1 // SPDX-License-Identifier: ISC
2 /*
3  * Copyright (C) 2016 Felix Fietkau <nbd@nbd.name>
4  */
5 
6 #include <linux/dma-mapping.h>
7 #include "mt76.h"
8 #include "dma.h"
9 
10 static struct mt76_txwi_cache *
11 mt76_alloc_txwi(struct mt76_dev *dev)
12 {
13 	struct mt76_txwi_cache *t;
14 	dma_addr_t addr;
15 	u8 *txwi;
16 	int size;
17 
18 	size = L1_CACHE_ALIGN(dev->drv->txwi_size + sizeof(*t));
19 	txwi = devm_kzalloc(dev->dev, size, GFP_ATOMIC);
20 	if (!txwi)
21 		return NULL;
22 
23 	addr = dma_map_single(dev->dev, txwi, dev->drv->txwi_size,
24 			      DMA_TO_DEVICE);
25 	t = (struct mt76_txwi_cache *)(txwi + dev->drv->txwi_size);
26 	t->dma_addr = addr;
27 
28 	return t;
29 }
30 
31 static struct mt76_txwi_cache *
32 __mt76_get_txwi(struct mt76_dev *dev)
33 {
34 	struct mt76_txwi_cache *t = NULL;
35 
36 	spin_lock(&dev->lock);
37 	if (!list_empty(&dev->txwi_cache)) {
38 		t = list_first_entry(&dev->txwi_cache, struct mt76_txwi_cache,
39 				     list);
40 		list_del(&t->list);
41 	}
42 	spin_unlock(&dev->lock);
43 
44 	return t;
45 }
46 
47 static struct mt76_txwi_cache *
48 mt76_get_txwi(struct mt76_dev *dev)
49 {
50 	struct mt76_txwi_cache *t = __mt76_get_txwi(dev);
51 
52 	if (t)
53 		return t;
54 
55 	return mt76_alloc_txwi(dev);
56 }
57 
58 void
59 mt76_put_txwi(struct mt76_dev *dev, struct mt76_txwi_cache *t)
60 {
61 	if (!t)
62 		return;
63 
64 	spin_lock(&dev->lock);
65 	list_add(&t->list, &dev->txwi_cache);
66 	spin_unlock(&dev->lock);
67 }
68 EXPORT_SYMBOL_GPL(mt76_put_txwi);
69 
70 static void
71 mt76_free_pending_txwi(struct mt76_dev *dev)
72 {
73 	struct mt76_txwi_cache *t;
74 
75 	local_bh_disable();
76 	while ((t = __mt76_get_txwi(dev)) != NULL)
77 		dma_unmap_single(dev->dev, t->dma_addr, dev->drv->txwi_size,
78 				 DMA_TO_DEVICE);
79 	local_bh_enable();
80 }
81 
82 static void
83 mt76_dma_sync_idx(struct mt76_dev *dev, struct mt76_queue *q)
84 {
85 	writel(q->desc_dma, &q->regs->desc_base);
86 	writel(q->ndesc, &q->regs->ring_size);
87 	q->head = readl(&q->regs->dma_idx);
88 	q->tail = q->head;
89 }
90 
91 static void
92 mt76_dma_queue_reset(struct mt76_dev *dev, struct mt76_queue *q)
93 {
94 	int i;
95 
96 	if (!q || !q->ndesc)
97 		return;
98 
99 	/* clear descriptors */
100 	for (i = 0; i < q->ndesc; i++)
101 		q->desc[i].ctrl = cpu_to_le32(MT_DMA_CTL_DMA_DONE);
102 
103 	writel(0, &q->regs->cpu_idx);
104 	writel(0, &q->regs->dma_idx);
105 	mt76_dma_sync_idx(dev, q);
106 }
107 
108 static int
109 mt76_dma_alloc_queue(struct mt76_dev *dev, struct mt76_queue *q,
110 		     int idx, int n_desc, int bufsize,
111 		     u32 ring_base)
112 {
113 	int size;
114 
115 	spin_lock_init(&q->lock);
116 	spin_lock_init(&q->cleanup_lock);
117 
118 	q->regs = dev->mmio.regs + ring_base + idx * MT_RING_SIZE;
119 	q->ndesc = n_desc;
120 	q->buf_size = bufsize;
121 	q->hw_idx = idx;
122 
123 	size = q->ndesc * sizeof(struct mt76_desc);
124 	q->desc = dmam_alloc_coherent(dev->dev, size, &q->desc_dma, GFP_KERNEL);
