1 /*
2  * Copyright (C) 2016 Felix Fietkau <nbd@nbd.name>
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <linux/dma-mapping.h>
18 #include "mt76.h"
19 #include "dma.h"
20 
21 #define DMA_DUMMY_TXWI	((void *) ~0)
22 
23 static int
24 mt76_dma_alloc_queue(struct mt76_dev *dev, struct mt76_queue *q)
25 {
26 	int size;
27 	int i;
28 
29 	spin_lock_init(&q->lock);
30 	INIT_LIST_HEAD(&q->swq);
31 
32 	size = q->ndesc * sizeof(struct mt76_desc);
33 	q->desc = dmam_alloc_coherent(dev->dev, size, &q->desc_dma, GFP_KERNEL);
34 	if (!q->desc)
35 		return -ENOMEM;
36 
37 	size = q->ndesc * sizeof(*q->entry);
38 	q->entry = devm_kzalloc(dev->dev, size, GFP_KERNEL);
39 	if (!q->entry)
40 		return -ENOMEM;
41 
42 	/* clear descriptors */
43 	for (i = 0; i < q->ndesc; i++)
44 		q->desc[i].ctrl = cpu_to_le32(MT_DMA_CTL_DMA_DONE);
45 
46 	iowrite32(q->desc_dma, &q->regs->desc_base);
47 	iowrite32(0, &q->regs->cpu_idx);
48 	iowrite32(0, &q->regs->dma_idx);
49 	iowrite32(q->ndesc, &q->regs->ring_size);
50 
51 	return 0;
52 }
53 
54 static int
55 mt76_dma_add_buf(struct mt76_dev *dev, struct mt76_queue *q,
56 		 struct mt76_queue_buf *buf, int nbufs, u32 info,
57 		 struct sk_buff *skb, void *txwi)
58 {
59 	struct mt76_desc *desc;
60 	u32 ctrl;
61 	int i, idx = -1;
62 
63 	if (txwi)
64 		q->entry[q->head].txwi = DMA_DUMMY_TXWI;
65 
66 	for (i = 0; i < nbufs; i += 2, buf += 2) {
67 		u32 buf0 = buf[0].addr, buf1 = 0;
68 
69 		ctrl = FIELD_PREP(MT_DMA_CTL_SD_LEN0, buf[0].len);
70 		if (i < nbufs - 1) {
71 			buf1 = buf[1].addr;
72 			ctrl |= FIELD_PREP(MT_DMA_CTL_SD_LEN1, buf[1].len);
73 		}
74 
75 		if (i == nbufs - 1)
76 			ctrl |= MT_DMA_CTL_LAST_SEC0;
77 		else if (i == nbufs - 2)
78 			ctrl |= MT_DMA_CTL_LAST_SEC1;
79 
80 		idx = q->head;
81 		q->head = (q->head + 1) % q->ndesc;
82 
83 		desc = &q->desc[idx];
84 
85 		WRITE_ONCE(desc->buf0, cpu_to_le32(buf0));
86 		WRITE_ONCE(desc->buf1, cpu_to_le32(buf1));
87 		WRITE_ONCE(desc->info, cpu_to_le32(info));
88 		WRITE_ONCE(desc->ctrl, cpu_to_le32(ctrl));
89 
90 		q->queued++;
91 	}
92 
93 	q->entry[idx].txwi = txwi;
94 	q->entry[idx].skb = skb;
95 
96 	return idx;
97 }
98 
99 static void
100 mt76_dma_tx_cleanup_idx(struct mt76_dev *dev, struct mt76_queue *q, int idx,
101 			struct mt76_queue_entry *prev_e)
102 {
103 	struct mt76_queue_entry *e = &q->entry[idx];
104 	__le32 __ctrl = READ_ONCE(q->desc[idx].ctrl);
105 	u32 ctrl = le32_to_cpu(__ctrl);
106 
107 	if (!e->txwi || !e->skb) {
108 		__le32 addr = READ_ONCE(q->desc[idx].buf0);
109 		u32 len = FIELD_GET(MT_DMA_CTL_SD_LEN0, ctrl);
110 
111 		dma_unmap_single(dev->dev, le32_to_cpu(addr), len,
