1 /* 2 * Marvell Wireless LAN device driver: WMM 3 * 4 * Copyright (C) 2011-2014, Marvell International Ltd. 5 * 6 * This software file (the "File") is distributed by Marvell International 7 * Ltd. under the terms of the GNU General Public License Version 2, June 1991 8 * (the "License"). You may use, redistribute and/or modify this File in 9 * accordance with the terms and conditions of the License, a copy of which 10 * is available by writing to the Free Software Foundation, Inc., 11 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA or on the 12 * worldwide web at http://www.gnu.org/licenses/old-licenses/gpl-2.0.txt. 13 * 14 * THE FILE IS DISTRIBUTED AS-IS, WITHOUT WARRANTY OF ANY KIND, AND THE 15 * IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE 16 * ARE EXPRESSLY DISCLAIMED. The License provides additional details about 17 * this warranty disclaimer. 18 */ 19 20 #include "decl.h" 21 #include "ioctl.h" 22 #include "util.h" 23 #include "fw.h" 24 #include "main.h" 25 #include "wmm.h" 26 #include "11n.h" 27 28 29 /* Maximum value FW can accept for driver delay in packet transmission */ 30 #define DRV_PKT_DELAY_TO_FW_MAX 512 31 32 33 #define WMM_QUEUED_PACKET_LOWER_LIMIT 180 34 35 #define WMM_QUEUED_PACKET_UPPER_LIMIT 200 36 37 /* Offset for TOS field in the IP header */ 38 #define IPTOS_OFFSET 5 39 40 static bool disable_tx_amsdu; 41 module_param(disable_tx_amsdu, bool, 0644); 42 43 /* WMM information IE */ 44 static const u8 wmm_info_ie[] = { WLAN_EID_VENDOR_SPECIFIC, 0x07, 45 0x00, 0x50, 0xf2, 0x02, 46 0x00, 0x01, 0x00 47 }; 48 49 static const u8 wmm_aci_to_qidx_map[] = { WMM_AC_BE, 50 WMM_AC_BK, 51 WMM_AC_VI, 52 WMM_AC_VO 53 }; 54 55 static u8 tos_to_tid[] = { 56 /* TID DSCP_P2 DSCP_P1 DSCP_P0 WMM_AC */ 57 0x01, /* 0 1 0 AC_BK */ 58 0x02, /* 0 0 0 AC_BK */ 59 0x00, /* 0 0 1 AC_BE */ 60 0x03, /* 0 1 1 AC_BE */ 61 0x04, /* 1 0 0 AC_VI */ 62 0x05, /* 1 0 1 AC_VI */ 63 0x06, /* 1 1 0 AC_VO */ 64 0x07 /* 1 1 1 AC_VO */ 65 }; 66 67 static u8 ac_to_tid[4][2] = { {1, 2}, {0, 3}, {4, 5}, {6, 7} }; 68 69 /* 70 * This function debug prints the priority parameters for a WMM AC. 71 */ 72 static void 73 mwifiex_wmm_ac_debug_print(const struct ieee_types_wmm_ac_parameters *ac_param) 74 { 75 const char *ac_str[] = { "BK", "BE", "VI", "VO" }; 76 77 pr_debug("info: WMM AC_%s: ACI=%d, ACM=%d, Aifsn=%d, " 78 "EcwMin=%d, EcwMax=%d, TxopLimit=%d\n", 79 ac_str[wmm_aci_to_qidx_map[(ac_param->aci_aifsn_bitmap 80 & MWIFIEX_ACI) >> 5]], 81 (ac_param->aci_aifsn_bitmap & MWIFIEX_ACI) >> 5, 82 (ac_param->aci_aifsn_bitmap & MWIFIEX_ACM) >> 4, 83 ac_param->aci_aifsn_bitmap & MWIFIEX_AIFSN, 84 ac_param->ecw_bitmap & MWIFIEX_ECW_MIN, 85 (ac_param->ecw_bitmap & MWIFIEX_ECW_MAX) >> 4, 86 le16_to_cpu(ac_param->tx_op_limit)); 87 } 88 89 /* 90 * This function allocates a route address list. 91 * 92 * The function also initializes the list with the provided RA. 93 */ 94 static struct mwifiex_ra_list_tbl * 95 mwifiex_wmm_allocate_ralist_node(struct mwifiex_adapter *adapter, const u8 *ra) 96 { 97 struct mwifiex_ra_list_tbl *ra_list; 98 99 ra_list = kzalloc(sizeof(struct mwifiex_ra_list_tbl), GFP_ATOMIC); 100 if (!ra_list) 101 return NULL; 102 103 INIT_LIST_HEAD(&ra_list->list); 104 skb_queue_head_init(&ra_list->skb_head); 105 106 memcpy(ra_list->ra, ra, ETH_ALEN); 107 108 ra_list->total_pkt_count = 0; 109 110 mwifiex_dbg(adapter, INFO, "info: allocated ra_list %p\n", ra_list); 111 112 return ra_list; 113 } 114 115 /* This function returns random no between 16 and 32 to be used as threshold 116 * for no of packets after which BA setup is initiated. 117 */ 118 static u8 mwifiex_get_random_ba_threshold(void) 119 { 120 u64 ns; 121 /* setup ba_packet_threshold here random number between 122 * [BA_SETUP_PACKET_OFFSET, 123 * BA_SETUP_PACKET_OFFSET+BA_SETUP_MAX_PACKET_THRESHOLD-1] 124 */ 125 ns = ktime_get_ns(); 126 ns += (ns >> 32) + (ns >> 16); 127 128 return ((u8)ns % BA_SETUP_MAX_PACKET_THRESHOLD) + BA_SETUP_PACKET_OFFSET; 129 } 130 131 /* 132 * This function allocates and adds a RA list for all TIDs 133 * with the given RA. 134 */ 135 void mwifiex_ralist_add(struct mwifiex_private *priv, const u8 *ra) 136 { 137 int i; 138 struct mwifiex_ra_list_tbl *ra_list; 139 struct mwifiex_adapter *adapter = priv->adapter; 140 struct mwifiex_sta_node *node; 141 142 143 for (i = 0; i < MAX_NUM_TID; ++i) { 144 ra_list = mwifiex_wmm_allocate_ralist_node(adapter, ra); 145 mwifiex_dbg(adapter, INFO, 146 "info: created ra_list %p\n", ra_list); 147 148 if (!ra_list) 149 break; 150 151 ra_list->is_11n_enabled = 0; 152 ra_list->tdls_link = false; 153 ra_list->ba_status = BA_SETUP_NONE; 154 ra_list->amsdu_in_ampdu = false; 155 if (!mwifiex_queuing_ra_based(priv)) { 156 if (mwifiex_is_tdls_link_setup 157 (mwifiex_get_tdls_link_status(priv, ra))) { 158 ra_list->tdls_link = true; 159 ra_list->is_11n_enabled = 160 mwifiex_tdls_peer_11n_enabled(priv, ra); 161 } else { 162 ra_list->is_11n_enabled = IS_11N_ENABLED(priv); 163 } 164 } else { 165 spin_lock_bh(&priv->sta_list_spinlock); 166 node = mwifiex_get_sta_entry(priv, ra); 167 if (node) 168 ra_list->tx_paused = node->tx_pause; 169 ra_list->is_11n_enabled = 170 mwifiex_is_sta_11n_enabled(priv, node); 171 if (ra_list->is_11n_enabled) 172 ra_list->max_amsdu = node->max_amsdu; 173 spin_unlock_bh(&priv->sta_list_spinlock); 174 } 175 176 mwifiex_dbg(adapter, DATA, "data: ralist %p: is_11n_enabled=%d\n", 177 ra_list, ra_list->is_11n_enabled); 178 179 if (ra_list->is_11n_enabled) { 180 ra_list->ba_pkt_count = 0; 181 ra_list->ba_packet_thr = 182 mwifiex_get_random_ba_threshold(); 183 } 184 list_add_tail(&ra_list->list, 185 &priv->wmm.tid_tbl_ptr[i].ra_list); 186 } 187 } 188 189 /* 190 * This function sets the WMM queue priorities to their default values. 