1 /* 2 * Copyright (C) 2016 Felix Fietkau <nbd@nbd.name> 3 * 4 * Permission to use, copy, modify, and/or distribute this software for any 5 * purpose with or without fee is hereby granted, provided that the above 6 * copyright notice and this permission notice appear in all copies. 7 * 8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 15 */ 16 17 #include <linux/dma-mapping.h> 18 #include "mt76.h" 19 #include "dma.h" 20 21 #define DMA_DUMMY_TXWI ((void *) ~0) 22 23 static int 24 mt76_dma_alloc_queue(struct mt76_dev *dev, struct mt76_queue *q) 25 { 26 int size; 27 int i; 28 29 spin_lock_init(&q->lock); 30 INIT_LIST_HEAD(&q->swq); 31 32 size = q->ndesc * sizeof(struct mt76_desc); 33 q->desc = dmam_alloc_coherent(dev->dev, size, &q->desc_dma, GFP_KERNEL); 34 if (!q->desc) 35 return -ENOMEM; 36 37 size = q->ndesc * sizeof(*q->entry); 38 q->entry = devm_kzalloc(dev->dev, size, GFP_KERNEL); 39 if (!q->entry) 40 return -ENOMEM; 41 42 /* clear descriptors */ 43 for (i = 0; i < q->ndesc; i++) 44 q->desc[i].ctrl = cpu_to_le32(MT_DMA_CTL_DMA_DONE); 45 46 iowrite32(q->desc_dma, &q->regs->desc_base); 47 iowrite32(0, &q->regs->cpu_idx); 48 iowrite32(0, &q->regs->dma_idx); 49 iowrite32(q->ndesc, &q->regs->ring_size); 50 51 return 0; 52 } 53 54 static int 55 mt76_dma_add_buf(struct mt76_dev *dev, struct mt76_queue *q, 56 struct mt76_queue_buf *buf, int nbufs, u32 info, 57 struct sk_buff *skb, void *txwi) 58 { 59 struct mt76_desc *desc; 60 u32 ctrl; 61 int i, idx = -1; 62 63 if (txwi) 64 q->entry[q->head].txwi = DMA_DUMMY_TXWI; 65 66 for (i = 0; i < nbufs; i += 2, buf += 2) { 67 u32 buf0 = buf[0].addr, buf1 = 0; 68 69 ctrl = FIELD_PREP(MT_DMA_CTL_SD_LEN0, buf[0].len); 70 if (i < nbufs - 1) { 71 buf1 = buf[1].addr; 72 ctrl |= FIELD_PREP(MT_DMA_CTL_SD_LEN1, buf[1].len); 73 } 74 75 if (i == nbufs - 1) 76 ctrl |= MT_DMA_CTL_LAST_SEC0; 77 else if (i == nbufs - 2) 78 ctrl |= MT_DMA_CTL_LAST_SEC1; 79 80 idx = q->head; 81 q->head = (q->head + 1) % q->ndesc; 82 83 desc = &q->desc[idx]; 84 85 WRITE_ONCE(desc->buf0, cpu_to_le32(buf0)); 86 WRITE_ONCE(desc->buf1, cpu_to_le32(buf1)); 87 WRITE_ONCE(desc->info, cpu_to_le32(info)); 88 WRITE_ONCE(desc->ctrl, cpu_to_le32(ctrl)); 89 90 q->queued++; 91 } 92 93 q->entry[idx].txwi = txwi; 94 q->entry[idx].skb = skb; 95 96 return idx; 97 } 98 99 static void 100 mt76_dma_tx_cleanup_idx(struct mt76_dev *dev, struct mt76_queue *q, int idx, 101 struct mt76_queue_entry *prev_e) 102 { 103 struct mt76_queue_entry *e = &q->entry[idx]; 104 __le32 __ctrl = READ_ONCE(q->desc[idx].ctrl); 105 u32 ctrl = le32_to_cpu(__ctrl); 106 107 if (!e->txwi || !e->skb) { 108 __le32 addr = READ_ONCE(q->desc[idx].buf0); 109 u32 len = FIELD_GET(MT_DMA_CTL_SD_LEN0, ctrl); 110 111 dma_unmap_single(dev->dev, le32_to_cpu(addr), len, 112 DMA_TO_DEVICE); 113 } 114 115 if (!