1 /* 2 * Copyright (C) 2016 Felix Fietkau <nbd@nbd.name> 3 * 4 * Permission to use, copy, modify, and/or distribute this software for any 5 * purpose with or without fee is hereby granted, provided that the above 6 * copyright notice and this permission notice appear in all copies. 7 * 8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 15 */ 16 17 #include <linux/dma-mapping.h> 18 #include "mt76.h" 19 #include "dma.h" 20 21 #define DMA_DUMMY_TXWI ((void *) ~0) 22 23 static int 24 mt76_dma_alloc_queue(struct mt76_dev *dev, struct mt76_queue *q) 25 { 26 int size; 27 int i; 28 29 spin_lock_init(&q->lock); 30 INIT_LIST_HEAD(&q->swq); 31 32 size = q->ndesc * sizeof(struct mt76_desc); 33 q->desc = dmam_alloc_coherent(dev->dev, size, &q->desc_dma, GFP_KERNEL); 34 if (!q->desc) 35 return -ENOMEM; 36 37 size = q->ndesc * sizeof(*q->entry); 38 q->entry = devm_kzalloc(dev->dev, size, GFP_KERNEL); 39 if (!q->entry) 40 return -ENOMEM; 41 42 /* clear descriptors */ 43 for (i = 0; i < q->ndesc; i++) 44 q->desc[i].ctrl = cpu_to_le32(MT_DMA_CTL_DMA_DONE); 45 46 iowrite32(q->desc_dma, &q->regs->desc_base); 47 iowrite32(0, &q->regs->cpu_idx); 48 iowrite32(0, &q->regs->dma_idx); 49 iowrite32(q->ndesc, &q->regs->ring_size); 50 51 return 0; 52 } 53 54 static int 55 mt76_dma_add_buf(struct mt76_dev *dev, struct mt76_queue *q, 56 struct mt76_queue_buf *buf, int nbufs, u32 info, 57 struct sk_buff *skb, void *txwi) 58 { 59 struct mt76_desc *desc; 60 u32 ctrl; 61 int i, idx = -1; 62 63 if (txwi) 64 q->entry[q->head].txwi = DMA_DUMMY_TXWI; 65 66 for (i = 0; i < nbufs; i += 2, buf += 2) { 67 u32 buf0 = buf[0].addr, buf1 = 0; 68 69 ctrl = FIELD_PREP(MT_DMA_CTL_SD_LEN0, buf[0].len); 70 if (i < nbufs - 1) { 71 buf1 = buf[1].addr; 72 ctrl |= FIELD_PREP(MT_DMA_CTL_SD_LEN1, buf[1].len); 73 } 74 75 if (i == nbufs - 1) 76 ctrl |= MT_DMA_CTL_LAST_SEC0; 77 else if (i == nbufs - 2) 78 ctrl |= MT_DMA_CTL_LAST_SEC1; 79 80 idx = q->head; 81 q->head = (q->head + 1) % q->ndesc; 82 83 desc = &q->desc[idx]; 84 85 WRITE_ONCE(desc->buf0, cpu_to_le32(buf0)); 86 WRITE_ONCE(desc->buf1, cpu_to_le32(buf1)); 87 WRITE_ONCE(desc->info, cpu_to_le32(info)); 88 WRITE_ONCE(desc->ctrl, cpu_to_le32(ctrl)); 89 90 q->queued++; 91 } 92 93 q->entry[idx].txwi = txwi; 94 q->entry[idx].skb = skb; 95 96 return idx; 97 } 98 99 static void 100 mt76_dma_tx_cleanup_idx(struct mt76_dev *dev, struct mt76_queue *q, int idx, 101 struct mt76_queue_entry *prev_e) 102 { 103 struct mt76_queue_entry *e = &q->entry[idx]; 104 __le32 __ctrl = READ_ONCE(q->desc[idx].ctrl); 105 u32 ctrl = le32_to_cpu(__ctrl); 106 107 if (!e->txwi || !e->skb) { 108 __le32 addr = READ_ONCE(q->desc[idx].buf0); 109 u32 len = FIELD_GET(MT_DMA_CTL_SD_LEN0, ctrl); 110 111 dma_unmap_single(dev->dev, le32_to_cpu(addr), len, 112 DMA_TO_DEVICE); 113 } 114 115 if (!