191 */ 192 static void mwifiex_wmm_default_queue_priorities(struct mwifiex_private *priv) 193 { 194 /* Default queue priorities: VO->VI->BE->BK */ 195 priv->wmm.queue_priority[0] = WMM_AC_VO; 196 priv->wmm.queue_priority[1] = WMM_AC_VI; 197 priv->wmm.queue_priority[2] = WMM_AC_BE; 198 priv->wmm.queue_priority[3] = WMM_AC_BK; 199 } 200 201 /* 202 * This function map ACs to TIDs. 203 */ 204 static void 205 mwifiex_wmm_queue_priorities_tid(struct mwifiex_private *priv) 206 { 207 struct mwifiex_wmm_desc *wmm = &priv->wmm; 208 u8 *queue_priority = wmm->queue_priority; 209 int i; 210 211 for (i = 0; i < 4; ++i) { 212 tos_to_tid[7 - (i * 2)] = ac_to_tid[queue_priority[i]][1]; 213 tos_to_tid[6 - (i * 2)] = ac_to_tid[queue_priority[i]][0]; 214 } 215 216 for (i = 0; i < MAX_NUM_TID; ++i) 217 priv->tos_to_tid_inv[tos_to_tid[i]] = (u8)i; 218 219 atomic_set(&wmm->highest_queued_prio, HIGH_PRIO_TID); 220 } 221 222 /* 223 * This function initializes WMM priority queues. 224 */ 225 void 226 mwifiex_wmm_setup_queue_priorities(struct mwifiex_private *priv, 227 struct ieee_types_wmm_parameter *wmm_ie) 228 { 229 u16 cw_min, avg_back_off, tmp[4]; 230 u32 i, j, num_ac; 231 u8 ac_idx; 232 233 if (!wmm_ie || !priv->wmm_enabled) { 234 /* WMM is not enabled, just set the defaults and return */ 235 mwifiex_wmm_default_queue_priorities(priv); 236 return; 237 } 238 239 mwifiex_dbg(priv->adapter, INFO, 240 "info: WMM Parameter IE: version=%d,\t" 241 "qos_info Parameter Set Count=%d, Reserved=%#x\n", 242 wmm_ie->version, wmm_ie->qos_info_bitmap & 243 IEEE80211_WMM_IE_AP_QOSINFO_PARAM_SET_CNT_MASK, 244 wmm_ie->reserved); 245 246 for (num_ac = 0; num_ac < ARRAY_SIZE(wmm_ie->ac_params); num_ac++) { 247 u8 ecw = wmm_ie->ac_params[num_ac].ecw_bitmap; 248 u8 aci_aifsn = wmm_ie->ac_params[num_ac].aci_aifsn_bitmap; 249 cw_min = (1 << (ecw & MWIFIEX_ECW_MIN)) - 1; 250 avg_back_off = (cw_min >> 1) + (aci_aifsn & MWIFIEX_AIFSN); 251 252 ac_idx = wmm_aci_to_qidx_map[(aci_aifsn & MWIFIEX_ACI) >> 5]; 253 priv->wmm.queue_priority[ac_idx] = ac_idx; 254 tmp[ac_idx] = avg_back_off; 255 256 mwifiex_dbg(priv->adapter, INFO, 257 "info: WMM: CWmax=%d CWmin=%d Avg Back-off=%d\n", 258 (1 << ((ecw & MWIFIEX_ECW_MAX) >> 4)) - 1, 259 cw_min, avg_back_off); 260 mwifiex_wmm_ac_debug_print(&wmm_ie->ac_params[num_ac]); 261 } 262 263 /* Bubble sort */ 264 for (i = 0; i < num_ac; i++) { 265 for (j = 1; j < num_ac - i; j++) { 266 if (tmp[j - 1] > tmp[j]) { 267 swap(tmp[j - 1], tmp[j]); 268 swap(priv->wmm.queue_priority[j - 1], 269 priv->wmm.queue_priority[j]); 270 } else if (tmp[j - 1] == tmp[j]) { 271 if (priv->wmm.queue_priority[j - 1] 272 < priv->wmm.queue_priority[j]) 273 swap(priv->wmm.queue_priority[j - 1], 274 priv->wmm.queue_priority[j]); 275 } 276 } 277 } 278 279 mwifiex_wmm_queue_priorities_tid(priv); 280 } 281 282 /* 283 * This function evaluates whether or not an AC is to be downgraded. 284 * 285 * In case the AC is not enabled, the highest AC is returned that is 286 * enabled and does not require admission control. 287 */ 288 static enum mwifiex_wmm_ac_e 289 mwifiex_wmm_eval_downgrade_ac(struct mwifiex_private *priv, 290 enum mwifiex_wmm_ac_e eval_ac) 291 { 292 int down_ac; 293 enum mwifiex_wmm_ac_e ret_ac; 294 struct mwifiex_wmm_ac_status *ac_status; 295 296 ac_status = &priv->wmm.ac_status[eval_ac]; 297 298 if (!ac_status->disabled) 299 /* Okay to use this AC, its enabled */ 300 return eval_ac; 301 302 /* Setup a default return value of the lowest priority */ 303 ret_ac = WMM_AC_BK; 304 305 /* 306 * Find the highest AC that is enabled and does not require 307 * admission control. The spec disallows downgrading to an AC, 308 * which is enabled due to a completed admission control. 309 * Unadmitted traffic is not to be sent on an AC with admitted 310 * traffic. 311 */ 312 for (down_ac = WMM_AC_BK; down_ac < eval_ac; down_ac++) { 313 ac_status = &priv->wmm.ac_status[down_ac]; 314 315 if (!ac_status->disabled && !ac_status->flow_required) 316 /* AC is enabled and does not require admission 317 control */ 318 ret_ac = (enum mwifiex_wmm_ac_e) down_ac; 319 } 320 321 return ret_ac; 322 } 323 324 /* 325 * This function downgrades WMM priority queue. 326 */ 327 void 328 mwifiex_wmm_setup_ac_downgrade(struct mwifiex_private *priv) 329 { 330 int ac_val; 331 332 mwifiex_dbg(priv->adapter, INFO, "info: WMM: AC Priorities:\t" 333 "BK(0), BE(1), VI(2), VO(3)\n"); 334 335 if (!priv->wmm_enabled) { 336 /* WMM is not enabled, default priorities */ 337 for (ac_val = WMM_AC_BK; ac_val <= WMM_AC_VO; ac_val++) 338 priv->wmm.ac_down_graded_vals[ac_val] = 339 (enum mwifiex_wmm_ac_e) ac_val; 340 } else { 341 for (ac_val = WMM_AC_BK; ac_val <= WMM_AC_VO; ac_val++) { 342 priv->wmm.ac_down_graded_vals[ac_val] 343 = mwifiex_wmm_eval_downgrade_ac(priv, 344 (enum mwifiex_wmm_ac_e) ac_val); 345 mwifiex_dbg(priv->adapter, INFO, 346 "info: WMM: AC PRIO %d maps to %d\n", 347 ac_val, 348 priv->wmm.ac_down_graded_vals[ac_val]); 349 } 350 } 351 } 352 353 /* 354 * This function converts the IP TOS field to an WMM AC 355 * Queue assignment. 