1 /* 2 * Copyright (C) 2016 Felix Fietkau <nbd@nbd.name> 3 * 4 * Permission to use, copy, modify, and/or distribute this software for any 5 * purpose with or without fee is hereby granted, provided that the above 6 * copyright notice and this permission notice appear in all copies. 7 * 8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 15 */ 16 #include <linux/of.h> 17 #include "mt76.h" 18 19 #define CHAN2G(_idx, _freq) { \ 20 .band = NL80211_BAND_2GHZ, \ 21 .center_freq = (_freq), \ 22 .hw_value = (_idx), \ 23 .max_power = 30, \ 24 } 25 26 #define CHAN5G(_idx, _freq) { \ 27 .band = NL80211_BAND_5GHZ, \ 28 .center_freq = (_freq), \ 29 .hw_value = (_idx), \ 30 .max_power = 30, \ 31 } 32 33 static const struct ieee80211_channel mt76_channels_2ghz[] = { 34 CHAN2G(1, 2412), 35 CHAN2G(2, 2417), 36 CHAN2G(3, 2422), 37 CHAN2G(4, 2427), 38 CHAN2G(5, 2432), 39 CHAN2G(6, 2437), 40 CHAN2G(7, 2442), 41 CHAN2G(8, 2447), 42 CHAN2G(9, 2452), 43 CHAN2G(10, 2457), 44 CHAN2G(11, 2462), 45 CHAN2G(12, 2467), 46 CHAN2G(13, 2472), 47 CHAN2G(14, 2484), 48 }; 49 50 static const struct ieee80211_channel mt76_channels_5ghz[] = { 51 CHAN5G(36, 5180), 52 CHAN5G(40, 5200), 53 CHAN5G(44, 5220), 54 CHAN5G(48, 5240), 55 56 CHAN5G(52, 5260), 57 CHAN5G(56, 5280), 58 CHAN5G(60, 5300), 59 CHAN5G(64, 5320), 60 61 CHAN5G(100, 5500), 62 CHAN5G(104, 5520), 63 CHAN5G(108, 5540), 64 CHAN5G(112, 5560), 65 CHAN5G(116, 5580), 66 CHAN5G(120, 5600), 67 CHAN5G(124, 5620), 68 CHAN5G(128, 5640), 69 CHAN5G(132, 5660), 70 CHAN5G(136, 5680), 71 CHAN5G(140, 5700), 72 73 CHAN5G(149, 5745), 74 CHAN5G(153, 5765), 75 CHAN5G(157, 5785), 76 CHAN5G(161, 5805), 77 CHAN5G(165, 5825), 78 }; 79 80 static const struct ieee80211_tpt_blink mt76_tpt_blink[] = { 81 { .throughput = 0 * 1024, .blink_time = 334 }, 82 { .throughput = 1 * 1024, .blink_time = 260 }, 83 { .throughput = 5 * 1024, .blink_time = 220 }, 84 { .throughput = 10 * 1024, .blink_time = 190 }, 85 { .throughput = 20 * 1024, .blink_time = 170 }, 86 { .throughput = 50 * 1024, .blink_time = 150 }, 87 { .throughput = 70 * 1024, .blink_time = 130 }, 88 { .throughput = 100 * 1024, .blink_time = 110 }, 89 { .throughput = 200 * 1024, .blink_time = 80 }, 90 { .throughput = 300 * 1024, .blink_time = 50 }, 91 }; 92 93 static int mt76_led_init(struct mt76_dev *dev) 94 { 95 struct device_node *np = dev->dev->of_node; 96 struct ieee80211_hw *hw = dev->hw; 97 int led_pin; 98 99 if (!dev->led_cdev.brightness_set && !dev->led_cdev.blink_set) 100 return 0; 101 102 snprintf(dev->led_name, sizeof(dev->led_name), 103 "mt76-%s", wiphy_name(hw->wiphy)); 104 105 dev->led_cdev.name = dev->led_name; 106 dev->led_cdev.default_trigger = 107 ieee80211_create_tpt_led_trigger(hw, 108 IEEE80211_TPT_LEDTRIG_FL_RADIO, 109 mt76_tpt_blink, 110 ARRAY_SIZE(mt76_tpt_blink)); 111 112 np = of_get_child_by_name(np, "led"); 113 if (np) { 114 if (!of_property_read_u32(np, "led-sources", &led_pin)) 115 