1 // SPDX-License-Identifier: ISC
2 /*
3  * Copyright (C) 2016 Felix Fietkau <nbd@nbd.name>
4  */
5 
6 #include <linux/dma-mapping.h>
7 #include "mt76.h"
8 #include "dma.h"
9 
10 static struct mt76_txwi_cache *
11 mt76_alloc_txwi(struct mt76_dev *dev)
12 {
13 	struct mt76_txwi_cache *t;
14 	dma_addr_t addr;
15 	u8 *txwi;
16 	int size;
17 
18 	size = L1_CACHE_ALIGN(dev->drv->txwi_size + sizeof(*t));
19 	txwi = devm_kzalloc(dev->dev, size, GFP_ATOMIC);
20 	if (!txwi)
21 		return NULL;
22 
23 	addr = dma_map_single(dev->dev, txwi, dev->drv->txwi_size,
24 			      DMA_TO_DEVICE);
25 	t = (struct mt76_txwi_cache *)(txwi + dev->drv->txwi_size);
26 	t->dma_addr = addr;
27 
28 	return t;
29 }
30 
31 static struct mt76_txwi_cache *
32 __mt76_get_txwi(struct mt76_dev *dev)
33 {
34 	struct mt76_txwi_cache *t = NULL;
35 
36 	spin_lock(&dev->lock);
37 	if (!list_empty(&dev->txwi_cache)) {
38 		t = list_first_entry(&dev->txwi_cache, struct mt76_txwi_cache,
39 				     list);
40 		list_del(&t->list);
41 	}
42 	spin_unlock(&dev->lock);
43 
44 	return t;
45 }
46 
47 static struct mt76_txwi_cache *
48 mt76_get_txwi(struct mt76_dev *dev)
49 {
50 	struct mt76_txwi_cache *t = __mt76_get_txwi(dev);
51 
52 	if (t)
53 		return t;
54 
55 	return mt76_alloc_txwi(dev);
56 }
57 
58 void
59 mt76_put_txwi(struct mt76_dev *dev, struct mt76_txwi_cache *t)
60 {
61 	if (!t)
62 		return;
63 
64 	spin_lock(&dev->lock);
65 	list_add(&t->list, &dev->txwi_cache);
66 	spin_unlock(&dev->lock);
67 }
68 EXPORT_SYMBOL_GPL(mt76_put_txwi);
69 
70 static void
71 mt76_free_pending_txwi(struct mt76_dev *dev)
72 {
73 	struct mt76_txwi_cache *t;
74 
75 	local_bh_disable();
76 	while ((t = __mt76_get_txwi(dev)) != NULL)
77 		dma_unmap_single(dev->dev, t->dma_addr, dev->drv->txwi_size,
78 				 DMA_TO_DEVICE);
79 	local_bh_enable();
80 }
81 
82 static void
83 mt76_dma_sync_idx(struct mt76_dev *dev, struct mt76_queue *q)
84 {
85 	writel(q->desc_dma, &q->regs->desc_base);
86 	writel(q->ndesc, &q->regs->ring_size);
87 	q->head = readl(&q->regs->dma_idx);
88 	q->tail = q->head;
89 }
90 
91 static void
92 mt76_dma_queue_reset(struct mt76_dev *dev, struct mt76_queue *q)
93 {
94 	int i;
95 
96 	if (!q)
97 		return;
98 
99 	/* clear descriptors */
100 	for (i = 0; i < q->ndesc; i++)
101 		q->desc[i].ctrl = cpu_to_le32(MT_DMA_CTL_DMA_DONE);
102 
103 	writel(0, &q->regs->cpu_idx);
104 	writel(0, &q->regs->dma_idx);
105 	mt76_dma_sync_idx(dev, q);
106 }
107 
108 static int
109 mt76_dma_alloc_queue(struct mt76_dev *dev, struct mt76_queue *q,
110 		     int idx, int n_desc, int bufsize,
111 		     u32 ring_base)
112 {
113 	int size;
114 
115 	spin_lock_init(&q->lock);
116 	spin_lock_init(&q->cleanup_lock);
117 
118 	q->regs = dev->mmio.regs + ring_base + idx * MT_RING_SIZE;
119 	q->ndesc = n_desc;
120 	q->buf_size = bufsize;
121 	q->hw_idx = idx;
122 
123 	size = q->ndesc * sizeof(struct mt76_desc);