(ctrl & MT_DMA_CTL_LAST_SEC0)) { 116 __le32 addr = READ_ONCE(q->desc[idx].buf1); 117 u32 len = FIELD_GET(MT_DMA_CTL_SD_LEN1, ctrl); 118 119 dma_unmap_single(dev->dev, le32_to_cpu(addr), len, 120 DMA_TO_DEVICE); 121 } 122 123 if (e->txwi == DMA_DUMMY_TXWI) 124 e->txwi = NULL; 125 126 *prev_e = *e; 127 memset(e, 0, sizeof(*e)); 128 } 129 130 static void 131 mt76_dma_sync_idx(struct mt76_dev *dev, struct mt76_queue *q) 132 { 133 q->head = ioread32(&q->regs->dma_idx); 134 q->tail = q->head; 135 iowrite32(q->head, &q->regs->cpu_idx); 136 } 137 138 static void 139 mt76_dma_tx_cleanup(struct mt76_dev *dev, enum mt76_txq_id qid, bool flush) 140 { 141 struct mt76_queue *q = &dev->q_tx[qid]; 142 struct mt76_queue_entry entry; 143 bool wake = false; 144 int last; 145 146 if (!q->ndesc) 147 return; 148 149 spin_lock_bh(&q->lock); 150 if (flush) 151 last = -1; 152 else 153 last = ioread32(&q->regs->dma_idx); 154 155 while (q->queued && q->tail != last) { 156 mt76_dma_tx_cleanup_idx(dev, q, q->tail, &entry); 157 if (entry.schedule) 158 q->swq_queued--; 159 160 q->tail = (q->tail + 1) % q->ndesc; 161 q->queued--; 162 163 if (entry.skb) { 164 spin_unlock_bh(&q->lock); 165 dev->drv->tx_complete_skb(dev, q, &entry, flush); 166 spin_lock_bh(&q->lock); 167 } 168 169 if (entry.txwi) { 170 mt76_put_txwi(dev, entry.txwi); 171 wake = !flush; 172 } 173 174 if (!flush && q->tail == last) 175 last = ioread32(&q->regs->dma_idx); 176 } 177 178 if (!flush) 179 mt76_txq_schedule(dev, q); 180 else 181 mt76_dma_sync_idx(dev, q); 182 183 wake = wake && qid < IEEE80211_NUM_ACS && q->queued < q->ndesc - 8; 184 185 if (!q->queued) 186 wake_up(&dev->tx_wait); 187 188 spin_unlock_bh(&q->lock); 189 190 if (wake) 191 ieee80211_wake_queue(dev->hw, qid); 192 } 193 194 static void * 195 mt76_dma_get_buf(struct mt76_dev *dev, struct mt76_queue *q, int idx, 196 int *len, u32 *info, bool *more) 197 { 198 struct mt76_queue_entry *e = &q->entry[idx]; 199 struct mt76_desc *desc = &q->desc[idx]; 200 dma_addr_t buf_addr; 201 void *buf = e->buf; 202 int buf_len = SKB_WITH_OVERHEAD(q->buf_size); 203 204 buf_addr = le32_to_cpu(READ_ONCE(desc->buf0)); 205 if (len) { 206 u32 ctl = le32_to_cpu(READ_ONCE(desc->ctrl)); 207 *len = FIELD_GET(MT_DMA_CTL_SD_LEN0, ctl); 208 *more = !(ctl & MT_DMA_CTL_LAST_SEC0); 209 } 210 211 if (info) 212 *info = le32_to_cpu(desc->info); 213 214 dma_unmap_single(dev->dev, buf_addr, buf_len, DMA_FROM_DEVICE); 215 e->buf = NULL; 216 217 return buf; 218 } 219 220 static void * 221 mt76_dma_dequeue(struct mt76_dev *dev, struct mt76_queue *q, bool flush, 222 int *len, u32 *info, bool *more) 223 { 224 int idx = q->tail; 225 226 *more = false; 227 if (!q->queued) 228 return NULL; 229 230 if (!flush && !(q->desc[idx].ctrl & cpu_to_le32(MT_DMA_CTL_DMA_DONE))) 231 return NULL; 232 233 q->tail = (q->tail + 1) % q->ndesc; 234 q->queued--; 235 236 return mt76_dma_get_buf(dev, q, idx, len, info, more); 237 } 238 239 static void 240 mt76_dma_kick_queue(struct mt76_dev *dev, struct mt76_queue *q) 241 { 242 iowrite32(q->head, &q->regs->cpu_idx); 243 } 244 245 int mt76_dma_tx_queue_skb(struct mt76_dev *dev, struct mt76_queue *q, 246 struct sk_buff *skb, struct mt76_wcid *wcid, 247 struct ieee80211_sta *sta) 248 { 249 struct mt76_queue_entry e; 250 struct mt76_txwi_cache *t; 251 struct mt76_queue_buf buf[32]; 252 struct sk_buff *iter; 253 dma_addr_t addr; 254 int len; 255 u32 tx_info = 0; 256 int n, ret; 257 258 t = mt76_get_txwi(dev); 259 if (!t) { 260 ieee80211_free_txskb(dev->hw, skb); 261 return -ENOMEM; 262 } 263 264 skb->prev = skb->next = NULL; 265 