dev->led_pin = led_pin; 116 dev->led_al = of_property_read_bool(np, "led-active-low"); 117 } 118 119 return devm_led_classdev_register(dev->dev, &dev->led_cdev); 120 } 121 122 static void mt76_init_stream_cap(struct mt76_dev *dev, 123 struct ieee80211_supported_band *sband, 124 bool vht) 125 { 126 struct ieee80211_sta_ht_cap *ht_cap = &sband->ht_cap; 127 int i, nstream = hweight8(dev->antenna_mask); 128 struct ieee80211_sta_vht_cap *vht_cap; 129 u16 mcs_map = 0; 130 131 if (nstream > 1) 132 ht_cap->cap |= IEEE80211_HT_CAP_TX_STBC; 133 else 134 ht_cap->cap &= ~IEEE80211_HT_CAP_TX_STBC; 135 136 for (i = 0; i < IEEE80211_HT_MCS_MASK_LEN; i++) 137 ht_cap->mcs.rx_mask[i] = i < nstream ? 0xff : 0; 138 139 if (!vht) 140 return; 141 142 vht_cap = &sband->vht_cap; 143 if (nstream > 1) 144 vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC; 145 else 146 vht_cap->cap &= ~IEEE80211_VHT_CAP_TXSTBC; 147 148 for (i = 0; i < 8; i++) { 149 if (i < nstream) 150 mcs_map |= (IEEE80211_VHT_MCS_SUPPORT_0_9 << (i * 2)); 151 else 152 mcs_map |= 153 (IEEE80211_VHT_MCS_NOT_SUPPORTED << (i * 2)); 154 } 155 vht_cap->vht_mcs.rx_mcs_map = cpu_to_le16(mcs_map); 156 vht_cap->vht_mcs.tx_mcs_map = cpu_to_le16(mcs_map); 157 } 158 159 void mt76_set_stream_caps(struct mt76_dev *dev, bool vht) 160 { 161 if (dev->cap.has_2ghz) 162 mt76_init_stream_cap(dev, &dev->sband_2g.sband, false); 163 if (dev->cap.has_5ghz) 164 mt76_init_stream_cap(dev, &dev->sband_5g.sband, vht); 165 } 166 EXPORT_SYMBOL_GPL(mt76_set_stream_caps); 167 168 static int 169 mt76_init_sband(struct mt76_dev *dev, struct mt76_sband *msband, 170 const struct ieee80211_channel *chan, int n_chan, 171 struct ieee80211_rate *rates, int n_rates, bool vht) 172 { 173 struct ieee80211_supported_band *sband = &msband->sband; 174 struct ieee80211_sta_ht_cap *ht_cap; 175 struct ieee80211_sta_vht_cap *vht_cap; 176 void *chanlist; 177 int size; 178 179 size = n_chan * sizeof(*chan); 180 chanlist = devm_kmemdup(dev->dev, chan, size, GFP_KERNEL); 181 if (!chanlist) 182 return -ENOMEM; 183 184 msband->chan = devm_kcalloc(dev->dev, n_chan, sizeof(*msband->chan), 185 GFP_KERNEL); 186 if (!msband->chan) 187 return -ENOMEM; 188 189 sband->channels = chanlist; 190 sband->n_channels = n_chan; 191 sband->bitrates = rates; 192 sband->n_bitrates = n_rates; 193 dev->chandef.chan = &sband->channels[0]; 194 195 ht_cap = &sband->ht_cap; 196 ht_cap->ht_supported = true; 197 ht_cap->cap |= IEEE80211_HT_CAP_SUP_WIDTH_20_40 | 198 IEEE80211_HT_CAP_GRN_FLD | 199 IEEE80211_HT_CAP_SGI_20 | 200 IEEE80211_HT_CAP_SGI_40 | 201 (1 << IEEE80211_HT_CAP_RX_STBC_SHIFT); 202 203 ht_cap->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED; 204 ht_cap->ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K; 205 ht_cap->ampdu_density = IEEE80211_HT_MPDU_DENSITY_4; 206 207 mt76_init_stream_cap(dev, sband, vht); 208 209 if (!vht) 210 return 0; 211 212 vht_cap = &sband->vht_cap; 