1 // SPDX-License-Identifier: ISC
2 /*
3  * Copyright (C) 2016 Felix Fietkau <nbd@nbd.name>
4  */
5 
6 #include <linux/dma-mapping.h>
7 #include "mt76.h"
8 #include "dma.h"
9 
10 static struct mt76_txwi_cache *
11 mt76_alloc_txwi(struct mt76_dev *dev)
12 {
13 	struct mt76_txwi_cache *t;
14 	dma_addr_t addr;
15 	u8 *txwi;
16 	int size;
17 
18 	size = L1_CACHE_ALIGN(dev->drv->txwi_size + sizeof(*t));
19 	txwi = devm_kzalloc(dev->dev, size, GFP_ATOMIC);
20 	if (!txwi)
21 		return NULL;
22 
23 	addr = dma_map_single(dev->dev, txwi, dev->drv->txwi_size,
24 			      DMA_TO_DEVICE);
25 	t = (struct mt76_txwi_cache *)(txwi + dev->drv->txwi_size);
26 	t->dma_addr = addr;
27 
28 	return t;
29 }
30 
31 static struct mt76_txwi_cache *
32 __mt76_get_txwi(struct mt76_dev *dev)
33 {
34 	struct mt76_txwi_cache *t = NULL;
35 
36 	spin_lock(&dev->lock);
37 	if (!list_empty(&dev->txwi_cache)) {
38 		t = list_first_entry(&dev->txwi_cache, struct mt76_txwi_cache,
39 				     list);
40 		list_del(&t->list);
41 	}
42 	spin_unlock(&dev->lock);
43 
44 	return t;
45 }
46 
47 static struct mt76_txwi_cache *
48 mt76_get_txwi(struct mt76_dev *dev)
49 {
50 	struct mt76_txwi_cache *t = __mt76_get_txwi(dev);
51 
52 	if (t)
53 		return t;
54 
55 	return mt76_alloc_txwi(dev);
56 }
57 
58 void
59 mt76_put_txwi(struct mt76_dev *dev, struct mt76_txwi_cache *t)
60 {
61 	if (!t)
62 		return;
63 
64 	spin_lock(&dev->lock);
65 	list_add(&t->list, &dev->txwi_cache);
66 	spin_unlock(&dev->lock);
67 }
68 EXPORT_SYMBOL_GPL(mt76_put_txwi);
69 
70 static void
71 mt76_free_pending_txwi(struct mt76_dev *dev)
72 {
73 	struct mt76_txwi_cache *t;
74 
75 	while ((t = __mt76_get_txwi(dev)) != NULL)
76 		dma_unmap_single(dev->dev, t->dma_addr, dev->drv->txwi_size,
77 				 DMA_TO_DEVICE);
78 }
79 
80 static int
81 mt76_dma_alloc_queue(struct mt76_dev *dev, struct mt76_queue *q,
82 		     int idx, int n_desc, int bufsize,
83 		     u32 ring_base)
84 {
85 	int size;
86 	int i;
87 
88 	spin_lock_init(&q->lock);
89 
90 	q->regs = dev->mmio.regs + ring_base + idx * MT_RING_SIZE;
91 	q->ndesc = n_desc;
92 	q->buf_size = bufsize;
93 	q->hw_idx = idx;
94 
95 	size = q->ndesc * sizeof(struct mt76_desc);
96 	q->desc = dmam_alloc_coherent(dev->dev, size, &q->desc_dma, GFP_KERNEL);
97 	if (!q->desc)
98 		return -ENOMEM;
99 
100 	size = q->ndesc * sizeof(*q->entry);
101 	q->entry = devm_kzalloc(dev->dev, size, GFP_KERNEL);
102 	if (!q->entry)
103 		return -ENOMEM;
104 
105 	/* clear descriptors */
106 	for (i = 0; i < q->ndesc; i++)
107 		q->desc[i].ctrl = cpu_to_le32(MT_DMA_CTL_DMA_DONE);
108 
109 	writel(q->desc_dma, &q->regs->desc_base);
110 	writel(0, &q->regs->cpu_idx);
111 	writel(0, &q->regs->dma_idx);
112 	writel(q->ndesc, &q->regs->ring_size);
113 
114 	return 0;
115 }
116 
117 static int
118 mt76_dma_add_buf(struct mt76_dev *dev, struct mt76_queue *q,