356 */ 357 static enum mwifiex_wmm_ac_e 358 mwifiex_wmm_convert_tos_to_ac(struct mwifiex_adapter *adapter, u32 tos) 359 { 360 /* Map of TOS UP values to WMM AC */ 361 static const enum mwifiex_wmm_ac_e tos_to_ac[] = { 362 WMM_AC_BE, 363 WMM_AC_BK, 364 WMM_AC_BK, 365 WMM_AC_BE, 366 WMM_AC_VI, 367 WMM_AC_VI, 368 WMM_AC_VO, 369 WMM_AC_VO 370 }; 371 372 if (tos >= ARRAY_SIZE(tos_to_ac)) 373 return WMM_AC_BE; 374 375 return tos_to_ac[tos]; 376 } 377 378 /* 379 * This function evaluates a given TID and downgrades it to a lower 380 * TID if the WMM Parameter IE received from the AP indicates that the 381 * AP is disabled (due to call admission control (ACM bit). Mapping 382 * of TID to AC is taken care of internally. 383 */ 384 u8 mwifiex_wmm_downgrade_tid(struct mwifiex_private *priv, u32 tid) 385 { 386 enum mwifiex_wmm_ac_e ac, ac_down; 387 u8 new_tid; 388 389 ac = mwifiex_wmm_convert_tos_to_ac(priv->adapter, tid); 390 ac_down = priv->wmm.ac_down_graded_vals[ac]; 391 392 /* Send the index to tid array, picking from the array will be 393 * taken care by dequeuing function 394 */ 395 new_tid = ac_to_tid[ac_down][tid % 2]; 396 397 return new_tid; 398 } 399 400 /* 401 * This function initializes the WMM state information and the 402 * WMM data path queues. 403 */ 404 void 405 mwifiex_wmm_init(struct mwifiex_adapter *adapter) 406 { 407 int i, j; 408 struct mwifiex_private *priv; 409 410 for (j = 0; j < adapter->priv_num; ++j) { 411 priv = adapter->priv[j]; 412 if (!priv) 413 continue; 414 415 for (i = 0; i < MAX_NUM_TID; ++i) { 416 if (!disable_tx_amsdu && 417 adapter->tx_buf_size > MWIFIEX_TX_DATA_BUF_SIZE_2K) 418 priv->aggr_prio_tbl[i].amsdu = 419 priv->tos_to_tid_inv[i]; 420 else 421 priv->aggr_prio_tbl[i].amsdu = 422 BA_STREAM_NOT_ALLOWED; 423 priv->aggr_prio_tbl[i].ampdu_ap = 424 priv->tos_to_tid_inv[i]; 425 priv->aggr_prio_tbl[i].ampdu_user = 426 priv->tos_to_tid_inv[i]; 427 } 428 429 priv->aggr_prio_tbl[6].amsdu 430 = priv->aggr_prio_tbl[6].ampdu_ap 431 = priv->aggr_prio_tbl[6].ampdu_user 432 = BA_STREAM_NOT_ALLOWED; 433 434 priv->aggr_prio_tbl[7].amsdu = priv->aggr_prio_tbl[7].ampdu_ap 435 = priv->aggr_prio_tbl[7].ampdu_user 436 = BA_STREAM_NOT_ALLOWED; 437 438 mwifiex_set_ba_params(priv); 439 mwifiex_reset_11n_rx_seq_num(priv); 440 441 priv->wmm.drv_pkt_delay_max = MWIFIEX_WMM_DRV_DELAY_MAX; 442 atomic_set(&priv->wmm.tx_pkts_queued, 0); 443 atomic_set(&priv->wmm.highest_queued_prio, HIGH_PRIO_TID); 444 } 445 } 446 447 int mwifiex_bypass_txlist_empty(struct mwifiex_adapter *adapter) 448 { 449 struct mwifiex_private *priv; 450 int i; 451 452 for (i = 0; i < adapter->priv_num; i++) { 453 priv = adapter->priv[i]; 454 if (!priv) 455 continue; 456 if (adapter->if_ops.is_port_ready && 457 !adapter->if_ops.is_port_ready(priv)) 458 continue; 459 if (!skb_queue_empty(&priv->bypass_txq)) 460 return false; 461 } 462 463 return true; 464 } 465 466 /* 467 * This function checks if WMM Tx queue is empty. 468 */ 469 int 470 mwifiex_wmm_lists_empty(struct mwifiex_adapter *adapter) 471 { 472 int i; 473 struct mwifiex_private *priv; 474 475 for (i = 0; i < adapter->priv_num; ++i) { 476 priv = adapter->priv[i]; 477 if (!priv) 478 continue; 479 if (!priv->port_open && 480 (priv->bss_mode != NL80211_IFTYPE_ADHOC)) 481 continue; 482 if (adapter->if_ops.is_port_ready && 483 !adapter->if_ops.is_port_ready(priv)) 484 continue; 485 if (atomic_read(&priv->wmm.tx_pkts_queued)) 486 return false; 487 } 488 489 return true; 490 } 491 492 /* 493 * This function deletes all packets in an RA list node. 494 * 495 * The packet sent completion callback handler are called with 496 * status failure, after they are dequeued to ensure proper 497 * cleanup. The RA list node itself is freed at the end. 498 */ 499 static void 500 mwifiex_wmm_del_pkts_in_ralist_node(struct mwifiex_private *priv, 501 struct mwifiex_ra_list_tbl *ra_list) 502 { 503 struct mwifiex_adapter *adapter = priv->adapter; 504 struct sk_buff *skb, *tmp; 505 506 skb_queue_walk_safe(&ra_list->skb_head, skb, tmp) { 507 skb_unlink(skb, &ra_list->skb_head); 508 mwifiex_write_data_complete(adapter, skb, 0, -1); 509 } 510 } 511 512 /* 513 * This function deletes all packets in an RA list. 514 * 515 * Each nodes in the RA list are freed individually first, and then 516 * the RA list itself is freed. 517 */ 518 static void 519 mwifiex_wmm_del_pkts_in_ralist(struct mwifiex_private *priv, 520 struct list_head *ra_list_head) 521 { 522 struct mwifiex_ra_list_tbl *ra_list; 523 524 list_for_each_entry(ra_list, ra_list_head, list) 525 mwifiex_wmm_del_pkts_in_ralist_node(priv, ra_list); 526 } 527 528 /* 529 * This function deletes all packets in all RA lists. 530 */ 531 static void mwifiex_wmm_cleanup_queues(struct mwifiex_private *priv) 532 { 533 int i; 534 535 for (i = 0; i < MAX_NUM_TID; i++) 536 mwifiex_wmm_del_pkts_in_ralist(priv, &priv->wmm.tid_tbl_ptr[i]. 537 ra_list); 538 539 atomic_set(&priv->wmm.tx_pkts_queued, 0); 540 atomic_set(&priv->wmm.highest_queued_prio, HIGH_PRIO_TID); 541 } 542 543 /* 544 * This function deletes all route addresses from all RA lists. 545 */ 546 static void mwifiex_wmm_delete_all_ralist(struct mwifiex_private *priv) 547 { 548 struct mwifiex_ra_list_tbl *ra_list, *tmp_node; 549 int i; 550 551 for (i = 0; i < MAX_NUM_TID; ++i) { 552 mwifiex_dbg(priv->adapter, INFO, 553 "info: ra_list: freeing buf for tid %d\n", i); 554 list_for_each_entry_safe(ra_list, tmp_node, 555 &priv->wmm.tid_tbl_ptr[i].ra_list, 556 list) { 557 list_del(&ra_list->list); 558 kfree(ra_list); 559 } 560 561 INIT_LIST_HEAD(&priv->wmm.tid_tbl_ptr[i].ra_list); 562 } 563 } 564 565 static int mwifiex_free_ack_frame(int id, void *p, void *data) 566 { 567 pr_warn("Have pending ack frames!\n"); 568 kfree_skb(p); 569 return 0; 570 } 571 572 /* 573 * This function cleans up the Tx and Rx queues. 