(ctrl & MT_DMA_CTL_LAST_SEC0)) { 116 __le32 addr = READ_ONCE(q->desc[idx].buf1); 117 u32 len = FIELD_GET(MT_DMA_CTL_SD_LEN1, ctrl); 118 119 dma_unmap_single(dev->dev, le32_to_cpu(addr), len, 120 DMA_TO_DEVICE); 121 } 122 123 if (e->txwi == DMA_DUMMY_TXWI) 124 e->txwi = NULL; 125 126 *prev_e = *e; 127 memset(e, 0, sizeof(*e)); 128 } 129 130 static void 131 mt76_dma_sync_idx(struct mt76_dev *dev, struct mt76_queue *q) 132 { 133 q->head = ioread32(&q->regs->dma_idx); 134 q->tail = q->head; 135 iowrite32(q->head, &q->regs->cpu_idx); 136 } 137 138 static void 139 mt76_dma_tx_cleanup(struct mt76_dev *dev, enum mt76_txq_id qid, bool flush) 140 { 141 struct mt76_queue *q = &dev->q_tx[qid]; 142 struct mt76_queue_entry entry; 143 bool wake = false; 144 int last; 145 146 if (!q->ndesc) 147 return; 148 149 spin_lock_bh(&q->lock); 150 if (flush) 151 last = -1; 152 else 153 last = ioread32(&q->regs->dma_idx); 154 155 while (q->queued && q->tail != last) { 156 mt76_dma_tx_cleanup_idx(dev, q, q->tail, &entry); 157 if (entry.schedule) 158 q->swq_queued--; 159 160 if (entry.skb) 161 dev->drv->tx_complete_skb(dev, q, &entry, flush); 162 163 if (entry.txwi) { 164 mt76_put_txwi(dev, entry.txwi); 165 wake = true; 166 } 167 168 q->tail = (q->tail + 1) % q->ndesc; 169 q->queued--; 170 171 if (!flush && q->tail == last) 172 last = ioread32(&q->regs->dma_idx); 173 } 174 175 if (!flush) 176 mt76_txq_schedule(dev, q); 177 else 178 mt76_dma_sync_idx(dev, q); 179 180 wake = wake && qid < IEEE80211_NUM_ACS && q->queued < q->ndesc - 8; 181 182 if (!q->queued) 183 wake_up(&dev->tx_wait); 184 185 spin_unlock_bh(&q->lock); 186 187 if (wake) 188 ieee80211_wake_queue(dev->hw, qid); 189 } 190 191 static void * 192 mt76_dma_get_buf(struct mt76_dev *dev, struct mt76_queue *q, int idx, 193 int *len, u32 *info, bool *more) 194 { 195 struct mt76_queue_entry *e = &q->entry[idx]; 196 struct mt76_desc *desc = &q->desc[idx]; 197 dma_addr_t buf_addr; 198 void *buf = e->buf; 199 int buf_len = SKB_WITH_OVERHEAD(q->buf_size); 200 201 buf_addr = le32_to_cpu(READ_ONCE(desc->buf0)); 202 if (len) { 203 u32 ctl = le32_to_cpu(READ_ONCE(desc->ctrl)); 204 *len = FIELD_GET(MT_DMA_CTL_SD_LEN0, ctl); 205 *more = !(ctl & MT_DMA_CTL_LAST_SEC0); 206 } 207 208 if (info) 209 *info = le32_to_cpu(desc->info); 210 211 dma_unmap_single(dev->dev, buf_addr, buf_len, DMA_FROM_DEVICE); 212 e->buf = NULL; 213 214 return buf; 215 } 216 217 static void * 218 mt76_dma_dequeue(struct mt76_dev *dev, struct mt76_queue *q, bool flush, 219 int *len, u32 *info, bool *more) 220 { 221 int idx = q->tail; 222 223 *more = false; 224 if (!q->queued) 225 return NULL; 226 227 if (!flush && !(q->desc[idx].ctrl & cpu_to_le32(MT_DMA_CTL_DMA_DONE))) 228 return NULL; 229 230 q->tail = (q->tail + 1) % q->ndesc; 231 q->queued--; 232 233 return mt76_dma_get_buf(dev, q, idx, len, info, more); 234 } 235 236 static void 237 mt76_dma_kick_queue(struct mt76_dev *dev, struct mt76_queue *q) 238 { 239 iowrite32(q->head, &q->regs->cpu_idx); 240 } 241 242 int mt76_dma_tx_queue_skb(struct mt76_dev *dev, struct mt76_queue *q, 243 struct sk_buff *skb, struct mt76_wcid *wcid, 244 struct ieee80211_sta *sta) 245 { 246 struct mt76_queue_entry e; 247 struct mt76_txwi_cache *t; 248 struct mt76_queue_buf buf[32]; 249 struct sk_buff *iter; 250 dma_addr_t addr; 251 int len; 252 u32 tx_info = 0; 253 int n, ret; 254 255 t = mt76_get_txwi(dev); 256 if (!t) { 257 ieee80211_free_txskb(dev->hw, skb); 258 return -ENOMEM; 259 } 260 261 dma_sync_single_for_cpu(dev->dev, t->dma_addr, sizeof(t->txwi), 262 DMA_TO_DEVICE); 