1 // SPDX-License-Identifier: ISC 2 /* 3 * Copyright (C) 2016 Felix Fietkau <nbd@nbd.name> 4 */ 5 #include <linux/sched.h> 6 #include <linux/of.h> 7 #include "mt76.h" 8 9 #define CHAN2G(_idx, _freq) { \ 10 .band = NL80211_BAND_2GHZ, \ 11 .center_freq = (_freq), \ 12 .hw_value = (_idx), \ 13 .max_power = 30, \ 14 } 15 16 #define CHAN5G(_idx, _freq) { \ 17 .band = NL80211_BAND_5GHZ, \ 18 .center_freq = (_freq), \ 19 .hw_value = (_idx), \ 20 .max_power = 30, \ 21 } 22 23 static const struct ieee80211_channel mt76_channels_2ghz[] = { 24 CHAN2G(1, 2412), 25 CHAN2G(2, 2417), 26 CHAN2G(3, 2422), 27 CHAN2G(4, 2427), 28 CHAN2G(5, 2432), 29 CHAN2G(6, 2437), 30 CHAN2G(7, 2442), 31 CHAN2G(8, 2447), 32 CHAN2G(9, 2452), 33 CHAN2G(10, 2457), 34 CHAN2G(11, 2462), 35 CHAN2G(12, 2467), 36 CHAN2G(13, 2472), 37 CHAN2G(14, 2484), 38 }; 39 40 static const struct ieee80211_channel mt76_channels_5ghz[] = { 41 CHAN5G(36, 5180), 42 CHAN5G(40, 5200), 43 CHAN5G(44, 5220), 44 CHAN5G(48, 5240), 45 46 CHAN5G(52, 5260), 47 CHAN5G(56, 5280), 48 CHAN5G(60, 5300), 49 CHAN5G(64, 5320), 50 51 CHAN5G(100, 5500), 52 CHAN5G(104, 5520), 53 CHAN5G(108, 5540), 54 CHAN5G(112, 5560), 55 CHAN5G(116, 5580), 56 CHAN5G(120, 5600), 57 CHAN5G(124, 5620), 58 CHAN5G(128, 5640), 59 CHAN5G(132, 5660), 60 CHAN5G(136, 5680), 61 CHAN5G(140, 5700), 62 CHAN5G(144, 5720), 63 64 CHAN5G(149, 5745), 65 CHAN5G(153, 5765), 66 CHAN5G(157, 5785), 67 CHAN5G(161, 5805), 68 CHAN5G(165, 5825), 69 CHAN5G(169, 5845), 70 CHAN5G(173, 5865), 71 }; 72 73 static const struct ieee80211_tpt_blink mt76_tpt_blink[] = { 74 { .throughput = 0 * 1024, .blink_time = 334 }, 75 { .throughput = 1 * 1024, .blink_time = 260 }, 76 { .throughput = 5 * 1024, .blink_time = 220 }, 77 { .throughput = 10 * 1024, .blink_time = 190 }, 78 { .throughput = 20 * 1024, .blink_time = 170 }, 79 { .throughput = 50 * 1024, .blink_time = 150 }, 80 { .throughput = 70 * 1024, .blink_time = 130 }, 81 { .throughput = 100 * 1024, .blink_time = 110 }, 82 { .throughput = 200 * 1024, .blink_time = 80 }, 83 { .throughput = 300 * 1024, .blink_time = 50 }, 84 }; 85 86 struct ieee80211_rate mt76_rates[] = { 87 CCK_RATE(0, 10), 88 CCK_RATE(1, 20), 89 CCK_RATE(2, 55), 90 CCK_RATE(3, 110), 91 OFDM_RATE(11, 60), 92 OFDM_RATE(15, 90), 93 OFDM_RATE(10, 120), 94 OFDM_RATE(14, 180), 95 OFDM_RATE(9, 240), 96 OFDM_RATE(13, 360), 97 OFDM_RATE(8, 480), 98 OFDM_RATE(12, 540), 99 }; 100 EXPORT_SYMBOL_GPL(mt76_rates); 101 102 static int mt76_led_init(struct mt76_dev *dev) 103 { 104 struct device_node *np = dev->dev->of_node; 105 struct ieee80211_hw *hw = dev->hw; 106 int led_pin; 107 108 if (!dev->led_cdev.brightness_set && !dev->led_cdev.blink_set) 109 return 0; 110 111 snprintf(dev->led_name, sizeof(dev->led_name), 112 "mt76-%s", wiphy_name(hw->wiphy)); 113 114 dev->led_cdev.name = dev->led_name; 115 dev->led_cdev.default_trigger = 116 ieee80211_create_tpt_led_trigger(hw, 117 IEEE80211_TPT_LEDTRIG_FL_RADIO, 118 mt76_tpt_blink, 119 ARRAY_SIZE(mt76_tpt_blink)); 120 121 np = of_get_child_by_name(np, "led"); 122 if (np) { 123 if (!of_property_read_u32(np, "led-sources", &led_pin)) 124 dev->led_pin = led_pin; 125 dev->led_al = of_property_read_bool(np, "led-active-low"); 126 } 127 128 return led_classdev_register(dev->dev, &dev->led_cdev); 129 } 130 131 static void mt76_led_cleanup(struct mt76_dev *dev) 132 { 133 if (!dev->led_cdev.brightness_set && !dev->led_cdev.blink_set) 134 return; 135 136 led_classdev_unregister(&dev->led_cdev); 137 } 138 139 static void mt76_init_stream_cap(struct mt76_phy *phy, 140 struct ieee80211_supported_band *sband, 141 bool vht) 142 { 143 struct ieee80211_sta_ht_cap *ht_cap = &sband->ht_cap; 144 int i, nstream = hweight8(phy->antenna_mask); 145 struct ieee80211_sta_vht_cap *vht_cap; 146 u16 mcs_map = 0; 147 148 if (nstream > 1) 149 ht_cap->cap |= IEEE80211_HT_CAP_TX_STBC; 150 else 151 ht_cap->cap &= ~IEEE80211_HT_CAP_TX_STBC; 152 153 for (i = 0; i < IEEE80211_HT_MCS_MASK_LEN; i++) 154 ht_cap->mcs.rx_mask[i] = i < nstream ? 