112 				 DMA_TO_DEVICE);
113 	}
114 
115 	if (!(ctrl & MT_DMA_CTL_LAST_SEC0)) {
116 		__le32 addr = READ_ONCE(q->desc[idx].buf1);
117 		u32 len = FIELD_GET(MT_DMA_CTL_SD_LEN1, ctrl);
118 
119 		dma_unmap_single(dev->dev, le32_to_cpu(addr), len,
120 				 DMA_TO_DEVICE);
121 	}
122 
123 	if (e->txwi == DMA_DUMMY_TXWI)
124 		e->txwi = NULL;
125 
126 	*prev_e = *e;
127 	memset(e, 0, sizeof(*e));
128 }
129 
130 static void
131 mt76_dma_sync_idx(struct mt76_dev *dev, struct mt76_queue *q)
132 {
133 	q->head = ioread32(&q->regs->dma_idx);
134 	q->tail = q->head;
135 	iowrite32(q->head, &q->regs->cpu_idx);
136 }
137 
138 static void
139 mt76_dma_tx_cleanup(struct mt76_dev *dev, enum mt76_txq_id qid, bool flush)
140 {
141 	struct mt76_queue *q = &dev->q_tx[qid];
142 	struct mt76_queue_entry entry;
143 	bool wake = false;
144 	int last;
145 
146 	if (!q->ndesc)
147 		return;
148 
149 	spin_lock_bh(&q->lock);
150 	if (flush)
151 		last = -1;
152 	else
153 		last = ioread32(&q->regs->dma_idx);
154 
155 	while (q->queued && q->tail != last) {
156 		mt76_dma_tx_cleanup_idx(dev, q, q->tail, &entry);
157 		if (entry.schedule)
158 			q->swq_queued--;
159 
160 		if (entry.skb)
161 			dev->drv->tx_complete_skb(dev, q, &entry, flush);
162 
163 		if (entry.txwi) {
164 			mt76_put_txwi(dev, entry.txwi);
165 			wake = true;
166 		}
167 
168 		q->tail = (q->tail + 1) % q->ndesc;
169 		q->queued--;
170 
171 		if (!flush && q->tail == last)
172 			last = ioread32(&q->regs->dma_idx);
173 	}
174 
175 	if (!flush)
176 		mt76_txq_schedule(dev, q);
177 	else
178 		mt76_dma_sync_idx(dev, q);
179 
180 	wake = wake && qid < IEEE80211_NUM_ACS && q->queued < q->ndesc - 8;
181 
182 	if (!q->queued)
183 		wake_up(&dev->tx_wait);
184 
185 	spin_unlock_bh(&q->lock);
186 
187 	if (wake)
188 		ieee80211_wake_queue(dev->hw, qid);
189 }
190 
191 static void *
192 mt76_dma_get_buf(struct mt76_dev *dev, struct mt76_queue *q, int idx,
193 		 int *len, u32 *info, bool *more)
194 {
195 	struct mt76_queue_entry *e = &q->entry[idx];
196 	struct mt76_desc *desc = &q->desc[idx];
197 	dma_addr_t buf_addr;
198 	void *buf = e->buf;
199 	int buf_len = SKB_WITH_OVERHEAD(q->buf_size);
200 
201 	buf_addr = le32_to_cpu(READ_ONCE(desc->buf0));
202 	if (len) {
203 		u32 ctl = le32_to_cpu(READ_ONCE(desc->ctrl));
204 		*len = FIELD_GET(MT_DMA_CTL_SD_LEN0, ctl);
205 		*more = !(ctl & MT_DMA_CTL_LAST_SEC0);
206 	}
207 
208 	if (info)
209 		*info = le32_to_cpu(desc->info);
210 
211 	dma_unmap_single(dev->dev, buf_addr, buf_len, DMA_FROM_DEVICE);
212 	e->buf = NULL;
213 
214 	return buf;
215 }