574 * 575 * Cleanup includes - 576 * - All packets in RA lists 577 * - All entries in Rx reorder table 578 * - All entries in Tx BA stream table 579 * - MPA buffer (if required) 580 * - All RA lists 581 */ 582 void 583 mwifiex_clean_txrx(struct mwifiex_private *priv) 584 { 585 struct sk_buff *skb, *tmp; 586 587 mwifiex_11n_cleanup_reorder_tbl(priv); 588 spin_lock_bh(&priv->wmm.ra_list_spinlock); 589 590 mwifiex_wmm_cleanup_queues(priv); 591 mwifiex_11n_delete_all_tx_ba_stream_tbl(priv); 592 593 if (priv->adapter->if_ops.cleanup_mpa_buf) 594 priv->adapter->if_ops.cleanup_mpa_buf(priv->adapter); 595 596 mwifiex_wmm_delete_all_ralist(priv); 597 memcpy(tos_to_tid, ac_to_tid, sizeof(tos_to_tid)); 598 599 if (priv->adapter->if_ops.clean_pcie_ring && 600 !test_bit(MWIFIEX_SURPRISE_REMOVED, &priv->adapter->work_flags)) 601 priv->adapter->if_ops.clean_pcie_ring(priv->adapter); 602 spin_unlock_bh(&priv->wmm.ra_list_spinlock); 603 604 skb_queue_walk_safe(&priv->tdls_txq, skb, tmp) { 605 skb_unlink(skb, &priv->tdls_txq); 606 mwifiex_write_data_complete(priv->adapter, skb, 0, -1); 607 } 608 609 skb_queue_walk_safe(&priv->bypass_txq, skb, tmp) { 610 skb_unlink(skb, &priv->bypass_txq); 611 mwifiex_write_data_complete(priv->adapter, skb, 0, -1); 612 } 613 atomic_set(&priv->adapter->bypass_tx_pending, 0); 614 615 idr_for_each(&priv->ack_status_frames, mwifiex_free_ack_frame, NULL); 616 idr_destroy(&priv->ack_status_frames); 617 } 618 619 /* 620 * This function retrieves a particular RA list node, matching with the 621 * given TID and RA address. 622 */ 623 struct mwifiex_ra_list_tbl * 624 mwifiex_wmm_get_ralist_node(struct mwifiex_private *priv, u8 tid, 625 const u8 *ra_addr) 626 { 627 struct mwifiex_ra_list_tbl *ra_list; 628 629 list_for_each_entry(ra_list, &priv->wmm.tid_tbl_ptr[tid].ra_list, 630 list) { 631 if (!memcmp(ra_list->ra, ra_addr, ETH_ALEN)) 632 return ra_list; 633 } 634 635 return NULL; 636 } 637 638 void mwifiex_update_ralist_tx_pause(struct mwifiex_private *priv, u8 *mac, 639 u8 tx_pause) 640 { 641 struct mwifiex_ra_list_tbl *ra_list; 642 u32 pkt_cnt = 0, tx_pkts_queued; 643 int i; 644 645 spin_lock_bh(&priv->wmm.ra_list_spinlock); 646 647 for (i = 0; i < MAX_NUM_TID; ++i) { 648 ra_list = mwifiex_wmm_get_ralist_node(priv, i, mac); 649 if (ra_list && ra_list->tx_paused != tx_pause) { 650 pkt_cnt += ra_list->total_pkt_count; 651 ra_list->tx_paused = tx_pause; 652 if (tx_pause) 653 priv->wmm.pkts_paused[i] += 654 ra_list->total_pkt_count; 655 else 656 priv->wmm.pkts_paused[i] -= 657 ra_list->total_pkt_count; 658 } 659 } 660 661 if (pkt_cnt) { 662 tx_pkts_queued = atomic_read(&priv->wmm.tx_pkts_queued); 663 if (tx_pause) 664 tx_pkts_queued -= pkt_cnt; 665 else 666 tx_pkts_queued += pkt_cnt; 667 668 atomic_set(&priv->wmm.tx_pkts_queued, tx_pkts_queued); 669 atomic_set(&priv->wmm.highest_queued_prio, HIGH_PRIO_TID); 670 } 671 spin_unlock_bh(&priv->wmm.ra_list_spinlock); 672 } 673 674 /* This function updates non-tdls peer ralist tx_pause while 675 * tdls channel switching 676 */ 677 void mwifiex_update_ralist_tx_pause_in_tdls_cs(struct mwifiex_private *priv, 678 u8 *mac, u8 tx_pause) 679 { 680 struct mwifiex_ra_list_tbl *ra_list; 681 u32 pkt_cnt = 0, tx_pkts_queued; 682 int i; 683 684 spin_lock_bh(&priv->wmm.ra_list_spinlock); 685 686 for (i = 0; i < MAX_NUM_TID; ++i) { 687 list_for_each_entry(ra_list, &priv->wmm.tid_tbl_ptr[i].ra_list, 688 list) { 689 if (!memcmp(ra_list->ra, mac, ETH_ALEN)) 690 continue; 691 692 if (ra_list->tx_paused != tx_pause) { 693 pkt_cnt += ra_list->total_pkt_count; 694 ra_list->tx_paused = tx_pause; 695 if (tx_pause) 696 priv->wmm.pkts_paused[i] += 697 ra_list->total_pkt_count; 698 else 699 priv->wmm.pkts_paused[i] -= 700 ra_list->total_pkt_count; 701 } 702 } 703 } 704 705 if (pkt_cnt) { 706 tx_pkts_queued = atomic_read(&priv->wmm.tx_pkts_queued); 707 if (tx_pause) 708 tx_pkts_queued -= pkt_cnt; 709 else 710 tx_pkts_queued += pkt_cnt; 711 712 atomic_set(&priv->wmm.tx_pkts_queued, tx_pkts_queued); 713 atomic_set(&priv->wmm.highest_queued_prio, HIGH_PRIO_TID); 714 } 715 spin_unlock_bh(&priv->wmm.ra_list_spinlock); 716 } 717 718 /* 719 * This function retrieves an RA list node for a given TID and 720 * RA address pair. 721 * 722 * If no such node is found, a new node is added first and then 723 * retrieved. 724 */ 725 struct mwifiex_ra_list_tbl * 726 mwifiex_wmm_get_queue_raptr(struct mwifiex_private *priv, u8 tid, 727 const u8 *ra_addr) 728 { 729 struct mwifiex_ra_list_tbl *ra_list; 730 731 ra_list = mwifiex_wmm_get_ralist_node(priv, tid, ra_addr); 732 if (ra_list) 733 return ra_list; 734 mwifiex_ralist_add(priv, ra_addr); 735 736 return mwifiex_wmm_get_ralist_node(priv, tid, ra_addr); 737 } 738 739 /* 740 * This function deletes RA list nodes for given mac for all TIDs. 741 * Function also decrements TX pending count accordingly. 742 */ 743 void 744 mwifiex_wmm_del_peer_ra_list(struct mwifiex_private *priv, const u8 *ra_addr) 745 { 746 struct mwifiex_ra_list_tbl *ra_list; 747 int i; 748 749 spin_lock_bh(&priv->wmm.ra_list_spinlock); 750 751 for (i = 0; i < MAX_NUM_TID; ++i) { 752 ra_list = mwifiex_wmm_get_ralist_node(priv, i, ra_addr); 753 754 if (!ra_list) 755 continue; 756 mwifiex_wmm_del_pkts_in_ralist_node(priv, ra_list); 757 if (ra_list->tx_paused) 758 priv->wmm.pkts_paused[i] -= ra_list->total_pkt_count; 759 else 760 atomic_sub(ra_list->total_pkt_count, 761 &priv->wmm.tx_pkts_queued); 762 list_del(&ra_list->list); 763 kfree(ra_list); 764 } 765 spin_unlock_bh(&priv->wmm.ra_list_spinlock); 766 } 767 768 /* 769 * This function checks if a particular RA list node exists in a given TID 770 * table index. 