0xff : 0; 155 156 if (!vht) 157 return; 158 159 vht_cap = &sband->vht_cap; 160 if (nstream > 1) 161 vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC; 162 else 163 vht_cap->cap &= ~IEEE80211_VHT_CAP_TXSTBC; 164 165 for (i = 0; i < 8; i++) { 166 if (i < nstream) 167 mcs_map |= (IEEE80211_VHT_MCS_SUPPORT_0_9 << (i * 2)); 168 else 169 mcs_map |= 170 (IEEE80211_VHT_MCS_NOT_SUPPORTED << (i * 2)); 171 } 172 vht_cap->vht_mcs.rx_mcs_map = cpu_to_le16(mcs_map); 173 vht_cap->vht_mcs.tx_mcs_map = cpu_to_le16(mcs_map); 174 } 175 176 void mt76_set_stream_caps(struct mt76_phy *phy, bool vht) 177 { 178 if (phy->cap.has_2ghz) 179 mt76_init_stream_cap(phy, &phy->sband_2g.sband, false); 180 if (phy->cap.has_5ghz) 181 mt76_init_stream_cap(phy, &phy->sband_5g.sband, vht); 182 } 183 EXPORT_SYMBOL_GPL(mt76_set_stream_caps); 184 185 static int 186 mt76_init_sband(struct mt76_phy *phy, struct mt76_sband *msband, 187 const struct ieee80211_channel *chan, int n_chan, 188 struct ieee80211_rate *rates, int n_rates, bool vht) 189 { 190 struct ieee80211_supported_band *sband = &msband->sband; 191 struct ieee80211_sta_vht_cap *vht_cap; 192 struct ieee80211_sta_ht_cap *ht_cap; 193 struct mt76_dev *dev = phy->dev; 194 void *chanlist; 195 int size; 196 197 size = n_chan * sizeof(*chan); 198 chanlist = devm_kmemdup(dev->dev, chan, size, GFP_KERNEL); 199 if (!chanlist) 200 return -ENOMEM; 201 202 msband->chan = devm_kcalloc(dev->dev, n_chan, sizeof(*msband->chan), 203 GFP_KERNEL); 204 if (!msband->chan) 205 return -ENOMEM; 206 207 sband->channels = chanlist; 208 sband->n_channels = n_chan; 209 sband->bitrates = rates; 210 sband->n_bitrates = n_rates; 211 212 ht_cap = &sband->ht_cap; 213 ht_cap->ht_supported = true; 214 ht_cap->cap |= IEEE80211_HT_CAP_SUP_WIDTH_20_40 | 215 IEEE80211_HT_CAP_GRN_FLD | 216 IEEE80211_HT_CAP_SGI_20 | 217 IEEE80211_HT_CAP_SGI_40 | 218 (1 << IEEE80211_HT_CAP_RX_STBC_SHIFT); 219 220 ht_cap->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED; 221 ht_cap->ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K; 222 223 mt76_init_stream_cap(phy, sband, vht); 224 225 if (!vht) 226 return 0; 227 228 vht_cap = &sband->vht_cap; 229 vht_cap->vht_supported = true; 230 vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC | 231 IEEE80211_VHT_CAP_RXSTBC_1 | 232 IEEE80211_VHT_CAP_SHORT_GI_80 | 233 IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN | 234 IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN | 235 (3 << IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT); 236 237 return 0; 238 } 239 240 static int 241 mt76_init_sband_2g(struct mt76_phy *phy, struct ieee80211_rate *rates, 242 int n_rates) 243 { 244 phy->hw->wiphy->bands[NL80211_BAND_2GHZ] = &phy->sband_2g.sband; 245 246 return mt76_init_sband(phy, &phy->sband_2g, mt76_channels_2ghz, 247 ARRAY_SIZE(mt76_channels_2ghz), rates, 248 n_rates, false); 249 } 250 251 static int 252 mt76_init_sband_5g(struct mt76_phy *phy, struct ieee80211_rate *rates, 253 int n_rates, bool vht) 254 { 255 phy->hw->wiphy->bands[NL80211_BAND_5GHZ] = &phy->sband_5g.sband; 256 257 return mt76_init_sband(phy, &phy->sband_5g, mt76_channels_5ghz, 258 ARRAY_SIZE(mt76_channels_5ghz), rates, 259 n_rates, vht); 260 } 261 262 static void 263 mt76_check_sband(struct mt76_phy *phy, struct mt76_sband *msband, 264 enum nl80211_band band) 265 { 266 struct ieee80211_supported_band *sband = &msband->sband; 267 bool found = false; 268 int i; 269 270 if (!sband) 271 return; 272 273 for (i = 0; i < sband->n_channels; i++) { 274 if (sband->channels[i].flags & IEEE80211_CHAN_DISABLED) 275 continue; 276 277 found = true; 278 break; 279 } 280 281 if (found) { 282 phy->chandef.chan = &sband->channels[0]; 283 phy->chan_state = &msband->chan[0]; 284 return; 285 } 286 287 sband->n_channels = 0; 288 phy->hw->wiphy->bands[band] = NULL; 289 } 290 291 static void 292 mt76_phy_init(struct mt76_phy *phy, struct ieee80211_hw *hw) 293 { 294 struct mt76_dev *dev = phy->dev; 295 struct wiphy *wiphy = hw->wiphy; 296 297 SET_IEEE80211_DEV(hw, dev->dev); 298 SET_IEEE80211_PERM_ADDR(hw, phy->macaddr); 299 300 wiphy->features |= NL80211_FEATURE_ACTIVE_MONITOR; 301 wiphy->flags |= WIPHY_FLAG_HAS_CHANNEL_SWITCH | 302 WIPHY_FLAG_SUPPORTS_TDLS | 303 WIPHY_FLAG_AP_UAPSD; 304 305 wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_CQM_RSSI_LIST); 306 wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_AIRTIME_FAIRNESS); 307 wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_AQL); 308 309 wiphy->available_antennas_tx = dev->phy.antenna_mask; 310 wiphy->available_antennas_rx = dev->phy.antenna_mask; 311 312 hw->txq_data_size = sizeof(struct mt76_txq); 313 hw->uapsd_max_sp_len = IEEE80211_WMM_IE_STA_QOSINFO_SP_ALL; 314 315 if (!hw->max_tx_fragments) 316 hw->max_tx_fragments = 16; 317 318 ieee80211_hw_set(hw, SIGNAL_DBM); 319 ieee80211_hw_set(hw, AMPDU_AGGREGATION); 320 ieee80211_hw_set(hw, SUPPORTS_RC_TABLE); 321 ieee80211_hw_set(hw, SUPPORT_FAST_XMIT); 322 ieee80211_hw_set(hw, SUPPORTS_CLONED_SKBS); 323 ieee80211_hw_set(hw, SUPPORTS_AMSDU_IN_AMPDU); 324 ieee80211_hw_set(hw, SUPPORTS_REORDERING_BUFFER); 325 326 if (!