125 	if (!q->desc)
126 		return -ENOMEM;
127 
128 	size = q->ndesc * sizeof(*q->entry);
129 	q->entry = devm_kzalloc(dev->dev, size, GFP_KERNEL);
130 	if (!q->entry)
131 		return -ENOMEM;
132 
133 	mt76_dma_queue_reset(dev, q);
134 
135 	return 0;
136 }
137 
138 static int
139 mt76_dma_add_buf(struct mt76_dev *dev, struct mt76_queue *q,
140 		 struct mt76_queue_buf *buf, int nbufs, u32 info,
141 		 struct sk_buff *skb, void *txwi)
142 {
143 	struct mt76_queue_entry *entry;
144 	struct mt76_desc *desc;
145 	u32 ctrl;
146 	int i, idx = -1;
147 
148 	if (txwi) {
149 		q->entry[q->head].txwi = DMA_DUMMY_DATA;
150 		q->entry[q->head].skip_buf0 = true;
151 	}
152 
153 	for (i = 0; i < nbufs; i += 2, buf += 2) {
154 		u32 buf0 = buf[0].addr, buf1 = 0;
155 
156 		idx = q->head;
157 		q->head = (q->head + 1) % q->ndesc;
158 
159 		desc = &q->desc[idx];
160 		entry = &q->entry[idx];
161 
162 		if (buf[0].skip_unmap)
163 			entry->skip_buf0 = true;
164 		entry->skip_buf1 = i == nbufs - 1;
165 
166 		entry->dma_addr[0] = buf[0].addr;
167 		entry->dma_len[0] = buf[0].len;
168 
169 		ctrl = FIELD_PREP(MT_DMA_CTL_SD_LEN0, buf[0].len);
170 		if (i < nbufs - 1) {
171 			entry->dma_addr[1] = buf[1].addr;
172 			entry->dma_len[1] = buf[1].len;
173 			buf1 = buf[1].addr;
174 			ctrl |= FIELD_PREP(MT_DMA_CTL_SD_LEN1, buf[1].len);
175 			if (buf[1].skip_unmap)
176 				entry->skip_buf1 = true;
177 		}
178 
179 		if (i == nbufs - 1)
180 			ctrl |= MT_DMA_CTL_LAST_SEC0;
181 		else if (i == nbufs - 2)
182 			ctrl |= MT_DMA_CTL_LAST_SEC1;
183 
184 		WRITE_ONCE(desc->buf0, cpu_to_le32(buf0));
185 		WRITE_ONCE(desc->buf1, cpu_to_le32(buf1));
186 		WRITE_ONCE(desc->info, cpu_to_le32(info));
187 		WRITE_ONCE(desc->ctrl, cpu_to_le32(ctrl));
188 
189 		q->queued++;
190 	}
191 
192 	q->entry[idx].txwi = txwi;
193 	q->entry[idx].skb = skb;
194 	q->entry[idx].wcid = 0xffff;
195 
196 	return idx;
197 }
198 
199 static void
200 mt76_dma_tx_cleanup_idx(struct mt76_dev *dev, struct mt76_queue *q, int idx,
201 			struct mt76_queue_entry *prev_e)
202 {
203 	struct mt76_queue_entry *e = &q->entry[idx];
204 
205 	if (!e->skip_buf0)
206 		dma_unmap_single(dev->dev, e->dma_addr[0], e->dma_len[0],
207 				 DMA_TO_DEVICE);
208 
209 	if (!e->skip_buf1)
210 		dma_unmap_single(dev->dev, e->dma_addr[1], e->dma_len[1],
211 				 DMA_TO_DEVICE);
212 
213 	if (e->txwi == DMA_DUMMY_DATA)
214 		e->txwi = NULL;
215 
216 	if (e->skb == DMA_DUMMY_DATA)
217 		e->skb = NULL;
218 
219 	*prev_e = *e;
220 	memset(e, 0, sizeof(*e));
221 }
222 
223 static void
224 mt76_dma_kick_queue(struct mt76_dev *dev, struct mt76_queue *q)
225 {
226 	wmb();
227 	writel(q->head, &q->regs->cpu_idx);
228 }
229 
230 static void
231 mt76_dma_tx_cleanup(struct mt76_dev *dev, struct mt76_queue *q, bool flush)
232 {
233 	struct mt76_queue_entry entry;
234 	int last;
235 
236 	if (!q || !q->ndesc)
237 		return;
238 
239 	spin_lock_bh(&q->cleanup_lock);
240 	if (flush)
241 		last = -1;
242 	else
243 		last = readl(&q->regs->dma_idx);
