1 // SPDX-License-Identifier: ISC
2 /*
3  * Copyright (C) 2016 Felix Fietkau <nbd@nbd.name>
4  */
5 
6 #include <linux/dma-mapping.h>
7 #include "mt76.h"
8 #include "dma.h"
9 
10 #if IS_ENABLED(CONFIG_NET_MEDIATEK_SOC_WED)
11 
12 #define Q_READ(_dev, _q, _field) ({					\
13 	u32 _offset = offsetof(struct mt76_queue_regs, _field);		\
14 	u32 _val;							\
15 	if ((_q)->flags & MT_QFLAG_WED)					\
16 		_val = mtk_wed_device_reg_read(&(_dev)->mmio.wed,	\
17 					       ((_q)->wed_regs +	\
18 					        _offset));		\
19 	else								\
20 		_val = readl(&(_q)->regs->_field);			\
21 	_val;								\
22 })
23 
24 #define Q_WRITE(_dev, _q, _field, _val)	do {				\
25 	u32 _offset = offsetof(struct mt76_queue_regs, _field);		\
26 	if ((_q)->flags & MT_QFLAG_WED)					\
27 		mtk_wed_device_reg_write(&(_dev)->mmio.wed,		\
28 					 ((_q)->wed_regs + _offset),	\
29 					 _val);				\
30 	else								\
31 		writel(_val, &(_q)->regs->_field);			\
32 } while (0)
33 
34 #else
35 
36 #define Q_READ(_dev, _q, _field)	readl(&(_q)->regs->_field)
37 #define Q_WRITE(_dev, _q, _field, _val)	writel(_val, &(_q)->regs->_field)
38 
39 #endif
40 
41 static struct mt76_txwi_cache *
42 mt76_alloc_txwi(struct mt76_dev *dev)
43 {
44 	struct mt76_txwi_cache *t;
45 	dma_addr_t addr;
46 	u8 *txwi;
47 	int size;
48 
49 	size = L1_CACHE_ALIGN(dev->drv->txwi_size + sizeof(*t));
50 	txwi = kzalloc(size, GFP_ATOMIC);
51 	if (!txwi)
52 		return NULL;
53 
54 	addr = dma_map_single(dev->dma_dev, txwi, dev->drv->txwi_size,
55 			      DMA_TO_DEVICE);
56 	t = (struct mt76_txwi_cache *)(txwi + dev->drv->txwi_size);
57 	t->dma_addr = addr;
58 
59 	return t;
60 }
61 
62 static struct mt76_txwi_cache *
63 mt76_alloc_rxwi(struct mt76_dev *dev)
64 {
65 	struct mt76_txwi_cache *t;
66 
67 	t = kzalloc(L1_CACHE_ALIGN(sizeof(*t)), GFP_ATOMIC);
68 	if (!t)
69 		return NULL;
70 
71 	t->ptr = NULL;
72 	return t;
73 }
74 
75 static struct mt76_txwi_cache *
76 __mt76_get_txwi(struct mt76_dev *dev)
77 {
78 	struct mt76_txwi_cache *t = NULL;
79 
80 	spin_lock(&dev->lock);
81 	if (!list_empty(&dev->txwi_cache)) {
82 		t = list_first_entry(&dev->txwi_cache, struct mt76_txwi_cache,
83 				     list);
84 		list_del(&t->list);
85 	}
86 	spin_unlock(&dev->lock);
87 
88 	return t;
89 }
90 
91 static struct mt76_txwi_cache *
92 __mt76_get_rxwi(struct mt76_dev *dev)
93 {
94 	struct mt76_txwi_cache *t = NULL;
95 
96 	spin_lock(&dev->wed_lock);
97 	if (!list_empty(&dev->rxwi_cache)) {
98 		t = list_first_entry(&dev->rxwi_cache, struct mt76_txwi_cache,
99 				     list);
100 		list_del(&t->list);
101 	}
102 	spin_unlock(&dev->wed_lock);
103 
104 	return t;
105 }
106 
107 static struct mt76_txwi_cache *
108 mt76_get_txwi(struct mt76_dev *dev)
109 {
110 	struct mt76_txwi_cache *t = __mt76_get_txwi(dev);
111 
112 	if (t)
113 		return t;
114 
115 	return mt76_alloc_txwi(dev);
116 }
117 
118 struct mt76_txwi_cache *
119 mt76_get_rxwi(struct mt76_dev *dev)
120 {
121 	struct mt76_txwi_cache *t = __mt76_get_rxwi(dev);
122 
123 	if (t)
124 		return t;
125 
126 	return mt76_alloc_rxwi(dev);
