr + 9 * 4);
361 	val &= ~(MT_WTBL2_W9_SHORT_GI_20 | MT_WTBL2_W9_SHORT_GI_40 |
362 		 MT_WTBL2_W9_SHORT_GI_80);
363 	if (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_20)
364 		val |= MT_WTBL2_W9_SHORT_GI_20;
365 	if (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_40)
366 		val |= MT_WTBL2_W9_SHORT_GI_40;
367 	mt76_wr(dev, addr + 9 * 4, val);
368 }
369 
370 void mt7603_mac_rx_ba_reset(struct mt7603_dev *dev, void *addr, u8 tid)
371 {
372 	mt76_wr(dev, MT_BA_CONTROL_0, get_unaligned_le32(addr));
373 	mt76_wr(dev, MT_BA_CONTROL_1,
374 		(get_unaligned_le16(addr + 4) |
375 		 FIELD_PREP(MT_BA_CONTROL_1_TID, tid) |
376 		 MT_BA_CONTROL_1_RESET));
377 }
378 
379 void mt7603_mac_tx_ba_reset(struct mt7603_dev *dev, int wcid, int tid,
380 			    int ba_size)
381 {
382 	u32 addr = mt7603_wtbl2_addr(wcid);
383 	u32 tid_mask = FIELD_PREP(MT_WTBL2_W15_BA_EN_TIDS, BIT(tid)) |
384 		       (MT_WTBL2_W15_BA_WIN_SIZE <<
385 			(tid * MT_WTBL2_W15_BA_WIN_SIZE_SHIFT));
386 	u32 tid_val;
387 	int i;
388 
389 	if (ba_size < 0) {
390 		/* disable */
391 		mt76_clear(dev, addr + (15 * 4), tid_mask);
392 		return;
393 	}
394 
395 	for (i = 7; i > 0; i--) {
396 		if (ba_size >= MT_AGG_SIZE_LIMIT(i))
397 			break;
398 	}
399 
400 	tid_val = FIELD_PREP(MT_WTBL2_W15_BA_EN_TIDS, BIT(tid)) |
401 		  i << (tid * MT_WTBL2_W15_BA_WIN_SIZE_SHIFT);
402 
403 	mt76_rmw(dev, addr + (15 * 4), tid_mask, tid_val);
404 }
405 
406 void mt7603_mac_sta_poll(struct mt7603_dev *dev)
407 {
408 	static const u8 ac_to_tid[4] = {
409 		[IEEE80211_AC_BE] = 0,
410 		[IEEE80211_AC_BK] = 1,
411 		[IEEE80211_AC_VI] = 4,
412 		[IEEE80211_AC_VO] = 6
413 	};
414 	struct ieee80211_sta *sta;
415 	struct mt7603_sta *msta;
416 	u32 total_airtime = 0;
417 	u32 airtime[4];
418 	u32 addr;
419 	int i;
420 
421 	rcu_read_lock();
422 
423 	while (1) {
424 		bool clear = false;
425 
426 		spin_lock_bh(&dev->mt76.sta_poll_lock);
427 		if (list_empty(&dev->mt76.sta_poll_list)) {
428 			spin_unlock_bh(&dev->mt76.sta_poll_lock);
429 			break;
430 		}
431 
432 		msta = list_first_entry(&dev->mt76.sta_poll_list,
433 					struct mt7603_sta, wcid.poll_list);
434 		list_del_init(&msta->wcid.poll_list);
435 		spin_unlock_bh(&dev->mt76.sta_poll_lock);
436 
437 		addr = mt7603_wtbl4_addr(msta->wcid.idx);
438 		for (i = 0; i < 4; i++) {
439 			u32 airtime_last = msta->tx_airtime_ac[i];
440 
441 			msta->tx_airtime_ac[i] = mt76_rr(dev, addr + i * 8);
442 			airtime[i] = msta->tx_airtime_ac[i] - airtime_last;
443 			airtime[i] *= 32;
444 			total_airtime += airtime[i];
445 
446 			if (msta->tx_airtime_ac[i] & BIT(22))
447 				clear = true;
448 		}
449 
450 		if (clear) {
451 			mt7603_wtbl_update(dev, msta->wcid.idx,
452 					   MT_WTBL_UPDATE_ADM_COUNT_CLEAR);
453 			memset(msta->tx_airtime_ac, 0,
454 			       sizeof(msta->tx_airtime_ac));
455 		}
456 
457 		if (!msta->wcid.sta)
458 			continue;
459 
460 		sta = container_of((void *)msta, struct ieee80211_sta, drv_priv);
461 		for (i = 0; i < 4; i++) {
462 			struct mt76_queue *q = dev->mphy.q_tx[i];
463 			u8 qidx = q->hw_idx;
464 			u8 tid = ac_to_tid[i];
465 			u32 txtime = airtime[qidx];
466 
467 			if (!txtime)
468 				continue;
469 
470 			ieee80211_sta_register_airtime(sta, tid, txtime, 0);
471 		}
472 	}
473 
474 	rcu_read_unlock();
475 
476 	if (!total_airtime)
477 		return;
478 
479 	spin_lock_bh(&dev->mt76.cc_lock);
480 	dev->mphy.chan_state->cc_tx += total_airtime;
481 	spin_unlock_bh(&dev->mt76.cc_lock);
482 }
483 
484 static struct mt76_wcid *
485 mt7603_rx_get_wcid(struct mt7603_dev *dev, u8 idx, bool unicast)
486 {
487 	struct mt7603_sta *sta;
488 	struct mt76_wcid *wcid;
489 
490 	if (idx >= MT7603_WTBL_SIZE)
491 		return NULL;
492 
493 	wcid = rcu_dereference(dev->mt76.wcid[idx]);
494 	if (unicast || !wcid)
495 		return wcid;
496 
497 	if (!wcid->sta)
498 		return NULL;
499 
500 	sta = container_of(wcid, struct mt7603_sta, wcid);
501 	if (!sta->vif)
502 		return NULL;
503 
504 	return &sta->vif->sta.wcid;
505 }
506 
507 int
508 mt7603_mac_fill_rx(struct mt7603_dev *dev, struct sk_buff *skb)
509 {
510 	struct mt76_rx_status *status = (struct mt76_rx_status *)skb->cb;
511 	struct ieee80211_supported_band *sband;
512 	struct ieee80211_hdr *hdr;
513 	__le32 *rxd = (__le32 *)skb->data;
514 	u32 rxd0 = le32_to_cpu(rxd[0]);
515 	u32 rxd1 = le32_to_cpu(rxd[1]);
516 	u32 rxd2 = le32_to_cpu(rxd[2]);
517 	bool unicast = rxd1 & MT_RXD1_NORMAL_U2M;
518 	bool insert_ccmp_hdr = false;
519 	bool remove_pad;
520 	int idx;
521 	int i;
522 
523 	memset(status, 0, sizeof(*status));
524 
525 	i = FIELD_GET(MT_RXD1_NORMAL_CH_FREQ, rxd1);
526 	sband = (i & 1) ? &dev->mphy.sband_5g.sband : &dev->mphy.sband_2g.sband;
527 	i >>= 1;
528 
529 	idx = FIELD_GET(MT_RXD2_NORMAL_WLAN_IDX, rxd2);
530 	status->wcid = mt7603_rx_get_wcid(dev, idx, unicast);
531 
532 	status->band = sband->band;
533 	if (i < sband->n_channels)
534 		status->freq = sband->channels[i].center_freq;
535 
536 	if (rxd2 & MT_RXD2_NORMAL_FCS_ERR)
537 		status->flag |= RX_FLAG_FAILED_FCS_CRC;
538 
539 	if (rxd2 & MT_RXD2_NORMAL_TKIP_MIC_ERR)
540 		status->flag |= RX_FLAG_MMIC_ERROR;
541 
542 	/* ICV error or CCMP/BIP/WPI MIC error */
543 	if (rxd2 & MT_RXD2_NORMAL_ICV_ERR)
544 		status->flag |= RX_FLAG_ONLY_MONITOR;
545 
546 	if (FIELD_GET(MT_RXD2_NORMAL_SEC_MODE, rxd2) != 0 &&
547 	    !(rxd2 & (MT_RXD2_NORMAL_CLM | MT_RXD2_NORMAL_CM))) {
548 		status->flag |= RX_FLAG_DECRYPTED;
549 		status->flag |= RX_FLAG_IV_STRIPPED;
550 		status->flag |= RX_FLAG_MMIC_STRIPPED | RX_FLAG_MIC_STRIPPED;
551 	}
552 
553 	remove_pad = rxd1 & MT_RXD1_NORMAL_HDR_OFFSET;
554 
555 	if (rxd2 & MT_RXD2_NORMAL_MAX_LEN_ERROR)
556 		return -EINVAL;
557 
558 	if (!sband->channels)
559 		return -EINVAL;
560 
561 	rxd += 4;
562 	if (rxd0 & MT_RXD0_NORMAL_GROUP_4) {
563 		rxd += 4;
564 		if ((u8 *)rxd - skb->data >= skb->len)
565 			return -EINVAL;
566 	}
567 	if (rxd0 & MT_RXD0_NORMAL_GROUP_1) {