213 vht_cap->vht_supported = true; 214 vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC | 215 IEEE80211_VHT_CAP_RXSTBC_1 | 216 IEEE80211_VHT_CAP_SHORT_GI_80 | 217 IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN | 218 IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN | 219 (3 << IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT); 220 221 return 0; 222 } 223 224 static int 225 mt76_init_sband_2g(struct mt76_dev *dev, struct ieee80211_rate *rates, 226 int n_rates) 227 { 228 dev->hw->wiphy->bands[NL80211_BAND_2GHZ] = &dev->sband_2g.sband; 229 230 return mt76_init_sband(dev, &dev->sband_2g, 231 mt76_channels_2ghz, 232 ARRAY_SIZE(mt76_channels_2ghz), 233 rates, n_rates, false); 234 } 235 236 static int 237 mt76_init_sband_5g(struct mt76_dev *dev, struct ieee80211_rate *rates, 238 int n_rates, bool vht) 239 { 240 dev->hw->wiphy->bands[NL80211_BAND_5GHZ] = &dev->sband_5g.sband; 241 242 return mt76_init_sband(dev, &dev->sband_5g, 243 mt76_channels_5ghz, 244 ARRAY_SIZE(mt76_channels_5ghz), 245 rates, n_rates, vht); 246 } 247 248 static void 249 mt76_check_sband(struct mt76_dev *dev, int band) 250 { 251 struct ieee80211_supported_band *sband = dev->hw->wiphy->bands[band]; 252 bool found = false; 253 int i; 254 255 if (!sband) 256 return; 257 258 for (i = 0; i < sband->n_channels; i++) { 259 if (sband->channels[i].flags & IEEE80211_CHAN_DISABLED) 260 continue; 261 262 found = true; 263 break; 264 } 265 266 if (found) 267 return; 268 269 sband->n_channels = 0; 270 dev->hw->wiphy->bands[band] = NULL; 271 } 272 273 struct mt76_dev * 274 mt76_alloc_device(struct device *pdev, unsigned int size, 275 const struct ieee80211_ops *ops, 276 const struct mt76_driver_ops *drv_ops) 277 { 278 struct ieee80211_hw *hw; 279 struct mt76_dev *dev; 280 281 hw = ieee80211_alloc_hw(size, ops); 282 if (!hw) 283 return NULL; 284 285 dev = hw->priv; 286 dev->hw = hw; 287 dev->dev = pdev; 288 dev->drv = drv_ops; 289 290 spin_lock_init(&dev->rx_lock); 291 spin_lock_init(&dev->lock); 292 spin_lock_init(&dev->cc_lock); 293 mutex_init(&dev->mutex); 294 init_waitqueue_head(&dev->tx_wait); 295 skb_queue_head_init(&dev->status_list); 296 297 return dev; 298 } 299 EXPORT_SYMBOL_GPL(mt76_alloc_device); 300 301 int mt76_register_device(struct mt76_dev *dev, bool vht, 302 struct ieee80211_rate *rates, int n_rates) 303 { 304 struct ieee80211_hw *hw = dev->hw; 305 struct wiphy *wiphy = hw->wiphy; 306 int ret; 307 308 dev_set_drvdata(dev->dev, dev); 309 310 INIT_LIST_HEAD(&dev->txwi_cache); 311 312 SET_IEEE80211_DEV(hw, dev->dev); 313 SET_IEEE80211_PERM_ADDR(hw, dev->macaddr); 314 315 wiphy->features |= NL80211_FEATURE_ACTIVE_MONITOR; 316 317 wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_CQM_RSSI_LIST); 318 319 wiphy->available_antennas_tx = dev->antenna_mask; 320 wiphy->available_antennas_rx = dev->antenna_mask; 321 322 hw->txq_data_size = sizeof(struct mt76_txq); 323 