124 	q->desc = dmam_alloc_coherent(dev->dev, size, &q->desc_dma, GFP_KERNEL);
125 	if (!q->desc)
126 		return -ENOMEM;
127 
128 	size = q->ndesc * sizeof(*q->entry);
129 	q->entry = devm_kzalloc(dev->dev, size, GFP_KERNEL);
130 	if (!q->entry)
131 		return -ENOMEM;
132 
133 	mt76_dma_queue_reset(dev, q);
134 
135 	return 0;
136 }
137 
138 static int
139 mt76_dma_add_buf(struct mt76_dev *dev, struct mt76_queue *q,
140 		 struct mt76_queue_buf *buf, int nbufs, u32 info,
141 		 struct sk_buff *skb, void *txwi)
142 {
143 	struct mt76_queue_entry *entry;
144 	struct mt76_desc *desc;
145 	u32 ctrl;
146 	int i, idx = -1;
147 
148 	if (txwi) {
149 		q->entry[q->head].txwi = DMA_DUMMY_DATA;
150 		q->entry[q->head].skip_buf0 = true;
151 	}
152 
153 	for (i = 0; i < nbufs; i += 2, buf += 2) {
154 		u32 buf0 = buf[0].addr, buf1 = 0;
155 
156 		idx = q->head;
157 		q->head = (q->head + 1) % q->ndesc;
158 
159 		desc = &q->desc[idx];
160 		entry = &q->entry[idx];
161 
162 		if (buf[0].skip_unmap)
163 			entry->skip_buf0 = true;
164 		entry->skip_buf1 = i == nbufs - 1;
165 
166 		entry->dma_addr[0] = buf[0].addr;
167 		entry->dma_len[0] = buf[0].len;
168 
169 		ctrl = FIELD_PREP(MT_DMA_CTL_SD_LEN0, buf[0].len);
170 		if (i < nbufs - 1) {
171 			entry->dma_addr[1] = buf[1].addr;
172 			entry->dma_len[1] = buf[1].len;
173 			buf1 = buf[1].addr;
174 			ctrl |= FIELD_PREP(MT_DMA_CTL_SD_LEN1, buf[1].len);
175 			if (buf[1].skip_unmap)
176 				entry->skip_buf1 = true;
177 		}
178 
179 		if (i == nbufs - 1)
180 			ctrl |= MT_DMA_CTL_LAST_SEC0;
181 		else if (i == nbufs - 2)
182 			ctrl |= MT_DMA_CTL_LAST_SEC1;
183 
184 		WRITE_ONCE(desc->buf0, cpu_to_le32(buf0));
185 		WRITE_ONCE(desc->buf1, cpu_to_le32(buf1));
186 		WRITE_ONCE(desc->info, cpu_to_le32(info));
187 		WRITE_ONCE(desc->ctrl, cpu_to_le32(ctrl));
188 
189 		q->queued++;
190 	}
191 
192 	q->entry[idx].txwi = txwi;
193 	q->entry[idx].skb = skb;
194 
195 	return idx;
196 }
197 
198 static void
199 mt76_dma_tx_cleanup_idx(struct mt76_dev *dev, struct mt76_queue *q, int idx,
200 			struct mt76_queue_entry *prev_e)
201 {
202 	struct mt76_queue_entry *e = &q->entry[idx];
203 
204 	if (!e->skip_buf0)
205 		dma_unmap_single(dev->dev, e->dma_addr[0], e->dma_len[0],
206 				 DMA_TO_DEVICE);
207 
208 	if (!e->skip_buf1)
209 		dma_unmap_single(dev->dev, e->dma_addr[1], e->dma_len[1],
210 				 DMA_TO_DEVICE);
211 
212 	if (e->txwi == DMA_DUMMY_DATA)
213 		e->txwi = NULL;
214 
215 	if (e->skb == DMA_DUMMY_DATA)
216 		e->skb = NULL;
217 
218 	*prev_e = *e;
219 	memset(e, 0, sizeof(*e));
220 }
221 
222 static void
223 mt76_dma_kick_queue(struct mt76_dev *dev, struct mt76_queue *q)
224 {
225 	wmb();
226 	writel(q->head, &q->regs->cpu_idx);
227 }
228 
229 static void
230 mt76_dma_tx_cleanup(struct mt76_dev *dev, struct mt76_queue *q, bool flush)
231 {
232 	struct mt76_queue_entry entry;
233 	int last;
234 
235 	if (!q)
236 		return;
237 
238 	spin_lock_bh(&q->cleanup_lock);