dma_sync_single_for_cpu(dev->dev, t->dma_addr, sizeof(t->txwi), 266 DMA_TO_DEVICE); 267 ret = dev->drv->tx_prepare_skb(dev, &t->txwi, skb, q, wcid, sta, 268 &tx_info); 269 dma_sync_single_for_device(dev->dev, t->dma_addr, sizeof(t->txwi), 270 DMA_TO_DEVICE); 271 if (ret < 0) 272 goto free; 273 274 len = skb->len - skb->data_len; 275 addr = dma_map_single(dev->dev, skb->data, len, DMA_TO_DEVICE); 276 if (dma_mapping_error(dev->dev, addr)) { 277 ret = -ENOMEM; 278 goto free; 279 } 280 281 n = 0; 282 buf[n].addr = t->dma_addr; 283 buf[n++].len = dev->drv->txwi_size; 284 buf[n].addr = addr; 285 buf[n++].len = len; 286 287 skb_walk_frags(skb, iter) { 288 if (n == ARRAY_SIZE(buf)) 289 goto unmap; 290 291 addr = dma_map_single(dev->dev, iter->data, iter->len, 292 DMA_TO_DEVICE); 293 if (dma_mapping_error(dev->dev, addr)) 294 goto unmap; 295 296 buf[n].addr = addr; 297 buf[n++].len = iter->len; 298 } 299 300 if (q->queued + (n + 1) / 2 >= q->ndesc - 1) 301 goto unmap; 302 303 return dev->queue_ops->add_buf(dev, q, buf, n, tx_info, skb, t); 304 305 unmap: 306 ret = -ENOMEM; 307 for (n--; n > 0; n--) 308 dma_unmap_single(dev->dev, buf[n].addr, buf[n].len, 309 DMA_TO_DEVICE); 310 311 free: 312 e.skb = skb; 313 e.txwi = t; 314 dev->drv->tx_complete_skb(dev, q, &e, true); 315 mt76_put_txwi(dev, t); 316 return ret; 317 } 318 EXPORT_SYMBOL_GPL(mt76_dma_tx_queue_skb); 319 320 static int 321 mt76_dma_rx_fill(struct mt76_dev *dev, struct mt76_queue *q, bool napi) 322 { 323 dma_addr_t addr; 324 void *buf; 325 int frames = 0; 326 int len = SKB_WITH_OVERHEAD(q->buf_size); 327 int offset = q->buf_offset; 328 int idx; 329 330 spin_lock_bh(&q->lock); 331 332 while (q->queued < q->ndesc - 1) { 333 struct mt76_queue_buf qbuf; 334 335 buf = page_frag_alloc(&q->rx_page, q->buf_size, GFP_ATOMIC); 336 if (!buf) 337 break; 338 339 addr = dma_map_single(dev->dev, buf, len, DMA_FROM_DEVICE); 340 if (dma_mapping_error(dev->dev, addr)) { 341 skb_free_frag(buf); 342 break; 343 } 344 345 qbuf.addr = addr + offset; 346 qbuf.len = len - offset; 347 idx = mt76_dma_add_buf(dev, q, &qbuf, 1, 0, buf, NULL); 348 frames++; 349 } 350 351 if (frames) 352 mt76_dma_kick_queue(dev, q); 353 354 spin_unlock_bh(&q->lock); 355 356 return frames; 357 } 358 359 static void 360 mt76_dma_rx_cleanup(struct mt76_dev *dev, struct mt76_queue *q) 361 { 362 struct page *page; 363 void *buf; 364 bool more; 365 366 spin_lock_bh(&q->lock); 367 do { 368 buf = mt76_dma_dequeue(dev, q, true, NULL, NULL, &more); 369 if (!buf) 370 break; 371 372 skb_free_frag(buf); 373 } while (1); 374 spin_unlock_bh(&q->lock); 375 376 if (!q->rx_page.va) 377 return; 378 379 page = virt_to_page(q->rx_page.va); 380 __page_frag_cache_drain(page, q->rx_page.pagecnt_bias); 381 memset(&q->rx_page, 0, sizeof(q->rx_page)); 382 } 383 384 static void 385 mt76_dma_rx_reset(struct mt76_dev *dev, enum mt76_rxq_id qid) 386 { 387 struct mt76_queue *q = &dev->q_rx[qid]; 388 int i; 389 390 for (i = 0; i < q->ndesc; i++) 391 q->desc[i].ctrl &= ~cpu_to_le32(MT_DMA_CTL_DMA_DONE); 392 393 mt76_dma_rx_cleanup(dev, q); 394 mt76_dma_sync_idx(dev, q); 395 mt76_dma_rx_fill(dev, q, false); 396 } 397 398 static void 399 mt76_add_fragment(struct mt76_dev *dev, struct mt76_queue *q, void *data, 400 int len, bool more) 401 { 402 struct page *page = virt_to_head_page(data); 403 int offset = data - page_address(page); 404 struct sk_buff *skb = q->rx_head; 405 406 offset += q->buf_offset; 407 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page, offset, len, 408 q->buf_size); 409 410 if (more) 411 return; 412 413 q->rx_head = NULL; 414 dev->drv->rx_skb(dev, q - dev->q_rx, skb); 415 } 416 417 static int 418 mt76_dma_rx_process(struct mt76_dev *dev, struct mt76_queue *q, int budget) 419 { 420 struct sk_buff *skb; 421 unsigned char *data; 422 int len; 423 int done = 0; 424 bool more; 425 426 while (done < budget) { 427 u32 info; 428 429 data = mt76_dma_dequeue(dev, q, false, &len, &info, &more); 430 if (!data) 431 break; 432 433 if (q->rx_head) { 434 mt76_add_fragment(dev, q, data, len, more); 435 continue; 436 } 437 438 skb = build_skb(data, q->buf_size); 439 if (!skb) { 440 skb_free_frag(data); 441 continue; 442 } 443 444 skb_reserve(skb, q->buf_offset); 445 if (skb->tail + len > skb->end) { 446 dev_kfree_skb(skb); 447 continue; 448 } 449 450 if (q == &dev->q_rx[MT_RXQ_MCU]) { 451 u32 *rxfce = (u32 *) skb->cb; 452 *rxfce = info; 453 } 454 455 __skb_put(skb, len); 456 done++; 457 458 if (more) { 459 q->rx_head = skb; 460 continue; 461 } 462 463 dev->drv->rx_skb(dev, q - dev->q_rx, skb); 464 } 465 466 mt76_dma_rx_fill(dev, q, true); 467 return done; 468 } 469 470 static int 471 mt76_dma_rx_poll(struct napi_struct *napi, int budget) 472 { 473 struct mt76_dev *dev; 474 int qid, done = 0, cur; 475 476 dev = container_of(napi->dev, struct mt76_dev, napi_dev); 477 qid = napi - dev->napi; 478 479 rcu_read_lock(); 480 481 do { 482 cur = mt76_dma_rx_process(dev, &dev->q_rx[qid], budget - done); 483 mt76_rx_poll_complete(dev, qid, napi); 484 done += cur; 485 } while (cur && done < budget); 486 487 rcu_read_unlock(); 488 489 if (done < budget) { 490 napi_complete(napi); 491 dev->drv->rx_poll_complete(dev, qid); 492 } 493 494 return done; 495 } 496 497 static int 498 mt76_dma_init(struct mt76_dev *dev) 499 { 500 int i; 501 502 init_dummy_netdev(&dev->napi_dev); 503 504 for (i = 0; i < ARRAY_SIZE(dev->q_rx); i++) { 505 netif_napi_add(&dev->napi_dev, &dev->napi[i], mt76_dma_rx_poll, 506 64); 507 mt76_dma_rx_fill(dev, &dev->q_rx[i], false); 508 skb_queue_head_init(&dev->rx_skb[i]); 509 napi_enable(&dev->napi[i]); 510 } 511 512 return 0; 513 } 514 515 static const struct mt76_queue_ops mt76_dma_ops = { 516 .init = mt76_dma_init, 517 .alloc = mt76_dma_alloc_queue, 518 .add_buf = mt76_dma_add_buf, 519 .tx_queue_skb = mt76_dma_tx_queue_skb, 520 .tx_cleanup = mt76_dma_tx_cleanup, 521 .rx_reset = mt76_dma_rx_reset, 522 .kick = mt76_dma_kick_queue, 523 }; 524 525 int mt76_dma_attach(struct mt76_dev *dev) 526 { 527 dev->queue_ops = &mt76_dma_ops; 528 return 0; 529 } 530 EXPORT_SYMBOL_GPL(mt76_dma_attach); 531 532 void mt76_dma_cleanup(struct mt76_dev *dev) 533 { 534 int i; 535 536 for (i = 0; i < ARRAY_SIZE(dev->q_tx); i++) 537 mt76_dma_tx_cleanup(dev, i, true); 538 539 for (i = 0; i < ARRAY_SIZE(dev->q_rx); i++) { 540 netif_napi_del(&dev->napi[i]); 541 mt76_dma_rx_cleanup(dev, &dev->q_rx[i]); 542 } 543 } 544 EXPORT_SYMBOL_GPL(mt76_dma_cleanup); 545