771 */ 772 int 773 mwifiex_is_ralist_valid(struct mwifiex_private *priv, 774 struct mwifiex_ra_list_tbl *ra_list, int ptr_index) 775 { 776 struct mwifiex_ra_list_tbl *rlist; 777 778 list_for_each_entry(rlist, &priv->wmm.tid_tbl_ptr[ptr_index].ra_list, 779 list) { 780 if (rlist == ra_list) 781 return true; 782 } 783 784 return false; 785 } 786 787 /* 788 * This function adds a packet to bypass TX queue. 789 * This is special TX queue for packets which can be sent even when port_open 790 * is false. 791 */ 792 void 793 mwifiex_wmm_add_buf_bypass_txqueue(struct mwifiex_private *priv, 794 struct sk_buff *skb) 795 { 796 skb_queue_tail(&priv->bypass_txq, skb); 797 } 798 799 /* 800 * This function adds a packet to WMM queue. 801 * 802 * In disconnected state the packet is immediately dropped and the 803 * packet send completion callback is called with status failure. 804 * 805 * Otherwise, the correct RA list node is located and the packet 806 * is queued at the list tail. 807 */ 808 void 809 mwifiex_wmm_add_buf_txqueue(struct mwifiex_private *priv, 810 struct sk_buff *skb) 811 { 812 struct mwifiex_adapter *adapter = priv->adapter; 813 u32 tid; 814 struct mwifiex_ra_list_tbl *ra_list; 815 u8 ra[ETH_ALEN], tid_down; 816 struct list_head list_head; 817 int tdls_status = TDLS_NOT_SETUP; 818 struct ethhdr *eth_hdr = (struct ethhdr *)skb->data; 819 struct mwifiex_txinfo *tx_info = MWIFIEX_SKB_TXCB(skb); 820 821 memcpy(ra, eth_hdr->h_dest, ETH_ALEN); 822 823 if (GET_BSS_ROLE(priv) == MWIFIEX_BSS_ROLE_STA && 824 ISSUPP_TDLS_ENABLED(adapter->fw_cap_info)) { 825 if (ntohs(eth_hdr->h_proto) == ETH_P_TDLS) 826 mwifiex_dbg(adapter, DATA, 827 "TDLS setup packet for %pM.\t" 828 "Don't block\n", ra); 829 else if (memcmp(priv->cfg_bssid, ra, ETH_ALEN)) 830 tdls_status = mwifiex_get_tdls_link_status(priv, ra); 831 } 832 833 if (!priv->media_connected && !mwifiex_is_skb_mgmt_frame(skb)) { 834 mwifiex_dbg(adapter, DATA, "data: drop packet in disconnect\n"); 835 mwifiex_write_data_complete(adapter, skb, 0, -1); 836 return; 837 } 838 839 tid = skb->priority; 840 841 spin_lock_bh(&priv->wmm.ra_list_spinlock); 842 843 tid_down = mwifiex_wmm_downgrade_tid(priv, tid); 844 845 /* In case of infra as we have already created the list during 846 association we just don't have to call get_queue_raptr, we will 847 have only 1 raptr for a tid in case of infra */ 848 if (!mwifiex_queuing_ra_based(priv) && 849 !mwifiex_is_skb_mgmt_frame(skb)) { 850 switch (tdls_status) { 851 case TDLS_SETUP_COMPLETE: 852 case TDLS_CHAN_SWITCHING: 853 case TDLS_IN_BASE_CHAN: 854 case TDLS_IN_OFF_CHAN: 855 ra_list = mwifiex_wmm_get_queue_raptr(priv, tid_down, 856 ra); 857 tx_info->flags |= MWIFIEX_BUF_FLAG_TDLS_PKT; 858 break; 859 case TDLS_SETUP_INPROGRESS: 860 skb_queue_tail(&priv->tdls_txq, skb); 861 spin_unlock_bh(&priv->wmm.ra_list_spinlock); 862 return; 863 default: 864 list_head = priv->wmm.tid_tbl_ptr[tid_down].ra_list; 865 ra_list = list_first_entry_or_null(&list_head, 866 struct mwifiex_ra_list_tbl, list); 867 break; 868 } 869 } else { 870 memcpy(ra, skb->data, ETH_ALEN); 871 if (ra[0] & 0x01 || mwifiex_is_skb_mgmt_frame(skb)) 872 eth_broadcast_addr(ra); 873 ra_list = mwifiex_wmm_get_queue_raptr(priv, tid_down, ra); 874 } 875 876 if (!ra_list) { 877 spin_unlock_bh(&priv->wmm.ra_list_spinlock); 878 mwifiex_write_data_complete(adapter, skb, 0, -1); 879 return; 880 } 881 882 skb_queue_tail(&ra_list->skb_head, skb); 883 884 ra_list->ba_pkt_count++; 885 ra_list->total_pkt_count++; 886 887 if (atomic_read(&priv->wmm.highest_queued_prio) < 888 priv->tos_to_tid_inv[tid_down]) 889 atomic_set(&priv->wmm.highest_queued_prio, 890 priv->tos_to_tid_inv[tid_down]); 891 892 if (ra_list->tx_paused) 893 priv->wmm.pkts_paused[tid_down]++; 894 else 895 atomic_inc(&priv->wmm.tx_pkts_queued); 896 897 spin_unlock_bh(&priv->wmm.ra_list_spinlock); 898 } 899 900 /* 901 * This function processes the get WMM status command response from firmware. 902 * 903 * The response may contain multiple TLVs - 904 * - AC Queue status TLVs 905 * - Current WMM Parameter IE TLV 906 * - Admission Control action frame TLVs 907 * 908 * This function parses the TLVs and then calls further specific functions 909 * to process any changes in the queue prioritize or state. 910 */ 911 int mwifiex_ret_wmm_get_status(struct mwifiex_private *priv, 912 const struct host_cmd_ds_command *resp) 913 { 914 u8 *curr = (u8 *) &resp->params.get_wmm_status; 915 uint16_t resp_len = le16_to_cpu(resp->size), tlv_len; 916 int mask = IEEE80211_WMM_IE_AP_QOSINFO_PARAM_SET_CNT_MASK; 917 bool valid = true; 918 919 struct mwifiex_ie_types_data *tlv_hdr; 920 struct mwifiex_ie_types_wmm_queue_status *tlv_wmm_qstatus; 921 struct ieee_types_wmm_parameter *wmm_param_ie = NULL; 922 struct mwifiex_wmm_ac_status *ac_status; 923 924 mwifiex_dbg(priv->adapter, INFO, 925 "info: WMM: WMM_GET_STATUS cmdresp received: %d\n", 926 resp_len); 927 928 while ((resp_len >= sizeof(tlv_hdr->header)) && valid) { 929 tlv_hdr = (struct mwifiex_ie_types_data *) curr; 930 tlv_len = le16_to_cpu(tlv_hdr->header.len); 931 932 if (resp_len < tlv_len + sizeof(tlv_hdr->header)) 933 break; 934 935 switch (le16_to_cpu(tlv_hdr->header.type)) { 936 case TLV_TYPE_WMMQSTATUS: 937 tlv_wmm_qstatus = 938 (struct mwifiex_ie_types_wmm_queue_status *) 939 tlv_hdr; 940 mwifiex_dbg(priv->adapter, CMD, 941 "info: CMD_RESP: WMM_GET_STATUS:\t" 942 "QSTATUS TLV: %d, %d, %d\n", 943 tlv_wmm_qstatus->queue_index, 944 tlv_wmm_qstatus->flow_required, 945 tlv_wmm_qstatus->disabled); 946 947 ac_status = &priv->wmm.ac_status[tlv_wmm_qstatus-> 948 queue_index]; 949 ac_status->disabled = tlv_wmm_qstatus->disabled; 950 ac_status->flow_required = 951 tlv_wmm_qstatus->flow_required; 952 ac_status->flow_created = tlv_wmm_qstatus->flow_created; 953 break; 954 955 case WLAN_EID_VENDOR_SPECIFIC: 956 /* 957 * Point the regular IEEE IE 2 bytes into the Marvell IE 958 * and setup the IEEE IE type and length byte fields 959 */ 960 961 wmm_param_ie = 962 (struct ieee_types_wmm_parameter *) (curr + 963 2); 964 wmm_param_ie->vend_hdr.len = (u8) tlv_len; 965 wmm_param_ie->vend_hdr.element_id = 966 WLAN_EID_VENDOR_SPECIFIC; 967 968 mwifiex_dbg(priv->adapter, CMD, 969 "info: CMD_RESP: WMM_GET_STATUS:\t" 970 "WMM Parameter Set Count: %d\n", 971 wmm_param_ie->qos_info_bitmap & mask); 972 973 if (wmm_param_ie->vend_hdr.len + 2 > 974 sizeof(struct ieee_types_wmm_parameter)) 975 break; 976 977 memcpy((u8 *) &priv->curr_bss_params.bss_descriptor. 978 wmm_ie, wmm_param_ie, 979 wmm_param_ie->vend_hdr.len + 2); 980 981 break; 982 983 default: 984 valid = false; 985 break; 986 } 987 988 curr += (tlv_len + sizeof(tlv_hdr->header)); 989 resp_len -= (tlv_len + sizeof(tlv_hdr->header)); 990 } 991 992 mwifiex_wmm_setup_queue_priorities(priv, wmm_param_ie); 993 mwifiex_wmm_setup_ac_downgrade(priv); 994 995 return 0; 996 } 997 998 /* 999 * Callback handler from the command module to allow insertion of a WMM TLV. 1000 * 1001 * If the BSS we are associating to supports WMM, this function adds the 1002 * required WMM Information IE to the association request command buffer in 1003 * the form of a Marvell extended IEEE IE. 1004 */ 1005 u32 1006 mwifiex_wmm_process_association_req(struct mwifiex_private *priv, 1007 u8 **assoc_buf, 1008 struct ieee_types_wmm_parameter *wmm_ie, 1009 struct ieee80211_ht_cap *ht_cap) 1010 { 1011 struct mwifiex_ie_types_wmm_param_set *wmm_tlv; 1012 u32 ret_len = 0; 1013 1014 /* Null checks */ 1015 if (!assoc_buf) 1016 return 0; 1017 if (!(*assoc_buf)) 1018 return 0; 1019 1020 if (!wmm_ie) 1021 return 0; 1022 1023 mwifiex_dbg(priv->adapter, INFO, 1024 "info: WMM: process assoc req: bss->wmm_ie=%#x\n", 1025 wmm_ie->vend_hdr.element_id); 1026 1027 if ((priv->wmm_required || 1028 (ht_cap && (priv->adapter->config_bands & BAND_GN || 1029 priv->adapter->config_bands & BAND_AN))) && 1030 wmm_ie->vend_hdr.element_id == WLAN_EID_VENDOR_SPECIFIC) { 1031 wmm_tlv = (struct mwifiex_ie_types_wmm_param_set *) *assoc_buf; 1032 wmm_tlv->header.type = cpu_to_le16((u16) wmm_info_ie[0]); 1033 wmm_tlv->header.len = cpu_to_le16((u16) wmm_info_ie[1]); 1034 memcpy(wmm_tlv->wmm_ie, &wmm_info_ie[2], 1035 le16_to_cpu(wmm_tlv->header.len)); 1036 if (wmm_ie->qos_info_bitmap & IEEE80211_WMM_IE_AP_QOSINFO_UAPSD) 1037 memcpy((u8 *) (wmm_tlv->wmm_ie 1038 + le16_to_cpu(wmm_tlv->header.len) 1039 - sizeof(priv->wmm_qosinfo)), 1040 &priv->wmm_qosinfo, sizeof(priv->wmm_qosinfo)); 1041 1042 ret_len = sizeof(wmm_tlv->header) 1043 + le16_to_cpu(wmm_tlv->header.len); 1044 1045 *assoc_buf += ret_len; 1046 } 1047 1048 return ret_len; 1049 } 1050 1051 /* 1052 * This function computes the time delay in the driver queues for a 1053 * given packet. 1054 * 1055 * When the packet is received at the OS/Driver interface, the current 1056 * time is set in the packet structure. The difference between the present 1057 * time and that received time is computed in this function and limited 1058 * based on pre-compiled limits in the driver. 1059 */ 1060 u8 1061 mwifiex_wmm_compute_drv_pkt_delay(struct mwifiex_private *priv, 1062 const struct sk_buff *skb) 1063 { 1064 u32 queue_delay = ktime_to_ms(net_timedelta(skb->tstamp)); 1065 u8 ret_val; 1066 1067 /* 1068 * Queue delay is passed as a uint8 in units of 2ms (ms shifted 1069 * by 1). Min value (other than 0) is therefore 2ms, max is 510ms. 1070 * 1071 * Pass max value if queue_delay is beyond the uint8 range 1072 */ 1073 ret_val = (u8) (min(queue_delay, priv->wmm.drv_pkt_delay_max) >> 1); 1074 1075 mwifiex_dbg(priv->adapter, DATA, "data: WMM: Pkt Delay: %d ms,\t" 1076 "%d ms sent to FW\n", queue_delay, ret_val); 1077 1078 return ret_val; 1079 } 1080 1081 /* 1082 * This function retrieves the highest priority RA list table pointer. 1083 */ 1084 static struct mwifiex_ra_list_tbl * 1085 mwifiex_wmm_get_highest_priolist_ptr(struct mwifiex_adapter *adapter, 1086 struct mwifiex_private **priv, int *tid) 1087 { 1088 struct mwifiex_private *priv_tmp; 1089 struct mwifiex_ra_list_tbl *ptr; 1090 struct mwifiex_tid_tbl *tid_ptr; 1091 atomic_t *hqp; 1092 int i, j; 1093 1094 /* check the BSS with highest priority first */ 1095 for (j = adapter->priv_num - 1; j >= 0; --j) { 1096 /* iterate over BSS with the equal priority */ 1097 list_for_each_entry(adapter->bss_prio_tbl[j].bss_prio_cur, 1098 &adapter->bss_prio_tbl[j].bss_prio_head, 1099 list) { 1100 1101 try_again: 1102 priv_tmp = adapter->bss_prio_tbl[j].bss_prio_cur->priv; 1103 1104 if (((priv_tmp->bss_mode != NL80211_IFTYPE_ADHOC) && 1105 !priv_tmp->port_open) || 1106 (atomic_read(&priv_tmp->wmm.tx_pkts_queued) == 0)) 1107 continue; 1108 1109 if (adapter->if_ops.is_port_ready && 1110 !adapter->if_ops.is_port_ready(priv_tmp)) 1111 continue; 1112 1113 /* iterate over the WMM queues of the BSS */ 1114 hqp = &priv_tmp->wmm.highest_queued_prio; 1115 for (i = atomic_read(hqp); i >= LOW_PRIO_TID; --i) { 1116 1117 spin_lock_bh(&priv_tmp->wmm.ra_list_spinlock); 1118 1119 tid_ptr = &(priv_tmp)->wmm. 1120 tid_tbl_ptr[tos_to_tid[i]]; 1121 1122 /* iterate over receiver addresses */ 1123 list_for_each_entry(ptr, &tid_ptr->ra_list, 1124 list) { 1125 1126 if (!ptr->tx_paused && 1127 !skb_queue_empty(&ptr->skb_head)) 1128 /* holds both locks */ 1129 goto found; 1130 } 1131 1132 spin_unlock_bh(&priv_tmp->wmm.ra_list_spinlock); 1133 } 1134 1135 if (atomic_read(&priv_tmp->wmm.tx_pkts_queued) != 0) { 1136 atomic_set(&priv_tmp->wmm.highest_queued_prio, 1137 HIGH_PRIO_TID); 1138 /* Iterate current private once more, since 1139 * there still exist packets in data queue 1140 */ 1141 goto try_again; 1142 } else 1143 atomic_set(&priv_tmp->wmm.highest_queued_prio, 1144 NO_PKT_PRIO_TID); 1145 } 1146 } 1147 1148 return NULL; 1149 1150 found: 1151 /* holds ra_list_spinlock */ 1152 if (atomic_read(hqp) > i) 1153 atomic_set(hqp, i); 1154 spin_unlock_bh(&priv_tmp->wmm.ra_list_spinlock); 1155 1156 *priv = priv_tmp; 1157 *tid = tos_to_tid[i]; 1158 1159 return ptr; 1160 } 1161 1162 /* This functions rotates ra and bss lists so packets are picked round robin. 