1 // SPDX-License-Identifier: ISC
2 /*
3  * Copyright (C) 2016 Felix Fietkau <nbd@nbd.name>
4  */
5 
6 #include <linux/dma-mapping.h>
7 #include "mt76.h"
8 #include "dma.h"
9 
10 static int
11 mt76_dma_alloc_queue(struct mt76_dev *dev, struct mt76_queue *q,
12 		     int idx, int n_desc, int bufsize,
13 		     u32 ring_base)
14 {
15 	int size;
16 	int i;
17 
18 	spin_lock_init(&q->lock);
19 
20 	q->regs = dev->mmio.regs + ring_base + idx * MT_RING_SIZE;
21 	q->ndesc = n_desc;
22 	q->buf_size = bufsize;
23 	q->hw_idx = idx;
24 
25 	size = q->ndesc * sizeof(struct mt76_desc);
26 	q->desc = dmam_alloc_coherent(dev->dev, size, &q->desc_dma, GFP_KERNEL);
27 	if (!q->desc)
28 		return -ENOMEM;
29 
30 	size = q->ndesc * sizeof(*q->entry);
31 	q->entry = devm_kzalloc(dev->dev, size, GFP_KERNEL);
32 	if (!q->entry)
33 		return -ENOMEM;
34 
35 	/* clear descriptors */
36 	for (i = 0; i < q->ndesc; i++)
37 		q->desc[i].ctrl = cpu_to_le32(MT_DMA_CTL_DMA_DONE);
38 
39 	writel(q->desc_dma, &q->regs->desc_base);
40 	writel(0, &q->regs->cpu_idx);
41 	writel(0, &q->regs->dma_idx);
42 	writel(q->ndesc, &q->regs->ring_size);
43 
44 	return 0;
45 }
46 
47 static int
48 mt76_dma_add_buf(struct mt76_dev *dev, struct mt76_queue *q,
49 		 struct mt76_queue_buf *buf, int nbufs, u32 info,
50 		 struct sk_buff *skb, void *txwi)
51 {
52 	struct mt76_desc *desc;
53 	u32 ctrl;
54 	int i, idx = -1;
55 
56 	if (txwi) {
57 		q->entry[q->head].txwi = DMA_DUMMY_DATA;
58 		q->entry[q->head].skip_buf0 = true;
59 	}
60 
61 	for (i = 0; i < nbufs; i += 2, buf += 2) {
62 		u32 buf0 = buf[0].addr, buf1 = 0;
63 
64 		ctrl = FIELD_PREP(MT_DMA_CTL_SD_LEN0, buf[0].len);
65 		if (i < nbufs - 1) {
66 			buf1 = buf[1].addr;
67 			ctrl |= FIELD_PREP(MT_DMA_CTL_SD_LEN1, buf[1].len);
68 		}
69 
70 		if (i == nbufs - 1)
71 			ctrl |= MT_DMA_CTL_LAST_SEC0;
72 		else if (i == nbufs - 2)
73 			ctrl |= MT_DMA_CTL_LAST_SEC1;
74 
75 		idx = q->head;
76 		q->head = (q->head + 1) % q->ndesc;
77 
78 		desc = &q->desc[idx];
79 
80 		WRITE_ONCE(desc->buf0, cpu_to_le32(buf0));
81 		WRITE_ONCE(desc->buf1, cpu_to_le32(buf1));
82 		WRITE_ONCE(desc->info, cpu_to_le32(info));
83 		WRITE_ONCE(desc->ctrl, cpu_to_le32(ctrl));
84 
85 		q->queued++;
86 	}
87 
88 	q->entry[idx].txwi = txwi;
89 	q->entry[idx].skb = skb;
90 
91 	return idx;
92 }
93 
94 static void
95 mt76_dma_tx_cleanup_idx(struct mt76_dev *dev, struct mt76_queue *q, int idx,
96 			struct mt76_queue_entry *prev_e)
97 {
98 	struct mt76_queue_entry *e = &q->entry[idx];
99 	__le32 __ctrl = READ_ONCE(q->desc[idx].ctrl);
100 	u32 ctrl = le32_to_cpu(__ctrl);
101 
