1 /*
2  * Copyright (C) 2016 Felix Fietkau <nbd@nbd.name>
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <linux/dma-mapping.h>
18 #include "mt76.h"
19 #include "dma.h"
20 
21 #define DMA_DUMMY_TXWI	((void *) ~0)
22 
23 static int
24 mt76_dma_alloc_queue(struct mt76_dev *dev, struct mt76_queue *q)
25 {
26 	int size;
27 	int i;
28 
29 	spin_lock_init(&q->lock);
30 	INIT_LIST_HEAD(&q->swq);
31 
32 	size = q->ndesc * sizeof(struct mt76_desc);
33 	q->desc = dmam_alloc_coherent(dev->dev, size, &q->desc_dma, GFP_KERNEL);
34 	if (!q->desc)
35 		return -ENOMEM;
36 
37 	size = q->ndesc * sizeof(*q->entry);
38 	q->entry = devm_kzalloc(dev->dev, size, GFP_KERNEL);
39 	if (!q->entry)
40 		return -ENOMEM;
41 
42 	/* clear descriptors */
43 	for (i = 0; i < q->ndesc; i++)
44 		q->desc[i].ctrl = cpu_to_le32(MT_DMA_CTL_DMA_DONE);
45 
46 	iowrite32(q->desc_dma, &q->regs->desc_base);
47 	iowrite32(0, &q->regs->cpu_idx);
48 	iowrite32(0, &q->regs->dma_idx);
49 	iowrite32(q->ndesc, &q->regs->ring_size);
50 
51 	return 0;
52 }
53 
54 static int
55 mt76_dma_add_buf(struct mt76_dev *dev, struct mt76_queue *q,
56 		 struct mt76_queue_buf *buf, int nbufs, u32 info,
57 		 struct sk_buff *skb, void *txwi)
58 {
59 	struct mt76_desc *desc;
60 	u32 ctrl;
61 	int i, idx = -1;
62 
63 	if (txwi)
64 		q->entry[q->head].txwi = DMA_DUMMY_TXWI;
65 
66 	for (i = 0; i < nbufs; i += 2, buf += 2) {
67 		u32 buf0 = buf[0].addr, buf1 = 0;
68 
69 		ctrl = FIELD_PREP(MT_DMA_CTL_SD_LEN0, buf[0].len);
70 		if (i < nbufs - 1) {
71 			buf1 = buf[1].addr;
72 			ctrl |= FIELD_PREP(MT_DMA_CTL_SD_LEN1, buf[1].len);
73 		}
74 
75 		if (i == nbufs - 1)
76 			ctrl |= MT_DMA_CTL_LAST_SEC0;
77 		else if (i == nbufs - 2)
78 			ctrl |= MT_DMA_CTL_LAST_SEC1;
79 
80 		idx = q->head;
81 		q->head = (q->head + 1) % q->ndesc;
82 
83 		desc = &q->desc[idx];
84 
85 		WRITE_ONCE(desc->buf0, cpu_to_le32(buf0));
86 		WRITE_ONCE(desc->buf1, cpu_to_le32(buf1));
87 		WRITE_ONCE(desc->info, cpu_to_le32(info));
88 		WRITE_ONCE(desc->ctrl, cpu_to_le32(ctrl));
89 
90 		q->queued++;
91 	}
92 
93 	q->entry[idx].txwi = txwi;
94 	q->entry[idx].skb = skb;
95 
96 	return idx;
97 }
98 
99 static void
100 mt76_dma_tx_cleanup_idx(struct mt76_dev *dev, struct mt76_queue *q, int idx,
101 			struct mt76_queue_entry *prev_e)
102 {
103 	struct mt76_queue_entry *e = &q->entry[idx];
104 	__le32 __ctrl = READ_ONCE(q->desc[idx].ctrl);
105 	u32 ctrl = le32_to_cpu(__ctrl);
106 
107 	if (!e->txwi || !e->skb) {
108 		__le32 addr = READ_ONCE(q->desc[idx].buf0);
109 		u32 len = FIELD_GET(MT_DMA_CTL_SD_LEN0, ctrl);
110 
111 		dma_unmap_single(dev->dev, le32_to_cpu(addr), len,
112 				 DMA_TO_DEVICE);
113 	}
114 
115 	if (!(ctrl & MT_DMA_CTL_LAST_SEC0)) {
116 		__le32 addr = READ_ONCE(q->desc[idx].buf1);
117 		u32 len = FIELD_GET(MT_DMA_CTL_SD_LEN1, ctrl);