127 }
128 EXPORT_SYMBOL_GPL(mt76_get_rxwi);
129 
130 void
131 mt76_put_txwi(struct mt76_dev *dev, struct mt76_txwi_cache *t)
132 {
133 	if (!t)
134 		return;
135 
136 	spin_lock(&dev->lock);
137 	list_add(&t->list, &dev->txwi_cache);
138 	spin_unlock(&dev->lock);
139 }
140 EXPORT_SYMBOL_GPL(mt76_put_txwi);
141 
142 void
143 mt76_put_rxwi(struct mt76_dev *dev, struct mt76_txwi_cache *t)
144 {
145 	if (!t)
146 		return;
147 
148 	spin_lock(&dev->wed_lock);
149 	list_add(&t->list, &dev->rxwi_cache);
150 	spin_unlock(&dev->wed_lock);
151 }
152 EXPORT_SYMBOL_GPL(mt76_put_rxwi);
153 
154 static void
155 mt76_free_pending_txwi(struct mt76_dev *dev)
156 {
157 	struct mt76_txwi_cache *t;
158 
159 	local_bh_disable();
160 	while ((t = __mt76_get_txwi(dev)) != NULL) {
161 		dma_unmap_single(dev->dma_dev, t->dma_addr, dev->drv->txwi_size,
162 				 DMA_TO_DEVICE);
163 		kfree(mt76_get_txwi_ptr(dev, t));
164 	}
165 	local_bh_enable();
166 }
167 
168 static void
169 mt76_free_pending_rxwi(struct mt76_dev *dev)
170 {
171 	struct mt76_txwi_cache *t;
172 
173 	local_bh_disable();
174 	while ((t = __mt76_get_rxwi(dev)) != NULL) {
175 		if (t->ptr)
176 			skb_free_frag(t->ptr);
177 		kfree(t);
178 	}
179 	local_bh_enable();
180 }
181 
182 static void
183 mt76_dma_sync_idx(struct mt76_dev *dev, struct mt76_queue *q)
184 {
185 	Q_WRITE(dev, q, desc_base, q->desc_dma);
186 	Q_WRITE(dev, q, ring_size, q->ndesc);
187 	q->head = Q_READ(dev, q, dma_idx);
188 	q->tail = q->head;
189 }
190 
191 static void
192 mt76_dma_queue_reset(struct mt76_dev *dev, struct mt76_queue *q)
193 {
194 	int i;
195 
196 	if (!q || !q->ndesc)
197 		return;
198 
199 	/* clear descriptors */
200 	for (i = 0; i < q->ndesc; i++)
201 		q->desc[i].ctrl = cpu_to_le32(MT_DMA_CTL_DMA_DONE);
202 
203 	Q_WRITE(dev, q, cpu_idx, 0);
204 	Q_WRITE(dev, q, dma_idx, 0);
205 	mt76_dma_sync_idx(dev, q);
206 }
207 
208 static int
209 mt76_dma_add_buf(struct mt76_dev *dev, struct mt76_queue *q,
210 		 struct mt76_queue_buf *buf, int nbufs, u32 info,
211 		 struct sk_buff *skb, void *txwi)
212 {
213 	struct mt76_queue_entry *entry;
214 	struct mt76_desc *desc;
215 	u32 ctrl;
216 	int i, idx = -1;
217 
218 	for (i = 0; i < nbufs; i += 2, buf += 2) {
219 		u32 buf0 = buf[0].addr, buf1 = 0;
220 
221 		idx = q->head;
222 		q->head = (q->head + 1) % q->ndesc;
223 
224 		desc = &q->desc[idx];
225 		entry = &q->entry[idx];
226 
227 		if ((q->flags & MT_QFLAG_WED) &&
228 		    FIELD_GET(MT_QFLAG_WED_TYPE, q->flags) == MT76_WED_Q_RX) {
229 			struct mt76_txwi_cache *t = txwi;
230 			int rx_token;
231 
232 			if (!t)
233 				return -ENOMEM;
234 
235 			rx_token = mt76_rx_token_consume(dev, (void *)skb, t,
236 							 buf[0].addr);
237 			buf1 |= FIELD_PREP(MT_DMA_CTL_TOKEN, rx_token);
238 			ctrl = FIELD_PREP(MT_DMA_CTL_SD_LEN0, buf[0].len) |
239 			       MT_DMA_CTL_TO_HOST;
240 		} else {
241 			if (txwi) {
242 				q->entry[q->head].txwi = DMA_DUMMY_DATA;
243 				q->entry[q->head].skip_buf0 = true;
244 			}
245 
246 			if (buf[0].skip_unmap)
247 				entry->skip_buf0 = true;