102 	if (!e->skip_buf0) {
103 		__le32 addr = READ_ONCE(q->desc[idx].buf0);
104 		u32 len = FIELD_GET(MT_DMA_CTL_SD_LEN0, ctrl);
105 
106 		dma_unmap_single(dev->dev, le32_to_cpu(addr), len,
107 				 DMA_TO_DEVICE);
108 	}
109 
110 	if (!(ctrl & MT_DMA_CTL_LAST_SEC0)) {
111 		__le32 addr = READ_ONCE(q->desc[idx].buf1);
112 		u32 len = FIELD_GET(MT_DMA_CTL_SD_LEN1, ctrl);
113 
114 		dma_unmap_single(dev->dev, le32_to_cpu(addr), len,
115 				 DMA_TO_DEVICE);
116 	}
117 
118 	if (e->txwi == DMA_DUMMY_DATA)
119 		e->txwi = NULL;
120 
121 	if (e->skb == DMA_DUMMY_DATA)
122 		e->skb = NULL;
123 
124 	*prev_e = *e;
125 	memset(e, 0, sizeof(*e));
126 }
127 
128 static void
129 mt76_dma_sync_idx(struct mt76_dev *dev, struct mt76_queue *q)
130 {
131 	writel(q->desc_dma, &q->regs->desc_base);
132 	writel(q->ndesc, &q->regs->ring_size);
133 	q->head = readl(&q->regs->dma_idx);
134 	q->tail = q->head;
135 }
136 
137 static void
138 mt76_dma_kick_queue(struct mt76_dev *dev, struct mt76_queue *q)
139 {
140 	writel(q->head, &q->regs->cpu_idx);
141 }
142 
143 static void
144 mt76_dma_tx_cleanup(struct mt76_dev *dev, enum mt76_txq_id qid, bool flush)
145 {
146 	struct mt76_sw_queue *sq = &dev->q_tx[qid];
147 	struct mt76_queue *q = sq->q;
148 	struct mt76_queue_entry entry;
149 	unsigned int n_swq_queued[8] = {};
150 	unsigned int n_queued = 0;
151 	bool wake = false;
152 	int i, last;
153 
154 	if (!q)
155 		return;
156 
157 	if (flush)
158 		last = -1;
159 	else
160 		last = readl(&q->regs->dma_idx);
161 
162 	while ((q->queued > n_queued) && q->tail != last) {
163 		mt76_dma_tx_cleanup_idx(dev, q, q->tail, &entry);
164 		if (entry.schedule)
165 			n_swq_queued[entry.qid]++;
166 
167 		q->tail = (q->tail + 1) % q->ndesc;
168 		n_queued++;
169 
170 		if (entry.skb)
171 			dev->drv->tx_complete_skb(dev, qid, &entry);
172 
173 		if (entry.txwi) {
174 			if (!(dev->drv->drv_flags & MT_DRV_TXWI_NO_FREE))
175 				mt76_put_txwi(dev, entry.txwi);
176 			wake = !flush;
177 		}
178 
179 		if (!flush && q->tail == last)
180 			last = readl(&q->regs->dma_idx);
181 	}
182 
183 	spin_lock_bh(&q->lock);
184 
185 	q->queued -= n_queued;
186 	for (i = 0; i < 4; i++) {
187 		if (!n_swq_queued[i])
188 			continue;
189 
190 		dev->q_tx[i].swq_queued -= n_swq_queued[i];
191 	}
192 
193 	/* ext PHY */
194 	for (i = 0; i < 4; i++) {
195 		if (!n_swq_queued[i])
196 			continue;
197 
198 		dev->q_tx[__MT_TXQ_MAX + i].swq_queued -= n_swq_queued[4 + i];
199 	}
200 
201 	if (flush) {
202 		mt76_dma_sync_idx(dev, q);
203 		mt76_dma_kick_queue(dev, q);
204 	}
205 
206 	wake = wake && q->stopped &&