119 		 struct mt76_queue_buf *buf, int nbufs, u32 info,
120 		 struct sk_buff *skb, void *txwi)
121 {
122 	struct mt76_queue_entry *entry;
123 	struct mt76_desc *desc;
124 	u32 ctrl;
125 	int i, idx = -1;
126 
127 	if (txwi) {
128 		q->entry[q->head].txwi = DMA_DUMMY_DATA;
129 		q->entry[q->head].skip_buf0 = true;
130 	}
131 
132 	for (i = 0; i < nbufs; i += 2, buf += 2) {
133 		u32 buf0 = buf[0].addr, buf1 = 0;
134 
135 		idx = q->head;
136 		q->head = (q->head + 1) % q->ndesc;
137 
138 		desc = &q->desc[idx];
139 		entry = &q->entry[idx];
140 
141 		if (buf[0].skip_unmap)
142 			entry->skip_buf0 = true;
143 		entry->skip_buf1 = i == nbufs - 1;
144 
145 		entry->dma_addr[0] = buf[0].addr;
146 		entry->dma_len[0] = buf[0].len;
147 
148 		ctrl = FIELD_PREP(MT_DMA_CTL_SD_LEN0, buf[0].len);
149 		if (i < nbufs - 1) {
150 			entry->dma_addr[1] = buf[1].addr;
151 			entry->dma_len[1] = buf[1].len;
152 			buf1 = buf[1].addr;
153 			ctrl |= FIELD_PREP(MT_DMA_CTL_SD_LEN1, buf[1].len);
154 			if (buf[1].skip_unmap)
155 				entry->skip_buf1 = true;
156 		}
157 
158 		if (i == nbufs - 1)
159 			ctrl |= MT_DMA_CTL_LAST_SEC0;
160 		else if (i == nbufs - 2)
161 			ctrl |= MT_DMA_CTL_LAST_SEC1;
162 
163 		WRITE_ONCE(desc->buf0, cpu_to_le32(buf0));
164 		WRITE_ONCE(desc->buf1, cpu_to_le32(buf1));
165 		WRITE_ONCE(desc->info, cpu_to_le32(info));
166 		WRITE_ONCE(desc->ctrl, cpu_to_le32(ctrl));
167 
168 		q->queued++;
169 	}
170 
171 	q->entry[idx].txwi = txwi;
172 	q->entry[idx].skb = skb;
173 
174 	return idx;
175 }
176 
177 static void
178 mt76_dma_tx_cleanup_idx(struct mt76_dev *dev, struct mt76_queue *q, int idx,
179 			struct mt76_queue_entry *prev_e)
180 {
181 	struct mt76_queue_entry *e = &q->entry[idx];
182 
183 	if (!e->skip_buf0)
184 		dma_unmap_single(dev->dev, e->dma_addr[0], e->dma_len[0],
185 				 DMA_TO_DEVICE);
186 
187 	if (!e->skip_buf1)
188 		dma_unmap_single(dev->dev, e->dma_addr[1], e->dma_len[1],
189 				 DMA_TO_DEVICE);
190 
191 	if (e->txwi == DMA_DUMMY_DATA)
192 		e->txwi = NULL;
193 
194 	if (e->skb == DMA_DUMMY_DATA)
195 		e->skb = NULL;
196 
197 	*prev_e = *e;
198 	memset(e, 0, sizeof(*e));
199 }
200 
201 static void
202 mt76_dma_sync_idx(struct mt76_dev *dev, struct mt76_queue *q)
203 {
204 	writel(q->desc_dma, &q->regs->desc_base);
205 	writel(q->ndesc, &q->regs->ring_size);
206 	q->head = readl(&q->regs->dma_idx);
207 	q->tail = q->head;
208 }
209 
210 static void
211 mt76_dma_kick_queue(struct mt76_dev *dev, struct mt76_queue *q)
212 {
213 	wmb();
214 	writel(q->head, &q->regs->cpu_idx);
215 }
216 
217 static void
218 mt76_dma_tx_cleanup(struct mt76_dev *dev, enum mt76_txq_id qid, bool flush)
219 {
220 	struct mt76_queue *q = dev->q_tx[qid];
221 	struct mt76_queue_entry entry;
222 	bool wake = false;
223 	int last;
224 
225 	if (!q)