hw->max_tx_fragments = 16; 324 325 ieee80211_hw_set(hw, SIGNAL_DBM); 326 ieee80211_hw_set(hw, PS_NULLFUNC_STACK); 327 ieee80211_hw_set(hw, HOST_BROADCAST_PS_BUFFERING); 328 ieee80211_hw_set(hw, AMPDU_AGGREGATION); 329 ieee80211_hw_set(hw, SUPPORTS_RC_TABLE); 330 ieee80211_hw_set(hw, SUPPORT_FAST_XMIT); 331 ieee80211_hw_set(hw, SUPPORTS_CLONED_SKBS); 332 ieee80211_hw_set(hw, SUPPORTS_AMSDU_IN_AMPDU); 333 ieee80211_hw_set(hw, TX_AMSDU); 334 ieee80211_hw_set(hw, TX_FRAG_LIST); 335 ieee80211_hw_set(hw, MFP_CAPABLE); 336 ieee80211_hw_set(hw, AP_LINK_PS); 337 ieee80211_hw_set(hw, REPORTS_TX_ACK_STATUS); 338 ieee80211_hw_set(hw, NEEDS_UNIQUE_STA_ADDR); 339 340 wiphy->flags |= WIPHY_FLAG_IBSS_RSN; 341 342 if (dev->cap.has_2ghz) { 343 ret = mt76_init_sband_2g(dev, rates, n_rates); 344 if (ret) 345 return ret; 346 } 347 348 if (dev->cap.has_5ghz) { 349 ret = mt76_init_sband_5g(dev, rates + 4, n_rates - 4, vht); 350 if (ret) 351 return ret; 352 } 353 354 wiphy_read_of_freq_limits(dev->hw->wiphy); 355 mt76_check_sband(dev, NL80211_BAND_2GHZ); 356 mt76_check_sband(dev, NL80211_BAND_5GHZ); 357 358 if (IS_ENABLED(CONFIG_MT76_LEDS)) { 359 ret = mt76_led_init(dev); 360 if (ret) 361 return ret; 362 } 363 364 return ieee80211_register_hw(hw); 365 } 366 EXPORT_SYMBOL_GPL(mt76_register_device); 367 368 void mt76_unregister_device(struct mt76_dev *dev) 369 { 370 struct ieee80211_hw *hw = dev->hw; 371 372 mt76_tx_status_check(dev, NULL, true); 373 ieee80211_unregister_hw(hw); 374 } 375 EXPORT_SYMBOL_GPL(mt76_unregister_device); 376 377 void mt76_free_device(struct mt76_dev *dev) 378 { 379 mt76_tx_free(dev); 380 ieee80211_free_hw(dev->hw); 381 } 382 EXPORT_SYMBOL_GPL(mt76_free_device); 383 384 void mt76_rx(struct mt76_dev *dev, enum mt76_rxq_id q, struct sk_buff *skb) 385 { 386 if (!test_bit(MT76_STATE_RUNNING, &dev->state)) { 387 dev_kfree_skb(skb); 388 return; 389 } 390 391 __skb_queue_tail(&dev->rx_skb[q], skb); 392 } 393 EXPORT_SYMBOL_GPL(mt76_rx); 394 395 bool mt76_has_tx_pending(struct mt76_dev *dev) 396 { 397 struct mt76_queue *q; 398 int i; 399 400 for (i = 0; i < ARRAY_SIZE(dev->q_tx); i++) { 401 q = dev->q_tx[i].q; 402 if (q && q->queued) 403 return true; 404 } 405 406 return false; 407 } 408 EXPORT_SYMBOL_GPL(mt76_has_tx_pending); 409 410 void mt76_set_channel(struct mt76_dev *dev) 411 { 412 struct ieee80211_hw *hw = dev->hw; 413 struct cfg80211_chan_def *chandef = &hw->conf.chandef; 414 struct mt76_channel_state *state; 415 bool offchannel = hw->conf.flags & IEEE80211_CONF_OFFCHANNEL; 416 int timeout = HZ / 5; 417 418 if (offchannel) 419 set_bit(MT76_OFFCHANNEL, &dev->state); 420 else 421 clear_bit(MT76_OFFCHANNEL, &dev->state); 422 423 wait_event_timeout(dev->tx_wait, !mt76_has_tx_pending(dev), timeout); 424 425 if (dev->drv->update_survey) 426 dev->drv->update_survey(dev); 427 428 dev->chandef = *chandef; 429 430 if (!offchannel) 431 dev->main_chan = chandef->chan; 432 