207 	       qid < IEEE80211_NUM_ACS && q->queued < q->ndesc - 8;
208 	if (wake)
209 		q->stopped = false;
210 
211 	if (!q->queued)
212 		wake_up(&dev->tx_wait);
213 
214 	spin_unlock_bh(&q->lock);
215 
216 	if (wake)
217 		ieee80211_wake_queue(dev->hw, qid);
218 }
219 
220 static void *
221 mt76_dma_get_buf(struct mt76_dev *dev, struct mt76_queue *q, int idx,
222 		 int *len, u32 *info, bool *more)
223 {
224 	struct mt76_queue_entry *e = &q->entry[idx];
225 	struct mt76_desc *desc = &q->desc[idx];
226 	dma_addr_t buf_addr;
227 	void *buf = e->buf;
228 	int buf_len = SKB_WITH_OVERHEAD(q->buf_size);
229 
230 	buf_addr = le32_to_cpu(READ_ONCE(desc->buf0));
231 	if (len) {
232 		u32 ctl = le32_to_cpu(READ_ONCE(desc->ctrl));
233 		*len = FIELD_GET(MT_DMA_CTL_SD_LEN0, ctl);
234 		*more = !(ctl & MT_DMA_CTL_LAST_SEC0);
235 	}
236 
237 	if (info)
238 		*info = le32_to_cpu(desc->info);
239 
240 	dma_unmap_single(dev->dev, buf_addr, buf_len, DMA_FROM_DEVICE);
241 	e->buf = NULL;
242 
243 	return buf;
244 }
245 
246 static void *
247 mt76_dma_dequeue(struct mt76_dev *dev, struct mt76_queue *q, bool flush,
248 		 int *len, u32 *info, bool *more)
249 {
250 	int idx = q->tail;
251 
252 	*more = false;
253 	if (!q->queued)
254 		return NULL;
255 
256 	if (flush)
257 		q->desc[idx].ctrl |= cpu_to_le32(MT_DMA_CTL_DMA_DONE);
258 	else if (!(q->desc[idx].ctrl & cpu_to_le32(MT_DMA_CTL_DMA_DONE)))
259 		return NULL;
260 
261 	q->tail = (q->tail + 1) % q->ndesc;
262 	q->queued--;
263 
264 	return mt76_dma_get_buf(dev, q, idx, len, info, more);
265 }
266 
267 static int
268 mt76_dma_tx_queue_skb_raw(struct mt76_dev *dev, enum mt76_txq_id qid,
269 			  struct sk_buff *skb, u32 tx_info)
270 {
271 	struct mt76_queue *q = dev->q_tx[qid].q;
272 	struct mt76_queue_buf buf;
273 	dma_addr_t addr;
274 
275 	if (q->queued + 1 >= q->ndesc - 1)
276 		goto error;
277 
278 	addr = dma_map_single(dev->dev, skb->data, skb->len,
279 			      DMA_TO_DEVICE);
280 	if (unlikely(dma_mapping_error(dev->dev, addr)))
281 		goto error;
282 
283 	buf.addr = addr;
284 	buf.len = skb->len;
285 
286 	spin_lock_bh(&q->lock);
287 	mt76_dma_add_buf(dev, q, &buf, 1, tx_info, skb, NULL);
288 	mt76_dma_kick_queue(dev, q);
289 	spin_unlock_bh(&q->lock);
290 
291 	return 0;
292 
293 error:
294 	dev_kfree_skb(skb);
295 	return -ENOMEM;
296 }
297 
298 static int
299 mt76_dma_tx_queue_skb(struct mt76_dev *dev, enum mt76_txq_id qid,
300 		      struct sk_buff *skb, struct mt76_wcid *wcid,
301 		      struct ieee80211_sta *sta)
302 {
303 	struct mt76_queue *q = dev->q_tx[qid].q;
304 	struct mt76_tx_info tx_info = {