568 		u8 *data = (u8 *)rxd;
569 
570 		if (status->flag & RX_FLAG_DECRYPTED) {
571 			switch (FIELD_GET(MT_RXD2_NORMAL_SEC_MODE, rxd2)) {
572 			case MT_CIPHER_AES_CCMP:
573 			case MT_CIPHER_CCMP_CCX:
574 			case MT_CIPHER_CCMP_256:
575 				insert_ccmp_hdr =
576 					FIELD_GET(MT_RXD2_NORMAL_FRAG, rxd2);
577 				fallthrough;
578 			case MT_CIPHER_TKIP:
579 			case MT_CIPHER_TKIP_NO_MIC:
580 			case MT_CIPHER_GCMP:
581 			case MT_CIPHER_GCMP_256:
582 				status->iv[0] = data[5];
583 				status->iv[1] = data[4];
584 				status->iv[2] = data[3];
585 				status->iv[3] = data[2];
586 				status->iv[4] = data[1];
587 				status->iv[5] = data[0];
588 				break;
589 			default:
590 				break;
591 			}
592 		}
593 
594 		rxd += 4;
595 		if ((u8 *)rxd - skb->data >= skb->len)
596 			return -EINVAL;
597 	}
598 	if (rxd0 & MT_RXD0_NORMAL_GROUP_2) {
599 		status->timestamp = le32_to_cpu(rxd[0]);
600 		status->flag |= RX_FLAG_MACTIME_START;
601 
602 		if (!(rxd2 & (MT_RXD2_NORMAL_NON_AMPDU_SUB |
603 			      MT_RXD2_NORMAL_NON_AMPDU))) {
604 			status->flag |= RX_FLAG_AMPDU_DETAILS;
605 
606 			/* all subframes of an A-MPDU have the same timestamp */
607 			if (dev->rx_ampdu_ts != status->timestamp) {
608 				if (!++dev->ampdu_ref)
609 					dev->ampdu_ref++;
610 			}
611 			dev->rx_ampdu_ts = status->timestamp;
612 
613 			status->ampdu_ref = dev->ampdu_ref;
614 		}
615 
616 		rxd += 2;
617 		if ((u8 *)rxd - skb->data >= skb->len)
618 			return -EINVAL;
619 	}
620 	if (rxd0 & MT_RXD0_NORMAL_GROUP_3) {
621 		u32 rxdg0 = le32_to_cpu(rxd[0]);
622 		u32 rxdg3 = le32_to_cpu(rxd[3]);
623 		bool cck = false;
624 
625 		i = FIELD_GET(MT_RXV1_TX_RATE, rxdg0);
626 		switch (FIELD_GET(MT_RXV1_TX_MODE, rxdg0)) {
627 		case MT_PHY_TYPE_CCK:
628 			cck = true;
629 			fallthrough;
630 		case MT_PHY_TYPE_OFDM:
631 			i = mt76_get_rate(&dev->mt76, sband, i, cck);
632 			break;
633 		case MT_PHY_TYPE_HT_GF:
634 		case MT_PHY_TYPE_HT:
635 			status->encoding = RX_ENC_HT;
636 			if (i > 15)
637 				return -EINVAL;
638 			break;
639 		default:
640 			return -EINVAL;
641 		}
642 
643 		if (rxdg0 & MT_RXV1_HT_SHORT_GI)
644 			status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
645 		if (rxdg0 & MT_RXV1_HT_AD_CODE)
646 			status->enc_flags |= RX_ENC_FLAG_LDPC;
647 
648 		status->enc_flags |= RX_ENC_FLAG_STBC_MASK *
649 				    FIELD_GET(MT_RXV1_HT_STBC, rxdg0);
650 
651 		status->rate_idx = i;
652 
653 		status->chains = dev->mphy.antenna_mask;
654 		status->chain_signal[0] = FIELD_GET(MT_RXV4_IB_RSSI0, rxdg3) +
655 					  dev->rssi_offset[0];
656 		status->chain_signal[1] = FIELD_GET(MT_RXV4_IB_RSSI1, rxdg3) +
657 					  dev->rssi_offset[1];
658 
659 		if (FIELD_GET(MT_RXV1_FRAME_MODE, rxdg0) == 1)
660 			status->bw = RATE_INFO_BW_40;
661 
662 		rxd += 6;
663 		if ((u8 *)rxd - skb->data >= skb->len)
664 			return -EINVAL;
665 	} else {
666 		return -EINVAL;
667 	}
668 
669 	skb_pull(skb, (u8 *)rxd - skb->data + 2 * remove_pad);
670 
671 	if (insert_ccmp_hdr) {
672 		u8 key_id = FIELD_GET(MT_RXD1_NORMAL_KEY_ID, rxd1);
673 
674 		mt76_insert_ccmp_hdr(skb, key_id);
675 	}
676 
677 	hdr = (struct ieee80211_hdr *)skb->data;
678 	if (!status->wcid || !ieee80211_is_data_qos(hdr->frame_control))
679 		return 0;
680 
681 	status->aggr = unicast &&
682 		       !ieee80211_is_qos_nullfunc(hdr->frame_control);
683 	status->qos_ctl = *ieee80211_get_qos_ctl(hdr);
684 	status->seqno = IEEE80211_SEQ_TO_SN(le16_to_cpu(hdr->seq_ctrl));
685 
686 	return 0;
687 }
688 
689 static u16
690 mt7603_mac_tx_rate_val(struct mt7603_dev *dev,
691 		       const struct ieee80211_tx_rate *rate, bool stbc, u8 *bw)
692 {
693 	u8 phy, nss, rate_idx;
694 	u16 rateval;
695 
696 	*bw = 0;
697 	if (rate->flags & IEEE80211_TX_RC_MCS) {
698 		rate_idx = rate->idx;
699 		nss = 1 + (rate->idx >> 3);
700 		phy = MT_PHY_TYPE_HT;
701 		if (rate->flags & IEEE80211_TX_RC_GREEN_FIELD)
702 			phy = MT_PHY_TYPE_HT_GF;
703 		if (rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
704 			*bw = 1;
705 	} else {
706 		const struct ieee80211_rate *r;
707 		int band = dev->mphy.chandef.chan->band;
708 		u16 val;
709 
710 		nss = 1;
711 		r = &mt76_hw(dev)->wiphy->bands[band]->bitrates[rate->idx];
712 		if (rate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
713 			val = r->hw_value_short;
714 		else
715 			val = r->hw_value;
716 
717 		phy = val >> 8;
718 		rate_idx = val & 0xff;
719 	}
720 
721 	rateval = (FIELD_PREP(MT_TX_RATE_IDX, rate_idx) |
722 		   FIELD_PREP(MT_TX_RATE_MODE, phy));
723 
724 	if (stbc && nss == 1)
725 		rateval |= MT_TX_RATE_STBC;
726 
727 	return rateval;
728 }
729 
730 void mt7603_wtbl_set_rates(struct mt7603_dev *dev, struct mt7603_sta *sta,
731 			   struct ieee80211_tx_rate *probe_rate,
732 			   struct ieee80211_tx_rate *rates)
733 {
734 	struct ieee80211_tx_rate *ref;
735 	int wcid = sta->wcid.idx;
736 	u32 addr = mt7603_wtbl2_addr(wcid);
737 	bool stbc = false;
738 	int n_rates = sta->n_rates;
739 	u8 bw, bw_prev, bw_idx = 0;
740 	u16 val[4];
741 	u16 probe_val;
742 	u32 w9 = mt76_rr(dev, addr + 9 * 4);
743 	bool rateset;
744 	int i, k;
745 
746 	if (!mt76_poll(dev, MT_WTBL_UPDATE, MT_WTBL_UPDATE_BUSY, 0, 5000))
747 		return;
748 
749 	for (i = n_rates; i < 4; i++)
750 		rates[i] = rates[n_rates - 1];
751 
752 	rateset = !(sta->rate_set_tsf & BIT(0));
753 	memcpy(sta->rateset[rateset].rates, rates,
754 	       sizeof(sta->rateset[rateset].rates));
755 	if (probe_rate) {
756 		sta->rateset[rateset].probe_rate = *probe_rate;
757 		ref = &sta->rateset[rateset].probe_rate;
758 	} else {
759 		sta->rateset[rateset].probe_rate.idx = -1;
760 		ref = &sta->rateset[rateset].rates[0];
761 	}
762 
763 	rates = sta->rateset[rateset].rates;
764 	for (i = 0; i < ARRAY_SIZE(sta->rateset[rateset].rates); i++) {
765 		/*
766 		 * We don't support switching between short and long GI
767 		 * within the rate set. For accurate tx status reporting, we
768 		 * need to make sure that flags match.