(dev->drv->drv_flags & MT_DRV_AMSDU_OFFLOAD)) { 327 ieee80211_hw_set(hw, TX_AMSDU); 328 ieee80211_hw_set(hw, TX_FRAG_LIST); 329 } 330 331 ieee80211_hw_set(hw, MFP_CAPABLE); 332 ieee80211_hw_set(hw, AP_LINK_PS); 333 ieee80211_hw_set(hw, REPORTS_TX_ACK_STATUS); 334 } 335 336 struct mt76_phy * 337 mt76_alloc_phy(struct mt76_dev *dev, unsigned int size, 338 const struct ieee80211_ops *ops) 339 { 340 struct ieee80211_hw *hw; 341 unsigned int phy_size; 342 struct mt76_phy *phy; 343 344 phy_size = ALIGN(sizeof(*phy), 8); 345 hw = ieee80211_alloc_hw(size + phy_size, ops); 346 if (!hw) 347 return NULL; 348 349 phy = hw->priv; 350 phy->dev = dev; 351 phy->hw = hw; 352 phy->priv = hw->priv + phy_size; 353 354 hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN; 355 hw->wiphy->interface_modes = 356 BIT(NL80211_IFTYPE_STATION) | 357 BIT(NL80211_IFTYPE_AP) | 358 #ifdef CONFIG_MAC80211_MESH 359 BIT(NL80211_IFTYPE_MESH_POINT) | 360 #endif 361 BIT(NL80211_IFTYPE_P2P_CLIENT) | 362 BIT(NL80211_IFTYPE_P2P_GO) | 363 BIT(NL80211_IFTYPE_ADHOC); 364 365 return phy; 366 } 367 EXPORT_SYMBOL_GPL(mt76_alloc_phy); 368 369 int mt76_register_phy(struct mt76_phy *phy, bool vht, 370 struct ieee80211_rate *rates, int n_rates) 371 { 372 int ret; 373 374 mt76_phy_init(phy, phy->hw); 375 376 if (phy->cap.has_2ghz) { 377 ret = mt76_init_sband_2g(phy, rates, n_rates); 378 if (ret) 379 return ret; 380 } 381 382 if (phy->cap.has_5ghz) { 383 ret = mt76_init_sband_5g(phy, rates + 4, n_rates - 4, vht); 384 if (ret) 385 return ret; 386 } 387 388 wiphy_read_of_freq_limits(phy->hw->wiphy); 389 mt76_check_sband(phy, &phy->sband_2g, NL80211_BAND_2GHZ); 390 mt76_check_sband(phy, &phy->sband_5g, NL80211_BAND_5GHZ); 391 392 ret = ieee80211_register_hw(phy->hw); 393 if (ret) 394 return ret; 395 396 phy->dev->phy2 = phy; 397 398 return 0; 399 } 400 EXPORT_SYMBOL_GPL(mt76_register_phy); 401 402 void mt76_unregister_phy(struct mt76_phy *phy) 403 { 404 struct mt76_dev *dev = phy->dev; 405 406 mt76_tx_status_check(dev, NULL, true); 407 ieee80211_unregister_hw(phy->hw); 408 dev->phy2 = NULL; 409 } 410 EXPORT_SYMBOL_GPL(mt76_unregister_phy); 411 412 struct mt76_dev * 413 mt76_alloc_device(struct device *pdev, unsigned int size, 414 const struct ieee80211_ops *ops, 415 const struct mt76_driver_ops *drv_ops) 416 { 417 struct ieee80211_hw *hw; 418 struct mt76_phy *phy; 419 struct mt76_dev *dev; 420 int i; 421 422 hw = ieee80211_alloc_hw(size, ops); 423 if (!hw) 424 return NULL; 425 426 dev = hw->priv; 427 dev->hw = hw; 428 dev->dev = pdev; 429 dev->drv = drv_ops; 430 431 phy = &dev->phy; 432 phy->dev = dev; 433 phy->hw = hw; 434 435 spin_lock_init(&dev->rx_lock); 436 spin_lock_init(&dev->lock); 437 spin_lock_init(&dev->cc_lock); 438 mutex_init(&dev->mutex); 439 init_waitqueue_head(&dev->tx_wait); 440 skb_queue_head_init(&dev->status_list); 441 442 skb_queue_head_init(&dev->mcu.res_q); 443 init_waitqueue_head(&dev->mcu.wait); 444 mutex_init(&dev->mcu.mutex); 445 dev->tx_worker.fn = mt76_tx_worker; 446 447 hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN; 448 hw->wiphy->interface_modes = 449 BIT(NL80211_IFTYPE_STATION) | 450 BIT(NL80211_IFTYPE_AP) | 451 #ifdef CONFIG_MAC80211_MESH 452 BIT(NL80211_IFTYPE_MESH_POINT) | 453 #endif 454 BIT(NL80211_IFTYPE_P2P_CLIENT) | 455 BIT(NL80211_IFTYPE_P2P_GO) | 456 BIT(NL80211_IFTYPE_ADHOC); 457 458 spin_lock_init(&dev->token_lock); 459 idr_init(&dev->token); 460 461 INIT_LIST_HEAD(&dev->txwi_cache); 462 463 for (i = 0; i < ARRAY_SIZE(dev->q_rx); i++) 464 skb_queue_head_init(&dev->rx_skb[i]); 465 466 dev->wq = alloc_ordered_workqueue("mt76", 0); 467 if (!dev->wq) { 468 ieee80211_free_hw(hw); 469 return NULL; 470 } 471 472 return dev; 473 } 474 EXPORT_SYMBOL_GPL(mt76_alloc_device); 475 476 int mt76_register_device(struct mt76_dev *dev, bool vht, 477 struct ieee80211_rate *rates, int n_rates) 478 { 479 struct ieee80211_hw *hw = dev->hw; 480 struct mt76_phy *phy = &dev->phy; 481 int ret; 482 483 dev_set_drvdata(dev->dev, dev); 484 mt76_phy_init(phy, hw); 485 486 if (phy->cap.has_2ghz) { 487 ret = mt76_init_sband_2g(phy, rates, n_rates); 488 if (ret) 489 return ret; 490 } 491 492 if (phy->cap.has_5ghz) { 493 ret = mt76_init_sband_5g(phy, rates + 4, n_rates - 4, vht); 494 if (ret) 495 return ret; 496 } 497 498 wiphy_read_of_freq_limits(hw->wiphy); 499 mt76_check_sband(&dev->phy, &phy->sband_2g, NL80211_BAND_2GHZ); 500 mt76_check_sband(&dev->phy, &phy->sband_5g, NL80211_BAND_5GHZ); 501 502 if (IS_ENABLED(CONFIG_MT76_LEDS)) { 503 ret = mt76_led_init(dev); 504 if (ret) 505 return ret; 506 } 507 508 ret = ieee80211_register_hw(hw); 509 if (ret) 510 return ret; 511 512 WARN_ON(mt76_worker_setup(hw, &dev->tx_worker, NULL, "tx")); 513 sched_set_fifo_low(dev->tx_worker.task); 514 515 return 0; 516 } 517 EXPORT_SYMBOL_GPL(mt76_register_device); 518 519 void mt76_unregister_device(struct mt76_dev *dev) 520 { 521 struct ieee80211_hw *hw = dev->hw; 522 523 if (IS_ENABLED(CONFIG_MT76_LEDS)) 524 mt76_led_cleanup(dev); 525 mt76_tx_status_check(dev, NULL, true); 526 ieee80211_unregister_hw(hw); 527 } 528 EXPORT_SYMBOL_GPL(mt76_unregister_device); 529 530 void mt76_free_device(struct mt76_dev *dev) 531 { 532 mt76_worker_teardown(&dev->tx_worker); 533 if (dev->wq) { 534 destroy_workqueue(dev->wq); 535 dev->wq = NULL; 536 } 537 ieee80211_free_hw(dev->hw); 538 } 539 EXPORT_SYMBOL_GPL(mt76_free_device); 540 541 static void mt76_rx_release_amsdu(struct mt76_phy *phy, enum mt76_rxq_id q) 542 { 543 struct sk_buff *skb = phy->rx_amsdu[q].head; 544 struct mt76_rx_status *status = (struct mt76_rx_status *)skb->cb; 545 struct mt76_dev *dev = phy->dev; 546 547 phy->rx_amsdu[q].head = NULL; 548 phy->rx_amsdu[q].tail = NULL; 549 550 /* 551 * Validate if the amsdu has a proper first subframe. 552 * A single MSDU can be parsed as A-MSDU when the unauthenticated A-MSDU 553 * flag of the QoS header gets flipped. In such cases, the first 554 * subframe has a LLC/SNAP header in the location of the destination 555 * address. 556 */ 557 if (skb_shinfo(skb)->frag_list) { 558 int offset = 0; 559 560 if (!(status->flag & RX_FLAG_8023)) { 561 offset = ieee80211_get_hdrlen_from_skb(skb); 562 563 if ((status->flag & 564 (RX_FLAG_DECRYPTED | RX_FLAG_IV_STRIPPED)) == 565 RX_FLAG_DECRYPTED) 566 offset += 8; 567 } 568 569 if (ether_addr_equal(skb->data + offset, rfc1042_header)) { 570 dev_kfree_skb(skb); 571 return; 572 } 573 } 574 __skb_queue_tail(&dev->rx_skb[q], skb); 575 } 576 577 static void mt76_rx_release_burst(struct mt76_phy *phy, enum mt76_rxq_id q, 578 struct sk_buff *skb) 579 { 580 struct mt76_rx_status *status = (struct mt76_rx_status *)skb->cb; 581 582 if (phy->rx_amsdu[q].head && 583 (!status->amsdu || status->first_amsdu || 584 status->seqno != phy->rx_amsdu[q].seqno)) 585 mt76_rx_release_amsdu(phy, q); 586 587 if (!phy->rx_amsdu[q].head) { 588 phy->rx_amsdu[q].tail = &skb_shinfo(skb)->frag_list; 589 phy->rx_amsdu[q].seqno = status->seqno; 590 phy->rx_amsdu[q].head = skb; 591 } else { 592 *phy->rx_amsdu[q].tail = skb; 593 phy->rx_amsdu[q].tail = &skb->next; 594 } 595 596 if (!status->amsdu || status->last_amsdu) 597 mt76_rx_release_amsdu(phy, q); 598 } 599 600 void mt76_rx(struct mt76_dev *dev, enum mt76_rxq_id q, struct sk_buff *skb) 601 { 602 struct mt76_rx_status *status = (struct mt76_rx_status *)skb->cb; 603 struct mt76_phy *phy = mt76_dev_phy(dev, status->ext_phy); 604 605 if (!test_bit(MT76_STATE_RUNNING, &phy->state)) { 606 dev_kfree_skb(skb); 607 return; 608 } 609 610 #ifdef CONFIG_NL80211_TESTMODE 611 if (phy->test.state == MT76_TM_STATE_RX_FRAMES) { 612 phy->test.rx_stats.packets[q]++; 613 if (status->flag & RX_FLAG_FAILED_FCS_CRC) 614 phy->test.rx_stats.fcs_error[q]++; 615 } 616 #endif 617 618 mt76_rx_release_burst(phy, q, skb); 619 } 620 EXPORT_SYMBOL_GPL(mt76_rx); 621 622 bool mt76_has_tx_pending(struct mt76_phy *phy) 623 { 624 struct mt76_queue *q; 625 int i; 626 627 for (i = 0; i < __MT_TXQ_MAX; i++) { 628 q = phy->q_tx[i]; 629 if (q && q->queued) 630 return true; 631 } 632 633 return false; 634 } 635 EXPORT_SYMBOL_GPL(mt76_has_tx_pending); 636 637 static struct mt76_channel_state * 638 mt76_channel_state(struct mt76_phy *phy, struct ieee80211_channel *c) 639 { 640 struct mt76_sband *msband; 641 int idx; 642 643 if (c->band == NL80211_BAND_2GHZ) 644 msband = &phy->sband_2g; 645 else 646 msband = &phy->sband_5g; 647 648 idx = c - &msband->sband.channels[0]; 649 return &msband->chan[idx]; 650 } 651 652 void mt76_update_survey_active_time(struct mt76_phy *phy, ktime_t time) 653 { 654 struct mt76_channel_state *state = phy->chan_state; 655 656 state->cc_active += ktime_to_us(ktime_sub(time, 657 phy->survey_time)); 658 phy->survey_time = time; 659 } 660 EXPORT_SYMBOL_GPL(mt76_update_survey_active_time); 661 662 void mt76_update_survey(struct mt76_phy *phy) 663 { 664 struct mt76_dev *dev = phy->dev; 665 ktime_t cur_time; 666 667 if (dev->drv->update_survey) 668 dev->drv->update_survey(phy); 669 670 cur_time = ktime_get_boottime(); 671 mt76_update_survey_active_time(phy, cur_time); 672 673 if (dev->drv->drv_flags & MT_DRV_SW_RX_AIRTIME) { 674 struct mt76_channel_state *state = phy->chan_state; 