226 		return;
227 
228 	if (flush)
229 		last = -1;
230 	else
231 		last = readl(&q->regs->dma_idx);
232 
233 	while (q->queued > 0 && q->tail != last) {
234 		mt76_dma_tx_cleanup_idx(dev, q, q->tail, &entry);
235 		mt76_queue_tx_complete(dev, q, &entry);
236 
237 		if (entry.txwi) {
238 			if (!(dev->drv->drv_flags & MT_DRV_TXWI_NO_FREE))
239 				mt76_put_txwi(dev, entry.txwi);
240 			wake = !flush;
241 		}
242 
243 		if (!flush && q->tail == last)
244 			last = readl(&q->regs->dma_idx);
245 
246 	}
247 
248 	if (flush) {
249 		spin_lock_bh(&q->lock);
250 		mt76_dma_sync_idx(dev, q);
251 		mt76_dma_kick_queue(dev, q);
252 		spin_unlock_bh(&q->lock);
253 	}
254 
255 	wake = wake && q->stopped &&
256 	       qid < IEEE80211_NUM_ACS && q->queued < q->ndesc - 8;
257 	if (wake)
258 		q->stopped = false;
259 
260 	if (!q->queued)
261 		wake_up(&dev->tx_wait);
262 
263 	if (wake)
264 		ieee80211_wake_queue(dev->hw, qid);
265 }
266 
267 static void *
268 mt76_dma_get_buf(struct mt76_dev *dev, struct mt76_queue *q, int idx,
269 		 int *len, u32 *info, bool *more)
270 {
271 	struct mt76_queue_entry *e = &q->entry[idx];
272 	struct mt76_desc *desc = &q->desc[idx];
273 	dma_addr_t buf_addr;
274 	void *buf = e->buf;
275 	int buf_len = SKB_WITH_OVERHEAD(q->buf_size);
276 
277 	buf_addr = e->dma_addr[0];
278 	if (len) {
279 		u32 ctl = le32_to_cpu(READ_ONCE(desc->ctrl));
280 		*len = FIELD_GET(MT_DMA_CTL_SD_LEN0, ctl);
281 		*more = !(ctl & MT_DMA_CTL_LAST_SEC0);
282 	}
283 
284 	if (info)
285 		*info = le32_to_cpu(desc->info);
286 
287 	dma_unmap_single(dev->dev, buf_addr, buf_len, DMA_FROM_DEVICE);
288 	e->buf = NULL;
289 
290 	return buf;
291 }
292 
293 static void *
294 mt76_dma_dequeue(struct mt76_dev *dev, struct mt76_queue *q, bool flush,
295 		 int *len, u32 *info, bool *more)
296 {
297 	int idx = q->tail;
298 
299 	*more = false;
300 	if (!q->queued)
301 		return NULL;
302 
303 	if (flush)
304 		q->desc[idx].ctrl |= cpu_to_le32(MT_DMA_CTL_DMA_DONE);
305 	else if (!(q->desc[idx].ctrl & cpu_to_le32(MT_DMA_CTL_DMA_DONE)))
306 		return NULL;
307 
308 	q->tail = (q->tail + 1) % q->ndesc;
309 	q->queued--;
310 
311 	return mt76_dma_get_buf(dev, q, idx, len, info, more);
312 }
313 
314 static int
315 mt76_dma_tx_queue_skb_raw(struct mt76_dev *dev, enum mt76_txq_id qid,
316 			  struct sk_buff *skb, u32 tx_info)
317 {
318 	struct mt76_queue *q = dev->q_tx[qid];
319 	struct mt76_queue_buf buf;
320 	dma_addr_t addr;
321 
322 	if (q->queued + 1 >= q->ndesc - 1)
323 		goto error;
324 
325 	addr = dma_map_single(dev->dev, skb->data, skb->len,
326 			      DMA_TO_DEVICE);
327 	if (unlikely(dma_mapping_error(dev->dev, addr)))
328 		goto error;
329 
330 	buf.addr = addr;
331 	buf.len = skb->len;
332 
333 	spin_lock_bh(&q->lock);
334 	mt76_dma_add_buf(dev, q, &buf, 1, tx_info, skb, NULL);