769 		 * For improved performance, avoid duplicate entries by
770 		 * decrementing the MCS index if necessary
771 		 */
772 		if ((ref->flags ^ rates[i].flags) & IEEE80211_TX_RC_SHORT_GI)
773 			rates[i].flags ^= IEEE80211_TX_RC_SHORT_GI;
774 
775 		for (k = 0; k < i; k++) {
776 			if (rates[i].idx != rates[k].idx)
777 				continue;
778 			if ((rates[i].flags ^ rates[k].flags) &
779 			    IEEE80211_TX_RC_40_MHZ_WIDTH)
780 				continue;
781 
782 			if (!rates[i].idx)
783 				continue;
784 
785 			rates[i].idx--;
786 		}
787 	}
788 
789 	w9 &= MT_WTBL2_W9_SHORT_GI_20 | MT_WTBL2_W9_SHORT_GI_40 |
790 	      MT_WTBL2_W9_SHORT_GI_80;
791 
792 	val[0] = mt7603_mac_tx_rate_val(dev, &rates[0], stbc, &bw);
793 	bw_prev = bw;
794 
795 	if (probe_rate) {
796 		probe_val = mt7603_mac_tx_rate_val(dev, probe_rate, stbc, &bw);
797 		if (bw)
798 			bw_idx = 1;
799 		else
800 			bw_prev = 0;
801 	} else {
802 		probe_val = val[0];
803 	}
804 
805 	w9 |= FIELD_PREP(MT_WTBL2_W9_CC_BW_SEL, bw);
806 	w9 |= FIELD_PREP(MT_WTBL2_W9_BW_CAP, bw);
807 
808 	val[1] = mt7603_mac_tx_rate_val(dev, &rates[1], stbc, &bw);
809 	if (bw_prev) {
810 		bw_idx = 3;
811 		bw_prev = bw;
812 	}
813 
814 	val[2] = mt7603_mac_tx_rate_val(dev, &rates[2], stbc, &bw);
815 	if (bw_prev) {
816 		bw_idx = 5;
817 		bw_prev = bw;
818 	}
819 
820 	val[3] = mt7603_mac_tx_rate_val(dev, &rates[3], stbc, &bw);
821 	if (bw_prev)
822 		bw_idx = 7;
823 
824 	w9 |= FIELD_PREP(MT_WTBL2_W9_CHANGE_BW_RATE,
825 		       bw_idx ? bw_idx - 1 : 7);
826 
827 	mt76_wr(dev, MT_WTBL_RIUCR0, w9);
828 
829 	mt76_wr(dev, MT_WTBL_RIUCR1,
830 		FIELD_PREP(MT_WTBL_RIUCR1_RATE0, probe_val) |
831 		FIELD_PREP(MT_WTBL_RIUCR1_RATE1, val[0]) |
832 		FIELD_PREP(MT_WTBL_RIUCR1_RATE2_LO, val[1]));
833 
834 	mt76_wr(dev, MT_WTBL_RIUCR2,
835 		FIELD_PREP(MT_WTBL_RIUCR2_RATE2_HI, val[1] >> 8) |
836 		FIELD_PREP(MT_WTBL_RIUCR2_RATE3, val[1]) |
837 		FIELD_PREP(MT_WTBL_RIUCR2_RATE4, val[2]) |
838 		FIELD_PREP(MT_WTBL_RIUCR2_RATE5_LO, val[2]));
839 
840 	mt76_wr(dev, MT_WTBL_RIUCR3,
841 		FIELD_PREP(MT_WTBL_RIUCR3_RATE5_HI, val[2] >> 4) |
842 		FIELD_PREP(MT_WTBL_RIUCR3_RATE6, val[3]) |
843 		FIELD_PREP(MT_WTBL_RIUCR3_RATE7, val[3]));
844 
845 	mt76_set(dev, MT_LPON_T0CR, MT_LPON_T0CR_MODE); /* TSF read */
846 	sta->rate_set_tsf = (mt76_rr(dev, MT_LPON_UTTR0) & ~BIT(0)) | rateset;
847 
848 	mt76_wr(dev, MT_WTBL_UPDATE,
849 		FIELD_PREP(MT_WTBL_UPDATE_WLAN_IDX, wcid) |
850 		MT_WTBL_UPDATE_RATE_UPDATE |
851 		MT_WTBL_UPDATE_TX_COUNT_CLEAR);
852 
853 	if (!(sta->wcid.tx_info & MT_WCID_TX_INFO_SET))
854 		mt76_poll(dev, MT_WTBL_UPDATE, MT_WTBL_UPDATE_BUSY, 0, 5000);
855 
856 	sta->rate_count = 2 * MT7603_RATE_RETRY * n_rates;
857 	sta->wcid.tx_info |= MT_WCID_TX_INFO_SET;
858 }
859 
860 static enum mt76_cipher_type
861 mt7603_mac_get_key_info(struct ieee80211_key_conf *key, u8 *key_data)
862 {
863 	memset(key_data, 0, 32);
864 	if (!key)
865 		return MT_CIPHER_NONE;
866 
867 	if (key->keylen > 32)
868 		return MT_CIPHER_NONE;
869 
870 	memcpy(key_data, key->key, key->keylen);
871 
872 	switch (key->cipher) {
873 	case WLAN_CIPHER_SUITE_WEP40:
874 		return MT_CIPHER_WEP40;
875 	case WLAN_CIPHER_SUITE_WEP104:
876 		return MT_CIPHER_WEP104;
877 	case WLAN_CIPHER_SUITE_TKIP:
878 		/* Rx/Tx MIC keys are swapped */
879 		memcpy(key_data + 16, key->key + 24, 8);
880 		memcpy(key_data + 24, key->key + 16, 8);
881 		return MT_CIPHER_TKIP;
882 	case WLAN_CIPHER_SUITE_CCMP:
883 		return MT_CIPHER_AES_CCMP;
884 	default:
885 		return MT_CIPHER_NONE;
886 	}
887 }
888 
889 int mt7603_wtbl_set_key(struct mt7603_dev *dev, int wcid,
890 			struct ieee80211_key_conf *key)
891 {
892 	enum mt76_cipher_type cipher;
893 	u32 addr = mt7603_wtbl3_addr(wcid);
894 	u8 key_data[32];
895 	int key_len = sizeof(key_data);
896 
897 	cipher = mt7603_mac_get_key_info(key, key_data);
898 	if (cipher == MT_CIPHER_NONE && key)
899 		return -EOPNOTSUPP;
900 
901 	if (key && (cipher == MT_CIPHER_WEP40 || cipher == MT_CIPHER_WEP104)) {
902 		addr += key->keyidx * 16;
903 		key_len = 16;
904 	}
905 
906 	mt76_wr_copy(dev, addr, key_data, key_len);
907 
908 	addr = mt7603_wtbl1_addr(wcid);
909 	mt76_rmw_field(dev, addr + 2 * 4, MT_WTBL1_W2_KEY_TYPE, cipher);
910 	if (key)
911 		mt76_rmw_field(dev, addr, MT_WTBL1_W0_KEY_IDX, key->keyidx);
912 	mt76_rmw_field(dev, addr, MT_WTBL1_W0_RX_KEY_VALID, !!key);
913 
914 	return 0;
915 }
916 
917 static int
918 mt7603_mac_write_txwi(struct mt7603_dev *dev, __le32 *txwi,
919 		      struct sk_buff *skb, enum mt76_txq_id qid,
920 		      struct mt76_wcid *wcid, struct ieee80211_sta *sta,
921 		      int pid, struct ieee80211_key_conf *key)
922 {
923 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
924 	struct ieee80211_tx_rate *rate = &info->control.rates[0];
925 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
926 	struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
927 	struct ieee80211_vif *vif = info->control.vif;
928 	struct mt76_queue *q = dev->mphy.q_tx[qid];
929 	struct mt7603_vif *mvif;
930 	int wlan_idx;
931 	int hdr_len = ieee80211_get_hdrlen_from_skb(skb);
932 	int tx_count = 8;
933 	u8 frame_type, frame_subtype;
934 	u16 fc = le16_to_cpu(hdr->frame_control);
935 	u16 seqno = 0;
936 	u8 vif_idx = 0;
937 	u32 val;
938 	u8 bw;
939 
940 	if (vif) {
941 		mvif = (struct mt7603_vif *)vif->drv_priv;
942 		vif_idx = mvif->idx;
943 		if (vif_idx && qid >= MT_TXQ_BEACON)
944 			vif_idx += 0x10;
945 	}
946 
947 	if (sta) {
948 		struct mt7603_sta *msta = (struct mt7603_sta *)sta->drv_priv;
949 
950 		tx_count = msta->rate_count;