216 
217 static void *
218 mt76_dma_dequeue(struct mt76_dev *dev, struct mt76_queue *q, bool flush,
219 		 int *len, u32 *info, bool *more)
220 {
221 	int idx = q->tail;
222 
223 	*more = false;
224 	if (!q->queued)
225 		return NULL;
226 
227 	if (!flush && !(q->desc[idx].ctrl & cpu_to_le32(MT_DMA_CTL_DMA_DONE)))
228 		return NULL;
229 
230 	q->tail = (q->tail + 1) % q->ndesc;
231 	q->queued--;
232 
233 	return mt76_dma_get_buf(dev, q, idx, len, info, more);
234 }
235 
236 static void
237 mt76_dma_kick_queue(struct mt76_dev *dev, struct mt76_queue *q)
238 {
239 	iowrite32(q->head, &q->regs->cpu_idx);
240 }
241 
242 int mt76_dma_tx_queue_skb(struct mt76_dev *dev, struct mt76_queue *q,
243 			  struct sk_buff *skb, struct mt76_wcid *wcid,
244 			  struct ieee80211_sta *sta)
245 {
246 	struct mt76_queue_entry e;
247 	struct mt76_txwi_cache *t;
248 	struct mt76_queue_buf buf[32];
249 	struct sk_buff *iter;
250 	dma_addr_t addr;
251 	int len;
252 	u32 tx_info = 0;
253 	int n, ret;
254 
255 	t = mt76_get_txwi(dev);
256 	if (!t) {
257 		ieee80211_free_txskb(dev->hw, skb);
258 		return -ENOMEM;
259 	}
260 
261 	dma_sync_single_for_cpu(dev->dev, t->dma_addr, sizeof(t->txwi),
262 				DMA_TO_DEVICE);
263 	ret = dev->drv->tx_prepare_skb(dev, &t->txwi, skb, q, wcid, sta,
264 				       &tx_info);
265 	dma_sync_single_for_device(dev->dev, t->dma_addr, sizeof(t->txwi),
266 				   DMA_TO_DEVICE);
267 	if (ret < 0)
268 		goto free;
269 
270 	len = skb->len - skb->data_len;
271 	addr = dma_map_single(dev->dev, skb->data, len, DMA_TO_DEVICE);
272 	if (dma_mapping_error(dev->dev, addr)) {
273 		ret = -ENOMEM;
274 		goto free;
275 	}
276 
277 	n = 0;
278 	buf[n].addr = t->dma_addr;
279 	buf[n++].len = dev->drv->txwi_size;
280 	buf[n].addr = addr;
281 	buf[n++].len = len;
282 
283 	skb_walk_frags(skb, iter) {
284 		if (n == ARRAY_SIZE(buf))
285 			goto unmap;
286 
287 		addr = dma_map_single(dev->dev, iter->data, iter->len,
288 				      DMA_TO_DEVICE);
289 		if (dma_mapping_error(dev->dev, addr))
290 			goto unmap;
291 
292 		buf[n].addr = addr;
293 		buf[n++].len = iter->len;
294 	}
295 
296 	if (q->queued + (n + 1) / 2 >= q->ndesc - 1)
297 		goto unmap;
298 
299 	return dev->queue_ops->add_buf(dev, q, buf, n, tx_info, skb, t);
300 
301 unmap:
302 	ret = -ENOMEM;
303 	for (n--; n > 0; n--)
304 		dma_unmap_single(dev->dev, buf[n].addr, buf[n].len,
305 				 DMA_TO_DEVICE);
306 
307 free:
308 	e.skb = skb;
309 	e.txwi = t;
310 	dev->drv->tx_complete_skb(dev, q, &e, true);
311 	mt76_put_txwi(dev, t);
312 	return ret;
313 }
314 EXPORT_SYMBOL_GPL(mt76_dma_tx_queue_skb);
315 
