xref: /openbmc/linux/drivers/net/wireless/mediatek/mt76/dma.c (revision 22fc4c4c9fd60427bcda00878cee94e7622cfa7a)
1 /*
2  * Copyright (C) 2016 Felix Fietkau <nbd@nbd.name>
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <linux/dma-mapping.h>
18 #include "mt76.h"
19 #include "dma.h"
20 
21 #define DMA_DUMMY_TXWI	((void *) ~0)
22 
23 static int
24 mt76_dma_alloc_queue(struct mt76_dev *dev, struct mt76_queue *q)
25 {
26 	int size;
27 	int i;
28 
29 	spin_lock_init(&q->lock);
30 	INIT_LIST_HEAD(&q->swq);
31 
32 	size = q->ndesc * sizeof(struct mt76_desc);
33 	q->desc = dmam_alloc_coherent(dev->dev, size, &q->desc_dma, GFP_KERNEL);
34 	if (!q->desc)
35 		return -ENOMEM;
36 
37 	size = q->ndesc * sizeof(*q->entry);
38 	q->entry = devm_kzalloc(dev->dev, size, GFP_KERNEL);
39 	if (!q->entry)
40 		return -ENOMEM;
41 
42 	/* clear descriptors */
43 	for (i = 0; i < q->ndesc; i++)
44 		q->desc[i].ctrl = cpu_to_le32(MT_DMA_CTL_DMA_DONE);
45 
46 	iowrite32(q->desc_dma, &q->regs->desc_base);
47 	iowrite32(0, &q->regs->cpu_idx);
48 	iowrite32(0, &q->regs->dma_idx);
49 	iowrite32(q->ndesc, &q->regs->ring_size);
50 
51 	return 0;
52 }
53 
54 static int
55 mt76_dma_add_buf(struct mt76_dev *dev, struct mt76_queue *q,
56 		 struct mt76_queue_buf *buf, int nbufs, u32 info,
57 		 struct sk_buff *skb, void *txwi)
58 {
59 	struct mt76_desc *desc;
60 	u32 ctrl;
61 	int i, idx = -1;
62 
63 	if (txwi)
64 		q->entry[q->head].txwi = DMA_DUMMY_TXWI;
65 
66 	for (i = 0; i < nbufs; i += 2, buf += 2) {
67 		u32 buf0 = buf[0].addr, buf1 = 0;
68 
69 		ctrl = FIELD_PREP(MT_DMA_CTL_SD_LEN0, buf[0].len);
70 		if (i < nbufs - 1) {
71 			buf1 = buf[1].addr;
72 			ctrl |= FIELD_PREP(MT_DMA_CTL_SD_LEN1, buf[1].len);
73 		}
74 
75 		if (i == nbufs - 1)
76 			ctrl |= MT_DMA_CTL_LAST_SEC0;
77 		else if (i == nbufs - 2)
78 			ctrl |= MT_DMA_CTL_LAST_SEC1;
79 
80 		idx = q->head;
81 		q->head = (q->head + 1) % q->ndesc;
82 
83 		desc = &q->desc[idx];
84 
85 		WRITE_ONCE(desc->buf0, cpu_to_le32(buf0));
86 		WRITE_ONCE(desc->buf1, cpu_to_le32(buf1));
87 		WRITE_ONCE(desc->info, cpu_to_le32(info));
88 		WRITE_ONCE(desc->ctrl, cpu_to_le32(ctrl));
89 
90 		q->queued++;
91 	}
92 
93 	q->entry[idx].txwi = txwi;
94 	q->entry[idx].skb = skb;
95 
96 	return idx;
97 }
98 
99 static void
100 mt76_dma_tx_cleanup_idx(struct mt76_dev *dev, struct mt76_queue *q, int idx,
101 			struct mt76_queue_entry *prev_e)
102 {
103 	struct mt76_queue_entry *e = &q->entry[idx];
104 	__le32 __ctrl = READ_ONCE(q->desc[idx].ctrl);
105 	u32 ctrl = le32_to_cpu(__ctrl);
106 
107 	if (!e->txwi || !e->skb) {
108 		__le32 addr = READ_ONCE(q->desc[idx].buf0);
109 		u32 len = FIELD_GET(MT_DMA_CTL_SD_LEN0, ctrl);