951 	}
952 
953 	if (wcid)
954 		wlan_idx = wcid->idx;
955 	else
956 		wlan_idx = MT7603_WTBL_RESERVED;
957 
958 	frame_type = (fc & IEEE80211_FCTL_FTYPE) >> 2;
959 	frame_subtype = (fc & IEEE80211_FCTL_STYPE) >> 4;
960 
961 	val = FIELD_PREP(MT_TXD0_TX_BYTES, skb->len + MT_TXD_SIZE) |
962 	      FIELD_PREP(MT_TXD0_Q_IDX, q->hw_idx);
963 	txwi[0] = cpu_to_le32(val);
964 
965 	val = MT_TXD1_LONG_FORMAT |
966 	      FIELD_PREP(MT_TXD1_OWN_MAC, vif_idx) |
967 	      FIELD_PREP(MT_TXD1_TID,
968 			 skb->priority & IEEE80211_QOS_CTL_TID_MASK) |
969 	      FIELD_PREP(MT_TXD1_HDR_FORMAT, MT_HDR_FORMAT_802_11) |
970 	      FIELD_PREP(MT_TXD1_HDR_INFO, hdr_len / 2) |
971 	      FIELD_PREP(MT_TXD1_WLAN_IDX, wlan_idx) |
972 	      FIELD_PREP(MT_TXD1_PROTECTED, !!key);
973 	txwi[1] = cpu_to_le32(val);
974 
975 	if (info->flags & IEEE80211_TX_CTL_NO_ACK)
976 		txwi[1] |= cpu_to_le32(MT_TXD1_NO_ACK);
977 
978 	val = FIELD_PREP(MT_TXD2_FRAME_TYPE, frame_type) |
979 	      FIELD_PREP(MT_TXD2_SUB_TYPE, frame_subtype) |
980 	      FIELD_PREP(MT_TXD2_MULTICAST,
981 			 is_multicast_ether_addr(hdr->addr1));
982 	txwi[2] = cpu_to_le32(val);
983 
984 	if (!(info->flags & IEEE80211_TX_CTL_AMPDU))
985 		txwi[2] |= cpu_to_le32(MT_TXD2_BA_DISABLE);
986 
987 	txwi[4] = 0;
988 
989 	val = MT_TXD5_TX_STATUS_HOST | MT_TXD5_SW_POWER_MGMT |
990 	      FIELD_PREP(MT_TXD5_PID, pid);
991 	txwi[5] = cpu_to_le32(val);
992 
993 	txwi[6] = 0;
994 
995 	if (rate->idx >= 0 && rate->count &&
996 	    !(info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE)) {
997 		bool stbc = info->flags & IEEE80211_TX_CTL_STBC;
998 		u16 rateval = mt7603_mac_tx_rate_val(dev, rate, stbc, &bw);
999 
1000 		txwi[2] |= cpu_to_le32(MT_TXD2_FIX_RATE);
1001 
1002 		val = MT_TXD6_FIXED_BW |
1003 		      FIELD_PREP(MT_TXD6_BW, bw) |
1004 		      FIELD_PREP(MT_TXD6_TX_RATE, rateval);
1005 		txwi[6] |= cpu_to_le32(val);
1006 
1007 		if (rate->flags & IEEE80211_TX_RC_SHORT_GI)
1008 			txwi[6] |= cpu_to_le32(MT_TXD6_SGI);
1009 
1010 		if (!(rate->flags & IEEE80211_TX_RC_MCS))
1011 			txwi[2] |= cpu_to_le32(MT_TXD2_BA_DISABLE);
1012 
1013 		tx_count = rate->count;
1014 	}
1015 
1016 	/* use maximum tx count for beacons and buffered multicast */
1017 	if (qid >= MT_TXQ_BEACON)
1018 		tx_count = 0x1f;
1019 
1020 	val = FIELD_PREP(MT_TXD3_REM_TX_COUNT, tx_count) |
1021 		  MT_TXD3_SN_VALID;
1022 
1023 	if (ieee80211_is_data_qos(hdr->frame_control))
1024 		seqno = le16_to_cpu(hdr->seq_ctrl);
1025 	else if (ieee80211_is_back_req(hdr->frame_control))
1026 		seqno = le16_to_cpu(bar->start_seq_num);
1027 	else
1028 		val &= ~MT_TXD3_SN_VALID;
1029 
1030 	val |= FIELD_PREP(MT_TXD3_SEQ, seqno >> 4);
1031 
1032 	txwi[3] = cpu_to_le32(val);
1033 
1034 	if (key) {
1035 		u64 pn = atomic64_inc_return(&key->tx_pn);
1036 
1037 		txwi[3] |= cpu_to_le32(MT_TXD3_PN_VALID);
1038 		txwi[4] = cpu_to_le32(pn & GENMASK(31, 0));
1039 		txwi[5] |= cpu_to_le32(FIELD_PREP(MT_TXD5_PN_HIGH, pn >> 32));
1040 	}
1041 
1042 	txwi[7] = 0;
1043 
1044 	return 0;
1045 }
1046 
1047 int mt7603_tx_prepare_skb(struct mt76_dev *mdev, void *txwi_ptr,
1048 			  enum mt76_txq_id qid, struct mt76_wcid *wcid,
1049 			  struct ieee80211_sta *sta,
1050 			  struct mt76_tx_info *tx_info)
1051 {
1052 	struct mt7603_dev *dev = container_of(mdev, struct mt7603_dev, mt76);
1053 	struct mt7603_sta *msta = container_of(wcid, struct mt7603_sta, wcid);
1054 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx_info->skb);
1055 	struct ieee80211_key_conf *key = info->control.hw_key;
1056 	int pid;
1057 
1058 	if (!wcid)
1059 		wcid = &dev->global_sta.wcid;
1060 
1061 	if (sta) {
1062 		msta = (struct mt7603_sta *)sta->drv_priv;
1063 
1064 		if ((info->flags & (IEEE80211_TX_CTL_NO_PS_BUFFER |
1065 				    IEEE80211_TX_CTL_CLEAR_PS_FILT)) ||
1066 		    (info->control.flags & IEEE80211_TX_CTRL_PS_RESPONSE))
1067 			mt7603_wtbl_set_ps(dev, msta, false);
1068 
1069 		mt76_tx_check_agg_ssn(sta, tx_info->skb);
1070 	}
1071 
1072 	pid = mt76_tx_status_skb_add(mdev, wcid, tx_info->skb);
1073 
1074 	if (info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE) {
1075 		spin_lock_bh(&dev->mt76.lock);
1076 		mt7603_wtbl_set_rates(dev, msta, &info->control.rates[0],
1077 				      msta->rates);
1078 		msta->rate_probe = true;
1079 		spin_unlock_bh(&dev->mt76.lock);
1080 	}
1081 
1082 	mt7603_mac_write_txwi(dev, txwi_ptr, tx_info->skb, qid, wcid,
1083 			      sta, pid, key);
1084 
1085 	return 0;
1086 }
1087 
1088 static bool
1089 mt7603_fill_txs(struct mt7603_dev *dev, struct mt7603_sta *sta,
1090 		struct ieee80211_tx_info *info, __le32 *txs_data)
1091 {
1092 	struct ieee80211_supported_band *sband;
1093 	struct mt7603_rate_set *rs;
1094 	int first_idx = 0, last_idx;
1095 	u32 rate_set_tsf;
1096 	u32 final_rate;
1097 	u32 final_rate_flags;
1098 	bool rs_idx;
1099 	bool ack_timeout;
1100 	bool fixed_rate;
1101 	bool probe;
1102 	bool ampdu;
1103 	bool cck = false;
1104 	int count;
1105 	u32 txs;
1106 	int idx;
1107 	int i;
1108 
1109 	fixed_rate = info->status.rates[0].count;
1110 	probe = !!(info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE);
1111 
1112 	txs = le32_to_cpu(txs_data[4]);
1113 	ampdu = !fixed_rate && (txs & MT_TXS4_AMPDU);
1114 	count = FIELD_GET(MT_TXS4_TX_COUNT, txs);
1115 	last_idx = FIELD_GET(MT_TXS4_LAST_TX_RATE, txs);
1116 
1117 	txs = le32_to_cpu(txs_data[0]);
1118 	final_rate = FIELD_GET(MT_TXS0_TX_RATE, txs);
1119 	ack_timeout = txs & MT_TXS0_ACK_TIMEOUT;
1120 
1121 	if (!ampdu && (txs & MT_TXS0_RTS_TIMEOUT))
1122 		return false;
1123 