1163 * 1164 * After a packet is successfully transmitted, rotate the ra list, so the ra 1165 * next to the one transmitted, will come first in the list. This way we pick 1166 * the ra' in a round robin fashion. Same applies to bss nodes of equal 1167 * priority. 1168 * 1169 * Function also increments wmm.packets_out counter. 1170 */ 1171 void mwifiex_rotate_priolists(struct mwifiex_private *priv, 1172 struct mwifiex_ra_list_tbl *ra, 1173 int tid) 1174 { 1175 struct mwifiex_adapter *adapter = priv->adapter; 1176 struct mwifiex_bss_prio_tbl *tbl = adapter->bss_prio_tbl; 1177 struct mwifiex_tid_tbl *tid_ptr = &priv->wmm.tid_tbl_ptr[tid]; 1178 1179 spin_lock_bh(&tbl[priv->bss_priority].bss_prio_lock); 1180 /* 1181 * dirty trick: we remove 'head' temporarily and reinsert it after 1182 * curr bss node. imagine list to stay fixed while head is moved 1183 */ 1184 list_move(&tbl[priv->bss_priority].bss_prio_head, 1185 &tbl[priv->bss_priority].bss_prio_cur->list); 1186 spin_unlock_bh(&tbl[priv->bss_priority].bss_prio_lock); 1187 1188 spin_lock_bh(&priv->wmm.ra_list_spinlock); 1189 if (mwifiex_is_ralist_valid(priv, ra, tid)) { 1190 priv->wmm.packets_out[tid]++; 1191 /* same as above */ 1192 list_move(&tid_ptr->ra_list, &ra->list); 1193 } 1194 spin_unlock_bh(&priv->wmm.ra_list_spinlock); 1195 } 1196 1197 /* 1198 * This function checks if 11n aggregation is possible. 1199 */ 1200 static int 1201 mwifiex_is_11n_aggragation_possible(struct mwifiex_private *priv, 1202 struct mwifiex_ra_list_tbl *ptr, 1203 int max_buf_size) 1204 { 1205 int count = 0, total_size = 0; 1206 struct sk_buff *skb, *tmp; 1207 int max_amsdu_size; 1208 1209 if (priv->bss_role == MWIFIEX_BSS_ROLE_UAP && priv->ap_11n_enabled && 1210 ptr->is_11n_enabled) 1211 max_amsdu_size = min_t(int, ptr->max_amsdu, max_buf_size); 1212 else 1213 max_amsdu_size = max_buf_size; 1214 1215 skb_queue_walk_safe(&ptr->skb_head, skb, tmp) { 1216 total_size += skb->len; 1217 if (total_size >= max_amsdu_size) 1218 break; 1219 if (++count >= MIN_NUM_AMSDU) 1220 return true; 1221 } 1222 1223 return false; 1224 } 1225 1226 /* 1227 * This function sends a single packet to firmware for transmission. 1228 */ 1229 static void 1230 mwifiex_send_single_packet(struct mwifiex_private *priv, 1231 struct mwifiex_ra_list_tbl *ptr, int ptr_index) 1232 __releases(&priv->wmm.ra_list_spinlock) 1233 { 1234 struct sk_buff *skb, *skb_next; 1235 struct mwifiex_tx_param tx_param; 1236 struct mwifiex_adapter *adapter = priv->adapter; 1237 struct mwifiex_txinfo *tx_info; 1238 1239 if (skb_queue_empty(&ptr->skb_head)) { 1240 spin_unlock_bh(&priv->wmm.ra_list_spinlock); 1241 mwifiex_dbg(adapter, DATA, "data: nothing to send\n"); 1242 return; 1243 } 1244 1245 skb = skb_dequeue(&ptr->skb_head); 1246 1247 tx_info = MWIFIEX_SKB_TXCB(skb); 1248 mwifiex_dbg(adapter, DATA, 1249 "data: dequeuing the packet %p %p\n", ptr, skb); 1250 1251 ptr->total_pkt_count--; 1252 1253 if (!skb_queue_empty(&ptr->skb_head)) 1254 skb_next = skb_peek(&ptr->skb_head); 1255 else 1256 skb_next = NULL; 1257 1258 spin_unlock_bh(&priv->wmm.ra_list_spinlock); 1259 1260 tx_param.next_pkt_len = ((skb_next) ? skb_next->len + 1261 sizeof(struct txpd) : 0); 1262 1263 if (mwifiex_process_tx(priv, skb, &tx_param) == -EBUSY) { 1264 /* Queue the packet back at the head */ 1265 spin_lock_bh(&priv->wmm.ra_list_spinlock); 1266 1267 if (!mwifiex_is_ralist_valid(priv, ptr, ptr_index)) { 1268 spin_unlock_bh(&priv->wmm.ra_list_spinlock); 1269 mwifiex_write_data_complete(adapter, skb, 0, -1); 1270 return; 1271 } 1272 1273 skb_queue_tail(&ptr->skb_head, skb); 1274 1275 ptr->total_pkt_count++; 1276 ptr->ba_pkt_count++; 1277 tx_info->flags |= MWIFIEX_BUF_FLAG_REQUEUED_PKT; 1278 spin_unlock_bh(&priv->wmm.ra_list_spinlock); 1279 } else { 1280 mwifiex_rotate_priolists(priv, ptr, ptr_index); 1281 atomic_dec(&priv->wmm.tx_pkts_queued); 1282 } 1283 } 1284 1285 /* 1286 * This function checks if the first packet in the given RA list 1287 * is already processed or not. 1288 */ 1289 static int 1290 mwifiex_is_ptr_processed(struct mwifiex_private *priv, 1291 struct mwifiex_ra_list_tbl *ptr) 1292 { 1293 struct sk_buff *skb; 1294 struct mwifiex_txinfo *tx_info; 1295 1296 if (skb_queue_empty(&ptr->skb_head)) 1297 return false; 1298 1299 skb = skb_peek(&ptr->skb_head); 1300 1301 tx_info = MWIFIEX_SKB_TXCB(skb); 1302 if (tx_info->flags & MWIFIEX_BUF_FLAG_REQUEUED_PKT) 1303 return true; 1304 1305 return false; 1306 } 1307 1308 /* 1309 * This function sends a single processed packet to firmware for 1310 * transmission. 