433 if (chandef->chan != dev->main_chan) { 434 state = mt76_channel_state(dev, chandef->chan); 435 memset(state, 0, sizeof(*state)); 436 } 437 } 438 EXPORT_SYMBOL_GPL(mt76_set_channel); 439 440 int mt76_get_survey(struct ieee80211_hw *hw, int idx, 441 struct survey_info *survey) 442 { 443 struct mt76_dev *dev = hw->priv; 444 struct mt76_sband *sband; 445 struct ieee80211_channel *chan; 446 struct mt76_channel_state *state; 447 int ret = 0; 448 449 if (idx == 0 && dev->drv->update_survey) 450 dev->drv->update_survey(dev); 451 452 sband = &dev->sband_2g; 453 if (idx >= sband->sband.n_channels) { 454 idx -= sband->sband.n_channels; 455 sband = &dev->sband_5g; 456 } 457 458 if (idx >= sband->sband.n_channels) 459 return -ENOENT; 460 461 chan = &sband->sband.channels[idx]; 462 state = mt76_channel_state(dev, chan); 463 464 memset(survey, 0, sizeof(*survey)); 465 survey->channel = chan; 466 survey->filled = SURVEY_INFO_TIME | SURVEY_INFO_TIME_BUSY; 467 if (chan == dev->main_chan) 468 survey->filled |= SURVEY_INFO_IN_USE; 469 470 spin_lock_bh(&dev->cc_lock); 471 survey->time = div_u64(state->cc_active, 1000); 472 survey->time_busy = div_u64(state->cc_busy, 1000); 473 spin_unlock_bh(&dev->cc_lock); 474 475 return ret; 476 } 477 EXPORT_SYMBOL_GPL(mt76_get_survey); 478 479 void mt76_wcid_key_setup(struct mt76_dev *dev, struct mt76_wcid *wcid, 480 struct ieee80211_key_conf *key) 481 { 482 struct ieee80211_key_seq seq; 483 int i; 484 485 wcid->rx_check_pn = false; 486 487 if (!key) 488 return; 489 490 if (key->cipher == WLAN_CIPHER_SUITE_CCMP) 491 wcid->rx_check_pn = true; 492 493 for (i = 0; i < IEEE80211_NUM_TIDS; i++) { 494 ieee80211_get_key_rx_seq(key, i, &seq); 495 memcpy(wcid->rx_key_pn[i], seq.ccmp.pn, sizeof(seq.ccmp.pn)); 496 } 497 } 498 EXPORT_SYMBOL(mt76_wcid_key_setup); 499 500 struct ieee80211_sta *mt76_rx_convert(struct sk_buff *skb) 501 { 502 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 503 struct mt76_rx_status mstat; 504 505 mstat = *((struct mt76_rx_status *) skb->cb); 506 memset(status, 0, sizeof(*status)); 507 508 status->flag = mstat.flag; 509 status->freq = mstat.freq; 510 status->enc_flags = mstat.enc_flags; 511 status->encoding = mstat.encoding; 512 status->bw = mstat.bw; 513 status->rate_idx = mstat.rate_idx; 514 status->nss = mstat.nss; 515 status->band = mstat.band; 516 status->signal = mstat.signal; 517 status->chains = mstat.chains; 518 519 BUILD_BUG_ON(sizeof(mstat) > sizeof(skb->cb)); 520 BUILD_BUG_ON(sizeof(status->chain_signal) != sizeof(mstat.chain_signal)); 521 memcpy(status->chain_signal, mstat.chain_signal, sizeof(mstat.chain_signal)); 522 523 return wcid_to_sta(mstat.wcid); 524 } 525 EXPORT_SYMBOL(mt76_rx_convert); 526 527 static int 528 mt76_check_ccmp_pn(struct sk_buff *skb) 529 { 530 struct mt76_rx_status *status = (struct mt76_rx_status *) skb->cb; 531 struct mt76_wcid *wcid = status->wcid; 532 struct ieee80211_hdr *hdr; 533 int ret; 534 535 if (!