1124 	if (txs & MT_TXS0_QUEUE_TIMEOUT)
1125 		return false;
1126 
1127 	if (!ack_timeout)
1128 		info->flags |= IEEE80211_TX_STAT_ACK;
1129 
1130 	info->status.ampdu_len = 1;
1131 	info->status.ampdu_ack_len = !!(info->flags &
1132 					IEEE80211_TX_STAT_ACK);
1133 
1134 	if (ampdu || (info->flags & IEEE80211_TX_CTL_AMPDU))
1135 		info->flags |= IEEE80211_TX_STAT_AMPDU | IEEE80211_TX_CTL_AMPDU;
1136 
1137 	first_idx = max_t(int, 0, last_idx - (count - 1) / MT7603_RATE_RETRY);
1138 
1139 	if (fixed_rate && !probe) {
1140 		info->status.rates[0].count = count;
1141 		i = 0;
1142 		goto out;
1143 	}
1144 
1145 	rate_set_tsf = READ_ONCE(sta->rate_set_tsf);
1146 	rs_idx = !((u32)(le32_get_bits(txs_data[1], MT_TXS1_F0_TIMESTAMP) -
1147 			 rate_set_tsf) < 1000000);
1148 	rs_idx ^= rate_set_tsf & BIT(0);
1149 	rs = &sta->rateset[rs_idx];
1150 
1151 	if (!first_idx && rs->probe_rate.idx >= 0) {
1152 		info->status.rates[0] = rs->probe_rate;
1153 
1154 		spin_lock_bh(&dev->mt76.lock);
1155 		if (sta->rate_probe) {
1156 			mt7603_wtbl_set_rates(dev, sta, NULL,
1157 					      sta->rates);
1158 			sta->rate_probe = false;
1159 		}
1160 		spin_unlock_bh(&dev->mt76.lock);
1161 	} else {
1162 		info->status.rates[0] = rs->rates[first_idx / 2];
1163 	}
1164 	info->status.rates[0].count = 0;
1165 
1166 	for (i = 0, idx = first_idx; count && idx <= last_idx; idx++) {
1167 		struct ieee80211_tx_rate *cur_rate;
1168 		int cur_count;
1169 
1170 		cur_rate = &rs->rates[idx / 2];
1171 		cur_count = min_t(int, MT7603_RATE_RETRY, count);
1172 		count -= cur_count;
1173 
1174 		if (idx && (cur_rate->idx != info->status.rates[i].idx ||
1175 			    cur_rate->flags != info->status.rates[i].flags)) {
1176 			i++;
1177 			if (i == ARRAY_SIZE(info->status.rates)) {
1178 				i--;
1179 				break;
1180 			}
1181 
1182 			info->status.rates[i] = *cur_rate;
1183 			info->status.rates[i].count = 0;
1184 		}
1185 
1186 		info->status.rates[i].count += cur_count;
1187 	}
1188 
1189 out:
1190 	final_rate_flags = info->status.rates[i].flags;
1191 
1192 	switch (FIELD_GET(MT_TX_RATE_MODE, final_rate)) {
1193 	case MT_PHY_TYPE_CCK:
1194 		cck = true;
1195 		fallthrough;
1196 	case MT_PHY_TYPE_OFDM:
1197 		if (dev->mphy.chandef.chan->band == NL80211_BAND_5GHZ)
1198 			sband = &dev->mphy.sband_5g.sband;
1199 		else
1200 			sband = &dev->mphy.sband_2g.sband;
1201 		final_rate &= GENMASK(5, 0);
1202 		final_rate = mt76_get_rate(&dev->mt76, sband, final_rate,
1203 					   cck);
1204 		final_rate_flags = 0;
1205 		break;
1206 	case MT_PHY_TYPE_HT_GF:
1207 	case MT_PHY_TYPE_HT:
1208 		final_rate_flags |= IEEE80211_TX_RC_MCS;
1209 		final_rate &= GENMASK(5, 0);
1210 		if (final_rate > 15)
1211 			return false;
1212 		break;
1213 	default:
1214 		return false;
1215 	}
1216 
1217 	info->status.rates[i].idx = final_rate;
1218 	info->status.rates[i].flags = final_rate_flags;
1219 
1220 	return true;
1221 }
1222 
1223 static bool
1224 mt7603_mac_add_txs_skb(struct mt7603_dev *dev, struct mt7603_sta *sta, int pid,
1225 		       __le32 *txs_data)
1226 {
1227 	struct mt76_dev *mdev = &dev->mt76;
1228 	struct sk_buff_head list;
1229 	struct sk_buff *skb;
1230 
1231 	if (pid < MT_PACKET_ID_FIRST)
1232 		return false;
1233 
1234 	trace_mac_txdone(mdev, sta->wcid.idx, pid);
1235 
1236 	mt76_tx_status_lock(mdev, &list);
1237 	skb = mt76_tx_status_skb_get(mdev, &sta->wcid, pid, &list);
1238 	if (skb) {
1239 		struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1240 
1241 		if (!mt7603_fill_txs(dev, sta, info, txs_data)) {
1242 			info->status.rates[0].count = 0;
1243 			info->status.rates[0].idx = -1;
1244 		}
1245 
1246 		mt76_tx_status_skb_done(mdev, skb, &list);
1247 	}
1248 	mt76_tx_status_unlock(mdev, &list);
1249 
1250 	return !!skb;
1251 }
1252 
1253 void mt7603_mac_add_txs(struct mt7603_dev *dev, void *data)
1254 {
1255 	struct ieee80211_tx_info info = {};
1256 	struct ieee80211_sta *sta = NULL;
1257 	struct mt7603_sta *msta = NULL;
1258 	struct mt76_wcid *wcid;
1259 	__le32 *txs_data = data;
1260 	u8 wcidx;
1261 	u8 pid;
1262 
1263 	pid = le32_get_bits(txs_data[4], MT_TXS4_PID);
1264 	wcidx = le32_get_bits(txs_data[3], MT_TXS3_WCID);
1265 
1266 	if (pid == MT_PACKET_ID_NO_ACK)
1267 		return;
1268 
1269 	if (wcidx >= MT7603_WTBL_SIZE)
1270 		return;
1271 
1272 	rcu_read_lock();
1273 
1274 	wcid = rcu_dereference(dev->mt76.wcid[wcidx]);
1275 	if (!wcid)
1276 		goto out;
1277 
1278 	msta = container_of(wcid, struct mt7603_sta, wcid);
1279 	sta = wcid_to_sta(wcid);
1280 
1281 	if (list_empty(&msta->wcid.poll_list)) {
1282 		spin_lock_bh(&dev->mt76.sta_poll_lock);
1283 		list_add_tail(&msta->wcid.poll_list, &dev->mt76.sta_poll_list);
1284 		spin_unlock_bh(&dev->mt76.sta_poll_lock);
1285 	}
1286 
1287 	if (mt7603_mac_add_txs_skb(dev, msta, pid, txs_data))
1288 		goto out;
1289 
1290 	if (wcidx >= MT7603_WTBL_STA || !sta)
1291 		goto out;
1292 
1293 	if (mt7603_fill_txs(dev, msta, &info, txs_data)) {
1294 		spin_lock_bh(&dev->mt76.rx_lock);
1295 		ieee80211_tx_status_noskb(mt76_hw(dev), sta, &info);
1296 		spin_unlock_bh(&dev->mt76.rx_lock);
1297 	}
1298 
1299 out:
1300 	rcu_read_unlock();
1301 }
1302 
1303 void mt7603_tx_complete_skb(struct mt76_dev *mdev, struct mt76_queue_entry *e)
1304 {
1305 	struct mt7603_dev *dev = container_of(mdev, struct mt7603_dev, mt76);
1306 	struct sk_buff *skb = e->skb;
1307 
1308 	if (!e->txwi) {
1309 		dev_kfree_skb_any(skb);
1310 		return;
1311 	}
1312 
1313 	dev->tx_hang_check = 0;
1314 	mt76_tx_complete_skb(mdev, e->wcid, skb);
1315 }
1316 
1317 static bool