118 
119 		dma_unmap_single(dev->dev, le32_to_cpu(addr), len,
120 				 DMA_TO_DEVICE);
121 	}
122 
123 	if (e->txwi == DMA_DUMMY_TXWI)
124 		e->txwi = NULL;
125 
126 	*prev_e = *e;
127 	memset(e, 0, sizeof(*e));
128 }
129 
130 static void
131 mt76_dma_sync_idx(struct mt76_dev *dev, struct mt76_queue *q)
132 {
133 	q->head = ioread32(&q->regs->dma_idx);
134 	q->tail = q->head;
135 	iowrite32(q->head, &q->regs->cpu_idx);
136 }
137 
138 static void
139 mt76_dma_tx_cleanup(struct mt76_dev *dev, enum mt76_txq_id qid, bool flush)
140 {
141 	struct mt76_queue *q = &dev->q_tx[qid];
142 	struct mt76_queue_entry entry;
143 	bool wake = false;
144 	int last;
145 
146 	if (!q->ndesc)
147 		return;
148 
149 	spin_lock_bh(&q->lock);
150 	if (flush)
151 		last = -1;
152 	else
153 		last = ioread32(&q->regs->dma_idx);
154 
155 	while (q->queued && q->tail != last) {
156 		mt76_dma_tx_cleanup_idx(dev, q, q->tail, &entry);
157 		if (entry.schedule)
158 			q->swq_queued--;
159 
160 		q->tail = (q->tail + 1) % q->ndesc;
161 		q->queued--;
162 
163 		if (entry.skb) {
164 			spin_unlock_bh(&q->lock);
165 			dev->drv->tx_complete_skb(dev, q, &entry, flush);
166 			spin_lock_bh(&q->lock);
167 		}
168 
169 		if (entry.txwi) {
170 			mt76_put_txwi(dev, entry.txwi);
171 			wake = !flush;
172 		}
173 
174 		if (!flush && q->tail == last)
175 			last = ioread32(&q->regs->dma_idx);
176 	}
177 
178 	if (!flush)
179 		mt76_txq_schedule(dev, q);
180 	else
181 		mt76_dma_sync_idx(dev, q);
182 
183 	wake = wake && qid < IEEE80211_NUM_ACS && q->queued < q->ndesc - 8;
184 
185 	if (!q->queued)
186 		wake_up(&dev->tx_wait);
187 
188 	spin_unlock_bh(&q->lock);
189 
190 	if (wake)
191 		ieee80211_wake_queue(dev->hw, qid);
192 }
193 
194 static void *
195 mt76_dma_get_buf(struct mt76_dev *dev, struct mt76_queue *q, int idx,
196 		 int *len, u32 *info, bool *more)
197 {
198 	struct mt76_queue_entry *e = &q->entry[idx];
199 	struct mt76_desc *desc = &q->desc[idx];
200 	dma_addr_t buf_addr;
201 	void *buf = e->buf;
202 	int buf_len = SKB_WITH_OVERHEAD(q->buf_size);
203 
204 	buf_addr = le32_to_cpu(READ_ONCE(desc->buf0));
205 	if (len) {
206 		u32 ctl = le32_to_cpu(READ_ONCE(desc->ctrl));
207 		*len = FIELD_GET(MT_DMA_CTL_SD_LEN0, ctl);
208 		*more = !(ctl & MT_DMA_CTL_LAST_SEC0);
209 	}
210 
211 	if (info)
212 		*info = le32_to_cpu(desc->info);
213 
214 	dma_unmap_single(dev->dev, buf_addr, buf_len, DMA_FROM_DEVICE);
215 	e->buf = NULL;
216 
217 	return buf;
218 }
219 
220 static void *
221 mt76_dma_dequeue(struct mt76_dev *dev, struct mt76_queue *q, bool flush,
222 		 int *len, u32 *info, bool *more)
223 {
224 	int idx = q->tail;
225 
226 	*more = false;
227 	if (!q->queued)
228 		return NULL;
229 
230 	if (!flush && !(q->desc[idx].ctrl & cpu_to_le32(MT_DMA_CTL_DMA_DONE)))
231 		return NULL;