675 676 spin_lock_bh(&dev->cc_lock); 677 state->cc_bss_rx += dev->cur_cc_bss_rx; 678 dev->cur_cc_bss_rx = 0; 679 spin_unlock_bh(&dev->cc_lock); 680 } 681 } 682 EXPORT_SYMBOL_GPL(mt76_update_survey); 683 684 void mt76_set_channel(struct mt76_phy *phy) 685 { 686 struct mt76_dev *dev = phy->dev; 687 struct ieee80211_hw *hw = phy->hw; 688 struct cfg80211_chan_def *chandef = &hw->conf.chandef; 689 bool offchannel = hw->conf.flags & IEEE80211_CONF_OFFCHANNEL; 690 int timeout = HZ / 5; 691 692 wait_event_timeout(dev->tx_wait, !mt76_has_tx_pending(phy), timeout); 693 mt76_update_survey(phy); 694 695 phy->chandef = *chandef; 696 phy->chan_state = mt76_channel_state(phy, chandef->chan); 697 698 if (!offchannel) 699 phy->main_chan = chandef->chan; 700 701 if (chandef->chan != phy->main_chan) 702 memset(phy->chan_state, 0, sizeof(*phy->chan_state)); 703 } 704 EXPORT_SYMBOL_GPL(mt76_set_channel); 705 706 int mt76_get_survey(struct ieee80211_hw *hw, int idx, 707 struct survey_info *survey) 708 { 709 struct mt76_phy *phy = hw->priv; 710 struct mt76_dev *dev = phy->dev; 711 struct mt76_sband *sband; 712 struct ieee80211_channel *chan; 713 struct mt76_channel_state *state; 714 int ret = 0; 715 716 mutex_lock(&dev->mutex); 717 if (idx == 0 && dev->drv->update_survey) 718 mt76_update_survey(phy); 719 720 sband = &phy->sband_2g; 721 if (idx >= sband->sband.n_channels) { 722 idx -= sband->sband.n_channels; 723 sband = &phy->sband_5g; 724 } 725 726 if (idx >= sband->sband.n_channels) { 727 ret = -ENOENT; 728 goto out; 729 } 730 731 chan = &sband->sband.channels[idx]; 732 state = mt76_channel_state(phy, chan); 733 734 memset(survey, 0, sizeof(*survey)); 735 survey->channel = chan; 736 survey->filled = SURVEY_INFO_TIME | SURVEY_INFO_TIME_BUSY; 737 survey->filled |= dev->drv->survey_flags; 738 if (state->noise) 739 survey->filled |= SURVEY_INFO_NOISE_DBM; 740 741 if (chan == phy->main_chan) { 742 survey->filled |= SURVEY_INFO_IN_USE; 743 744 if (dev->drv->drv_flags & MT_DRV_SW_RX_AIRTIME) 745 survey->filled |= SURVEY_INFO_TIME_BSS_RX; 746 } 747 748 survey->time_busy = div_u64(state->cc_busy, 1000); 749 survey->time_rx = div_u64(state->cc_rx, 1000); 750 survey->time = div_u64(state->cc_active, 1000); 751 survey->noise = state->noise; 752 753 spin_lock_bh(&dev->cc_lock); 754 survey->time_bss_rx = div_u64(state->cc_bss_rx, 1000); 755 survey->time_tx = div_u64(state->cc_tx, 1000); 756 spin_unlock_bh(&dev->cc_lock); 757 758 out: 759 mutex_unlock(&dev->mutex); 760 761 return ret; 762 } 763 EXPORT_SYMBOL_GPL(mt76_get_survey); 764 765 void mt76_wcid_key_setup(struct mt76_dev *dev, struct mt76_wcid *wcid, 766 struct ieee80211_key_conf *key) 767 { 768 struct ieee80211_key_seq seq; 769 int i; 770 771 wcid->rx_check_pn = false; 772 773 if (!key) 774 return; 775 776 if (key->cipher != WLAN_CIPHER_SUITE_CCMP) 777 return; 778 779 wcid->rx_check_pn = true; 780 for (i = 0; i < IEEE80211_NUM_TIDS; i++) { 781 ieee80211_get_key_rx_seq(key, i, &seq); 782 memcpy(wcid->rx_key_pn[i], seq.ccmp.pn, sizeof(seq.ccmp.pn)); 783 } 784 } 785 EXPORT_SYMBOL(mt76_wcid_key_setup); 786 787 static void 788 mt76_rx_convert(struct mt76_dev *dev, struct sk_buff *skb, 789 struct ieee80211_hw **hw, 790 struct ieee80211_sta **sta) 791 { 792 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 793 struct mt76_rx_status mstat; 794 795 mstat = *((struct mt76_rx_status *)skb->cb); 796 memset(status, 0, sizeof(*status)); 797 798 status->flag = mstat.flag; 799 status->freq = mstat.freq; 800 status->enc_flags = mstat.enc_flags; 801 status->encoding = mstat.encoding; 802 status->bw = mstat.bw; 803 status->he_ru = mstat.he_ru; 804 status->he_gi = mstat.he_gi; 805 status->he_dcm = mstat.he_dcm; 806 status->rate_idx = mstat.rate_idx; 807 status->nss = mstat.nss; 808 status->band = mstat.band; 809 status->signal = mstat.signal; 810 status->chains = mstat.chains; 811 status->ampdu_reference = mstat.ampdu_ref; 812 status->device_timestamp = mstat.timestamp; 813 status->mactime = mstat.timestamp; 814 815 BUILD_BUG_ON(sizeof(mstat) > sizeof(skb->cb)); 816 BUILD_BUG_ON(sizeof(status->chain_signal) != 817 sizeof(mstat.chain_signal)); 818 memcpy(status->chain_signal, mstat.chain_signal, 819 sizeof(mstat.chain_signal)); 820 821 *sta = wcid_to_sta(mstat.wcid); 822 *hw = mt76_phy_hw(dev, mstat.ext_phy); 823 } 824 825 static int 826 mt76_check_ccmp_pn(struct sk_buff *skb) 827 { 828 struct mt76_rx_status *status = (struct mt76_rx_status *)skb->cb; 829 struct mt76_wcid *wcid = status->wcid; 830 struct ieee80211_hdr *hdr; 831 u8 tidno = status->qos_ctl & IEEE80211_QOS_CTL_TID_MASK; 832 int ret; 833 834 if (!