1318 wait_for_wpdma(struct mt7603_dev *dev)
1319 {
1320 	return mt76_poll(dev, MT_WPDMA_GLO_CFG,
1321 			 MT_WPDMA_GLO_CFG_TX_DMA_BUSY |
1322 			 MT_WPDMA_GLO_CFG_RX_DMA_BUSY,
1323 			 0, 1000);
1324 }
1325 
1326 static void mt7603_pse_reset(struct mt7603_dev *dev)
1327 {
1328 	/* Clear previous reset result */
1329 	if (!dev->reset_cause[RESET_CAUSE_RESET_FAILED])
1330 		mt76_clear(dev, MT_MCU_DEBUG_RESET, MT_MCU_DEBUG_RESET_PSE_S);
1331 
1332 	/* Reset PSE */
1333 	mt76_set(dev, MT_MCU_DEBUG_RESET, MT_MCU_DEBUG_RESET_PSE);
1334 
1335 	if (!mt76_poll_msec(dev, MT_MCU_DEBUG_RESET,
1336 			    MT_MCU_DEBUG_RESET_PSE_S,
1337 			    MT_MCU_DEBUG_RESET_PSE_S, 500)) {
1338 		dev->reset_cause[RESET_CAUSE_RESET_FAILED]++;
1339 		mt76_clear(dev, MT_MCU_DEBUG_RESET, MT_MCU_DEBUG_RESET_PSE);
1340 	} else {
1341 		dev->reset_cause[RESET_CAUSE_RESET_FAILED] = 0;
1342 		mt76_clear(dev, MT_MCU_DEBUG_RESET, MT_MCU_DEBUG_RESET_QUEUES);
1343 	}
1344 
1345 	if (dev->reset_cause[RESET_CAUSE_RESET_FAILED] >= 3)
1346 		dev->reset_cause[RESET_CAUSE_RESET_FAILED] = 0;
1347 }
1348 
1349 void mt7603_mac_dma_start(struct mt7603_dev *dev)
1350 {
1351 	mt7603_mac_start(dev);
1352 
1353 	wait_for_wpdma(dev);
1354 	usleep_range(50, 100);
1355 
1356 	mt76_set(dev, MT_WPDMA_GLO_CFG,
1357 		 (MT_WPDMA_GLO_CFG_TX_DMA_EN |
1358 		  MT_WPDMA_GLO_CFG_RX_DMA_EN |
1359 		  FIELD_PREP(MT_WPDMA_GLO_CFG_DMA_BURST_SIZE, 3) |
1360 		  MT_WPDMA_GLO_CFG_TX_WRITEBACK_DONE));
1361 
1362 	mt7603_irq_enable(dev, MT_INT_RX_DONE_ALL | MT_INT_TX_DONE_ALL);
1363 }
1364 
1365 void mt7603_mac_start(struct mt7603_dev *dev)
1366 {
1367 	mt76_clear(dev, MT_ARB_SCR,
1368 		   MT_ARB_SCR_TX_DISABLE | MT_ARB_SCR_RX_DISABLE);
1369 	mt76_wr(dev, MT_WF_ARB_TX_START_0, ~0);
1370 	mt76_set(dev, MT_WF_ARB_RQCR, MT_WF_ARB_RQCR_RX_START);
1371 }
1372 
1373 void mt7603_mac_stop(struct mt7603_dev *dev)
1374 {
1375 	mt76_set(dev, MT_ARB_SCR,
1376 		 MT_ARB_SCR_TX_DISABLE | MT_ARB_SCR_RX_DISABLE);
1377 	mt76_wr(dev, MT_WF_ARB_TX_START_0, 0);
1378 	mt76_clear(dev, MT_WF_ARB_RQCR, MT_WF_ARB_RQCR_RX_START);
1379 }
1380 
1381 void mt7603_pse_client_reset(struct mt7603_dev *dev)
1382 {
1383 	u32 addr;
1384 
1385 	addr = mt7603_reg_map(dev, MT_CLIENT_BASE_PHYS_ADDR +
1386 				   MT_CLIENT_RESET_TX);
1387 
1388 	/* Clear previous reset state */
1389 	mt76_clear(dev, addr,
1390 		   MT_CLIENT_RESET_TX_R_E_1 |
1391 		   MT_CLIENT_RESET_TX_R_E_2 |
1392 		   MT_CLIENT_RESET_TX_R_E_1_S |
1393 		   MT_CLIENT_RESET_TX_R_E_2_S);
1394 
1395 	/* Start PSE client TX abort */
1396 	mt76_set(dev, addr, MT_CLIENT_RESET_TX_R_E_1);
1397 	mt76_poll_msec(dev, addr, MT_CLIENT_RESET_TX_R_E_1_S,
1398 		       MT_CLIENT_RESET_TX_R_E_1_S, 500);
1399 
1400 	mt76_set(dev, addr, MT_CLIENT_RESET_TX_R_E_2);
1401 	mt76_set(dev, MT_WPDMA_GLO_CFG, MT_WPDMA_GLO_CFG_SW_RESET);
1402 
1403 	/* Wait for PSE client to clear TX FIFO */
1404 	mt76_poll_msec(dev, addr, MT_CLIENT_RESET_TX_R_E_2_S,
1405 		       MT_CLIENT_RESET_TX_R_E_2_S, 500);
1406 
1407 	/* Clear PSE client TX abort state */
1408 	mt76_clear(dev, addr,
1409 		   MT_CLIENT_RESET_TX_R_E_1 |
1410 		   MT_CLIENT_RESET_TX_R_E_2);
1411 }
1412 
1413 static void mt7603_dma_sched_reset(struct mt7603_dev *dev)
1414 {
1415 	if (!is_mt7628(dev))
1416 		return;
1417 
1418 	mt76_set(dev, MT_SCH_4, MT_SCH_4_RESET);
1419 	mt76_clear(dev, MT_SCH_4, MT_SCH_4_RESET);
1420 }
1421 
1422 static void mt7603_mac_watchdog_reset(struct mt7603_dev *dev)
1423 {
1424 	int beacon_int = dev->mt76.beacon_int;
1425 	u32 mask = dev->mt76.mmio.irqmask;
1426 	int i;
1427 
1428 	ieee80211_stop_queues(dev->mt76.hw);
1429 	set_bit(MT76_RESET, &dev->mphy.state);
1430 
1431 	/* lock/unlock all queues to ensure that no tx is pending */
1432 	mt76_txq_schedule_all(&dev->mphy);
1433 
1434 	mt76_worker_disable(&dev->mt76.tx_worker);
1435 	tasklet_disable(&dev->mt76.pre_tbtt_tasklet);
1436 	napi_disable(&dev->mt76.napi[0]);
1437 	napi_disable(&dev->mt76.napi[1]);
1438 	napi_disable(&dev->mt76.tx_napi);
1439 
1440 	mutex_lock(&dev->mt76.mutex);
1441 
1442 	mt7603_beacon_set_timer(dev, -1, 0);
1443 
1444 	mt7603_mac_stop(dev);
1445 
1446 	mt76_clear(dev, MT_WPDMA_GLO_CFG,
1447 		   MT_WPDMA_GLO_CFG_RX_DMA_EN | MT_WPDMA_GLO_CFG_TX_DMA_EN |
1448 		   MT_WPDMA_GLO_CFG_TX_WRITEBACK_DONE);
1449 	usleep_range(1000, 2000);
1450 
1451 	mt7603_irq_disable(dev, mask);
1452 
1453 	mt7603_pse_client_reset(dev);
1454 
1455 	mt76_queue_tx_cleanup(dev, dev->mt76.q_mcu[MT_MCUQ_WM], true);
1456 	for (i = 0; i < __MT_TXQ_MAX; i++)
1457 		mt76_queue_tx_cleanup(dev, dev->mphy.q_tx[i], true);
1458 
1459 	mt7603_dma_sched_reset(dev);
1460 
1461 	mt76_tx_status_check(&dev->mt76, true);
1462 
1463 	mt76_for_each_q_rx(&dev->mt76, i) {
1464 		mt76_queue_rx_reset(dev, i);
1465 	}
1466 
1467 	if (dev->reset_cause[RESET_CAUSE_RESET_FAILED] ||
1468 	    dev->cur_reset_cause == RESET_CAUSE_RX_PSE_BUSY)
1469 		mt7603_pse_reset(dev);
1470 
1471 	if (!dev->reset_cause[RESET_CAUSE_RESET_FAILED]) {
1472 		mt7603_mac_dma_start(dev);
1473 
1474 		mt7603_irq_enable(dev, mask);
1475 
1476 		clear_bit(MT76_RESET, &dev->mphy.state);
1477 	}
1478 
1479 	mutex_unlock(&dev->mt76.mutex);
1480 
1481 	mt76_worker_enable(&dev->mt76.tx_worker);
1482 
1483 	tasklet_enable(&dev->mt76.pre_tbtt_tasklet);
1484 	mt7603_beacon_set_timer(dev, -1, beacon_int);
1485 
1486 	local_bh_disable();
1487 	napi_enable(&dev->mt76.tx_napi);
1488 	napi_schedule(&dev->mt76.tx_napi);
1489 
1490 	napi_enable(&dev->mt76.napi[0]);
1491 	napi_schedule(&dev->mt76.napi[0]);
1492 
1493 	napi_enable(&dev->mt76.napi[1]);