244 
245 	while (q->queued > 0 && q->tail != last) {
246 		mt76_dma_tx_cleanup_idx(dev, q, q->tail, &entry);
247 		mt76_queue_tx_complete(dev, q, &entry);
248 
249 		if (entry.txwi) {
250 			if (!(dev->drv->drv_flags & MT_DRV_TXWI_NO_FREE))
251 				mt76_put_txwi(dev, entry.txwi);
252 		}
253 
254 		if (!flush && q->tail == last)
255 			last = readl(&q->regs->dma_idx);
256 
257 	}
258 	spin_unlock_bh(&q->cleanup_lock);
259 
260 	if (flush) {
261 		spin_lock_bh(&q->lock);
262 		mt76_dma_sync_idx(dev, q);
263 		mt76_dma_kick_queue(dev, q);
264 		spin_unlock_bh(&q->lock);
265 	}
266 
267 	if (!q->queued)
268 		wake_up(&dev->tx_wait);
269 }
270 
271 static void *
272 mt76_dma_get_buf(struct mt76_dev *dev, struct mt76_queue *q, int idx,
273 		 int *len, u32 *info, bool *more)
274 {
275 	struct mt76_queue_entry *e = &q->entry[idx];
276 	struct mt76_desc *desc = &q->desc[idx];
277 	dma_addr_t buf_addr;
278 	void *buf = e->buf;
279 	int buf_len = SKB_WITH_OVERHEAD(q->buf_size);
280 
281 	buf_addr = e->dma_addr[0];
282 	if (len) {
283 		u32 ctl = le32_to_cpu(READ_ONCE(desc->ctrl));
284 		*len = FIELD_GET(MT_DMA_CTL_SD_LEN0, ctl);
285 		*more = !(ctl & MT_DMA_CTL_LAST_SEC0);
286 	}
287 
288 	if (info)
289 		*info = le32_to_cpu(desc->info);
290 
291 	dma_unmap_single(dev->dev, buf_addr, buf_len, DMA_FROM_DEVICE);
292 	e->buf = NULL;
293 
294 	return buf;
295 }
296 
297 static void *
298 mt76_dma_dequeue(struct mt76_dev *dev, struct mt76_queue *q, bool flush,
299 		 int *len, u32 *info, bool *more)
300 {
301 	int idx = q->tail;
302 
303 	*more = false;
304 	if (!q->queued)
305 		return NULL;
306 
307 	if (flush)
308 		q->desc[idx].ctrl |= cpu_to_le32(MT_DMA_CTL_DMA_DONE);
309 	else if (!(q->desc[idx].ctrl & cpu_to_le32(MT_DMA_CTL_DMA_DONE)))
310 		return NULL;
311 
312 	q->tail = (q->tail + 1) % q->ndesc;
313 	q->queued--;
314 
315 	return mt76_dma_get_buf(dev, q, idx, len, info, more);
316 }
317 
318 static int
319 mt76_dma_tx_queue_skb_raw(struct mt76_dev *dev, struct mt76_queue *q,
320 			  struct sk_buff *skb, u32 tx_info)
321 {
322 	struct mt76_queue_buf buf = {};
323 	dma_addr_t addr;
324 
325 	if (q->queued + 1 >= q->ndesc - 1)
326 		goto error;
327 
328 	addr = dma_map_single(dev->dev, skb->data, skb->len,
329 			      DMA_TO_DEVICE);
330 	if (unlikely(dma_mapping_error(dev->dev, addr)))
331 		goto error;
332 
333 	buf.addr = addr;
334 	buf.len = skb->len;
335 
336 	spin_lock_bh(&q->lock);
337 	mt76_dma_add_buf(dev, q, &buf, 1, tx_info, skb, NULL);
338 	mt76_dma_kick_queue(dev, q);
339 	spin_unlock_bh(&q->lock);
340 
341 	return 0;
342 
343 error:
344 	dev_kfree_skb(skb);
345 	return -ENOMEM;
346 }
347 
348 static int
349 mt76_dma_tx_queue_skb(struct mt76_dev *dev, struct mt76_queue *q,
350 		      struct sk_buff *skb, struct mt76_wcid *wcid,
351 		      struct ieee80211_sta *sta)
352 {
353 	struct ieee80211_tx_status status = {
354 		.sta = sta,
355 	};
356 	struct mt76_tx_info tx_info = {
357 		.skb = skb,
358 	};