248 			entry->skip_buf1 = i == nbufs - 1;
249 
250 			entry->dma_addr[0] = buf[0].addr;
251 			entry->dma_len[0] = buf[0].len;
252 
253 			ctrl = FIELD_PREP(MT_DMA_CTL_SD_LEN0, buf[0].len);
254 			if (i < nbufs - 1) {
255 				entry->dma_addr[1] = buf[1].addr;
256 				entry->dma_len[1] = buf[1].len;
257 				buf1 = buf[1].addr;
258 				ctrl |= FIELD_PREP(MT_DMA_CTL_SD_LEN1, buf[1].len);
259 				if (buf[1].skip_unmap)
260 					entry->skip_buf1 = true;
261 			}
262 
263 			if (i == nbufs - 1)
264 				ctrl |= MT_DMA_CTL_LAST_SEC0;
265 			else if (i == nbufs - 2)
266 				ctrl |= MT_DMA_CTL_LAST_SEC1;
267 		}
268 
269 		WRITE_ONCE(desc->buf0, cpu_to_le32(buf0));
270 		WRITE_ONCE(desc->buf1, cpu_to_le32(buf1));
271 		WRITE_ONCE(desc->info, cpu_to_le32(info));
272 		WRITE_ONCE(desc->ctrl, cpu_to_le32(ctrl));
273 
274 		q->queued++;
275 	}
276 
277 	q->entry[idx].txwi = txwi;
278 	q->entry[idx].skb = skb;
279 	q->entry[idx].wcid = 0xffff;
280 
281 	return idx;
282 }
283 
284 static void
285 mt76_dma_tx_cleanup_idx(struct mt76_dev *dev, struct mt76_queue *q, int idx,
286 			struct mt76_queue_entry *prev_e)
287 {
288 	struct mt76_queue_entry *e = &q->entry[idx];
289 
290 	if (!e->skip_buf0)
291 		dma_unmap_single(dev->dma_dev, e->dma_addr[0], e->dma_len[0],
292 				 DMA_TO_DEVICE);
293 
294 	if (!e->skip_buf1)
295 		dma_unmap_single(dev->dma_dev, e->dma_addr[1], e->dma_len[1],
296 				 DMA_TO_DEVICE);
297 
298 	if (e->txwi == DMA_DUMMY_DATA)
299 		e->txwi = NULL;
300 
301 	if (e->skb == DMA_DUMMY_DATA)
302 		e->skb = NULL;
303 
304 	*prev_e = *e;
305 	memset(e, 0, sizeof(*e));
306 }
307 
308 static void
309 mt76_dma_kick_queue(struct mt76_dev *dev, struct mt76_queue *q)
310 {
311 	wmb();
312 	Q_WRITE(dev, q, cpu_idx, q->head);
313 }
314 
315 static void
316 mt76_dma_tx_cleanup(struct mt76_dev *dev, struct mt76_queue *q, bool flush)
317 {
318 	struct mt76_queue_entry entry;
319 	int last;
320 
321 	if (!q || !q->ndesc)
322 		return;
323 
324 	spin_lock_bh(&q->cleanup_lock);
325 	if (flush)
326 		last = -1;
327 	else
328 		last = Q_READ(dev, q, dma_idx);
329 
330 	while (q->queued > 0 && q->tail != last) {
331 		mt76_dma_tx_cleanup_idx(dev, q, q->tail, &entry);
332 		mt76_queue_tx_complete(dev, q, &entry);
333 
334 		if (entry.txwi) {
335 			if (!(dev->drv->drv_flags & MT_DRV_TXWI_NO_FREE))
336 				mt76_put_txwi(dev, entry.txwi);
337 		}
338 
339 		if (!flush && q->tail == last)
340 			last = Q_READ(dev, q, dma_idx);
341 	}
342 	spin_unlock_bh(&q->cleanup_lock);
343 
344 	if (flush) {
345 		spin_lock_bh(&q->lock);
346 		mt76_dma_sync_idx(dev, q);
347 		mt76_dma_kick_queue(dev, q);
348 		spin_unlock_bh(&q->lock);
349 	}
350 
351 	if (!q->queued)
352 		wake_up(&dev->tx_wait);
353 }
354 
355 static void *
356 mt76_dma_get_buf(struct mt76_dev *dev, struct mt76_queue *q, int idx,
357 		 int *len, u32 *info, bool *more, bool *drop)
358 {
359 	struct mt76_queue_entry *e = &q->entry[idx];
360 	struct mt76_desc *desc = &q->desc[idx];
361 	void *buf;
362 
363 	if (len) {
364 		u32 ctrl = le32_to_cpu(READ_ONCE(desc->ctrl));