239 	if (flush)
240 		last = -1;
241 	else
242 		last = readl(&q->regs->dma_idx);
243 
244 	while (q->queued > 0 && q->tail != last) {
245 		mt76_dma_tx_cleanup_idx(dev, q, q->tail, &entry);
246 		mt76_queue_tx_complete(dev, q, &entry);
247 
248 		if (entry.txwi) {
249 			if (!(dev->drv->drv_flags & MT_DRV_TXWI_NO_FREE))
250 				mt76_put_txwi(dev, entry.txwi);
251 		}
252 
253 		if (!flush && q->tail == last)
254 			last = readl(&q->regs->dma_idx);
255 
256 	}
257 	spin_unlock_bh(&q->cleanup_lock);
258 
259 	if (flush) {
260 		spin_lock_bh(&q->lock);
261 		mt76_dma_sync_idx(dev, q);
262 		mt76_dma_kick_queue(dev, q);
263 		spin_unlock_bh(&q->lock);
264 	}
265 
266 	if (!q->queued)
267 		wake_up(&dev->tx_wait);
268 }
269 
270 static void *
271 mt76_dma_get_buf(struct mt76_dev *dev, struct mt76_queue *q, int idx,
272 		 int *len, u32 *info, bool *more)
273 {
274 	struct mt76_queue_entry *e = &q->entry[idx];
275 	struct mt76_desc *desc = &q->desc[idx];
276 	dma_addr_t buf_addr;
277 	void *buf = e->buf;
278 	int buf_len = SKB_WITH_OVERHEAD(q->buf_size);
279 
280 	buf_addr = e->dma_addr[0];
281 	if (len) {
282 		u32 ctl = le32_to_cpu(READ_ONCE(desc->ctrl));
283 		*len = FIELD_GET(MT_DMA_CTL_SD_LEN0, ctl);
284 		*more = !(ctl & MT_DMA_CTL_LAST_SEC0);
285 	}
286 
287 	if (info)
288 		*info = le32_to_cpu(desc->info);
289 
290 	dma_unmap_single(dev->dev, buf_addr, buf_len, DMA_FROM_DEVICE);
291 	e->buf = NULL;
292 
293 	return buf;
294 }
295 
296 static void *
297 mt76_dma_dequeue(struct mt76_dev *dev, struct mt76_queue *q, bool flush,
298 		 int *len, u32 *info, bool *more)
299 {
300 	int idx = q->tail;
301 
302 	*more = false;
303 	if (!q->queued)
304 		return NULL;
305 
306 	if (flush)
307 		q->desc[idx].ctrl |= cpu_to_le32(MT_DMA_CTL_DMA_DONE);
308 	else if (!(q->desc[idx].ctrl & cpu_to_le32(MT_DMA_CTL_DMA_DONE)))
309 		return NULL;
310 
311 	q->tail = (q->tail + 1) % q->ndesc;
312 	q->queued--;
313 
314 	return mt76_dma_get_buf(dev, q, idx, len, info, more);
315 }
316 
317 static int
318 mt76_dma_tx_queue_skb_raw(struct mt76_dev *dev, struct mt76_queue *q,
319 			  struct sk_buff *skb, u32 tx_info)
320 {
321 	struct mt76_queue_buf buf = {};
322 	dma_addr_t addr;
323 
324 	if (q->queued + 1 >= q->ndesc - 1)
325 		goto error;
326 
327 	addr = dma_map_single(dev->dev, skb->data, skb->len,
328 			      DMA_TO_DEVICE);
329 	if (unlikely(dma_mapping_error(dev->dev, addr)))
330 		goto error;
331 
332 	buf.addr = addr;
333 	buf.len = skb->len;
334 
335 	spin_lock_bh(&q->lock);
336 	mt76_dma_add_buf(dev, q, &buf, 1, tx_info, skb, NULL);
337 	mt76_dma_kick_queue(dev, q);
338 	spin_unlock_bh(&q->lock);
339 
340 	return 0;
341 
342 error:
343 	dev_kfree_skb(skb);
344 	return -ENOMEM;
345 }
346 
347 static int
348 mt76_dma_tx_queue_skb(struct mt76_dev *dev, struct mt76_queue *q,
349 		      struct sk_buff *skb, struct mt76_wcid *wcid,
350 		      struct ieee80211_sta *sta)