305 		.skb = skb,
306 	};
307 	struct ieee80211_hw *hw;
308 	int len, n = 0, ret = -ENOMEM;
309 	struct mt76_queue_entry e;
310 	struct mt76_txwi_cache *t;
311 	struct sk_buff *iter;
312 	dma_addr_t addr;
313 	u8 *txwi;
314 
315 	t = mt76_get_txwi(dev);
316 	if (!t) {
317 		hw = mt76_tx_status_get_hw(dev, skb);
318 		ieee80211_free_txskb(hw, skb);
319 		return -ENOMEM;
320 	}
321 	txwi = mt76_get_txwi_ptr(dev, t);
322 
323 	skb->prev = skb->next = NULL;
324 	if (dev->drv->drv_flags & MT_DRV_TX_ALIGNED4_SKBS)
325 		mt76_insert_hdr_pad(skb);
326 
327 	len = skb_headlen(skb);
328 	addr = dma_map_single(dev->dev, skb->data, len, DMA_TO_DEVICE);
329 	if (unlikely(dma_mapping_error(dev->dev, addr)))
330 		goto free;
331 
332 	tx_info.buf[n].addr = t->dma_addr;
333 	tx_info.buf[n++].len = dev->drv->txwi_size;
334 	tx_info.buf[n].addr = addr;
335 	tx_info.buf[n++].len = len;
336 
337 	skb_walk_frags(skb, iter) {
338 		if (n == ARRAY_SIZE(tx_info.buf))
339 			goto unmap;
340 
341 		addr = dma_map_single(dev->dev, iter->data, iter->len,
342 				      DMA_TO_DEVICE);
343 		if (unlikely(dma_mapping_error(dev->dev, addr)))
344 			goto unmap;
345 
346 		tx_info.buf[n].addr = addr;
347 		tx_info.buf[n++].len = iter->len;
348 	}
349 	tx_info.nbuf = n;
350 
351 	dma_sync_single_for_cpu(dev->dev, t->dma_addr, dev->drv->txwi_size,
352 				DMA_TO_DEVICE);
353 	ret = dev->drv->tx_prepare_skb(dev, txwi, qid, wcid, sta, &tx_info);
354 	dma_sync_single_for_device(dev->dev, t->dma_addr, dev->drv->txwi_size,
355 				   DMA_TO_DEVICE);
356 	if (ret < 0)
357 		goto unmap;
358 
359 	if (q->queued + (tx_info.nbuf + 1) / 2 >= q->ndesc - 1) {
360 		ret = -ENOMEM;
361 		goto unmap;
362 	}
363 
364 	return mt76_dma_add_buf(dev, q, tx_info.buf, tx_info.nbuf,
365 				tx_info.info, tx_info.skb, t);
366 
367 unmap:
368 	for (n--; n > 0; n--)
369 		dma_unmap_single(dev->dev, tx_info.buf[n].addr,
370 				 tx_info.buf[n].len, DMA_TO_DEVICE);
371 
372 free:
373 	e.skb = tx_info.skb;
374 	e.txwi = t;
375 	dev->drv->tx_complete_skb(dev, qid, &e);
376 	mt76_put_txwi(dev, t);
377 	return ret;
378 }
379 
380 static int
381 mt76_dma_rx_fill(struct mt76_dev *dev, struct mt76_queue *q)
382 {
383 	dma_addr_t addr;
384 	void *buf;
385 	int frames = 0;
386 	int len = SKB_WITH_OVERHEAD(q->buf_size);
387 	int offset = q->buf_offset;
388 
389 	spin_lock_bh(&q->lock);
390 
391 	while (q->queued < q->ndesc - 1) {
392 		struct mt76_queue_buf qbuf;
393 
394 		buf = page_frag_alloc(&q->rx_page, q->buf_size, GFP_ATOMIC);
395 		if (!buf)
396 			break;
397 
398 		addr = dma_map_single(dev->dev, buf, len, DMA_FROM_DEVICE);