263 ret = dev->drv->tx_prepare_skb(dev, &t->txwi, skb, q, wcid, sta, 264 &tx_info); 265 dma_sync_single_for_device(dev->dev, t->dma_addr, sizeof(t->txwi), 266 DMA_TO_DEVICE); 267 if (ret < 0) 268 goto free; 269 270 len = skb->len - skb->data_len; 271 addr = dma_map_single(dev->dev, skb->data, len, DMA_TO_DEVICE); 272 if (dma_mapping_error(dev->dev, addr)) { 273 ret = -ENOMEM; 274 goto free; 275 } 276 277 n = 0; 278 buf[n].addr = t->dma_addr; 279 buf[n++].len = dev->drv->txwi_size; 280 buf[n].addr = addr; 281 buf[n++].len = len; 282 283 skb_walk_frags(skb, iter) { 284 if (n == ARRAY_SIZE(buf)) 285 goto unmap; 286 287 addr = dma_map_single(dev->dev, iter->data, iter->len, 288 DMA_TO_DEVICE); 289 if (dma_mapping_error(dev->dev, addr)) 290 goto unmap; 291 292 buf[n].addr = addr; 293 buf[n++].len = iter->len; 294 } 295 296 if (q->queued + (n + 1) / 2 >= q->ndesc - 1) 297 goto unmap; 298 299 return dev->queue_ops->add_buf(dev, q, buf, n, tx_info, skb, t); 300 301 unmap: 302 ret = -ENOMEM; 303 for (n--; n > 0; n--) 304 dma_unmap_single(dev->dev, buf[n].addr, buf[n].len, 305 DMA_TO_DEVICE); 306 307 free: 308 e.skb = skb; 309 e.txwi = t; 310 dev->drv->tx_complete_skb(dev, q, &e, true); 311 mt76_put_txwi(dev, t); 312 return ret; 313 } 314 EXPORT_SYMBOL_GPL(mt76_dma_tx_queue_skb); 315 316 static int 317 mt76_dma_rx_fill(struct mt76_dev *dev, struct mt76_queue *q, bool napi) 318 { 319 dma_addr_t addr; 320 void *buf; 321 int frames = 0; 322 int len = SKB_WITH_OVERHEAD(q->buf_size); 323 int offset = q->buf_offset; 324 int idx; 325 326 spin_lock_bh(&q->lock); 327 328 while (q->queued < q->ndesc - 1) { 329 struct mt76_queue_buf qbuf; 330 331 buf = page_frag_alloc(&q->rx_page, q->buf_size, GFP_ATOMIC); 332 if (!buf) 333 break; 334 335 addr = dma_map_single(dev->dev, buf, len, DMA_FROM_DEVICE); 336 if (dma_mapping_error(dev->dev, addr)) { 337 skb_free_frag(buf); 338 break; 339 } 340 341 qbuf.addr = addr + offset; 342 qbuf.len = len - offset; 343 idx = mt76_dma_add_buf(dev, q, &qbuf, 1, 0, buf, NULL); 344 frames++; 345 } 346 347 if (frames) 348 mt76_dma_kick_queue(dev, q); 349 350 spin_unlock_bh(&q->lock); 351 352 return frames; 353 } 354 355 static void 356 mt76_dma_rx_cleanup(struct mt76_dev *dev, struct mt76_queue *q) 357 { 358 struct page *page; 359 void *buf; 360 bool more; 361 362 spin_lock_bh(&q->lock); 363 do { 364 buf = mt76_dma_dequeue(dev, q, true, NULL, NULL, &more); 365 if (!buf) 366 break; 367 368 skb_free_frag(buf); 369 } while (1); 370 spin_unlock_bh(&q->lock); 371 372 if (!q->rx_page.va) 373 return; 374 375 page = virt_to_page(q->rx_page.va); 376 __page_frag_cache_drain(page, q->rx_page.pagecnt_bias); 377 memset(&q->rx_page, 0, sizeof(q->rx_page)); 378 } 379 380 static void 381 mt76_dma_rx_reset(struct mt76_dev *dev, enum mt76_rxq_id qid) 382 { 383 struct mt76_queue *q = &dev->q_rx[qid]; 384 int i; 385 386 for (i = 0; i < q->ndesc; i++) 387 q->desc[i].ctrl &= ~cpu_to_le32(MT_DMA_CTL_DMA_DONE); 388 389 mt76_dma_rx_cleanup(dev, q); 390 mt76_dma_sync_idx(dev, q); 391 mt76_dma_rx_fill(dev, q, false); 392 } 393 394 static void 395 mt76_add_fragment(struct mt76_dev *dev, struct mt76_queue *q, void *data, 396 int len, bool