335 	mt76_dma_kick_queue(dev, q);
336 	spin_unlock_bh(&q->lock);
337 
338 	return 0;
339 
340 error:
341 	dev_kfree_skb(skb);
342 	return -ENOMEM;
343 }
344 
345 static int
346 mt76_dma_tx_queue_skb(struct mt76_dev *dev, enum mt76_txq_id qid,
347 		      struct sk_buff *skb, struct mt76_wcid *wcid,
348 		      struct ieee80211_sta *sta)
349 {
350 	struct mt76_queue *q = dev->q_tx[qid];
351 	struct mt76_tx_info tx_info = {
352 		.skb = skb,
353 	};
354 	struct ieee80211_hw *hw;
355 	int len, n = 0, ret = -ENOMEM;
356 	struct mt76_queue_entry e;
357 	struct mt76_txwi_cache *t;
358 	struct sk_buff *iter;
359 	dma_addr_t addr;
360 	u8 *txwi;
361 
362 	t = mt76_get_txwi(dev);
363 	if (!t) {
364 		hw = mt76_tx_status_get_hw(dev, skb);
365 		ieee80211_free_txskb(hw, skb);
366 		return -ENOMEM;
367 	}
368 	txwi = mt76_get_txwi_ptr(dev, t);
369 
370 	skb->prev = skb->next = NULL;
371 	if (dev->drv->drv_flags & MT_DRV_TX_ALIGNED4_SKBS)
372 		mt76_insert_hdr_pad(skb);
373 
374 	len = skb_headlen(skb);
375 	addr = dma_map_single(dev->dev, skb->data, len, DMA_TO_DEVICE);
376 	if (unlikely(dma_mapping_error(dev->dev, addr)))
377 		goto free;
378 
379 	tx_info.buf[n].addr = t->dma_addr;
380 	tx_info.buf[n++].len = dev->drv->txwi_size;
381 	tx_info.buf[n].addr = addr;
382 	tx_info.buf[n++].len = len;
383 
384 	skb_walk_frags(skb, iter) {
385 		if (n == ARRAY_SIZE(tx_info.buf))
386 			goto unmap;
387 
388 		addr = dma_map_single(dev->dev, iter->data, iter->len,
389 				      DMA_TO_DEVICE);
390 		if (unlikely(dma_mapping_error(dev->dev, addr)))
391 			goto unmap;
392 
393 		tx_info.buf[n].addr = addr;
394 		tx_info.buf[n++].len = iter->len;
395 	}
396 	tx_info.nbuf = n;
397 
398 	dma_sync_single_for_cpu(dev->dev, t->dma_addr, dev->drv->txwi_size,
399 				DMA_TO_DEVICE);
400 	ret = dev->drv->tx_prepare_skb(dev, txwi, qid, wcid, sta, &tx_info);
401 	dma_sync_single_for_device(dev->dev, t->dma_addr, dev->drv->txwi_size,
402 				   DMA_TO_DEVICE);
403 	if (ret < 0)
404 		goto unmap;
405 
406 	if (q->queued + (tx_info.nbuf + 1) / 2 >= q->ndesc - 1) {
407 		ret = -ENOMEM;
408 		goto unmap;
409 	}
410 
411 	return mt76_dma_add_buf(dev, q, tx_info.buf, tx_info.nbuf,
412 				tx_info.info, tx_info.skb, t);
413 
414 unmap:
415 	for (n--; n > 0; n--)
416 		dma_unmap_single(dev->dev, tx_info.buf[n].addr,
417 				 tx_info.buf[n].len, DMA_TO_DEVICE);
418 
419 free:
420 #ifdef CONFIG_NL80211_TESTMODE
421 	/* fix tx_done accounting on queue overflow */
422 	if (tx_info.skb == dev->test.tx_skb)
423 		dev->test.tx_done--;
424 #endif
425 
426 	e.skb = tx_info.skb;
427 	e.txwi = t;
428 	dev->drv->tx_complete_skb(dev, &e);
429 	mt76_put_txwi(dev, t);
430 	return ret;
431 }
432 
433 static int
434 mt76_dma_rx_fill(struct mt76_dev *dev, struct mt76_queue *q)
435 {
436 	dma_addr_t addr;
437 	void *buf;