399 		if (unlikely(dma_mapping_error(dev->dev, addr))) {
400 			skb_free_frag(buf);
401 			break;
402 		}
403 
404 		qbuf.addr = addr + offset;
405 		qbuf.len = len - offset;
406 		mt76_dma_add_buf(dev, q, &qbuf, 1, 0, buf, NULL);
407 		frames++;
408 	}
409 
410 	if (frames)
411 		mt76_dma_kick_queue(dev, q);
412 
413 	spin_unlock_bh(&q->lock);
414 
415 	return frames;
416 }
417 
418 static void
419 mt76_dma_rx_cleanup(struct mt76_dev *dev, struct mt76_queue *q)
420 {
421 	struct page *page;
422 	void *buf;
423 	bool more;
424 
425 	spin_lock_bh(&q->lock);
426 	do {
427 		buf = mt76_dma_dequeue(dev, q, true, NULL, NULL, &more);
428 		if (!buf)
429 			break;
430 
431 		skb_free_frag(buf);
432 	} while (1);
433 	spin_unlock_bh(&q->lock);
434 
435 	if (!q->rx_page.va)
436 		return;
437 
438 	page = virt_to_page(q->rx_page.va);
439 	__page_frag_cache_drain(page, q->rx_page.pagecnt_bias);
440 	memset(&q->rx_page, 0, sizeof(q->rx_page));
441 }
442 
443 static void
444 mt76_dma_rx_reset(struct mt76_dev *dev, enum mt76_rxq_id qid)
445 {
446 	struct mt76_queue *q = &dev->q_rx[qid];
447 	int i;
448 
449 	for (i = 0; i < q->ndesc; i++)
450 		q->desc[i].ctrl = cpu_to_le32(MT_DMA_CTL_DMA_DONE);
451 
452 	mt76_dma_rx_cleanup(dev, q);
453 	mt76_dma_sync_idx(dev, q);
454 	mt76_dma_rx_fill(dev, q);
455 
456 	if (!q->rx_head)
457 		return;
458 
459 	dev_kfree_skb(q->rx_head);
460 	q->rx_head = NULL;
461 }
462 
463 static void
464 mt76_add_fragment(struct mt76_dev *dev, struct mt76_queue *q, void *data,
465 		  int len, bool more)
466 {
467 	struct page *page = virt_to_head_page(data);
468 	int offset = data - page_address(page);
469 	struct sk_buff *skb = q->rx_head;
470 	struct skb_shared_info *shinfo = skb_shinfo(skb);
471 
472 	if (shinfo->nr_frags < ARRAY_SIZE(shinfo->frags)) {
473 		offset += q->buf_offset;
474 		skb_add_rx_frag(skb, shinfo->nr_frags, page, offset, len,
475 				q->buf_size);
476 	}
477 
478 	if (more)
479 		return;
480 
481 	q->rx_head = NULL;
482 	dev->drv->rx_skb(dev, q - dev->q_rx, skb);
483 }
484 
485 static int
486 mt76_dma_rx_process(struct mt76_dev *dev, struct mt76_queue *q, int budget)
487 {
488 	int len, data_len, done = 0;
489 	struct sk_buff *skb;
490 	unsigned char *data;
491 	bool more;
492 
493 	while (done < budget) {
494 		u32 info;
495 
496 		data = mt76_dma_dequeue(dev, q, false, &len, &info, &more);
497 		if (!data)
498 			break;
499 
500 		if (q->rx_head)
501 			data_len = q->buf_size;
502 		else
503 			data_len = SKB_WITH_OVERHEAD(q->buf_size);
504 
505 		if (data_len < len + q->buf_offset) {