1494 	napi_schedule(&dev->mt76.napi[1]);
1495 	local_bh_enable();
1496 
1497 	ieee80211_wake_queues(dev->mt76.hw);
1498 	mt76_txq_schedule_all(&dev->mphy);
1499 }
1500 
1501 static u32 mt7603_dma_debug(struct mt7603_dev *dev, u8 index)
1502 {
1503 	u32 val;
1504 
1505 	mt76_wr(dev, MT_WPDMA_DEBUG,
1506 		FIELD_PREP(MT_WPDMA_DEBUG_IDX, index) |
1507 		MT_WPDMA_DEBUG_SEL);
1508 
1509 	val = mt76_rr(dev, MT_WPDMA_DEBUG);
1510 	return FIELD_GET(MT_WPDMA_DEBUG_VALUE, val);
1511 }
1512 
1513 static bool mt7603_rx_fifo_busy(struct mt7603_dev *dev)
1514 {
1515 	if (is_mt7628(dev))
1516 		return mt7603_dma_debug(dev, 9) & BIT(9);
1517 
1518 	return mt7603_dma_debug(dev, 2) & BIT(8);
1519 }
1520 
1521 static bool mt7603_rx_dma_busy(struct mt7603_dev *dev)
1522 {
1523 	if (!(mt76_rr(dev, MT_WPDMA_GLO_CFG) & MT_WPDMA_GLO_CFG_RX_DMA_BUSY))
1524 		return false;
1525 
1526 	return mt7603_rx_fifo_busy(dev);
1527 }
1528 
1529 static bool mt7603_tx_dma_busy(struct mt7603_dev *dev)
1530 {
1531 	u32 val;
1532 
1533 	if (!(mt76_rr(dev, MT_WPDMA_GLO_CFG) & MT_WPDMA_GLO_CFG_TX_DMA_BUSY))
1534 		return false;
1535 
1536 	val = mt7603_dma_debug(dev, 9);
1537 	return (val & BIT(8)) && (val & 0xf) != 0xf;
1538 }
1539 
1540 static bool mt7603_tx_hang(struct mt7603_dev *dev)
1541 {
1542 	struct mt76_queue *q;
1543 	u32 dma_idx, prev_dma_idx;
1544 	int i;
1545 
1546 	for (i = 0; i < 4; i++) {
1547 		q = dev->mphy.q_tx[i];
1548 
1549 		if (!q->queued)
1550 			continue;
1551 
1552 		prev_dma_idx = dev->tx_dma_idx[i];
1553 		dma_idx = readl(&q->regs->dma_idx);
1554 		dev->tx_dma_idx[i] = dma_idx;
1555 
1556 		if (dma_idx == prev_dma_idx &&
1557 		    dma_idx != readl(&q->regs->cpu_idx))
1558 			break;
1559 	}
1560 
1561 	return i < 4;
1562 }
1563 
1564 static bool mt7603_rx_pse_busy(struct mt7603_dev *dev)
1565 {
1566 	u32 addr, val;
1567 
1568 	if (mt7603_rx_fifo_busy(dev))
1569 		goto out;
1570 
1571 	addr = mt7603_reg_map(dev, MT_CLIENT_BASE_PHYS_ADDR + MT_CLIENT_STATUS);
1572 	mt76_wr(dev, addr, 3);
1573 	val = mt76_rr(dev, addr) >> 16;
1574 
1575 	if (!(val & BIT(0)))
1576 		return false;
1577 
1578 	if (is_mt7628(dev))
1579 		val &= 0xa000;
1580 	else
1581 		val &= 0x8000;
1582 	if (!val)
1583 		return false;
1584 
1585 out:
1586 	if (mt76_rr(dev, MT_INT_SOURCE_CSR) &
1587 	    (MT_INT_RX_DONE(0) | MT_INT_RX_DONE(1)))
1588 		return false;
1589 
1590 	return true;
1591 }
1592 
1593 static bool
1594 mt7603_watchdog_check(struct mt7603_dev *dev, u8 *counter,
1595 		      enum mt7603_reset_cause cause,
1596 		      bool (*check)(struct mt7603_dev *dev))
1597 {
1598 	if (dev->reset_test == cause + 1) {
1599 		dev->reset_test = 0;
1600 		goto trigger;
1601 	}
1602 
1603 	if (check) {
1604 		if (!check(dev) && *counter < MT7603_WATCHDOG_TIMEOUT) {
1605 			*counter = 0;
1606 			return false;
1607 		}
1608 
1609 		(*counter)++;
1610 	}
1611 
1612 	if (*counter < MT7603_WATCHDOG_TIMEOUT)
1613 		return false;
1614 trigger:
1615 	dev->cur_reset_cause = cause;
1616 	dev->reset_cause[cause]++;
1617 	return true;
1618 }
1619 
1620 void mt7603_update_channel(struct mt76_phy *mphy)
1621 {
1622 	struct mt7603_dev *dev = container_of(mphy->dev, struct mt7603_dev, mt76);
1623 	struct mt76_channel_state *state;
1624 
1625 	state = mphy->chan_state;
1626 	state->cc_busy += mt76_rr(dev, MT_MIB_STAT_CCA);
1627 }
1628 
1629 void
1630 mt7603_edcca_set_strict(struct mt7603_dev *dev, bool val)
1631 {
1632 	u32 rxtd_6 = 0xd7c80000;
1633 
1634 	if (val == dev->ed_strict_mode)
1635 		return;
1636 
1637 	dev->ed_strict_mode = val;
1638 
1639 	/* Ensure that ED/CCA does not trigger if disabled */
1640 	if (!dev->ed_monitor)
1641 		rxtd_6 |= FIELD_PREP(MT_RXTD_6_CCAED_TH, 0x34);
1642 	else
1643 		rxtd_6 |= FIELD_PREP(MT_RXTD_6_CCAED_TH, 0x7d);
1644 
1645 	if (dev->ed_monitor && !dev->ed_strict_mode)
1646 		rxtd_6 |= FIELD_PREP(MT_RXTD_6_ACI_TH, 0x0f);
1647 	else
1648 		rxtd_6 |= FIELD_PREP(MT_RXTD_6_ACI_TH, 0x10);
1649 
1650 	mt76_wr(dev, MT_RXTD(6), rxtd_6);
1651 
1652 	mt76_rmw_field(dev, MT_RXTD(13), MT_RXTD_13_ACI_TH_EN,
1653 		       dev->ed_monitor && !dev->ed_strict_mode);
1654 }
1655 
1656 static void
1657 mt7603_edcca_check(struct mt7603_dev *dev)
1658 {
1659 	u32 val = mt76_rr(dev, MT_AGC(41));
1660 	ktime_t cur_time;
1661 	int rssi0, rssi1;
1662 	u32 active;
1663 	u32 ed_busy;
1664 
1665 	if (!dev->ed_monitor)
1666 		return;
1667 
1668 	rssi0 = FIELD_GET(MT_AGC_41_RSSI_0, val);
1669 	if (rssi0 > 128)
1670 		rssi0 -= 256;
1671 
1672 	if (dev->mphy.antenna_mask & BIT(1)) {
1673 		rssi1 = FIELD_GET(MT_AGC_41_RSSI_1, val);
1674 		if (rssi1 > 128)
1675 			rssi1 -= 256;
1676 	} else {
1677 		rssi1 = rssi0;
1678 	}
1679 
1680 	if (max(rssi0, rssi1) >= -40 &&
1681 	    dev->ed_strong_signal < MT7603_EDCCA_BLOCK_TH)
1682 		dev->ed_strong_signal++;
1683 	else if (dev->ed_strong_signal > 0)
1684 		dev->ed_strong_signal--;
1685 
1686 	cur_time = ktime_get_boottime();
1687 	ed_busy = mt76_rr(dev, MT_MIB_STAT_ED) & MT_MIB_STAT_ED_MASK;
1688 
1689 	active = ktime_to_us(ktime_sub(cur_time, dev->ed_time));
1690 	dev->ed_time = cur_time;
1691 
1692 	if (!active)
1693 		return;
1694 
1695 	if (100 * ed_busy / active > 90) {
1696 		if (dev->ed_trigger < 0)
1697 			dev->ed_trigger = 0;
1698 		dev->ed_trigger++;
1699 	} else {
1700 		if (dev->ed_trigger > 0)
1701 			dev->ed_trigger = 0;
1702 		dev->ed_trigger--;
1703 	}
1704 
1705 	if (dev->ed_trigger > MT7603_EDCCA_BLOCK_TH ||
1706 	    dev->ed_strong_signal < MT7603_EDCCA_BLOCK_TH / 2) {
1707 		mt7603_edcca_set_strict(dev, true);
1708 	} else if (dev->ed_trigger < -MT7603_EDCCA_BLOCK_TH) {