232 
233 	q->tail = (q->tail + 1) % q->ndesc;
234 	q->queued--;
235 
236 	return mt76_dma_get_buf(dev, q, idx, len, info, more);
237 }
238 
239 static void
240 mt76_dma_kick_queue(struct mt76_dev *dev, struct mt76_queue *q)
241 {
242 	iowrite32(q->head, &q->regs->cpu_idx);
243 }
244 
245 static int
246 mt76_dma_tx_queue_skb_raw(struct mt76_dev *dev, enum mt76_txq_id qid,
247 			  struct sk_buff *skb, u32 tx_info)
248 {
249 	struct mt76_queue *q = &dev->q_tx[qid];
250 	struct mt76_queue_buf buf;
251 	dma_addr_t addr;
252 
253 	addr = dma_map_single(dev->dev, skb->data, skb->len,
254 			      DMA_TO_DEVICE);
255 	if (dma_mapping_error(dev->dev, addr))
256 		return -ENOMEM;
257 
258 	buf.addr = addr;
259 	buf.len = skb->len;
260 
261 	spin_lock_bh(&q->lock);
262 	mt76_dma_add_buf(dev, q, &buf, 1, tx_info, skb, NULL);
263 	mt76_dma_kick_queue(dev, q);
264 	spin_unlock_bh(&q->lock);
265 
266 	return 0;
267 }
268 
269 int mt76_dma_tx_queue_skb(struct mt76_dev *dev, struct mt76_queue *q,
270 			  struct sk_buff *skb, struct mt76_wcid *wcid,
271 			  struct ieee80211_sta *sta)
272 {
273 	struct mt76_queue_entry e;
274 	struct mt76_txwi_cache *t;
275 	struct mt76_queue_buf buf[32];
276 	struct sk_buff *iter;
277 	dma_addr_t addr;
278 	int len;
279 	u32 tx_info = 0;
280 	int n, ret;
281 
282 	t = mt76_get_txwi(dev);
283 	if (!t) {
284 		ieee80211_free_txskb(dev->hw, skb);
285 		return -ENOMEM;
286 	}
287 
288 	skb->prev = skb->next = NULL;
289 	dma_sync_single_for_cpu(dev->dev, t->dma_addr, sizeof(t->txwi),
290 				DMA_TO_DEVICE);
291 	ret = dev->drv->tx_prepare_skb(dev, &t->txwi, skb, q, wcid, sta,
292 				       &tx_info);
293 	dma_sync_single_for_device(dev->dev, t->dma_addr, sizeof(t->txwi),
294 				   DMA_TO_DEVICE);
295 	if (ret < 0)
296 		goto free;
297 
298 	len = skb->len - skb->data_len;
299 	addr = dma_map_single(dev->dev, skb->data, len, DMA_TO_DEVICE);
300 	if (dma_mapping_error(dev->dev, addr)) {
301 		ret = -ENOMEM;
302 		goto free;
303 	}
304 
305 	n = 0;
306 	buf[n].addr = t->dma_addr;
307 	buf[n++].len = dev->drv->txwi_size;
308 	buf[n].addr = addr;
309 	buf[n++].len = len;
310 
311 	skb_walk_frags(skb, iter) {
312 		if (n == ARRAY_SIZE(buf))
313 			goto unmap;
314 
315 		addr = dma_map_single(dev->dev, iter->data, iter->len,
316 				      DMA_TO_DEVICE);
317 		if (dma_mapping_error(dev->dev, addr))
318 			goto unmap;
319 
320 		buf[n].addr = addr;
321 		buf[n++].len = iter->len;
322 	}
323 
324 	if (q->queued + (n + 1) / 2 >= q->ndesc - 1)
325 		goto unmap;
326 
327 	return mt76_dma_add_buf(dev, q, buf, n, tx_info, skb, t);
328 
329 unmap:
330 	ret = -ENOMEM;
331 	for (n--; n > 0; n--)
332 		dma_unmap_single(dev->dev, buf[n].addr, buf[n].len,
333 				 DMA_TO_DEVICE);
334 
335 free:
336 	e.skb = skb;
337 	e.txwi = t;
338 	dev->drv->tx_complete_skb(dev, q, &e, true);