351 {
352 	struct mt76_tx_info tx_info = {
353 		.skb = skb,
354 	};
355 	struct ieee80211_hw *hw;
356 	int len, n = 0, ret = -ENOMEM;
357 	struct mt76_txwi_cache *t;
358 	struct sk_buff *iter;
359 	dma_addr_t addr;
360 	u8 *txwi;
361 
362 	t = mt76_get_txwi(dev);
363 	if (!t) {
364 		hw = mt76_tx_status_get_hw(dev, skb);
365 		ieee80211_free_txskb(hw, skb);
366 		return -ENOMEM;
367 	}
368 	txwi = mt76_get_txwi_ptr(dev, t);
369 
370 	skb->prev = skb->next = NULL;
371 	if (dev->drv->drv_flags & MT_DRV_TX_ALIGNED4_SKBS)
372 		mt76_insert_hdr_pad(skb);
373 
374 	len = skb_headlen(skb);
375 	addr = dma_map_single(dev->dev, skb->data, len, DMA_TO_DEVICE);
376 	if (unlikely(dma_mapping_error(dev->dev, addr)))
377 		goto free;
378 
379 	tx_info.buf[n].addr = t->dma_addr;
380 	tx_info.buf[n++].len = dev->drv->txwi_size;
381 	tx_info.buf[n].addr = addr;
382 	tx_info.buf[n++].len = len;
383 
384 	skb_walk_frags(skb, iter) {
385 		if (n == ARRAY_SIZE(tx_info.buf))
386 			goto unmap;
387 
388 		addr = dma_map_single(dev->dev, iter->data, iter->len,
389 				      DMA_TO_DEVICE);
390 		if (unlikely(dma_mapping_error(dev->dev, addr)))
391 			goto unmap;
392 
393 		tx_info.buf[n].addr = addr;
394 		tx_info.buf[n++].len = iter->len;
395 	}
396 	tx_info.nbuf = n;
397 
398 	if (q->queued + (tx_info.nbuf + 1) / 2 >= q->ndesc - 1) {
399 		ret = -ENOMEM;
400 		goto unmap;
401 	}
402 
403 	dma_sync_single_for_cpu(dev->dev, t->dma_addr, dev->drv->txwi_size,
404 				DMA_TO_DEVICE);
405 	ret = dev->drv->tx_prepare_skb(dev, txwi, q->qid, wcid, sta, &tx_info);
406 	dma_sync_single_for_device(dev->dev, t->dma_addr, dev->drv->txwi_size,
407 				   DMA_TO_DEVICE);
408 	if (ret < 0)
409 		goto unmap;
410 
411 	return mt76_dma_add_buf(dev, q, tx_info.buf, tx_info.nbuf,
412 				tx_info.info, tx_info.skb, t);
413 
414 unmap:
415 	for (n--; n > 0; n--)
416 		dma_unmap_single(dev->dev, tx_info.buf[n].addr,
417 				 tx_info.buf[n].len, DMA_TO_DEVICE);
418 
419 free:
420 #ifdef CONFIG_NL80211_TESTMODE
421 	/* fix tx_done accounting on queue overflow */
422 	if (mt76_is_testmode_skb(dev, skb, &hw)) {
423 		struct mt76_phy *phy = hw->priv;
424 
425 		if (tx_info.skb == phy->test.tx_skb)
426 			phy->test.tx_done--;
427 	}
428 #endif
429 
430 	dev_kfree_skb(tx_info.skb);
431 	mt76_put_txwi(dev, t);
432 	return ret;
433 }
434 
435 static int
436 mt76_dma_rx_fill(struct mt76_dev *dev, struct mt76_queue *q)
437 {
438 	dma_addr_t addr;
439 	void *buf;
440 	int frames = 0;
441 	int len = SKB_WITH_OVERHEAD(q->buf_size);
442 	int offset = q->buf_offset;
443 
444 	spin_lock_bh(&q->lock);
445 
446 	while (q->queued < q->ndesc - 1) {
447 		struct mt76_queue_buf qbuf;
448 
449 		buf = page_frag_alloc(&q->rx_page, q->buf_size, GFP_ATOMIC);
450 		if (!buf)
451 			break;
452 
453 		addr = dma_map_single(dev->dev, buf, len, DMA_FROM_DEVICE);
454 		if (unlikely(dma_mapping_error(dev->dev, addr))) {