316 static int
317 mt76_dma_rx_fill(struct mt76_dev *dev, struct mt76_queue *q, bool napi)
318 {
319 	dma_addr_t addr;
320 	void *buf;
321 	int frames = 0;
322 	int len = SKB_WITH_OVERHEAD(q->buf_size);
323 	int offset = q->buf_offset;
324 	int idx;
325 	void *(*alloc)(unsigned int fragsz);
326 
327 	if (napi)
328 		alloc = napi_alloc_frag;
329 	else
330 		alloc = netdev_alloc_frag;
331 
332 	spin_lock_bh(&q->lock);
333 
334 	while (q->queued < q->ndesc - 1) {
335 		struct mt76_queue_buf qbuf;
336 
337 		buf = alloc(q->buf_size);
338 		if (!buf)
339 			break;
340 
341 		addr = dma_map_single(dev->dev, buf, len, DMA_FROM_DEVICE);
342 		if (dma_mapping_error(dev->dev, addr)) {
343 			skb_free_frag(buf);
344 			break;
345 		}
346 
347 		qbuf.addr = addr + offset;
348 		qbuf.len = len - offset;
349 		idx = mt76_dma_add_buf(dev, q, &qbuf, 1, 0, buf, NULL);
350 		frames++;
351 	}
352 
353 	if (frames)
354 		mt76_dma_kick_queue(dev, q);
355 
356 	spin_unlock_bh(&q->lock);
357 
358 	return frames;
359 }
360 
361 static void
362 mt76_dma_rx_cleanup(struct mt76_dev *dev, struct mt76_queue *q)
363 {
364 	void *buf;
365 	bool more;
366 
367 	spin_lock_bh(&q->lock);
368 	do {
369 		buf = mt76_dma_dequeue(dev, q, true, NULL, NULL, &more);
370 		if (!buf)
371 			break;
372 
373 		skb_free_frag(buf);
374 	} while (1);
375 	spin_unlock_bh(&q->lock);
376 }
377 
378 static void
379 mt76_dma_rx_reset(struct mt76_dev *dev, enum mt76_rxq_id qid)
380 {
381 	struct mt76_queue *q = &dev->q_rx[qid];
382 	int i;
383 
384 	for (i = 0; i < q->ndesc; i++)
385 		q->desc[i].ctrl &= ~cpu_to_le32(MT_DMA_CTL_DMA_DONE);
386 
387 	mt76_dma_rx_cleanup(dev, q);
388 	mt76_dma_sync_idx(dev, q);
389 	mt76_dma_rx_fill(dev, q, false);
390 }
391 
392 static void
393 mt76_add_fragment(struct mt76_dev *dev, struct mt76_queue *q, void *data,
394 		  int len, bool more)
395 {
396 	struct page *page = virt_to_head_page(data);
397 	int offset = data - page_address(page);
398 	struct sk_buff *skb = q->rx_head;
399 
400 	offset += q->buf_offset;
401 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page, offset, len,
402 			q->buf_size);
403 
404 	if (more)
405 		return;
406 
407 	q->rx_head = NULL;
408 	dev->drv->rx_skb(dev, q - dev->q_rx, skb);
409 }
410 
411 static int
412 mt76_dma_rx_process(struct mt76_dev *dev, struct mt76_queue *q, int budget)
413 {
414 	struct sk_buff *skb;
415 	unsigned char *data;
416 	int len;
417 	int done = 0;
418 	bool more;
419 
420 	while (done < budget) {
421 		u32 info;
422 
423 		data = mt76_dma_dequeue(dev, q, false, &len, &info, &more);
424 		if (!data)
425 			break;
426 