(status->flag & RX_FLAG_DECRYPTED)) 835 return 0; 836 837 if (!wcid || !wcid->rx_check_pn) 838 return 0; 839 840 if (!(status->flag & RX_FLAG_IV_STRIPPED)) { 841 /* 842 * Validate the first fragment both here and in mac80211 843 * All further fragments will be validated by mac80211 only. 844 */ 845 hdr = mt76_skb_get_hdr(skb); 846 if (ieee80211_is_frag(hdr) && 847 !ieee80211_is_first_frag(hdr->frame_control)) 848 return 0; 849 } 850 851 BUILD_BUG_ON(sizeof(status->iv) != sizeof(wcid->rx_key_pn[0])); 852 ret = memcmp(status->iv, wcid->rx_key_pn[tidno], 853 sizeof(status->iv)); 854 if (ret <= 0) 855 return -EINVAL; /* replay */ 856 857 memcpy(wcid->rx_key_pn[tidno], status->iv, sizeof(status->iv)); 858 859 if (status->flag & RX_FLAG_IV_STRIPPED) 860 status->flag |= RX_FLAG_PN_VALIDATED; 861 862 return 0; 863 } 864 865 static void 866 mt76_airtime_report(struct mt76_dev *dev, struct mt76_rx_status *status, 867 int len) 868 { 869 struct mt76_wcid *wcid = status->wcid; 870 struct ieee80211_rx_status info = { 871 .enc_flags = status->enc_flags, 872 .rate_idx = status->rate_idx, 873 .encoding = status->encoding, 874 .band = status->band, 875 .nss = status->nss, 876 .bw = status->bw, 877 }; 878 struct ieee80211_sta *sta; 879 u32 airtime; 880 u8 tidno = status->qos_ctl & IEEE80211_QOS_CTL_TID_MASK; 881 882 airtime = ieee80211_calc_rx_airtime(dev->hw, &info, len); 883 spin_lock(&dev->cc_lock); 884 dev->cur_cc_bss_rx += airtime; 885 spin_unlock(&dev->cc_lock); 886 887 if (!wcid || !wcid->sta) 888 return; 889 890 sta = container_of((void *)wcid, struct ieee80211_sta, drv_priv); 891 ieee80211_sta_register_airtime(sta, tidno, 0, airtime); 892 } 893 894 static void 895 mt76_airtime_flush_ampdu(struct mt76_dev *dev) 896 { 897 struct mt76_wcid *wcid; 898 int wcid_idx; 899 900 if (!dev->rx_ampdu_len) 901 return; 902 903 wcid_idx = dev->rx_ampdu_status.wcid_idx; 904 if (wcid_idx < ARRAY_SIZE(dev->wcid)) 905 wcid = rcu_dereference(dev->wcid[wcid_idx]); 906 else 907 wcid = NULL; 908 dev->rx_ampdu_status.wcid = wcid; 909 910 mt76_airtime_report(dev, &dev->rx_ampdu_status, dev->rx_ampdu_len); 911 912 dev->rx_ampdu_len = 0; 913 dev->rx_ampdu_ref = 0; 914 } 915 916 static void 917 mt76_airtime_check(struct mt76_dev *dev, struct sk_buff *skb) 918 { 919 struct mt76_rx_status *status = (struct mt76_rx_status *)skb->cb; 920 struct mt76_wcid *wcid = status->wcid; 921 922 if (!(dev->drv->drv_flags & MT_DRV_SW_RX_AIRTIME)) 923 return; 924 925 if (!wcid || !wcid->sta) { 926 struct ieee80211_hdr *hdr = mt76_skb_get_hdr(skb); 927 928 if (status->flag & RX_FLAG_8023) 929 return; 930 931 if (!ether_addr_equal(hdr->addr1, dev->phy.macaddr)) 932 return; 933 934 wcid = NULL; 935 } 936 937 if (!(status->flag & RX_FLAG_AMPDU_DETAILS) || 938 status->ampdu_ref != dev->rx_ampdu_ref) 939 mt76_airtime_flush_ampdu(dev); 940 941 if (status->flag & RX_FLAG_AMPDU_DETAILS) { 942 if (!dev->rx_ampdu_len || 943 status->ampdu_ref != dev->rx_ampdu_ref) { 944 dev->rx_ampdu_status = *status; 945 dev->rx_ampdu_status.wcid_idx = wcid ? wcid->idx : 0xff; 946 dev->rx_ampdu_ref = status->ampdu_ref; 947 } 948 949 dev->rx_ampdu_len += skb->len; 950 return; 951 } 952 953 mt76_airtime_report(dev, status, skb->len); 954 } 955 956 static void 957 mt76_check_sta(struct mt76_dev *dev, struct sk_buff *skb) 958 { 959 struct mt76_rx_status *status = (struct mt76_rx_status *)skb->cb; 960 struct ieee80211_hdr *hdr = mt76_skb_get_hdr(skb); 961 struct ieee80211_sta *sta; 962 struct ieee80211_hw *hw; 963 struct mt76_wcid *wcid = status->wcid; 964 u8 tidno = status->qos_ctl & IEEE80211_QOS_CTL_TID_MASK; 965 bool ps; 966 967 hw = mt76_phy_hw(dev, status->ext_phy); 968 if (ieee80211_is_pspoll(hdr->frame_control) && !wcid && 969 !(status->flag & RX_FLAG_8023)) { 970 sta = ieee80211_find_sta_by_ifaddr(hw, hdr->addr2, NULL); 971 if (sta) 972 wcid = status->wcid = (struct mt76_wcid *)sta->drv_priv; 973 } 974 975 mt76_airtime_check(dev, skb); 976 977 if (!wcid || !wcid->sta) 978 return; 979 980 sta = container_of((void *)wcid, struct ieee80211_sta, drv_priv); 981 982 if (status->signal <= 0) 983 ewma_signal_add(&wcid->rssi, -status->signal); 984 985 wcid->inactive_count = 0; 986 987 if (status->flag & RX_FLAG_8023) 988 return; 989 990 if (!test_bit(MT_WCID_FLAG_CHECK_PS, &wcid->flags)) 991 return; 992 993 if (ieee80211_is_pspoll(hdr->frame_control)) { 994 ieee80211_sta_pspoll(sta); 995 return; 996 } 997 998 if (ieee80211_has_morefrags(hdr->frame_control) || 999 !