339 	mt76_put_txwi(dev, t);
340 	return ret;
341 }
342 EXPORT_SYMBOL_GPL(mt76_dma_tx_queue_skb);
343 
344 static int
345 mt76_dma_rx_fill(struct mt76_dev *dev, struct mt76_queue *q)
346 {
347 	dma_addr_t addr;
348 	void *buf;
349 	int frames = 0;
350 	int len = SKB_WITH_OVERHEAD(q->buf_size);
351 	int offset = q->buf_offset;
352 	int idx;
353 
354 	spin_lock_bh(&q->lock);
355 
356 	while (q->queued < q->ndesc - 1) {
357 		struct mt76_queue_buf qbuf;
358 
359 		buf = page_frag_alloc(&q->rx_page, q->buf_size, GFP_ATOMIC);
360 		if (!buf)
361 			break;
362 
363 		addr = dma_map_single(dev->dev, buf, len, DMA_FROM_DEVICE);
364 		if (dma_mapping_error(dev->dev, addr)) {
365 			skb_free_frag(buf);
366 			break;
367 		}
368 
369 		qbuf.addr = addr + offset;
370 		qbuf.len = len - offset;
371 		idx = mt76_dma_add_buf(dev, q, &qbuf, 1, 0, buf, NULL);
372 		frames++;
373 	}
374 
375 	if (frames)
376 		mt76_dma_kick_queue(dev, q);
377 
378 	spin_unlock_bh(&q->lock);
379 
380 	return frames;
381 }
382 
383 static void
384 mt76_dma_rx_cleanup(struct mt76_dev *dev, struct mt76_queue *q)
385 {
386 	struct page *page;
387 	void *buf;
388 	bool more;
389 
390 	spin_lock_bh(&q->lock);
391 	do {
392 		buf = mt76_dma_dequeue(dev, q, true, NULL, NULL, &more);
393 		if (!buf)
394 			break;
395 
396 		skb_free_frag(buf);
397 	} while (1);
398 	spin_unlock_bh(&q->lock);
399 
400 	if (!q->rx_page.va)
401 		return;
402 
403 	page = virt_to_page(q->rx_page.va);
404 	__page_frag_cache_drain(page, q->rx_page.pagecnt_bias);
405 	memset(&q->rx_page, 0, sizeof(q->rx_page));
406 }
407 
408 static void
409 mt76_dma_rx_reset(struct mt76_dev *dev, enum mt76_rxq_id qid)
410 {
411 	struct mt76_queue *q = &dev->q_rx[qid];
412 	int i;
413 
414 	for (i = 0; i < q->ndesc; i++)
415 		q->desc[i].ctrl &= ~cpu_to_le32(MT_DMA_CTL_DMA_DONE);
416 
417 	mt76_dma_rx_cleanup(dev, q);
418 	mt76_dma_sync_idx(dev, q);
419 	mt76_dma_rx_fill(dev, q);
420 }
421 
422 static void
423 mt76_add_fragment(struct mt76_dev *dev, struct mt76_queue *q, void *data,
424 		  int len, bool more)
425 {
426 	struct page *page = virt_to_head_page(data);
427 	int offset = data - page_address(page);
428 	struct sk_buff *skb = q->rx_head;
429 
430 	offset += q->buf_offset;
431 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page, offset, len,
432 			q->buf_size);
433 
434 	if (more)
435 		return;
436 
437 	q->rx_head = NULL;
438 	dev->drv->rx_skb(dev, q - dev->q_rx, skb);
439 }
440 
441 static int
442 mt76_dma_rx_process(struct mt76_dev *dev, struct mt76_queue *q, int budget)
443 {
444 	int len, data_len, done = 0;
445 	struct sk_buff *skb;
446 	unsigned char *data;
447 	bool more;
448 
449 	while (done < budget) {
450 		u32 info;
451 
452 		data = mt76_dma_dequeue(dev, q, false, &len, &info, &more);
453 		if (!data)