506 			dev_kfree_skb(q->rx_head);
507 			q->rx_head = NULL;
508 
509 			skb_free_frag(data);
510 			continue;
511 		}
512 
513 		if (q->rx_head) {
514 			mt76_add_fragment(dev, q, data, len, more);
515 			continue;
516 		}
517 
518 		skb = build_skb(data, q->buf_size);
519 		if (!skb) {
520 			skb_free_frag(data);
521 			continue;
522 		}
523 		skb_reserve(skb, q->buf_offset);
524 
525 		if (q == &dev->q_rx[MT_RXQ_MCU]) {
526 			u32 *rxfce = (u32 *)skb->cb;
527 			*rxfce = info;
528 		}
529 
530 		__skb_put(skb, len);
531 		done++;
532 
533 		if (more) {
534 			q->rx_head = skb;
535 			continue;
536 		}
537 
538 		dev->drv->rx_skb(dev, q - dev->q_rx, skb);
539 	}
540 
541 	mt76_dma_rx_fill(dev, q);
542 	return done;
543 }
544 
545 static int
546 mt76_dma_rx_poll(struct napi_struct *napi, int budget)
547 {
548 	struct mt76_dev *dev;
549 	int qid, done = 0, cur;
550 
551 	dev = container_of(napi->dev, struct mt76_dev, napi_dev);
552 	qid = napi - dev->napi;
553 
554 	local_bh_disable();
555 	rcu_read_lock();
556 
557 	do {
558 		cur = mt76_dma_rx_process(dev, &dev->q_rx[qid], budget - done);
559 		mt76_rx_poll_complete(dev, qid, napi);
560 		done += cur;
561 	} while (cur && done < budget);
562 
563 	rcu_read_unlock();
564 	local_bh_enable();
565 
566 	if (done < budget && napi_complete(napi))
567 		dev->drv->rx_poll_complete(dev, qid);
568 
569 	return done;
570 }
571 
572 static int
573 mt76_dma_init(struct mt76_dev *dev)
574 {
575 	int i;
576 
577 	init_dummy_netdev(&dev->napi_dev);
578 
579 	mt76_for_each_q_rx(dev, i) {
580 		netif_napi_add(&dev->napi_dev, &dev->napi[i], mt76_dma_rx_poll,
581 			       64);
582 		mt76_dma_rx_fill(dev, &dev->q_rx[i]);
583 		napi_enable(&dev->napi[i]);
584 	}
585 
586 	return 0;
587 }
588 
589 static const struct mt76_queue_ops mt76_dma_ops = {
590 	.init = mt76_dma_init,
591 	.alloc = mt76_dma_alloc_queue,
592 	.tx_queue_skb_raw = mt76_dma_tx_queue_skb_raw,
593 	.tx_queue_skb = mt76_dma_tx_queue_skb,
594 	.tx_cleanup = mt76_dma_tx_cleanup,
595 	.rx_reset = mt76_dma_rx_reset,
596 	.kick = mt76_dma_kick_queue,
597 };
598 
599 void mt76_dma_attach(struct mt76_dev *dev)
600 {
601 	dev->queue_ops = &mt76_dma_ops;
602 }
603 EXPORT_SYMBOL_GPL(mt76_dma_attach);
604 
605 void mt76_dma_cleanup(struct mt76_dev *dev)
606 {
607 	int i;
608 
609 	netif_napi_del(&dev->tx_napi);
610 	for (i = 0; i < ARRAY_SIZE(dev->q_tx); i++)
611 		mt76_dma_tx_cleanup(dev, i, true);
612 
613 	mt76_for_each_q_rx(dev, i) {
614 		netif_napi_del(&dev->napi[i]);
615 		mt76_dma_rx_cleanup(dev, &dev->q_rx[i]);
616 	}
617 }
618 EXPORT_SYMBOL_GPL(mt76_dma_cleanup);
619