(ieee80211_is_mgmt(hdr->frame_control) || 1000 ieee80211_is_data(hdr->frame_control))) 1001 return; 1002 1003 ps = ieee80211_has_pm(hdr->frame_control); 1004 1005 if (ps && (ieee80211_is_data_qos(hdr->frame_control) || 1006 ieee80211_is_qos_nullfunc(hdr->frame_control))) 1007 ieee80211_sta_uapsd_trigger(sta, tidno); 1008 1009 if (!!test_bit(MT_WCID_FLAG_PS, &wcid->flags) == ps) 1010 return; 1011 1012 if (ps) 1013 set_bit(MT_WCID_FLAG_PS, &wcid->flags); 1014 else 1015 clear_bit(MT_WCID_FLAG_PS, &wcid->flags); 1016 1017 dev->drv->sta_ps(dev, sta, ps); 1018 ieee80211_sta_ps_transition(sta, ps); 1019 } 1020 1021 void mt76_rx_complete(struct mt76_dev *dev, struct sk_buff_head *frames, 1022 struct napi_struct *napi) 1023 { 1024 struct ieee80211_sta *sta; 1025 struct ieee80211_hw *hw; 1026 struct sk_buff *skb, *tmp; 1027 LIST_HEAD(list); 1028 1029 spin_lock(&dev->rx_lock); 1030 while ((skb = __skb_dequeue(frames)) != NULL) { 1031 struct sk_buff *nskb = skb_shinfo(skb)->frag_list; 1032 1033 if (mt76_check_ccmp_pn(skb)) { 1034 dev_kfree_skb(skb); 1035 continue; 1036 } 1037 1038 skb_shinfo(skb)->frag_list = NULL; 1039 mt76_rx_convert(dev, skb, &hw, &sta); 1040 ieee80211_rx_list(hw, sta, skb, &list); 1041 1042 /* subsequent amsdu frames */ 1043 while (nskb) { 1044 skb = nskb; 1045 nskb = nskb->next; 1046 skb->next = NULL; 1047 1048 mt76_rx_convert(dev, skb, &hw, &sta); 1049 ieee80211_rx_list(hw, sta, skb, &list); 1050 } 1051 } 1052 spin_unlock(&dev->rx_lock); 1053 1054 if (!napi) { 1055 netif_receive_skb_list(&list); 1056 return; 1057 } 1058 1059 list_for_each_entry_safe(skb, tmp, &list, list) { 1060 skb_list_del_init(skb); 1061 napi_gro_receive(napi, skb); 1062 } 1063 } 1064 1065 void mt76_rx_poll_complete(struct mt76_dev *dev, enum mt76_rxq_id q, 1066 struct napi_struct *napi) 1067 { 1068 struct sk_buff_head frames; 1069 struct sk_buff *skb; 1070 1071 __skb_queue_head_init(&frames); 1072 1073 while ((skb = __skb_dequeue(&dev->rx_skb[q])) != NULL) { 1074 mt76_check_sta(dev, skb); 1075 mt76_rx_aggr_reorder(skb, &frames); 1076 } 1077 1078 mt76_rx_complete(dev, &frames, napi); 1079 } 1080 EXPORT_SYMBOL_GPL(mt76_rx_poll_complete); 1081 1082 static int 1083 mt76_sta_add(struct mt76_dev *dev, struct ieee80211_vif *vif, 1084 struct ieee80211_sta *sta, bool ext_phy) 1085 { 1086 struct mt76_wcid *wcid = (struct mt76_wcid *)sta->drv_priv; 1087 int ret; 1088 int i; 1089 1090 mutex_lock(&dev->mutex); 1091 1092 ret = dev->drv->sta_add(dev, vif, sta); 1093 if (ret) 1094 goto out; 1095 1096 for (i = 0; i < ARRAY_SIZE(sta->txq); i++) { 1097 struct mt76_txq *mtxq; 1098 1099 if (!sta->txq[i]) 1100 continue; 1101 1102 mtxq = (struct mt76_txq *)sta->txq[i]->drv_priv; 1103 mtxq->wcid = wcid; 1104 } 1105 1106 ewma_signal_init(&wcid->rssi); 1107 if (ext_phy) 1108 mt76_wcid_mask_set(dev->wcid_phy_mask, wcid->idx); 1109 wcid->ext_phy = ext_phy; 1110 rcu_assign_pointer(dev->wcid[wcid->idx], wcid); 1111 1112 out: 1113 mutex_unlock(&dev->mutex); 1114 1115 return ret; 1116 } 1117 1118 void __mt76_sta_remove(struct mt76_dev *dev, struct ieee80211_vif *vif, 1119 struct ieee80211_sta *sta) 1120 { 1121 struct mt76_wcid *wcid = (struct mt76_wcid *)sta->drv_priv; 1122 int i, idx = wcid->idx; 1123 1124 for (i = 0; i < ARRAY_SIZE(wcid->aggr); i++) 1125 mt76_rx_aggr_stop(dev, wcid, i); 1126 1127 if (dev->drv->sta_remove) 1128 dev->drv->sta_remove(dev, vif, sta); 1129 1130 mt76_tx_status_check(dev, wcid, true); 1131 mt76_wcid_mask_clear(dev->wcid_mask, idx); 1132 mt76_wcid_mask_clear(dev->wcid_phy_mask, idx); 1133 } 1134 EXPORT_SYMBOL_GPL(__mt76_sta_remove); 1135 1136 static void 1137 mt76_sta_remove(struct mt76_dev *dev, struct ieee80211_vif *vif, 1138 struct ieee80211_sta *sta) 1139 { 1140 mutex_lock(&dev->mutex); 1141 __mt76_sta_remove(dev, vif, sta); 1142 mutex_unlock(&dev->mutex); 1143 } 1144 1145 int mt76_sta_state(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 1146 struct ieee80211_sta *sta, 1147 enum ieee80211_sta_state old_state, 1148 enum ieee80211_sta_state new_state) 1149 { 1150 struct mt76_phy *phy = hw->priv; 1151 struct mt76_dev *dev = phy->dev; 1152 bool ext_phy = phy != &dev->phy; 1153 1154 if (old_state == IEEE80211_STA_NOTEXIST && 1155 new_state == IEEE80211_STA_NONE) 1156 return mt76_sta_add(dev, vif, sta, ext_phy); 1157 1158 if (old_state == IEEE80211_STA_AUTH && 1159 new_state == IEEE80211_STA_ASSOC && 1160 dev->drv->sta_assoc) 1161 dev->drv->sta_assoc(dev, vif, sta); 1162 1163 if (old_state == IEEE80211_STA_NONE && 1164 new_state == IEEE80211_STA_NOTEXIST) 1165 mt76_sta_remove(dev, vif, sta); 1166 1167 return 0; 1168 } 1169 