1709 		mt7603_edcca_set_strict(dev, false);
1710 	}
1711 
1712 	if (dev->ed_trigger > MT7603_EDCCA_BLOCK_TH)
1713 		dev->ed_trigger = MT7603_EDCCA_BLOCK_TH;
1714 	else if (dev->ed_trigger < -MT7603_EDCCA_BLOCK_TH)
1715 		dev->ed_trigger = -MT7603_EDCCA_BLOCK_TH;
1716 }
1717 
1718 void mt7603_cca_stats_reset(struct mt7603_dev *dev)
1719 {
1720 	mt76_set(dev, MT_PHYCTRL(2), MT_PHYCTRL_2_STATUS_RESET);
1721 	mt76_clear(dev, MT_PHYCTRL(2), MT_PHYCTRL_2_STATUS_RESET);
1722 	mt76_set(dev, MT_PHYCTRL(2), MT_PHYCTRL_2_STATUS_EN);
1723 }
1724 
1725 static void
1726 mt7603_adjust_sensitivity(struct mt7603_dev *dev)
1727 {
1728 	u32 agc0 = dev->agc0, agc3 = dev->agc3;
1729 	u32 adj;
1730 
1731 	if (!dev->sensitivity || dev->sensitivity < -100) {
1732 		dev->sensitivity = 0;
1733 	} else if (dev->sensitivity <= -84) {
1734 		adj = 7 + (dev->sensitivity + 92) / 2;
1735 
1736 		agc0 = 0x56f0076f;
1737 		agc0 |= adj << 12;
1738 		agc0 |= adj << 16;
1739 		agc3 = 0x81d0d5e3;
1740 	} else if (dev->sensitivity <= -72) {
1741 		adj = 7 + (dev->sensitivity + 80) / 2;
1742 
1743 		agc0 = 0x6af0006f;
1744 		agc0 |= adj << 8;
1745 		agc0 |= adj << 12;
1746 		agc0 |= adj << 16;
1747 
1748 		agc3 = 0x8181d5e3;
1749 	} else {
1750 		if (dev->sensitivity > -54)
1751 			dev->sensitivity = -54;
1752 
1753 		adj = 7 + (dev->sensitivity + 80) / 2;
1754 
1755 		agc0 = 0x7ff0000f;
1756 		agc0 |= adj << 4;
1757 		agc0 |= adj << 8;
1758 		agc0 |= adj << 12;
1759 		agc0 |= adj << 16;
1760 
1761 		agc3 = 0x818181e3;
1762 	}
1763 
1764 	mt76_wr(dev, MT_AGC(0), agc0);
1765 	mt76_wr(dev, MT_AGC1(0), agc0);
1766 
1767 	mt76_wr(dev, MT_AGC(3), agc3);
1768 	mt76_wr(dev, MT_AGC1(3), agc3);
1769 }
1770 
1771 static void
1772 mt7603_false_cca_check(struct mt7603_dev *dev)
1773 {
1774 	int pd_cck, pd_ofdm, mdrdy_cck, mdrdy_ofdm;
1775 	int false_cca;
1776 	int min_signal;
1777 	u32 val;
1778 
1779 	if (!dev->dynamic_sensitivity)
1780 		return;
1781 
1782 	val = mt76_rr(dev, MT_PHYCTRL_STAT_PD);
1783 	pd_cck = FIELD_GET(MT_PHYCTRL_STAT_PD_CCK, val);
1784 	pd_ofdm = FIELD_GET(MT_PHYCTRL_STAT_PD_OFDM, val);
1785 
1786 	val = mt76_rr(dev, MT_PHYCTRL_STAT_MDRDY);
1787 	mdrdy_cck = FIELD_GET(MT_PHYCTRL_STAT_MDRDY_CCK, val);
1788 	mdrdy_ofdm = FIELD_GET(MT_PHYCTRL_STAT_MDRDY_OFDM, val);
1789 
1790 	dev->false_cca_ofdm = pd_ofdm - mdrdy_ofdm;
1791 	dev->false_cca_cck = pd_cck - mdrdy_cck;
1792 
1793 	mt7603_cca_stats_reset(dev);
1794 
1795 	min_signal = mt76_get_min_avg_rssi(&dev->mt76, false);
1796 	if (!min_signal) {
1797 		dev->sensitivity = 0;
1798 		dev->last_cca_adj = jiffies;
1799 		goto out;
1800 	}
1801 
1802 	min_signal -= 15;
1803 
1804 	false_cca = dev->false_cca_ofdm + dev->false_cca_cck;
1805 	if (false_cca > 600 &&
1806 	    dev->sensitivity < -100 + dev->sensitivity_limit) {
1807 		if (!dev->sensitivity)
1808 			dev->sensitivity = -92;
1809 		else
1810 			dev->sensitivity += 2;
1811 		dev->last_cca_adj = jiffies;
1812 	} else if (false_cca < 100 ||
1813 		   time_after(jiffies, dev->last_cca_adj + 10 * HZ)) {
1814 		dev->last_cca_adj = jiffies;
1815 		if (!dev->sensitivity)
1816 			goto out;
1817 
1818 		dev->sensitivity -= 2;
1819 	}
1820 
1821 	if (dev->sensitivity && dev->sensitivity > min_signal) {
1822 		dev->sensitivity = min_signal;
1823 		dev->last_cca_adj = jiffies;
1824 	}
1825 
1826 out:
1827 	mt7603_adjust_sensitivity(dev);
1828 }
1829 
1830 void mt7603_mac_work(struct work_struct *work)
1831 {
1832 	struct mt7603_dev *dev = container_of(work, struct mt7603_dev,
1833 					      mphy.mac_work.work);
1834 	bool reset = false;
1835 	int i, idx;
1836 
1837 	mt76_tx_status_check(&dev->mt76, false);
1838 
1839 	mutex_lock(&dev->mt76.mutex);
1840 
1841 	dev->mphy.mac_work_count++;
1842 	mt76_update_survey(&dev->mphy);
1843 	mt7603_edcca_check(dev);
1844 
1845 	for (i = 0, idx = 0; i < 2; i++) {
1846 		u32 val = mt76_rr(dev, MT_TX_AGG_CNT(i));
1847 
1848 		dev->mphy.aggr_stats[idx++] += val & 0xffff;
1849 		dev->mphy.aggr_stats[idx++] += val >> 16;
1850 	}
1851 
1852 	if (dev->mphy.mac_work_count == 10)
1853 		mt7603_false_cca_check(dev);
1854 
1855 	if (mt7603_watchdog_check(dev, &dev->rx_pse_check,
1856 				  RESET_CAUSE_RX_PSE_BUSY,
1857 				  mt7603_rx_pse_busy) ||
1858 	    mt7603_watchdog_check(dev, &dev->beacon_check,
1859 				  RESET_CAUSE_BEACON_STUCK,
1860 				  NULL) ||
1861 	    mt7603_watchdog_check(dev, &dev->tx_hang_check,
1862 				  RESET_CAUSE_TX_HANG,
1863 				  mt7603_tx_hang) ||
1864 	    mt7603_watchdog_check(dev, &dev->tx_dma_check,
1865 				  RESET_CAUSE_TX_BUSY,
1866 				  mt7603_tx_dma_busy) ||
1867 	    mt7603_watchdog_check(dev, &dev->rx_dma_check,
1868 				  RESET_CAUSE_RX_BUSY,
1869 				  mt7603_rx_dma_busy) ||
1870 	    mt7603_watchdog_check(dev, &dev->mcu_hang,
1871 				  RESET_CAUSE_MCU_HANG,
1872 				  NULL) ||
1873 	    dev->reset_cause[RESET_CAUSE_RESET_FAILED]) {
1874 		dev->beacon_check = 0;
1875 		dev->tx_dma_check = 0;
1876 		dev->tx_hang_check = 0;
1877 		dev->rx_dma_check = 0;
1878 		dev->rx_pse_check = 0;
1879 		dev->mcu_hang = 0;
1880 		dev->rx_dma_idx = ~0;
1881 		memset(dev->tx_dma_idx, 0xff, sizeof(dev->tx_dma_idx));
1882 		reset = true;
1883 		dev->mphy.mac_work_count = 0;
1884 	}
1885 
1886 	if (dev->mphy.mac_work_count >= 10)
1887 		dev->mphy.mac_work_count = 0;
1888 
1889 	mutex_unlock(&dev->mt76.mutex);
1890 
1891 	if (reset)
1892 		mt7603_mac_watchdog_reset(dev);
1893 
1894 	ieee80211_queue_delayed_work(mt76_hw(dev), &dev->mphy.mac_work,
1895 				     msecs_to_jiffies(MT7603_WATCHDOG_TIME));
1896 }
1897