110 
111 		dma_unmap_single(dev->dev, le32_to_cpu(addr), len,
112 				 DMA_TO_DEVICE);
113 	}
114 
115 	if (!(ctrl & MT_DMA_CTL_LAST_SEC0)) {
116 		__le32 addr = READ_ONCE(q->desc[idx].buf1);
117 		u32 len = FIELD_GET(MT_DMA_CTL_SD_LEN1, ctrl);
118 
119 		dma_unmap_single(dev->dev, le32_to_cpu(addr), len,
120 				 DMA_TO_DEVICE);
121 	}
122 
123 	if (e->txwi == DMA_DUMMY_TXWI)
124 		e->txwi = NULL;
125 
126 	*prev_e = *e;
127 	memset(e, 0, sizeof(*e));
128 }
129 
130 static void
131 mt76_dma_sync_idx(struct mt76_dev *dev, struct mt76_queue *q)
132 {
133 	q->head = ioread32(&q->regs->dma_idx);
134 	q->tail = q->head;
135 	iowrite32(q->head, &q->regs->cpu_idx);
136 }
137 
138 static void
139 mt76_dma_tx_cleanup(struct mt76_dev *dev, enum mt76_txq_id qid, bool flush)
140 {
141 	struct mt76_queue *q = &dev->q_tx[qid];
142 	struct mt76_queue_entry entry;
143 	bool wake = false;
144 	int last;
145 
146 	if (!q->ndesc)
147 		return;
148 
149 	spin_lock_bh(&q->lock);
150 	if (flush)
151 		last = -1;
152 	else
153 		last = ioread32(&q->regs->dma_idx);
154 
155 	while (q->queued && q->tail != last) {
156 		mt76_dma_tx_cleanup_idx(dev, q, q->tail, &entry);
157 		if (entry.schedule)
158 			q->swq_queued--;
159 
160 		q->tail = (q->tail + 1) % q->ndesc;
161 		q->queued--;
162 
163 		if (entry.skb) {
164 			spin_unlock_bh(&q->lock);
165 			dev->drv->tx_complete_skb(dev, q, &entry, flush);
166 			spin_lock_bh(&q->lock);
167 		}
168 
169 		if (entry.txwi) {
170 			mt76_put_txwi(dev, entry.txwi);
171 			wake = !flush;
172 		}
173 
174 		if (!flush && q->tail == last)
175 			last = ioread32(&q->regs->dma_idx);
176 	}
177 
178 	if (!flush)
179 		mt76_txq_schedule(dev, q);
180 	else
181 		mt76_dma_sync_idx(dev, q);
182 
183 	wake = wake && qid < IEEE80211_NUM_ACS && q->queued < q->ndesc - 8;
184 
185 	if (!q->queued)
186 		wake_up(&dev->tx_wait);
187 
188 	spin_unlock_bh(&q->lock);
189 
190 	if (wake)
191 		ieee80211_wake_queue(dev->hw, qid);
192 }
193 
194 static void *
195 mt76_dma_get_buf(struct mt76_dev *dev, struct mt76_queue *q, int idx,
196 		 int *len, u32 *info, bool *more)
197 {
198 	struct mt76_queue_entry *e = &q->entry[idx];
199 	struct mt76_desc *desc = &q->desc[idx];
200 	dma_addr_t buf_addr;
201 	void *buf = e->buf;
202 	int buf_len = SKB_WITH_OVERHEAD(q->buf_size);
203 
204 	buf_addr = le32_to_cpu(READ_ONCE(desc->buf0));
205 	if (len) {
206 		u32 ctl = le32_to_cpu(READ_ONCE(desc->ctrl));
207 		*len = FIELD_GET(MT_DMA_CTL_SD_LEN0, ctl);
208 		*more = !(ctl & MT_DMA_CTL_LAST_SEC0);
209 	}
210 
211 	if (info)
212 		*info = le32_to_cpu(desc->info);
213 
214 	dma_unmap_single(dev->dev, buf_addr, buf_len, DMA_FROM_DEVICE);