359 	struct ieee80211_hw *hw;
360 	int len, n = 0, ret = -ENOMEM;
361 	struct mt76_txwi_cache *t;
362 	struct sk_buff *iter;
363 	dma_addr_t addr;
364 	u8 *txwi;
365 
366 	t = mt76_get_txwi(dev);
367 	if (!t)
368 		goto free_skb;
369 
370 	txwi = mt76_get_txwi_ptr(dev, t);
371 
372 	skb->prev = skb->next = NULL;
373 	if (dev->drv->drv_flags & MT_DRV_TX_ALIGNED4_SKBS)
374 		mt76_insert_hdr_pad(skb);
375 
376 	len = skb_headlen(skb);
377 	addr = dma_map_single(dev->dev, skb->data, len, DMA_TO_DEVICE);
378 	if (unlikely(dma_mapping_error(dev->dev, addr)))
379 		goto free;
380 
381 	tx_info.buf[n].addr = t->dma_addr;
382 	tx_info.buf[n++].len = dev->drv->txwi_size;
383 	tx_info.buf[n].addr = addr;
384 	tx_info.buf[n++].len = len;
385 
386 	skb_walk_frags(skb, iter) {
387 		if (n == ARRAY_SIZE(tx_info.buf))
388 			goto unmap;
389 
390 		addr = dma_map_single(dev->dev, iter->data, iter->len,
391 				      DMA_TO_DEVICE);
392 		if (unlikely(dma_mapping_error(dev->dev, addr)))
393 			goto unmap;
394 
395 		tx_info.buf[n].addr = addr;
396 		tx_info.buf[n++].len = iter->len;
397 	}
398 	tx_info.nbuf = n;
399 
400 	if (q->queued + (tx_info.nbuf + 1) / 2 >= q->ndesc - 1) {
401 		ret = -ENOMEM;
402 		goto unmap;
403 	}
404 
405 	dma_sync_single_for_cpu(dev->dev, t->dma_addr, dev->drv->txwi_size,
406 				DMA_TO_DEVICE);
407 	ret = dev->drv->tx_prepare_skb(dev, txwi, q->qid, wcid, sta, &tx_info);
408 	dma_sync_single_for_device(dev->dev, t->dma_addr, dev->drv->txwi_size,
409 				   DMA_TO_DEVICE);
410 	if (ret < 0)
411 		goto unmap;
412 
413 	return mt76_dma_add_buf(dev, q, tx_info.buf, tx_info.nbuf,
414 				tx_info.info, tx_info.skb, t);
415 
416 unmap:
417 	for (n--; n > 0; n--)
418 		dma_unmap_single(dev->dev, tx_info.buf[n].addr,
419 				 tx_info.buf[n].len, DMA_TO_DEVICE);
420 
421 free:
422 #ifdef CONFIG_NL80211_TESTMODE
423 	/* fix tx_done accounting on queue overflow */
424 	if (mt76_is_testmode_skb(dev, skb, &hw)) {
425 		struct mt76_phy *phy = hw->priv;
426 
427 		if (tx_info.skb == phy->test.tx_skb)
428 			phy->test.tx_done--;
429 	}
430 #endif
431 
432 	mt76_put_txwi(dev, t);
433 
434 free_skb:
435 	status.skb = tx_info.skb;
436 	hw = mt76_tx_status_get_hw(dev, tx_info.skb);
437 	ieee80211_tx_status_ext(hw, &status);
438 
439 	return ret;
440 }
441 
442 static int
443 mt76_dma_rx_fill(struct mt76_dev *dev, struct mt76_queue *q)
444 {
445 	dma_addr_t addr;
446 	void *buf;
447 	int frames = 0;
448 	int len = SKB_WITH_OVERHEAD(q->buf_size);
449 	int offset = q->buf_offset;
450 
451 	if (!q->ndesc)
452 		return 0;
453 
454 	spin_lock_bh(&q->lock);
455 
456 	while (q->queued < q->ndesc - 1) {
457 		struct mt76_queue_buf qbuf;
458 
459 		buf = page_frag_alloc(&q->rx_page, q->buf_size, GFP_ATOMIC);
460 		if (!buf)
461 			break;
462 
463 		addr = dma_map_single(dev->dev, buf, len, DMA_FROM_DEVICE);
464 		if (unlikely(dma_mapping_error(dev->dev, addr))) {
465 			skb_free_frag(buf);
466 			break;
467 		}
468 
469 		qbuf.addr = addr + offset;