365 		*len = FIELD_GET(MT_DMA_CTL_SD_LEN0, ctrl);
366 		*more = !(ctrl & MT_DMA_CTL_LAST_SEC0);
367 	}
368 
369 	if (info)
370 		*info = le32_to_cpu(desc->info);
371 
372 	if ((q->flags & MT_QFLAG_WED) &&
373 	    FIELD_GET(MT_QFLAG_WED_TYPE, q->flags) == MT76_WED_Q_RX) {
374 		u32 token = FIELD_GET(MT_DMA_CTL_TOKEN,
375 				      le32_to_cpu(desc->buf1));
376 		struct mt76_txwi_cache *t = mt76_rx_token_release(dev, token);
377 
378 		if (!t)
379 			return NULL;
380 
381 		dma_unmap_single(dev->dma_dev, t->dma_addr,
382 				 SKB_WITH_OVERHEAD(q->buf_size),
383 				 DMA_FROM_DEVICE);
384 
385 		buf = t->ptr;
386 		t->dma_addr = 0;
387 		t->ptr = NULL;
388 
389 		mt76_put_rxwi(dev, t);
390 
391 		if (drop) {
392 			u32 ctrl = le32_to_cpu(READ_ONCE(desc->ctrl));
393 
394 			*drop = !!(ctrl & (MT_DMA_CTL_TO_HOST_A |
395 					   MT_DMA_CTL_DROP));
396 		}
397 	} else {
398 		buf = e->buf;
399 		e->buf = NULL;
400 		dma_unmap_single(dev->dma_dev, e->dma_addr[0],
401 				 SKB_WITH_OVERHEAD(q->buf_size),
402 				 DMA_FROM_DEVICE);
403 	}
404 
405 	return buf;
406 }
407 
408 static void *
409 mt76_dma_dequeue(struct mt76_dev *dev, struct mt76_queue *q, bool flush,
410 		 int *len, u32 *info, bool *more, bool *drop)
411 {
412 	int idx = q->tail;
413 
414 	*more = false;
415 	if (!q->queued)
416 		return NULL;
417 
418 	if (flush)
419 		q->desc[idx].ctrl |= cpu_to_le32(MT_DMA_CTL_DMA_DONE);
420 	else if (!(q->desc[idx].ctrl & cpu_to_le32(MT_DMA_CTL_DMA_DONE)))
421 		return NULL;
422 
423 	q->tail = (q->tail + 1) % q->ndesc;
424 	q->queued--;
425 
426 	return mt76_dma_get_buf(dev, q, idx, len, info, more, drop);
427 }
428 
429 static int
430 mt76_dma_tx_queue_skb_raw(struct mt76_dev *dev, struct mt76_queue *q,
431 			  struct sk_buff *skb, u32 tx_info)
432 {
433 	struct mt76_queue_buf buf = {};
434 	dma_addr_t addr;
435 
436 	if (q->queued + 1 >= q->ndesc - 1)
437 		goto error;
438 
439 	addr = dma_map_single(dev->dma_dev, skb->data, skb->len,
440 			      DMA_TO_DEVICE);
441 	if (unlikely(dma_mapping_error(dev->dma_dev, addr)))
442 		goto error;
443 
444 	buf.addr = addr;
445 	buf.len = skb->len;
446 
447 	spin_lock_bh(&q->lock);
448 	mt76_dma_add_buf(dev, q, &buf, 1, tx_info, skb, NULL);
449 	mt76_dma_kick_queue(dev, q);
450 	spin_unlock_bh(&q->lock);
451 
452 	return 0;
453 
454 error:
455 	dev_kfree_skb(skb);
456 	return -ENOMEM;
457 }
458 
459 static int
460 mt76_dma_tx_queue_skb(struct mt76_dev *dev, struct mt76_queue *q,
461 		      enum mt76_txq_id qid, struct sk_buff *skb,
462 		      struct mt76_wcid *wcid, struct ieee80211_sta *sta)
463 {
464 	struct ieee80211_tx_status status = {
465 		.sta = sta,
466 	};
467 	struct mt76_tx_info tx_info = {
468 		.skb = skb,
469 	};
470 	struct ieee80211_hw *hw;
471 	int len, n = 0, ret = -ENOMEM;
472 	struct mt76_txwi_cache *t;
473 	struct sk_buff *iter;
474 	dma_addr_t addr;
475 	u8 *txwi;
476 
477 	t = mt76_get_txwi(dev);
478 	if (!t)
479 		goto free_skb;
480 
481 	txwi = mt76_get_txwi_ptr(dev, t);
482 
483 	skb->prev = skb->next = NULL;
484 	if (dev->drv->drv_flags & MT_DRV_TX_ALIGNED4_SKBS)