(status->flag & RX_FLAG_DECRYPTED)) 536 return 0; 537 538 if (!wcid || !wcid->rx_check_pn) 539 return 0; 540 541 if (!(status->flag & RX_FLAG_IV_STRIPPED)) { 542 /* 543 * Validate the first fragment both here and in mac80211 544 * All further fragments will be validated by mac80211 only. 545 */ 546 hdr = (struct ieee80211_hdr *) skb->data; 547 if (ieee80211_is_frag(hdr) && 548 !ieee80211_is_first_frag(hdr->frame_control)) 549 return 0; 550 } 551 552 BUILD_BUG_ON(sizeof(status->iv) != sizeof(wcid->rx_key_pn[0])); 553 ret = memcmp(status->iv, wcid->rx_key_pn[status->tid], 554 sizeof(status->iv)); 555 if (ret <= 0) 556 return -EINVAL; /* replay */ 557 558 memcpy(wcid->rx_key_pn[status->tid], status->iv, sizeof(status->iv)); 559 560 if (status->flag & RX_FLAG_IV_STRIPPED) 561 status->flag |= RX_FLAG_PN_VALIDATED; 562 563 return 0; 564 } 565 566 static void 567 mt76_check_sta(struct mt76_dev *dev, struct sk_buff *skb) 568 { 569 struct mt76_rx_status *status = (struct mt76_rx_status *) skb->cb; 570 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 571 struct ieee80211_sta *sta; 572 struct mt76_wcid *wcid = status->wcid; 573 bool ps; 574 int i; 575 576 if (ieee80211_is_pspoll(hdr->frame_control) && !wcid) { 577 sta = ieee80211_find_sta_by_ifaddr(dev->hw, hdr->addr2, NULL); 578 if (sta) 579 wcid = status->wcid = (struct mt76_wcid *) sta->drv_priv; 580 } 581 582 if (!wcid || !wcid->sta) 583 return; 584 585 sta = container_of((void *) wcid, struct ieee80211_sta, drv_priv); 586 587 if (status->signal <= 0) 588 ewma_signal_add(&wcid->rssi, -status->signal); 589 590 wcid->inactive_count = 0; 591 592 if (!test_bit(MT_WCID_FLAG_CHECK_PS, &wcid->flags)) 593 return; 594 595 if (ieee80211_is_pspoll(hdr->frame_control)) { 596 ieee80211_sta_pspoll(sta); 597 return; 598 } 599 600 if (ieee80211_has_morefrags(hdr->frame_control) || 601 !(ieee80211_is_mgmt(hdr->frame_control) || 602 ieee80211_is_data(hdr->frame_control))) 603 return; 604 605 ps = ieee80211_has_pm(hdr->frame_control); 606 607 if (ps && (ieee80211_is_data_qos(hdr->frame_control) || 608 ieee80211_is_qos_nullfunc(hdr->frame_control))) 609 ieee80211_sta_uapsd_trigger(sta, status->tid); 610 611 if (!!test_bit(MT_WCID_FLAG_PS, &wcid->flags) == ps) 612 return; 613 614 if (ps) 615 set_bit(MT_WCID_FLAG_PS, &wcid->flags); 616 else 617 clear_bit(MT_WCID_FLAG_PS, &wcid->flags); 618 619 dev->drv->sta_ps(dev, sta, ps); 620 ieee80211_sta_ps_transition(sta, ps); 621 622 if (ps) 623 return; 624 625 for (i = 0; i < ARRAY_SIZE(sta->txq); i++) { 626 struct mt76_txq *mtxq; 627 628 if (!sta->txq[i]) 629 continue; 630 631 mtxq = (struct mt76_txq *) sta->txq[i]->drv_priv; 632 if (!skb_queue_empty(&mtxq->retry_q)) 633 ieee80211_schedule_txq(dev->hw, sta->txq[i]); 634 } 635 } 636 637 void mt76_rx_complete(struct mt76_dev *dev, struct sk_buff_head *frames, 638 struct napi_struct *napi) 639 { 640 struct ieee80211_sta *sta; 641 struct sk_buff *skb; 642 643 spin_lock(&dev->rx_lock); 644 while ((skb = __skb_dequeue(frames)) != NULL) { 645 if (mt76_check_ccmp_pn(skb)) { 646 dev_kfree_skb(skb); 647 continue; 648 } 649 650 sta = mt76_rx_convert(skb); 651 ieee80211_rx_napi(dev->hw, sta, skb, napi); 652 } 653 spin_unlock(&dev->rx_lock); 654 } 655 656 void mt76_rx_poll_complete(struct mt76_dev *dev, enum mt76_rxq_id q, 657 struct napi_struct *napi) 658 { 659 struct sk_buff_head frames; 660 struct sk_buff *skb; 661 662 __skb_queue_head_init(&frames); 663 664 while ((skb = __skb_dequeue(&dev->rx_skb[q])) != NULL) { 665 mt76_check_sta(dev, skb); 666 mt76_rx_aggr_reorder(skb, &frames); 667 } 668 669 mt76_rx_complete(dev, &frames, napi); 670 } 671 EXPORT_SYMBOL_GPL(mt76_rx_poll_complete); 672 673 static int 674 mt76_sta_add(struct mt76_dev *dev, struct ieee80211_vif *vif, 675 struct ieee80211_sta *sta) 676 { 677 struct mt76_wcid *wcid = (struct mt76_wcid *)sta->drv_priv; 678 int ret; 679 int i; 680 681 mutex_lock(&dev->mutex); 682 683 ret = dev->drv->sta_add(dev, vif, sta); 684 if (ret) 685 goto out; 686 687 for (i = 0; i < ARRAY_SIZE(sta->txq); i++) { 688 struct mt76_txq *mtxq; 689 690 if (!sta->txq[i]) 691 continue; 692 693 mtxq = (struct mt76_txq *)sta->txq[i]->drv_priv; 694 mtxq->wcid = wcid; 695 696 mt76_txq_init(dev, sta->txq[i]); 697 } 698 699 ewma_signal_init(&wcid->rssi); 700 rcu_assign_pointer(dev->wcid[wcid->idx], wcid); 701 702 out: 703 mutex_unlock(&dev->mutex); 704 705 return ret; 706 } 707 708 void __mt76_sta_remove(struct mt76_dev *dev, struct ieee80211_vif *vif, 709 struct ieee80211_sta *sta) 710 { 711 struct mt76_wcid *wcid = (struct mt76_wcid *)sta->drv_priv; 712 int i, idx = wcid->idx; 713 714 rcu_assign_pointer(dev->wcid[idx], NULL); 715 synchronize_rcu(); 716 717 if (dev->drv->sta_remove) 718 dev->drv->sta_remove(dev, vif, sta); 719 720 mt76_tx_status_check(dev, wcid, true); 721 for (i = 0; i < ARRAY_SIZE(sta->txq); i++) 722 mt76_txq_remove(dev, sta->txq[i]); 723 mt76_wcid_free(dev->wcid_mask, idx); 724 } 725 EXPORT_SYMBOL_GPL(__mt76_sta_remove); 726 727 static void 728 mt76_sta_remove(struct mt76_dev *dev, struct ieee80211_vif *vif, 729 struct ieee80211_sta *sta) 730 { 731 mutex_lock(&dev->mutex); 732 __mt76_sta_remove(dev, vif, sta); 733 mutex_unlock(&dev->mutex); 734 } 735 736 int mt76_sta_state(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 737 struct ieee80211_sta *sta, 738 enum ieee80211_sta_state old_state, 739 enum ieee80211_sta_state new_state) 740 { 741 struct mt76_dev *dev = hw->priv; 742 743 if (old_state == IEEE80211_STA_NOTEXIST && 744 new_state == IEEE80211_STA_NONE) 745 return mt76_sta_add(dev, vif, sta); 746 747 if (old_state == IEEE80211_STA_AUTH && 748 new_state == IEEE80211_STA_ASSOC && 749 dev->drv->sta_assoc) 750 dev->drv->sta_assoc(dev, vif, sta); 751 752 if (old_state == IEEE80211_STA_NONE && 753 new_state == IEEE80211_STA_NOTEXIST) 