470 		qbuf.len = len - offset;
471 		qbuf.skip_unmap = false;
472 		mt76_dma_add_buf(dev, q, &qbuf, 1, 0, buf, NULL);
473 		frames++;
474 	}
475 
476 	if (frames)
477 		mt76_dma_kick_queue(dev, q);
478 
479 	spin_unlock_bh(&q->lock);
480 
481 	return frames;
482 }
483 
484 static void
485 mt76_dma_rx_cleanup(struct mt76_dev *dev, struct mt76_queue *q)
486 {
487 	struct page *page;
488 	void *buf;
489 	bool more;
490 
491 	if (!q->ndesc)
492 		return;
493 
494 	spin_lock_bh(&q->lock);
495 	do {
496 		buf = mt76_dma_dequeue(dev, q, true, NULL, NULL, &more);
497 		if (!buf)
498 			break;
499 
500 		skb_free_frag(buf);
501 	} while (1);
502 	spin_unlock_bh(&q->lock);
503 
504 	if (!q->rx_page.va)
505 		return;
506 
507 	page = virt_to_page(q->rx_page.va);
508 	__page_frag_cache_drain(page, q->rx_page.pagecnt_bias);
509 	memset(&q->rx_page, 0, sizeof(q->rx_page));
510 }
511 
512 static void
513 mt76_dma_rx_reset(struct mt76_dev *dev, enum mt76_rxq_id qid)
514 {
515 	struct mt76_queue *q = &dev->q_rx[qid];
516 	int i;
517 
518 	if (!q->ndesc)
519 		return;
520 
521 	for (i = 0; i < q->ndesc; i++)
522 		q->desc[i].ctrl = cpu_to_le32(MT_DMA_CTL_DMA_DONE);
523 
524 	mt76_dma_rx_cleanup(dev, q);
525 	mt76_dma_sync_idx(dev, q);
526 	mt76_dma_rx_fill(dev, q);
527 
528 	if (!q->rx_head)
529 		return;
530 
531 	dev_kfree_skb(q->rx_head);
532 	q->rx_head = NULL;
533 }
534 
535 static void
536 mt76_add_fragment(struct mt76_dev *dev, struct mt76_queue *q, void *data,
537 		  int len, bool more)
538 {
539 	struct sk_buff *skb = q->rx_head;
540 	struct skb_shared_info *shinfo = skb_shinfo(skb);
541 	int nr_frags = shinfo->nr_frags;
542 
543 	if (nr_frags < ARRAY_SIZE(shinfo->frags)) {
544 		struct page *page = virt_to_head_page(data);
545 		int offset = data - page_address(page) + q->buf_offset;
546 
547 		skb_add_rx_frag(skb, nr_frags, page, offset, len, q->buf_size);
548 	} else {
549 		skb_free_frag(data);
550 	}
551 
552 	if (more)
553 		return;
554 
555 	q->rx_head = NULL;
556 	if (nr_frags < ARRAY_SIZE(shinfo->frags))
557 		dev->drv->rx_skb(dev, q - dev->q_rx, skb);
558 	else
559 		dev_kfree_skb(skb);
560 }
561 
562 static int
563 mt76_dma_rx_process(struct mt76_dev *dev, struct mt76_queue *q, int budget)
564 {
565 	int len, data_len, done = 0;
566 	struct sk_buff *skb;
567 	unsigned char *data;
568 	bool more;
569 
570 	while (done < budget) {
571 		u32 info;
572 
573 		data = mt76_dma_dequeue(dev, q, false, &len, &info, &more);
574 		if (!data)
575 			break;
576 
577 		if (q->rx_head)
578 			data_len = q->buf_size;
579 		else
580 			data_len = SKB_WITH_OVERHEAD(q->buf_size);
581 
582 		if (data_len < len + q->buf_offset) {
583 			dev_kfree_skb(q->rx_head);
584 			q->rx_head = NULL;
585 			goto free_frag;
586 		}
587 
588 		if (q->rx_head) {
589 			mt76_add_fragment(dev, q, data, len, more);
590 			continue;
591 		}
592 
593 		if (!more && dev->drv->rx_check &&
594 		    !(dev->drv->rx_check(dev, data, len)))
595 			goto free_frag;
596 