215 	e->buf = NULL;
216 
217 	return buf;
218 }
219 
220 static void *
221 mt76_dma_dequeue(struct mt76_dev *dev, struct mt76_queue *q, bool flush,
222 		 int *len, u32 *info, bool *more)
223 {
224 	int idx = q->tail;
225 
226 	*more = false;
227 	if (!q->queued)
228 		return NULL;
229 
230 	if (!flush && !(q->desc[idx].ctrl & cpu_to_le32(MT_DMA_CTL_DMA_DONE)))
231 		return NULL;
232 
233 	q->tail = (q->tail + 1) % q->ndesc;
234 	q->queued--;
235 
236 	return mt76_dma_get_buf(dev, q, idx, len, info, more);
237 }
238 
239 static void
240 mt76_dma_kick_queue(struct mt76_dev *dev, struct mt76_queue *q)
241 {
242 	iowrite32(q->head, &q->regs->cpu_idx);
243 }
244 
245 int mt76_dma_tx_queue_skb(struct mt76_dev *dev, struct mt76_queue *q,
246 			  struct sk_buff *skb, struct mt76_wcid *wcid,
247 			  struct ieee80211_sta *sta)
248 {
249 	struct mt76_queue_entry e;
250 	struct mt76_txwi_cache *t;
251 	struct mt76_queue_buf buf[32];
252 	struct sk_buff *iter;
253 	dma_addr_t addr;
254 	int len;
255 	u32 tx_info = 0;
256 	int n, ret;
257 
258 	t = mt76_get_txwi(dev);
259 	if (!t) {
260 		ieee80211_free_txskb(dev->hw, skb);
261 		return -ENOMEM;
262 	}
263 
264 	skb->prev = skb->next = NULL;
265 	dma_sync_single_for_cpu(dev->dev, t->dma_addr, sizeof(t->txwi),
266 				DMA_TO_DEVICE);
267 	ret = dev->drv->tx_prepare_skb(dev, &t->txwi, skb, q, wcid, sta,
268 				       &tx_info);
269 	dma_sync_single_for_device(dev->dev, t->dma_addr, sizeof(t->txwi),
270 				   DMA_TO_DEVICE);
271 	if (ret < 0)
272 		goto free;
273 
274 	len = skb->len - skb->data_len;
275 	addr = dma_map_single(dev->dev, skb->data, len, DMA_TO_DEVICE);
276 	if (dma_mapping_error(dev->dev, addr)) {
277 		ret = -ENOMEM;
278 		goto free;
279 	}
280 
281 	n = 0;
282 	buf[n].addr = t->dma_addr;
283 	buf[n++].len = dev->drv->txwi_size;
284 	buf[n].addr = addr;
285 	buf[n++].len = len;
286 
287 	skb_walk_frags(skb, iter) {
288 		if (n == ARRAY_SIZE(buf))
289 			goto unmap;
290 
291 		addr = dma_map_single(dev->dev, iter->data, iter->len,
292 				      DMA_TO_DEVICE);
293 		if (dma_mapping_error(dev->dev, addr))
294 			goto unmap;
295 
296 		buf[n].addr = addr;
297 		buf[n++].len = iter->len;
298 	}
299 
300 	if (q->queued + (n + 1) / 2 >= q->ndesc - 1)
301 		goto unmap;
302 
303 	return dev->queue_ops->add_buf(dev, q, buf, n, tx_info, skb, t);
304 
305 unmap:
306 	ret = -ENOMEM;
307 	for (n--; n > 0; n--)
308 		dma_unmap_single(dev->dev, buf[n].addr, buf[n].len,
309 				 DMA_TO_DEVICE);
310 
311 free:
312 	e.skb = skb;
313 	e.txwi = t;
314 	dev->drv->tx_complete_skb(dev, q, &e, true);
315 	mt76_put_txwi(dev, t);
316 	return ret;
317 }
318 EXPORT_SYMBOL_GPL(mt76_dma_tx_queue_skb);