438 	int frames = 0;
439 	int len = SKB_WITH_OVERHEAD(q->buf_size);
440 	int offset = q->buf_offset;
441 
442 	spin_lock_bh(&q->lock);
443 
444 	while (q->queued < q->ndesc - 1) {
445 		struct mt76_queue_buf qbuf;
446 
447 		buf = page_frag_alloc(&q->rx_page, q->buf_size, GFP_ATOMIC);
448 		if (!buf)
449 			break;
450 
451 		addr = dma_map_single(dev->dev, buf, len, DMA_FROM_DEVICE);
452 		if (unlikely(dma_mapping_error(dev->dev, addr))) {
453 			skb_free_frag(buf);
454 			break;
455 		}
456 
457 		qbuf.addr = addr + offset;
458 		qbuf.len = len - offset;
459 		mt76_dma_add_buf(dev, q, &qbuf, 1, 0, buf, NULL);
460 		frames++;
461 	}
462 
463 	if (frames)
464 		mt76_dma_kick_queue(dev, q);
465 
466 	spin_unlock_bh(&q->lock);
467 
468 	return frames;
469 }
470 
471 static void
472 mt76_dma_rx_cleanup(struct mt76_dev *dev, struct mt76_queue *q)
473 {
474 	struct page *page;
475 	void *buf;
476 	bool more;
477 
478 	spin_lock_bh(&q->lock);
479 	do {
480 		buf = mt76_dma_dequeue(dev, q, true, NULL, NULL, &more);
481 		if (!buf)
482 			break;
483 
484 		skb_free_frag(buf);
485 	} while (1);
486 	spin_unlock_bh(&q->lock);
487 
488 	if (!q->rx_page.va)
489 		return;
490 
491 	page = virt_to_page(q->rx_page.va);
492 	__page_frag_cache_drain(page, q->rx_page.pagecnt_bias);
493 	memset(&q->rx_page, 0, sizeof(q->rx_page));
494 }
495 
496 static void
497 mt76_dma_rx_reset(struct mt76_dev *dev, enum mt76_rxq_id qid)
498 {
499 	struct mt76_queue *q = &dev->q_rx[qid];
500 	int i;
501 
502 	for (i = 0; i < q->ndesc; i++)
503 		q->desc[i].ctrl = cpu_to_le32(MT_DMA_CTL_DMA_DONE);
504 
505 	mt76_dma_rx_cleanup(dev, q);
506 	mt76_dma_sync_idx(dev, q);
507 	mt76_dma_rx_fill(dev, q);
508 
509 	if (!q->rx_head)
510 		return;
511 
512 	dev_kfree_skb(q->rx_head);
513 	q->rx_head = NULL;
514 }
515 
516 static void
517 mt76_add_fragment(struct mt76_dev *dev, struct mt76_queue *q, void *data,
518 		  int len, bool more)
519 {
520 	struct page *page = virt_to_head_page(data);
521 	int offset = data - page_address(page);
522 	struct sk_buff *skb = q->rx_head;
523 	struct skb_shared_info *shinfo = skb_shinfo(skb);
524 
525 	if (shinfo->nr_frags < ARRAY_SIZE(shinfo->frags)) {
526 		offset += q->buf_offset;
527 		skb_add_rx_frag(skb, shinfo->nr_frags, page, offset, len,
528 				q->buf_size);
529 	}
530 
531 	if (more)
532 		return;
533 
534 	q->rx_head = NULL;
535 	dev->drv->rx_skb(dev, q - dev->q_rx, skb);
536 }
537 
538 static int
539 mt76_dma_rx_process(struct mt76_dev *dev, struct mt76_queue *q, int budget)
540 {
541 	int len, data_len, done = 0;
542 	struct sk_buff *skb;
543 	unsigned char *data;
544 	bool more;
545 
546 	while (done < budget) {
547 		u32 info;
548 
549 		data = mt76_dma_dequeue(dev, q, false, &len, &info, &more);
550 		if (!data)
551 			break;
552 
553 		if (q->rx_head)