485 		mt76_insert_hdr_pad(skb);
486 
487 	len = skb_headlen(skb);
488 	addr = dma_map_single(dev->dma_dev, skb->data, len, DMA_TO_DEVICE);
489 	if (unlikely(dma_mapping_error(dev->dma_dev, addr)))
490 		goto free;
491 
492 	tx_info.buf[n].addr = t->dma_addr;
493 	tx_info.buf[n++].len = dev->drv->txwi_size;
494 	tx_info.buf[n].addr = addr;
495 	tx_info.buf[n++].len = len;
496 
497 	skb_walk_frags(skb, iter) {
498 		if (n == ARRAY_SIZE(tx_info.buf))
499 			goto unmap;
500 
501 		addr = dma_map_single(dev->dma_dev, iter->data, iter->len,
502 				      DMA_TO_DEVICE);
503 		if (unlikely(dma_mapping_error(dev->dma_dev, addr)))
504 			goto unmap;
505 
506 		tx_info.buf[n].addr = addr;
507 		tx_info.buf[n++].len = iter->len;
508 	}
509 	tx_info.nbuf = n;
510 
511 	if (q->queued + (tx_info.nbuf + 1) / 2 >= q->ndesc - 1) {
512 		ret = -ENOMEM;
513 		goto unmap;
514 	}
515 
516 	dma_sync_single_for_cpu(dev->dma_dev, t->dma_addr, dev->drv->txwi_size,
517 				DMA_TO_DEVICE);
518 	ret = dev->drv->tx_prepare_skb(dev, txwi, qid, wcid, sta, &tx_info);
519 	dma_sync_single_for_device(dev->dma_dev, t->dma_addr, dev->drv->txwi_size,
520 				   DMA_TO_DEVICE);
521 	if (ret < 0)
522 		goto unmap;
523 
524 	return mt76_dma_add_buf(dev, q, tx_info.buf, tx_info.nbuf,
525 				tx_info.info, tx_info.skb, t);
526 
527 unmap:
528 	for (n--; n > 0; n--)
529 		dma_unmap_single(dev->dma_dev, tx_info.buf[n].addr,
530 				 tx_info.buf[n].len, DMA_TO_DEVICE);
531 
532 free:
533 #ifdef CONFIG_NL80211_TESTMODE
534 	/* fix tx_done accounting on queue overflow */
535 	if (mt76_is_testmode_skb(dev, skb, &hw)) {
536 		struct mt76_phy *phy = hw->priv;
537 
538 		if (tx_info.skb == phy->test.tx_skb)
539 			phy->test.tx_done--;
540 	}
541 #endif
542 
543 	mt76_put_txwi(dev, t);
544 
545 free_skb:
546 	status.skb = tx_info.skb;
547 	hw = mt76_tx_status_get_hw(dev, tx_info.skb);
548 	ieee80211_tx_status_ext(hw, &status);
549 
550 	return ret;
551 }
552 
553 static struct page_frag_cache *
554 mt76_dma_rx_get_frag_cache(struct mt76_dev *dev, struct mt76_queue *q)
555 {
556 	struct page_frag_cache *rx_page = &q->rx_page;
557 
558 #ifdef CONFIG_NET_MEDIATEK_SOC_WED
559 	if ((q->flags & MT_QFLAG_WED) &&
560 	    FIELD_GET(MT_QFLAG_WED_TYPE, q->flags) == MT76_WED_Q_RX)
561 		rx_page = &dev->mmio.wed.rx_buf_ring.rx_page;
562 #endif
563 	return rx_page;
564 }
565 
566 static int
567 mt76_dma_rx_fill(struct mt76_dev *dev, struct mt76_queue *q)
568 {
569 	struct page_frag_cache *rx_page = mt76_dma_rx_get_frag_cache(dev, q);
570 	int len = SKB_WITH_OVERHEAD(q->buf_size);
571 	int frames = 0, offset = q->buf_offset;
572 	dma_addr_t addr;
573 
574 	if (!q->ndesc)
575 		return 0;
576 
577 	spin_lock_bh(&q->lock);
578 
579 	while (q->queued < q->ndesc - 1) {
580 		struct mt76_txwi_cache *t = NULL;
581 		struct mt76_queue_buf qbuf;
582 		void *buf = NULL;
583 
584 		if ((q->flags & MT_QFLAG_WED) &&
585 		    FIELD_GET(MT_QFLAG_WED_TYPE, q->flags) == MT76_WED_Q_RX) {
586 			t = mt76_get_rxwi(dev);
587 			if (!t)
588 				break;
589 		}
590 