455 			skb_free_frag(buf);
456 			break;
457 		}
458 
459 		qbuf.addr = addr + offset;
460 		qbuf.len = len - offset;
461 		mt76_dma_add_buf(dev, q, &qbuf, 1, 0, buf, NULL);
462 		frames++;
463 	}
464 
465 	if (frames)
466 		mt76_dma_kick_queue(dev, q);
467 
468 	spin_unlock_bh(&q->lock);
469 
470 	return frames;
471 }
472 
473 static void
474 mt76_dma_rx_cleanup(struct mt76_dev *dev, struct mt76_queue *q)
475 {
476 	struct page *page;
477 	void *buf;
478 	bool more;
479 
480 	spin_lock_bh(&q->lock);
481 	do {
482 		buf = mt76_dma_dequeue(dev, q, true, NULL, NULL, &more);
483 		if (!buf)
484 			break;
485 
486 		skb_free_frag(buf);
487 	} while (1);
488 	spin_unlock_bh(&q->lock);
489 
490 	if (!q->rx_page.va)
491 		return;
492 
493 	page = virt_to_page(q->rx_page.va);
494 	__page_frag_cache_drain(page, q->rx_page.pagecnt_bias);
495 	memset(&q->rx_page, 0, sizeof(q->rx_page));
496 }
497 
498 static void
499 mt76_dma_rx_reset(struct mt76_dev *dev, enum mt76_rxq_id qid)
500 {
501 	struct mt76_queue *q = &dev->q_rx[qid];
502 	int i;
503 
504 	for (i = 0; i < q->ndesc; i++)
505 		q->desc[i].ctrl = cpu_to_le32(MT_DMA_CTL_DMA_DONE);
506 
507 	mt76_dma_rx_cleanup(dev, q);
508 	mt76_dma_sync_idx(dev, q);
509 	mt76_dma_rx_fill(dev, q);
510 
511 	if (!q->rx_head)
512 		return;
513 
514 	dev_kfree_skb(q->rx_head);
515 	q->rx_head = NULL;
516 }
517 
518 static void
519 mt76_add_fragment(struct mt76_dev *dev, struct mt76_queue *q, void *data,
520 		  int len, bool more)
521 {
522 	struct sk_buff *skb = q->rx_head;
523 	struct skb_shared_info *shinfo = skb_shinfo(skb);
524 	int nr_frags = shinfo->nr_frags;
525 
526 	if (nr_frags < ARRAY_SIZE(shinfo->frags)) {
527 		struct page *page = virt_to_head_page(data);
528 		int offset = data - page_address(page) + q->buf_offset;
529 
530 		skb_add_rx_frag(skb, nr_frags, page, offset, len, q->buf_size);
531 	} else {
532 		skb_free_frag(data);
533 	}
534 
535 	if (more)
536 		return;
537 
538 	q->rx_head = NULL;
539 	if (nr_frags < ARRAY_SIZE(shinfo->frags))
540 		dev->drv->rx_skb(dev, q - dev->q_rx, skb);
541 	else
542 		dev_kfree_skb(skb);
543 }
544 
545 static int
546 mt76_dma_rx_process(struct mt76_dev *dev, struct mt76_queue *q, int budget)
547 {
548 	int len, data_len, done = 0;
549 	struct sk_buff *skb;
550 	unsigned char *data;
551 	bool more;
552 
553 	while (done < budget) {
554 		u32 info;
555 
556 		data = mt76_dma_dequeue(dev, q, false, &len, &info, &more);
557 		if (!data)
558 			break;
559 
560 		if (q->rx_head)
561 			data_len = q->buf_size;
562 		else
563 			data_len = SKB_WITH_OVERHEAD(q->buf_size);
564 
565 		if (data_len < len + q->buf_offset) {
566 			dev_kfree_skb(q->rx_head);
567 			q->rx_head = NULL;
568 
569 			skb_free_frag(data);
570 			continue;
571 		}
572 
573 		if (q->rx_head) {
574 			mt76_add_fragment(dev, q, data, len, more);
575 			continue;
576 		}
577 
578 		skb = build_skb(data, q->buf_size);