554 			data_len = q->buf_size;
555 		else
556 			data_len = SKB_WITH_OVERHEAD(q->buf_size);
557 
558 		if (data_len < len + q->buf_offset) {
559 			dev_kfree_skb(q->rx_head);
560 			q->rx_head = NULL;
561 
562 			skb_free_frag(data);
563 			continue;
564 		}
565 
566 		if (q->rx_head) {
567 			mt76_add_fragment(dev, q, data, len, more);
568 			continue;
569 		}
570 
571 		skb = build_skb(data, q->buf_size);
572 		if (!skb) {
573 			skb_free_frag(data);
574 			continue;
575 		}
576 		skb_reserve(skb, q->buf_offset);
577 
578 		if (q == &dev->q_rx[MT_RXQ_MCU]) {
579 			u32 *rxfce = (u32 *)skb->cb;
580 			*rxfce = info;
581 		}
582 
583 		__skb_put(skb, len);
584 		done++;
585 
586 		if (more) {
587 			q->rx_head = skb;
588 			continue;
589 		}
590 
591 		dev->drv->rx_skb(dev, q - dev->q_rx, skb);
592 	}
593 
594 	mt76_dma_rx_fill(dev, q);
595 	return done;
596 }
597 
598 static int
599 mt76_dma_rx_poll(struct napi_struct *napi, int budget)
600 {
601 	struct mt76_dev *dev;
602 	int qid, done = 0, cur;
603 
604 	dev = container_of(napi->dev, struct mt76_dev, napi_dev);
605 	qid = napi - dev->napi;
606 
607 	local_bh_disable();
608 	rcu_read_lock();
609 
610 	do {
611 		cur = mt76_dma_rx_process(dev, &dev->q_rx[qid], budget - done);
612 		mt76_rx_poll_complete(dev, qid, napi);
613 		done += cur;
614 	} while (cur && done < budget);
615 
616 	rcu_read_unlock();
617 	local_bh_enable();
618 
619 	if (done < budget && napi_complete(napi))
620 		dev->drv->rx_poll_complete(dev, qid);
621 
622 	return done;
623 }
624 
625 static int
626 mt76_dma_init(struct mt76_dev *dev)
627 {
628 	int i;
629 
630 	init_dummy_netdev(&dev->napi_dev);
631 
632 	mt76_for_each_q_rx(dev, i) {
633 		netif_napi_add(&dev->napi_dev, &dev->napi[i], mt76_dma_rx_poll,
634 			       64);
635 		mt76_dma_rx_fill(dev, &dev->q_rx[i]);
636 		napi_enable(&dev->napi[i]);
637 	}
638 
639 	return 0;
640 }
641 
642 static const struct mt76_queue_ops mt76_dma_ops = {
643 	.init = mt76_dma_init,
644 	.alloc = mt76_dma_alloc_queue,
645 	.tx_queue_skb_raw = mt76_dma_tx_queue_skb_raw,
646 	.tx_queue_skb = mt76_dma_tx_queue_skb,
647 	.tx_cleanup = mt76_dma_tx_cleanup,
648 	.rx_reset = mt76_dma_rx_reset,
649 	.kick = mt76_dma_kick_queue,
650 };
651 
652 void mt76_dma_attach(struct mt76_dev *dev)
653 {
654 	dev->queue_ops = &mt76_dma_ops;
655 }
656 EXPORT_SYMBOL_GPL(mt76_dma_attach);
657 
658 void mt76_dma_cleanup(struct mt76_dev *dev)
659 {
660 	int i;
661 
662 	mt76_worker_disable(&dev->tx_worker);
663 	netif_napi_del(&dev->tx_napi);
664 	for (i = 0; i < ARRAY_SIZE(dev->q_tx); i++)
665 		mt76_dma_tx_cleanup(dev, i, true);
666 
667 	mt76_for_each_q_rx(dev, i) {
668 		netif_napi_del(&dev->napi[i]);
669 		mt76_dma_rx_cleanup(dev, &dev->q_rx[i]);
670 	}
671 
672 	mt76_free_pending_txwi(dev);
673 }
674 EXPORT_SYMBOL_GPL(mt76_dma_cleanup);
675