597 		skb = build_skb(data, q->buf_size);
598 		if (!skb)
599 			goto free_frag;
600 
601 		skb_reserve(skb, q->buf_offset);
602 
603 		if (q == &dev->q_rx[MT_RXQ_MCU]) {
604 			u32 *rxfce = (u32 *)skb->cb;
605 			*rxfce = info;
606 		}
607 
608 		__skb_put(skb, len);
609 		done++;
610 
611 		if (more) {
612 			q->rx_head = skb;
613 			continue;
614 		}
615 
616 		dev->drv->rx_skb(dev, q - dev->q_rx, skb);
617 		continue;
618 
619 free_frag:
620 		skb_free_frag(data);
621 	}
622 
623 	mt76_dma_rx_fill(dev, q);
624 	return done;
625 }
626 
627 int mt76_dma_rx_poll(struct napi_struct *napi, int budget)
628 {
629 	struct mt76_dev *dev;
630 	int qid, done = 0, cur;
631 
632 	dev = container_of(napi->dev, struct mt76_dev, napi_dev);
633 	qid = napi - dev->napi;
634 
635 	rcu_read_lock();
636 
637 	do {
638 		cur = mt76_dma_rx_process(dev, &dev->q_rx[qid], budget - done);
639 		mt76_rx_poll_complete(dev, qid, napi);
640 		done += cur;
641 	} while (cur && done < budget);
642 
643 	rcu_read_unlock();
644 
645 	if (done < budget && napi_complete(napi))
646 		dev->drv->rx_poll_complete(dev, qid);
647 
648 	return done;
649 }
650 EXPORT_SYMBOL_GPL(mt76_dma_rx_poll);
651 
652 static int
653 mt76_dma_init(struct mt76_dev *dev,
654 	      int (*poll)(struct napi_struct *napi, int budget))
655 {
656 	int i;
657 
658 	init_dummy_netdev(&dev->napi_dev);
659 	init_dummy_netdev(&dev->tx_napi_dev);
660 	snprintf(dev->napi_dev.name, sizeof(dev->napi_dev.name), "%s",
661 		 wiphy_name(dev->hw->wiphy));
662 	dev->napi_dev.threaded = 1;
663 
664 	mt76_for_each_q_rx(dev, i) {
665 		netif_napi_add(&dev->napi_dev, &dev->napi[i], poll, 64);
666 		mt76_dma_rx_fill(dev, &dev->q_rx[i]);
667 		napi_enable(&dev->napi[i]);
668 	}
669 
670 	return 0;
671 }
672 
673 static const struct mt76_queue_ops mt76_dma_ops = {
674 	.init = mt76_dma_init,
675 	.alloc = mt76_dma_alloc_queue,
676 	.reset_q = mt76_dma_queue_reset,
677 	.tx_queue_skb_raw = mt76_dma_tx_queue_skb_raw,
678 	.tx_queue_skb = mt76_dma_tx_queue_skb,
679 	.tx_cleanup = mt76_dma_tx_cleanup,
680 	.rx_cleanup = mt76_dma_rx_cleanup,
681 	.rx_reset = mt76_dma_rx_reset,
682 	.kick = mt76_dma_kick_queue,
683 };
684 
685 void mt76_dma_attach(struct mt76_dev *dev)
686 {
687 	dev->queue_ops = &mt76_dma_ops;
688 }
689 EXPORT_SYMBOL_GPL(mt76_dma_attach);
690 
691 void mt76_dma_cleanup(struct mt76_dev *dev)
692 {
693 	int i;
694 
695 	mt76_worker_disable(&dev->tx_worker);
696 	netif_napi_del(&dev->tx_napi);
697 
698 	for (i = 0; i < ARRAY_SIZE(dev->phy.q_tx); i++) {
699 		mt76_dma_tx_cleanup(dev, dev->phy.q_tx[i], true);
700 		if (dev->phy2)
701 			mt76_dma_tx_cleanup(dev, dev->phy2->q_tx[i], true);
702 	}
703 
704 	for (i = 0; i < ARRAY_SIZE(dev->q_mcu); i++)
705 		mt76_dma_tx_cleanup(dev, dev->q_mcu[i], true);
706 
707 	mt76_for_each_q_rx(dev, i) {
708 		netif_napi_del(&dev->napi[i]);
709 		mt76_dma_rx_cleanup(dev, &dev->q_rx[i]);
710 	}
711 
712 	mt76_free_pending_txwi(dev);
713 }
714 EXPORT_SYMBOL_GPL(mt76_dma_cleanup);
715