319 
320 static int
321 mt76_dma_rx_fill(struct mt76_dev *dev, struct mt76_queue *q, bool napi)
322 {
323 	dma_addr_t addr;
324 	void *buf;
325 	int frames = 0;
326 	int len = SKB_WITH_OVERHEAD(q->buf_size);
327 	int offset = q->buf_offset;
328 	int idx;
329 
330 	spin_lock_bh(&q->lock);
331 
332 	while (q->queued < q->ndesc - 1) {
333 		struct mt76_queue_buf qbuf;
334 
335 		buf = page_frag_alloc(&q->rx_page, q->buf_size, GFP_ATOMIC);
336 		if (!buf)
337 			break;
338 
339 		addr = dma_map_single(dev->dev, buf, len, DMA_FROM_DEVICE);
340 		if (dma_mapping_error(dev->dev, addr)) {
341 			skb_free_frag(buf);
342 			break;
343 		}
344 
345 		qbuf.addr = addr + offset;
346 		qbuf.len = len - offset;
347 		idx = mt76_dma_add_buf(dev, q, &qbuf, 1, 0, buf, NULL);
348 		frames++;
349 	}
350 
351 	if (frames)
352 		mt76_dma_kick_queue(dev, q);
353 
354 	spin_unlock_bh(&q->lock);
355 
356 	return frames;
357 }
358 
359 static void
360 mt76_dma_rx_cleanup(struct mt76_dev *dev, struct mt76_queue *q)
361 {
362 	struct page *page;
363 	void *buf;
364 	bool more;
365 
366 	spin_lock_bh(&q->lock);
367 	do {
368 		buf = mt76_dma_dequeue(dev, q, true, NULL, NULL, &more);
369 		if (!buf)
370 			break;
371 
372 		skb_free_frag(buf);
373 	} while (1);
374 	spin_unlock_bh(&q->lock);
375 
376 	if (!q->rx_page.va)
377 		return;
378 
379 	page = virt_to_page(q->rx_page.va);
380 	__page_frag_cache_drain(page, q->rx_page.pagecnt_bias);
381 	memset(&q->rx_page, 0, sizeof(q->rx_page));
382 }
383 
384 static void
385 mt76_dma_rx_reset(struct mt76_dev *dev, enum mt76_rxq_id qid)
386 {
387 	struct mt76_queue *q = &dev->q_rx[qid];
388 	int i;
389 
390 	for (i = 0; i < q->ndesc; i++)
391 		q->desc[i].ctrl &= ~cpu_to_le32(MT_DMA_CTL_DMA_DONE);
392 
393 	mt76_dma_rx_cleanup(dev, q);
394 	mt76_dma_sync_idx(dev, q);
395 	mt76_dma_rx_fill(dev, q, false);
396 }
397 
398 static void
399 mt76_add_fragment(struct mt76_dev *dev, struct mt76_queue *q, void *data,
400 		  int len, bool more)
401 {
402 	struct page *page = virt_to_head_page(data);
403 	int offset = data - page_address(page);
404 	struct sk_buff *skb = q->rx_head;
405 
406 	offset += q->buf_offset;
407 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page, offset, len,
408 			q->buf_size);
409 
410 	if (more)
411 		return;
412 
413 	q->rx_head = NULL;
414 	dev->drv->rx_skb(dev, q - dev->q_rx, skb);
415 }
416 
417 static int
418 mt76_dma_rx_process(struct mt76_dev *dev, struct mt76_queue *q, int budget)
419 {
420 	struct sk_buff *skb;
421 	unsigned char *data;
422 	int len;
423 	int done = 0;
424 	bool more;
425 
426 	while (done < budget) {
427 		u32 info;
428 