754 mt76_sta_remove(dev, vif, sta); 755 756 return 0; 757 } 758 EXPORT_SYMBOL_GPL(mt76_sta_state); 759 760 int mt76_get_txpower(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 761 int *dbm) 762 { 763 struct mt76_dev *dev = hw->priv; 764 int n_chains = hweight8(dev->antenna_mask); 765 766 *dbm = DIV_ROUND_UP(dev->txpower_cur, 2); 767 768 /* convert from per-chain power to combined 769 * output power 770 */ 771 switch (n_chains) { 772 case 4: 773 *dbm += 6; 774 break; 775 case 3: 776 *dbm += 4; 777 break; 778 case 2: 779 *dbm += 3; 780 break; 781 default: 782 break; 783 } 784 785 return 0; 786 } 787 EXPORT_SYMBOL_GPL(mt76_get_txpower); 788 789 static void 790 __mt76_csa_finish(void *priv, u8 *mac, struct ieee80211_vif *vif) 791 { 792 if (vif->csa_active && ieee80211_csa_is_complete(vif)) 793 ieee80211_csa_finish(vif); 794 } 795 796 void mt76_csa_finish(struct mt76_dev *dev) 797 { 798 if (!dev->csa_complete) 799 return; 800 801 ieee80211_iterate_active_interfaces_atomic(dev->hw, 802 IEEE80211_IFACE_ITER_RESUME_ALL, 803 __mt76_csa_finish, dev); 804 805 dev->csa_complete = 0; 806 } 807 EXPORT_SYMBOL_GPL(mt76_csa_finish); 808 809 static void 810 __mt76_csa_check(void *priv, u8 *mac, struct ieee80211_vif *vif) 811 { 812 struct mt76_dev *dev = priv; 813 814 if (!vif->csa_active) 815 return; 816 817 dev->csa_complete |= ieee80211_csa_is_complete(vif); 818 } 819 820 void mt76_csa_check(struct mt76_dev *dev) 821 { 822 ieee80211_iterate_active_interfaces_atomic(dev->hw, 823 IEEE80211_IFACE_ITER_RESUME_ALL, 824 __mt76_csa_check, dev); 825 } 826 EXPORT_SYMBOL_GPL(mt76_csa_check); 827 828 int 829 mt76_set_tim(struct ieee80211_hw *hw, struct ieee80211_sta *sta, bool set) 830 { 831 return 0; 832 } 833 EXPORT_SYMBOL_GPL(mt76_set_tim); 834 835 void mt76_insert_ccmp_hdr(struct sk_buff *skb, u8 key_id) 836 { 837 struct mt76_rx_status *status = (struct mt76_rx_status *)skb->cb; 838 int hdr_len = ieee80211_get_hdrlen_from_skb(skb); 839 u8 *hdr, *pn = status->iv; 840 841 __skb_push(skb, 8); 842 memmove(skb->data, skb->data + 8, hdr_len); 843 hdr = skb->data + hdr_len; 844 845 hdr[0] = pn[5]; 846 hdr[1] = pn[4]; 847 hdr[2] = 0; 848 hdr[3] = 0x20 | (key_id << 6); 849 hdr[4] = pn[3]; 850 hdr[5] = pn[2]; 851 hdr[6] = pn[1]; 852 hdr[7] = pn[0]; 853 854 status->flag &= ~RX_FLAG_IV_STRIPPED; 855 } 856 EXPORT_SYMBOL_GPL(mt76_insert_ccmp_hdr); 857 858 int mt76_get_rate(struct mt76_dev *dev, 859 struct ieee80211_supported_band *sband, 860 int idx, bool cck) 861 { 862 int i, offset = 0, len = sband->n_bitrates; 863 864 if (cck) { 865 if (sband == &dev->sband_5g.sband) 866 return 0; 867 868 idx &= ~BIT(2); /* short preamble */ 869 } else if (sband == &dev->sband_2g.sband) { 870 offset = 4; 871 } 872 873 for (i = offset; i < len; i++) { 874 if ((sband->bitrates[i].hw_value & GENMASK(7, 0)) == idx) 875 return i; 876 } 877 878 return 0; 879 } 880 EXPORT_SYMBOL_GPL(mt76_get_rate); 881