591 		buf = page_frag_alloc(rx_page, q->buf_size, GFP_ATOMIC);
592 		if (!buf)
593 			break;
594 
595 		addr = dma_map_single(dev->dma_dev, buf, len, DMA_FROM_DEVICE);
596 		if (unlikely(dma_mapping_error(dev->dma_dev, addr))) {
597 			skb_free_frag(buf);
598 			break;
599 		}
600 
601 		qbuf.addr = addr + offset;
602 		qbuf.len = len - offset;
603 		qbuf.skip_unmap = false;
604 		mt76_dma_add_buf(dev, q, &qbuf, 1, 0, buf, t);
605 		frames++;
606 	}
607 
608 	if (frames)
609 		mt76_dma_kick_queue(dev, q);
610 
611 	spin_unlock_bh(&q->lock);
612 
613 	return frames;
614 }
615 
616 static int
617 mt76_dma_wed_setup(struct mt76_dev *dev, struct mt76_queue *q)
618 {
619 #ifdef CONFIG_NET_MEDIATEK_SOC_WED
620 	struct mtk_wed_device *wed = &dev->mmio.wed;
621 	int ret, type, ring;
622 	u8 flags = q->flags;
623 
624 	if (!mtk_wed_device_active(wed))
625 		q->flags &= ~MT_QFLAG_WED;
626 
627 	if (!(q->flags & MT_QFLAG_WED))
628 		return 0;
629 
630 	type = FIELD_GET(MT_QFLAG_WED_TYPE, q->flags);
631 	ring = FIELD_GET(MT_QFLAG_WED_RING, q->flags);
632 
633 	switch (type) {
634 	case MT76_WED_Q_TX:
635 		ret = mtk_wed_device_tx_ring_setup(wed, ring, q->regs, false);
636 		if (!ret)
637 			q->wed_regs = wed->tx_ring[ring].reg_base;
638 		break;
639 	case MT76_WED_Q_TXFREE:
640 		/* WED txfree queue needs ring to be initialized before setup */
641 		q->flags = 0;
642 		mt76_dma_queue_reset(dev, q);
643 		mt76_dma_rx_fill(dev, q);
644 		q->flags = flags;
645 
646 		ret = mtk_wed_device_txfree_ring_setup(wed, q->regs);
647 		if (!ret)
648 			q->wed_regs = wed->txfree_ring.reg_base;
649 		break;
650 	case MT76_WED_Q_RX:
651 		ret = mtk_wed_device_rx_ring_setup(wed, ring, q->regs, false);
652 		if (!ret)
653 			q->wed_regs = wed->rx_ring[ring].reg_base;
654 		break;
655 	default:
656 		ret = -EINVAL;
657 	}
658 
659 	return ret;
660 #else
661 	return 0;
662 #endif
663 }
664 
665 static int
666 mt76_dma_alloc_queue(struct mt76_dev *dev, struct mt76_queue *q,
667 		     int idx, int n_desc, int bufsize,
668 		     u32 ring_base)
669 {
670 	int ret, size;
671 
672 	spin_lock_init(&q->lock);
673 	spin_lock_init(&q->cleanup_lock);
674 
675 	q->regs = dev->mmio.regs + ring_base + idx * MT_RING_SIZE;
676 	q->ndesc = n_desc;
677 	q->buf_size = bufsize;
678 	q->hw_idx = idx;
679 
680 	size = q->ndesc * sizeof(struct mt76_desc);
681 	q->desc = dmam_alloc_coherent(dev->dma_dev, size, &q->desc_dma, GFP_KERNEL);
682 	if (!q->desc)
683 		return -ENOMEM;
684 
685 	size = q->ndesc * sizeof(*q->entry);
686 	q->entry = devm_kzalloc(dev->dev, size, GFP_KERNEL);
687 	if (!q->entry)
688 		return -ENOMEM;
689 
690 	ret = mt76_dma_wed_setup(dev, q);
691 	if (ret)
692 		return ret;
693 
694 	if (q->flags != MT_WED_Q_TXFREE)
695 		mt76_dma_queue_reset(dev, q);
696 
697 	return 0;
698 }
699 
700 static void
701 mt76_dma_rx_cleanup(struct mt76_dev *dev, struct mt76_queue *q)
702 {
703 	struct page *page;
704 	void *buf;
705 	bool more;
706 
707 	if (!q->ndesc)
708 		return;
709 
710 	spin_lock_bh(&q->lock);
711 	do {
712 		buf = mt76_dma_dequeue(dev, q, true, NULL, NULL, &more, NULL);