EXPORT_SYMBOL_GPL(mt76_sta_state); 1170 1171 void mt76_sta_pre_rcu_remove(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 1172 struct ieee80211_sta *sta) 1173 { 1174 struct mt76_phy *phy = hw->priv; 1175 struct mt76_dev *dev = phy->dev; 1176 struct mt76_wcid *wcid = (struct mt76_wcid *)sta->drv_priv; 1177 1178 mutex_lock(&dev->mutex); 1179 rcu_assign_pointer(dev->wcid[wcid->idx], NULL); 1180 mutex_unlock(&dev->mutex); 1181 } 1182 EXPORT_SYMBOL_GPL(mt76_sta_pre_rcu_remove); 1183 1184 int mt76_get_txpower(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 1185 int *dbm) 1186 { 1187 struct mt76_phy *phy = hw->priv; 1188 int n_chains = hweight8(phy->antenna_mask); 1189 int delta = mt76_tx_power_nss_delta(n_chains); 1190 1191 *dbm = DIV_ROUND_UP(phy->txpower_cur + delta, 2); 1192 1193 return 0; 1194 } 1195 EXPORT_SYMBOL_GPL(mt76_get_txpower); 1196 1197 static void 1198 __mt76_csa_finish(void *priv, u8 *mac, struct ieee80211_vif *vif) 1199 { 1200 if (vif->csa_active && ieee80211_beacon_cntdwn_is_complete(vif)) 1201 ieee80211_csa_finish(vif); 1202 } 1203 1204 void mt76_csa_finish(struct mt76_dev *dev) 1205 { 1206 if (!dev->csa_complete) 1207 return; 1208 1209 ieee80211_iterate_active_interfaces_atomic(dev->hw, 1210 IEEE80211_IFACE_ITER_RESUME_ALL, 1211 __mt76_csa_finish, dev); 1212 1213 dev->csa_complete = 0; 1214 } 1215 EXPORT_SYMBOL_GPL(mt76_csa_finish); 1216 1217 static void 1218 __mt76_csa_check(void *priv, u8 *mac, struct ieee80211_vif *vif) 1219 { 1220 struct mt76_dev *dev = priv; 1221 1222 if (!vif->csa_active) 1223 return; 1224 1225 dev->csa_complete |= ieee80211_beacon_cntdwn_is_complete(vif); 1226 } 1227 1228 void mt76_csa_check(struct mt76_dev *dev) 1229 { 1230 ieee80211_iterate_active_interfaces_atomic(dev->hw, 1231 IEEE80211_IFACE_ITER_RESUME_ALL, 1232 __mt76_csa_check, dev); 1233 } 1234 EXPORT_SYMBOL_GPL(mt76_csa_check); 1235 1236 int 1237 mt76_set_tim(struct ieee80211_hw *hw, struct ieee80211_sta *sta, bool set) 1238 { 1239 return 0; 1240 } 1241 EXPORT_SYMBOL_GPL(mt76_set_tim); 1242 1243 void mt76_insert_ccmp_hdr(struct sk_buff *skb, u8 key_id) 1244 { 1245 struct mt76_rx_status *status = (struct mt76_rx_status *)skb->cb; 1246 int hdr_len = ieee80211_get_hdrlen_from_skb(skb); 1247 u8 *hdr, *pn = status->iv; 1248 1249 __skb_push(skb, 8); 1250 memmove(skb->data, skb->data + 8, hdr_len); 1251 hdr = skb->data + hdr_len; 1252 1253 hdr[0] = pn[5]; 1254 hdr[1] = pn[4]; 1255 hdr[2] = 0; 1256 hdr[3] = 0x20 | (key_id << 6); 1257 hdr[4] = pn[3]; 1258 hdr[5] = pn[2]; 1259 hdr[6] = pn[1]; 1260 hdr[7] = pn[0]; 1261 1262 status->flag &= ~RX_FLAG_IV_STRIPPED; 1263 } 1264 EXPORT_SYMBOL_GPL(mt76_insert_ccmp_hdr); 1265 1266 int mt76_get_rate(struct mt76_dev *dev, 1267 struct ieee80211_supported_band *sband, 1268 int idx, bool cck) 1269 { 1270 int i, offset = 0, len = sband->n_bitrates; 1271 1272 if (cck) { 1273 if (sband == &dev->phy.sband_5g.sband) 1274 return 0; 1275 1276 idx &= ~BIT(2); /* short preamble */ 1277 } else if (sband == &dev->phy.sband_2g.sband) { 1278 offset = 4; 1279 } 1280 1281 for (i = offset; i < len; i++) { 1282 if ((sband->bitrates[i].hw_value & GENMASK(7, 0)) == idx) 1283 return i; 1284 } 1285 1286 return 0; 1287 } 1288 EXPORT_SYMBOL_GPL(mt76_get_rate); 1289 1290 void mt76_sw_scan(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 1291 const u8 *mac) 1292 { 1293 struct mt76_phy *phy = hw->priv; 1294 1295 set_bit(MT76_SCANNING, &phy->state); 1296 } 1297 EXPORT_SYMBOL_GPL(mt76_sw_scan); 1298 1299 void mt76_sw_scan_complete(struct ieee80211_hw *hw, struct ieee80211_vif *vif) 1300 { 1301 struct mt76_phy *phy = hw->priv; 1302 1303 clear_bit(MT76_SCANNING, &phy->state); 1304 } 1305 EXPORT_SYMBOL_GPL(mt76_sw_scan_complete); 1306 1307 int mt76_get_antenna(struct ieee80211_hw *hw, u32 *tx_ant, u32 *rx_ant) 1308 { 1309 struct mt76_phy *phy = hw->priv; 1310 struct mt76_dev *dev = phy->dev; 1311 1312 mutex_lock(&dev->mutex); 1313 *tx_ant = phy->antenna_mask; 1314 *rx_ant = phy->antenna_mask; 1315 mutex_unlock(&dev->mutex); 1316 1317 return 0; 1318 } 1319 EXPORT_SYMBOL_GPL(mt76_get_antenna); 1320 1321 struct mt76_queue * 1322 mt76_init_queue(struct mt76_dev *dev, int qid, int idx, int n_desc, 1323 int ring_base) 1324 { 1325 struct mt76_queue *hwq; 1326 int err; 1327 1328 hwq = devm_kzalloc(dev->dev, sizeof(*hwq), GFP_KERNEL); 1329 if (!hwq) 1330 return ERR_PTR(-ENOMEM); 1331 1332 err = dev->queue_ops->alloc(dev, hwq, idx, n_desc, 0, ring_base); 1333 if (err < 0) 1334 return ERR_PTR(err); 1335 1336 return hwq; 1337 } 1338 EXPORT_SYMBOL_GPL(mt76_init_queue); 1339