454 			break;
455 
456 		if (q->rx_head)
457 			data_len = q->buf_size;
458 		else
459 			data_len = SKB_WITH_OVERHEAD(q->buf_size);
460 
461 		if (data_len < len + q->buf_offset) {
462 			dev_kfree_skb(q->rx_head);
463 			q->rx_head = NULL;
464 
465 			skb_free_frag(data);
466 			continue;
467 		}
468 
469 		if (q->rx_head) {
470 			mt76_add_fragment(dev, q, data, len, more);
471 			continue;
472 		}
473 
474 		skb = build_skb(data, q->buf_size);
475 		if (!skb) {
476 			skb_free_frag(data);
477 			continue;
478 		}
479 		skb_reserve(skb, q->buf_offset);
480 
481 		if (q == &dev->q_rx[MT_RXQ_MCU]) {
482 			u32 *rxfce = (u32 *) skb->cb;
483 			*rxfce = info;
484 		}
485 
486 		__skb_put(skb, len);
487 		done++;
488 
489 		if (more) {
490 			q->rx_head = skb;
491 			continue;
492 		}
493 
494 		dev->drv->rx_skb(dev, q - dev->q_rx, skb);
495 	}
496 
497 	mt76_dma_rx_fill(dev, q);
498 	return done;
499 }
500 
501 static int
502 mt76_dma_rx_poll(struct napi_struct *napi, int budget)
503 {
504 	struct mt76_dev *dev;
505 	int qid, done = 0, cur;
506 
507 	dev = container_of(napi->dev, struct mt76_dev, napi_dev);
508 	qid = napi - dev->napi;
509 
510 	rcu_read_lock();
511 
512 	do {
513 		cur = mt76_dma_rx_process(dev, &dev->q_rx[qid], budget - done);
514 		mt76_rx_poll_complete(dev, qid, napi);
515 		done += cur;
516 	} while (cur && done < budget);
517 
518 	rcu_read_unlock();
519 
520 	if (done < budget) {
521 		napi_complete(napi);
522 		dev->drv->rx_poll_complete(dev, qid);
523 	}
524 
525 	return done;
526 }
527 
528 static int
529 mt76_dma_init(struct mt76_dev *dev)
530 {
531 	int i;
532 
533 	init_dummy_netdev(&dev->napi_dev);
534 
535 	for (i = 0; i < ARRAY_SIZE(dev->q_rx); i++) {
536 		netif_napi_add(&dev->napi_dev, &dev->napi[i], mt76_dma_rx_poll,
537 			       64);
538 		mt76_dma_rx_fill(dev, &dev->q_rx[i]);
539 		skb_queue_head_init(&dev->rx_skb[i]);
540 		napi_enable(&dev->napi[i]);
541 	}
542 
543 	return 0;
544 }
545 
546 static const struct mt76_queue_ops mt76_dma_ops = {
547 	.init = mt76_dma_init,
548 	.alloc = mt76_dma_alloc_queue,
549 	.tx_queue_skb_raw = mt76_dma_tx_queue_skb_raw,
550 	.tx_queue_skb = mt76_dma_tx_queue_skb,
551 	.tx_cleanup = mt76_dma_tx_cleanup,
552 	.rx_reset = mt76_dma_rx_reset,
553 	.kick = mt76_dma_kick_queue,
554 };
555 
556 void mt76_dma_attach(struct mt76_dev *dev)
557 {
558 	dev->queue_ops = &mt76_dma_ops;
559 }
560 EXPORT_SYMBOL_GPL(mt76_dma_attach);
561 
562 void mt76_dma_cleanup(struct mt76_dev *dev)
563 {
564 	int i;
565 
566 	for (i = 0; i < ARRAY_SIZE(dev->q_tx); i++)
567 		mt76_dma_tx_cleanup(dev, i, true);
568 
569 	for (i = 0; i < ARRAY_SIZE(dev->q_rx); i++) {
570 		netif_napi_del(&dev->napi[i]);
571 		mt76_dma_rx_cleanup(dev, &dev->q_rx[i]);
572 	}
573 }
574 EXPORT_SYMBOL_GPL(mt76_dma_cleanup);
575