429 		data = mt76_dma_dequeue(dev, q, false, &len, &info, &more);
430 		if (!data)
431 			break;
432 
433 		if (q->rx_head) {
434 			mt76_add_fragment(dev, q, data, len, more);
435 			continue;
436 		}
437 
438 		skb = build_skb(data, q->buf_size);
439 		if (!skb) {
440 			skb_free_frag(data);
441 			continue;
442 		}
443 
444 		skb_reserve(skb, q->buf_offset);
445 		if (skb->tail + len > skb->end) {
446 			dev_kfree_skb(skb);
447 			continue;
448 		}
449 
450 		if (q == &dev->q_rx[MT_RXQ_MCU]) {
451 			u32 *rxfce = (u32 *) skb->cb;
452 			*rxfce = info;
453 		}
454 
455 		__skb_put(skb, len);
456 		done++;
457 
458 		if (more) {
459 			q->rx_head = skb;
460 			continue;
461 		}
462 
463 		dev->drv->rx_skb(dev, q - dev->q_rx, skb);
464 	}
465 
466 	mt76_dma_rx_fill(dev, q, true);
467 	return done;
468 }
469 
470 static int
471 mt76_dma_rx_poll(struct napi_struct *napi, int budget)
472 {
473 	struct mt76_dev *dev;
474 	int qid, done = 0, cur;
475 
476 	dev = container_of(napi->dev, struct mt76_dev, napi_dev);
477 	qid = napi - dev->napi;
478 
479 	rcu_read_lock();
480 
481 	do {
482 		cur = mt76_dma_rx_process(dev, &dev->q_rx[qid], budget - done);
483 		mt76_rx_poll_complete(dev, qid, napi);
484 		done += cur;
485 	} while (cur && done < budget);
486 
487 	rcu_read_unlock();
488 
489 	if (done < budget) {
490 		napi_complete(napi);
491 		dev->drv->rx_poll_complete(dev, qid);
492 	}
493 
494 	return done;
495 }
496 
497 static int
498 mt76_dma_init(struct mt76_dev *dev)
499 {
500 	int i;
501 
502 	init_dummy_netdev(&dev->napi_dev);
503 
504 	for (i = 0; i < ARRAY_SIZE(dev->q_rx); i++) {
505 		netif_napi_add(&dev->napi_dev, &dev->napi[i], mt76_dma_rx_poll,
506 			       64);
507 		mt76_dma_rx_fill(dev, &dev->q_rx[i], false);
508 		skb_queue_head_init(&dev->rx_skb[i]);
509 		napi_enable(&dev->napi[i]);
510 	}
511 
512 	return 0;
513 }
514 
515 static const struct mt76_queue_ops mt76_dma_ops = {
516 	.init = mt76_dma_init,
517 	.alloc = mt76_dma_alloc_queue,
518 	.add_buf = mt76_dma_add_buf,
519 	.tx_queue_skb = mt76_dma_tx_queue_skb,
520 	.tx_cleanup = mt76_dma_tx_cleanup,
521 	.rx_reset = mt76_dma_rx_reset,
522 	.kick = mt76_dma_kick_queue,
523 };
524 
525 int mt76_dma_attach(struct mt76_dev *dev)
526 {
527 	dev->queue_ops = &mt76_dma_ops;
528 	return 0;
529 }
530 EXPORT_SYMBOL_GPL(mt76_dma_attach);
531 
532 void mt76_dma_cleanup(struct mt76_dev *dev)
533 {
534 	int i;
535 
536 	for (i = 0; i < ARRAY_SIZE(dev->q_tx); i++)
537 		mt76_dma_tx_cleanup(dev, i, true);
538 
539 	for (i = 0; i < ARRAY_SIZE(dev->q_rx); i++) {
540 		netif_napi_del(&dev->napi[i]);
541 		mt76_dma_rx_cleanup(dev, &dev->q_rx[i]);
542 	}
543 }
544 EXPORT_SYMBOL_GPL(mt76_dma_cleanup);
545