713 		if (!buf)
714 			break;
715 
716 		skb_free_frag(buf);
717 	} while (1);
718 	spin_unlock_bh(&q->lock);
719 
720 	if (!q->rx_page.va)
721 		return;
722 
723 	page = virt_to_page(q->rx_page.va);
724 	__page_frag_cache_drain(page, q->rx_page.pagecnt_bias);
725 	memset(&q->rx_page, 0, sizeof(q->rx_page));
726 }
727 
728 static void
729 mt76_dma_rx_reset(struct mt76_dev *dev, enum mt76_rxq_id qid)
730 {
731 	struct mt76_queue *q = &dev->q_rx[qid];
732 	int i;
733 
734 	if (!q->ndesc)
735 		return;
736 
737 	for (i = 0; i < q->ndesc; i++)
738 		q->desc[i].ctrl = cpu_to_le32(MT_DMA_CTL_DMA_DONE);
739 
740 	mt76_dma_rx_cleanup(dev, q);
741 	mt76_dma_sync_idx(dev, q);
742 	mt76_dma_rx_fill(dev, q);
743 
744 	if (!q->rx_head)
745 		return;
746 
747 	dev_kfree_skb(q->rx_head);
748 	q->rx_head = NULL;
749 }
750 
751 static void
752 mt76_add_fragment(struct mt76_dev *dev, struct mt76_queue *q, void *data,
753 		  int len, bool more, u32 info)
754 {
755 	struct sk_buff *skb = q->rx_head;
756 	struct skb_shared_info *shinfo = skb_shinfo(skb);
757 	int nr_frags = shinfo->nr_frags;
758 
759 	if (nr_frags < ARRAY_SIZE(shinfo->frags)) {
760 		struct page *page = virt_to_head_page(data);
761 		int offset = data - page_address(page) + q->buf_offset;
762 
763 		skb_add_rx_frag(skb, nr_frags, page, offset, len, q->buf_size);
764 	} else {
765 		skb_free_frag(data);
766 	}
767 
768 	if (more)
769 		return;
770 
771 	q->rx_head = NULL;
772 	if (nr_frags < ARRAY_SIZE(shinfo->frags))
773 		dev->drv->rx_skb(dev, q - dev->q_rx, skb, &info);
774 	else
775 		dev_kfree_skb(skb);
776 }
777 
778 static int
779 mt76_dma_rx_process(struct mt76_dev *dev, struct mt76_queue *q, int budget)
780 {
781 	int len, data_len, done = 0, dma_idx;
782 	struct sk_buff *skb;
783 	unsigned char *data;
784 	bool check_ddone = false;
785 	bool more;
786 
787 	if (IS_ENABLED(CONFIG_NET_MEDIATEK_SOC_WED) &&
788 	    q->flags == MT_WED_Q_TXFREE) {
789 		dma_idx = Q_READ(dev, q, dma_idx);
790 		check_ddone = true;
791 	}
792 
793 	while (done < budget) {
794 		bool drop = false;
795 		u32 info;
796 
797 		if (check_ddone) {
798 			if (q->tail == dma_idx)
799 				dma_idx = Q_READ(dev, q, dma_idx);
800 
801 			if (q->tail == dma_idx)
802 				break;
803 		}
804 
805 		data = mt76_dma_dequeue(dev, q, false, &len, &info, &more,
806 					&drop);
807 		if (!data)
808 			break;
809 
810 		if (drop)
811 			goto free_frag;
812 
813 		if (q->rx_head)
814 			data_len = q->buf_size;
815 		else
816 			data_len = SKB_WITH_OVERHEAD(q->buf_size);
817 
818 		if (data_len < len + q->buf_offset) {
819 			dev_kfree_skb(q->rx_head);
820 			q->rx_head = NULL;
821 			goto free_frag;
822 		}
823 
824 		if (q->rx_head) {
825 			mt76_add_fragment(dev, q, data, len, more, info);
826 			continue;
827 		}
828 
829 		if (!more && dev->drv->rx_check &&
830 		    !(dev->drv->rx_check(dev, data, len)))
831 			goto free_frag;
832 
833 		skb = build_skb(data, q->buf_size);
834 		if (!skb)
835 			goto free_frag;
836 
837 		skb_reserve(skb, q->buf_offset);
838 