more) 397 { 398 struct page *page = virt_to_head_page(data); 399 int offset = data - page_address(page); 400 struct sk_buff *skb = q->rx_head; 401 402 offset += q->buf_offset; 403 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page, offset, len, 404 q->buf_size); 405 406 if (more) 407 return; 408 409 q->rx_head = NULL; 410 dev->drv->rx_skb(dev, q - dev->q_rx, skb); 411 } 412 413 static int 414 mt76_dma_rx_process(struct mt76_dev *dev, struct mt76_queue *q, int budget) 415 { 416 struct sk_buff *skb; 417 unsigned char *data; 418 int len; 419 int done = 0; 420 bool more; 421 422 while (done < budget) { 423 u32 info; 424 425 data = mt76_dma_dequeue(dev, q, false, &len, &info, &more); 426 if (!data) 427 break; 428 429 if (q->rx_head) { 430 mt76_add_fragment(dev, q, data, len, more); 431 continue; 432 } 433 434 skb = build_skb(data, q->buf_size); 435 if (!skb) { 436 skb_free_frag(data); 437 continue; 438 } 439 440 skb_reserve(skb, q->buf_offset); 441 if (skb->tail + len > skb->end) { 442 dev_kfree_skb(skb); 443 continue; 444 } 445 446 if (q == &dev->q_rx[MT_RXQ_MCU]) { 447 u32 *rxfce = (u32 *) skb->cb; 448 *rxfce = info; 449 } 450 451 __skb_put(skb, len); 452 done++; 453 454 if (more) { 455 q->rx_head = skb; 456 continue; 457 } 458 459 dev->drv->rx_skb(dev, q - dev->q_rx, skb); 460 } 461 462 mt76_dma_rx_fill(dev, q, true); 463 return done; 464 } 465 466 static int 467 mt76_dma_rx_poll(struct napi_struct *napi, int budget) 468 { 469 struct mt76_dev *dev; 470 int qid, done = 0, cur; 471 472 dev = container_of(napi->dev, struct mt76_dev, napi_dev); 473 qid = napi - dev->napi; 474 475 rcu_read_lock(); 476 477 do { 478 cur = mt76_dma_rx_process(dev, &dev->q_rx[qid], budget - done); 479 mt76_rx_poll_complete(dev, qid, napi); 480 done += cur; 481 } while (cur && done < budget); 482 483 rcu_read_unlock(); 484 485 if (done < budget) { 486 napi_complete(napi); 487 dev->drv->rx_poll_complete(dev, qid); 488 } 489 490 return done; 491 } 492 493 static int 494 mt76_dma_init(struct mt76_dev *dev) 495 { 496 int i; 497 498 init_dummy_netdev(&dev->napi_dev); 499 500 for (i = 0; i < ARRAY_SIZE(dev->q_rx); i++) { 501 netif_napi_add(&dev->napi_dev, &dev->napi[i], mt76_dma_rx_poll, 502 64); 503 mt76_dma_rx_fill(dev, &dev->q_rx[i], false); 504 skb_queue_head_init(&dev->rx_skb[i]); 505 napi_enable(&dev->napi[i]); 506 } 507 508 return 0; 509 } 510 511 static const struct mt76_queue_ops mt76_dma_ops = { 512 .init = mt76_dma_init, 513 .alloc = mt76_dma_alloc_queue, 514 .add_buf = mt76_dma_add_buf, 515 .tx_queue_skb = mt76_dma_tx_queue_skb, 516 .tx_cleanup = mt76_dma_tx_cleanup, 517 .rx_reset = mt76_dma_rx_reset, 518 .kick = mt76_dma_kick_queue, 519 }; 520 521 int mt76_dma_attach(struct mt76_dev *dev) 522 { 523 dev->queue_ops = &mt76_dma_ops; 524 return 0; 525 } 526 EXPORT_SYMBOL_GPL(mt76_dma_attach); 527 528 void mt76_dma_cleanup(struct mt76_dev *dev) 529 { 530 int i; 531 532 for (i = 0; i < ARRAY_SIZE(dev->q_tx); i++) 533 mt76_dma_tx_cleanup(dev, i, true); 534 535 for (i = 0; i < ARRAY_SIZE(dev->q_rx); i++) { 536 netif_napi_del(&dev->napi[i]); 537 mt76_dma_rx_cleanup(dev, &dev->q_rx[i]); 538 } 539 } 540 EXPORT_SYMBOL_GPL(mt76_dma_cleanup); 541