427 		if (q->rx_head) {
428 			mt76_add_fragment(dev, q, data, len, more);
429 			continue;
430 		}
431 
432 		skb = build_skb(data, q->buf_size);
433 		if (!skb) {
434 			skb_free_frag(data);
435 			continue;
436 		}
437 
438 		skb_reserve(skb, q->buf_offset);
439 		if (skb->tail + len > skb->end) {
440 			dev_kfree_skb(skb);
441 			continue;
442 		}
443 
444 		if (q == &dev->q_rx[MT_RXQ_MCU]) {
445 			u32 *rxfce = (u32 *) skb->cb;
446 			*rxfce = info;
447 		}
448 
449 		__skb_put(skb, len);
450 		done++;
451 
452 		if (more) {
453 			q->rx_head = skb;
454 			continue;
455 		}
456 
457 		dev->drv->rx_skb(dev, q - dev->q_rx, skb);
458 	}
459 
460 	mt76_dma_rx_fill(dev, q, true);
461 	return done;
462 }
463 
464 static int
465 mt76_dma_rx_poll(struct napi_struct *napi, int budget)
466 {
467 	struct mt76_dev *dev;
468 	int qid, done = 0, cur;
469 
470 	dev = container_of(napi->dev, struct mt76_dev, napi_dev);
471 	qid = napi - dev->napi;
472 
473 	rcu_read_lock();
474 
475 	do {
476 		cur = mt76_dma_rx_process(dev, &dev->q_rx[qid], budget - done);
477 		mt76_rx_poll_complete(dev, qid, napi);
478 		done += cur;
479 	} while (cur && done < budget);
480 
481 	rcu_read_unlock();
482 
483 	if (done < budget) {
484 		napi_complete(napi);
485 		dev->drv->rx_poll_complete(dev, qid);
486 	}
487 
488 	return done;
489 }
490 
491 static int
492 mt76_dma_init(struct mt76_dev *dev)
493 {
494 	int i;
495 
496 	init_dummy_netdev(&dev->napi_dev);
497 
498 	for (i = 0; i < ARRAY_SIZE(dev->q_rx); i++) {
499 		netif_napi_add(&dev->napi_dev, &dev->napi[i], mt76_dma_rx_poll,
500 			       64);
501 		mt76_dma_rx_fill(dev, &dev->q_rx[i], false);
502 		skb_queue_head_init(&dev->rx_skb[i]);
503 		napi_enable(&dev->napi[i]);
504 	}
505 
506 	return 0;
507 }
508 
509 static const struct mt76_queue_ops mt76_dma_ops = {
510 	.init = mt76_dma_init,
511 	.alloc = mt76_dma_alloc_queue,
512 	.add_buf = mt76_dma_add_buf,
513 	.tx_queue_skb = mt76_dma_tx_queue_skb,
514 	.tx_cleanup = mt76_dma_tx_cleanup,
515 	.rx_reset = mt76_dma_rx_reset,
516 	.kick = mt76_dma_kick_queue,
517 };
518 
519 int mt76_dma_attach(struct mt76_dev *dev)
520 {
521 	dev->queue_ops = &mt76_dma_ops;
522 	return 0;
523 }
524 EXPORT_SYMBOL_GPL(mt76_dma_attach);
525 
526 void mt76_dma_cleanup(struct mt76_dev *dev)
527 {
528 	int i;
529 
530 	for (i = 0; i < ARRAY_SIZE(dev->q_tx); i++)
531 		mt76_dma_tx_cleanup(dev, i, true);
532 
533 	for (i = 0; i < ARRAY_SIZE(dev->q_rx); i++) {
534 		netif_napi_del(&dev->napi[i]);
535 		mt76_dma_rx_cleanup(dev, &dev->q_rx[i]);
536 	}
537 }
538 EXPORT_SYMBOL_GPL(mt76_dma_cleanup);
539