839 		*(u32 *)skb->cb = info;
840 
841 		__skb_put(skb, len);
842 		done++;
843 
844 		if (more) {
845 			q->rx_head = skb;
846 			continue;
847 		}
848 
849 		dev->drv->rx_skb(dev, q - dev->q_rx, skb, &info);
850 		continue;
851 
852 free_frag:
853 		skb_free_frag(data);
854 	}
855 
856 	mt76_dma_rx_fill(dev, q);
857 	return done;
858 }
859 
860 int mt76_dma_rx_poll(struct napi_struct *napi, int budget)
861 {
862 	struct mt76_dev *dev;
863 	int qid, done = 0, cur;
864 
865 	dev = container_of(napi->dev, struct mt76_dev, napi_dev);
866 	qid = napi - dev->napi;
867 
868 	rcu_read_lock();
869 
870 	do {
871 		cur = mt76_dma_rx_process(dev, &dev->q_rx[qid], budget - done);
872 		mt76_rx_poll_complete(dev, qid, napi);
873 		done += cur;
874 	} while (cur && done < budget);
875 
876 	rcu_read_unlock();
877 
878 	if (done < budget && napi_complete(napi))
879 		dev->drv->rx_poll_complete(dev, qid);
880 
881 	return done;
882 }
883 EXPORT_SYMBOL_GPL(mt76_dma_rx_poll);
884 
885 static int
886 mt76_dma_init(struct mt76_dev *dev,
887 	      int (*poll)(struct napi_struct *napi, int budget))
888 {
889 	int i;
890 
891 	init_dummy_netdev(&dev->napi_dev);
892 	init_dummy_netdev(&dev->tx_napi_dev);
893 	snprintf(dev->napi_dev.name, sizeof(dev->napi_dev.name), "%s",
894 		 wiphy_name(dev->hw->wiphy));
895 	dev->napi_dev.threaded = 1;
896 
897 	mt76_for_each_q_rx(dev, i) {
898 		netif_napi_add(&dev->napi_dev, &dev->napi[i], poll);
899 		mt76_dma_rx_fill(dev, &dev->q_rx[i]);
900 		napi_enable(&dev->napi[i]);
901 	}
902 
903 	return 0;
904 }
905 
906 static const struct mt76_queue_ops mt76_dma_ops = {
907 	.init = mt76_dma_init,
908 	.alloc = mt76_dma_alloc_queue,
909 	.reset_q = mt76_dma_queue_reset,
910 	.tx_queue_skb_raw = mt76_dma_tx_queue_skb_raw,
911 	.tx_queue_skb = mt76_dma_tx_queue_skb,
912 	.tx_cleanup = mt76_dma_tx_cleanup,
913 	.rx_cleanup = mt76_dma_rx_cleanup,
914 	.rx_reset = mt76_dma_rx_reset,
915 	.kick = mt76_dma_kick_queue,
916 };
917 
918 void mt76_dma_attach(struct mt76_dev *dev)
919 {
920 	dev->queue_ops = &mt76_dma_ops;
921 }
922 EXPORT_SYMBOL_GPL(mt76_dma_attach);
923 
924 void mt76_dma_cleanup(struct mt76_dev *dev)
925 {
926 	int i;
927 
928 	mt76_worker_disable(&dev->tx_worker);
929 	netif_napi_del(&dev->tx_napi);
930 
931 	for (i = 0; i < ARRAY_SIZE(dev->phys); i++) {
932 		struct mt76_phy *phy = dev->phys[i];
933 		int j;
934 
935 		if (!phy)
936 			continue;
937 
938 		for (j = 0; j < ARRAY_SIZE(phy->q_tx); j++)
939 			mt76_dma_tx_cleanup(dev, phy->q_tx[j], true);
940 	}
941 
942 	for (i = 0; i < ARRAY_SIZE(dev->q_mcu); i++)
943 		mt76_dma_tx_cleanup(dev, dev->q_mcu[i], true);
944 
945 	mt76_for_each_q_rx(dev, i) {
946 		struct mt76_queue *q = &dev->q_rx[i];
947 
948 		netif_napi_del(&dev->napi[i]);
949 		if (FIELD_GET(MT_QFLAG_WED_TYPE, q->flags))
950 			mt76_dma_rx_cleanup(dev, q);
951 	}
952 
953 	mt76_free_pending_txwi(dev);
954 	mt76_free_pending_rxwi(dev);
955 
956 	if (mtk_wed_device_active(&dev->mmio.wed))
957 		mtk_wed_device_detach(&dev->mmio.wed);
958 }
959 EXPORT_SYMBOL_GPL(mt76_dma_cleanup);
960