579 		if (!skb) {
580 			skb_free_frag(data);
581 			continue;
582 		}
583 		skb_reserve(skb, q->buf_offset);
584 
585 		if (q == &dev->q_rx[MT_RXQ_MCU]) {
586 			u32 *rxfce = (u32 *)skb->cb;
587 			*rxfce = info;
588 		}
589 
590 		__skb_put(skb, len);
591 		done++;
592 
593 		if (more) {
594 			q->rx_head = skb;
595 			continue;
596 		}
597 
598 		dev->drv->rx_skb(dev, q - dev->q_rx, skb);
599 	}
600 
601 	mt76_dma_rx_fill(dev, q);
602 	return done;
603 }
604 
605 int mt76_dma_rx_poll(struct napi_struct *napi, int budget)
606 {
607 	struct mt76_dev *dev;
608 	int qid, done = 0, cur;
609 
610 	dev = container_of(napi->dev, struct mt76_dev, napi_dev);
611 	qid = napi - dev->napi;
612 
613 	rcu_read_lock();
614 
615 	do {
616 		cur = mt76_dma_rx_process(dev, &dev->q_rx[qid], budget - done);
617 		mt76_rx_poll_complete(dev, qid, napi);
618 		done += cur;
619 	} while (cur && done < budget);
620 
621 	rcu_read_unlock();
622 
623 	if (done < budget && napi_complete(napi))
624 		dev->drv->rx_poll_complete(dev, qid);
625 
626 	return done;
627 }
628 EXPORT_SYMBOL_GPL(mt76_dma_rx_poll);
629 
630 static int
631 mt76_dma_init(struct mt76_dev *dev,
632 	      int (*poll)(struct napi_struct *napi, int budget))
633 {
634 	int i;
635 
636 	init_dummy_netdev(&dev->napi_dev);
637 	init_dummy_netdev(&dev->tx_napi_dev);
638 	snprintf(dev->napi_dev.name, sizeof(dev->napi_dev.name), "%s",
639 		 wiphy_name(dev->hw->wiphy));
640 	dev->napi_dev.threaded = 1;
641 
642 	mt76_for_each_q_rx(dev, i) {
643 		netif_napi_add(&dev->napi_dev, &dev->napi[i], poll, 64);
644 		mt76_dma_rx_fill(dev, &dev->q_rx[i]);
645 		napi_enable(&dev->napi[i]);
646 	}
647 
648 	return 0;
649 }
650 
651 static const struct mt76_queue_ops mt76_dma_ops = {
652 	.init = mt76_dma_init,
653 	.alloc = mt76_dma_alloc_queue,
654 	.reset_q = mt76_dma_queue_reset,
655 	.tx_queue_skb_raw = mt76_dma_tx_queue_skb_raw,
656 	.tx_queue_skb = mt76_dma_tx_queue_skb,
657 	.tx_cleanup = mt76_dma_tx_cleanup,
658 	.rx_cleanup = mt76_dma_rx_cleanup,
659 	.rx_reset = mt76_dma_rx_reset,
660 	.kick = mt76_dma_kick_queue,
661 };
662 
663 void mt76_dma_attach(struct mt76_dev *dev)
664 {
665 	dev->queue_ops = &mt76_dma_ops;
666 }
667 EXPORT_SYMBOL_GPL(mt76_dma_attach);
668 
669 void mt76_dma_cleanup(struct mt76_dev *dev)
670 {
671 	int i;
672 
673 	mt76_worker_disable(&dev->tx_worker);
674 	netif_napi_del(&dev->tx_napi);
675 
676 	for (i = 0; i < ARRAY_SIZE(dev->phy.q_tx); i++) {
677 		mt76_dma_tx_cleanup(dev, dev->phy.q_tx[i], true);
678 		if (dev->phy2)
679 			mt76_dma_tx_cleanup(dev, dev->phy2->q_tx[i], true);
680 	}
681 
682 	for (i = 0; i < ARRAY_SIZE(dev->q_mcu); i++)
683 		mt76_dma_tx_cleanup(dev, dev->q_mcu[i], true);
684 
685 	mt76_for_each_q_rx(dev, i) {
686 		netif_napi_del(&dev->napi[i]);
687 		mt76_dma_rx_cleanup(dev, &dev->q_rx[i]);
688 	}
689 
690 	mt76_free_pending_txwi(dev);
691 }
692 EXPORT_SYMBOL_GPL(mt76_dma_cleanup);
693