1311 */ 1312 static void 1313 mwifiex_send_processed_packet(struct mwifiex_private *priv, 1314 struct mwifiex_ra_list_tbl *ptr, int ptr_index) 1315 __releases(&priv->wmm.ra_list_spinlock) 1316 { 1317 struct mwifiex_tx_param tx_param; 1318 struct mwifiex_adapter *adapter = priv->adapter; 1319 int ret = -1; 1320 struct sk_buff *skb, *skb_next; 1321 struct mwifiex_txinfo *tx_info; 1322 1323 if (skb_queue_empty(&ptr->skb_head)) { 1324 spin_unlock_bh(&priv->wmm.ra_list_spinlock); 1325 return; 1326 } 1327 1328 skb = skb_dequeue(&ptr->skb_head); 1329 1330 if (adapter->data_sent || adapter->tx_lock_flag) { 1331 ptr->total_pkt_count--; 1332 spin_unlock_bh(&priv->wmm.ra_list_spinlock); 1333 skb_queue_tail(&adapter->tx_data_q, skb); 1334 atomic_dec(&priv->wmm.tx_pkts_queued); 1335 atomic_inc(&adapter->tx_queued); 1336 return; 1337 } 1338 1339 if (!skb_queue_empty(&ptr->skb_head)) 1340 skb_next = skb_peek(&ptr->skb_head); 1341 else 1342 skb_next = NULL; 1343 1344 tx_info = MWIFIEX_SKB_TXCB(skb); 1345 1346 spin_unlock_bh(&priv->wmm.ra_list_spinlock); 1347 1348 tx_param.next_pkt_len = 1349 ((skb_next) ? skb_next->len + 1350 sizeof(struct txpd) : 0); 1351 if (adapter->iface_type == MWIFIEX_USB) { 1352 ret = adapter->if_ops.host_to_card(adapter, priv->usb_port, 1353 skb, &tx_param); 1354 } else { 1355 ret = adapter->if_ops.host_to_card(adapter, MWIFIEX_TYPE_DATA, 1356 skb, &tx_param); 1357 } 1358 1359 switch (ret) { 1360 case -EBUSY: 1361 mwifiex_dbg(adapter, ERROR, "data: -EBUSY is returned\n"); 1362 spin_lock_bh(&priv->wmm.ra_list_spinlock); 1363 1364 if (!mwifiex_is_ralist_valid(priv, ptr, ptr_index)) { 1365 spin_unlock_bh(&priv->wmm.ra_list_spinlock); 1366 mwifiex_write_data_complete(adapter, skb, 0, -1); 1367 return; 1368 } 1369 1370 skb_queue_tail(&ptr->skb_head, skb); 1371 1372 tx_info->flags |= MWIFIEX_BUF_FLAG_REQUEUED_PKT; 1373 spin_unlock_bh(&priv->wmm.ra_list_spinlock); 1374 break; 1375 case -1: 1376 mwifiex_dbg(adapter, ERROR, "host_to_card failed: %#x\n", ret); 1377 adapter->dbg.num_tx_host_to_card_failure++; 1378 mwifiex_write_data_complete(adapter, skb, 0, ret); 1379 break; 1380 case -EINPROGRESS: 1381 break; 1382 case 0: 1383 mwifiex_write_data_complete(adapter, skb, 0, ret); 1384 default: 1385 break; 1386 } 1387 if (ret != -EBUSY) { 1388 mwifiex_rotate_priolists(priv, ptr, ptr_index); 1389 atomic_dec(&priv->wmm.tx_pkts_queued); 1390 spin_lock_bh(&priv->wmm.ra_list_spinlock); 1391 ptr->total_pkt_count--; 1392 spin_unlock_bh(&priv->wmm.ra_list_spinlock); 1393 } 1394 } 1395 1396 /* 1397 * This function dequeues a packet from the highest priority list 1398 * and transmits it. 1399 */ 1400 static int 1401 mwifiex_dequeue_tx_packet(struct mwifiex_adapter *adapter) 1402 { 1403 struct mwifiex_ra_list_tbl *ptr; 1404 struct mwifiex_private *priv = NULL; 1405 int ptr_index = 0; 1406 u8 ra[ETH_ALEN]; 1407 int tid_del = 0, tid = 0; 1408 1409 ptr = mwifiex_wmm_get_highest_priolist_ptr(adapter, &priv, &ptr_index); 1410 if (!ptr) 1411 return -1; 1412 1413 tid = mwifiex_get_tid(ptr); 1414 1415 mwifiex_dbg(adapter, DATA, "data: tid=%d\n", tid); 1416 1417 spin_lock_bh(&priv->wmm.ra_list_spinlock); 1418 if (!mwifiex_is_ralist_valid(priv, ptr, ptr_index)) { 1419 spin_unlock_bh(&priv->wmm.ra_list_spinlock); 1420 return -1; 1421 } 1422 1423 if (mwifiex_is_ptr_processed(priv, ptr)) { 1424 mwifiex_send_processed_packet(priv, ptr, ptr_index); 1425 /* ra_list_spinlock has been freed in 1426 mwifiex_send_processed_packet() */ 1427 return 0; 1428 } 1429 1430 if (!ptr->is_11n_enabled || 1431 ptr->ba_status || 1432 priv->wps.session_enable) { 1433 if (ptr->is_11n_enabled && 1434 ptr->ba_status && 1435 ptr->amsdu_in_ampdu && 1436 mwifiex_is_amsdu_allowed(priv, tid) && 1437 mwifiex_is_11n_aggragation_possible(priv, ptr, 1438 adapter->tx_buf_size)) 1439 mwifiex_11n_aggregate_pkt(priv, ptr, ptr_index); 1440 /* ra_list_spinlock has been freed in 1441 * mwifiex_11n_aggregate_pkt() 1442 */ 1443 else 1444 mwifiex_send_single_packet(priv, ptr, ptr_index); 1445 /* ra_list_spinlock has been freed in 1446 * mwifiex_send_single_packet() 1447 */ 1448 } else { 1449 if (mwifiex_is_ampdu_allowed(priv, ptr, tid) && 1450 ptr->ba_pkt_count > ptr->ba_packet_thr) { 1451 if (mwifiex_space_avail_for_new_ba_stream(adapter)) { 1452 mwifiex_create_ba_tbl(priv, ptr->ra, tid, 1453 BA_SETUP_INPROGRESS); 1454 mwifiex_send_addba(priv, tid, ptr->ra); 1455 } else if (mwifiex_find_stream_to_delete 1456 (priv, tid, &tid_del, ra)) { 1457 mwifiex_create_ba_tbl(priv, ptr->ra, tid, 1458 BA_SETUP_INPROGRESS); 1459 mwifiex_send_delba(priv, tid_del, ra, 1); 1460 } 1461 } 1462 if (mwifiex_is_amsdu_allowed(priv, tid) && 1463 mwifiex_is_11n_aggragation_possible(priv, ptr, 1464 adapter->tx_buf_size)) 1465 mwifiex_11n_aggregate_pkt(priv, ptr, ptr_index); 1466 /* ra_list_spinlock has been freed in 1467 mwifiex_11n_aggregate_pkt() */ 1468 else 1469 mwifiex_send_single_packet(priv, ptr, ptr_index); 1470 /* ra_list_spinlock has been freed in 1471 mwifiex_send_single_packet() */ 1472 } 1473 return 0; 1474 } 1475 1476 void mwifiex_process_bypass_tx(struct mwifiex_adapter *adapter) 1477 { 1478 struct mwifiex_tx_param tx_param; 1479 struct sk_buff *skb; 1480 struct mwifiex_txinfo *tx_info; 1481 struct mwifiex_private *priv; 1482 int i; 1483 1484 if (adapter->data_sent || adapter->tx_lock_flag) 1485 return; 1486 1487 for (i = 0; i < adapter->priv_num; ++i) { 1488 priv = adapter->priv[i]; 1489 1490 if (!priv) 1491 continue; 1492 1493 if (adapter->if_ops.is_port_ready && 1494 !adapter->if_ops.is_port_ready(priv)) 1495 continue; 1496 1497 if (skb_queue_empty(&priv->bypass_txq)) 1498 continue; 1499 1500 skb = skb_dequeue(&priv->bypass_txq); 1501 tx_info = MWIFIEX_SKB_TXCB(skb); 1502 1503 /* no aggregation for bypass packets */ 1504 tx_param.next_pkt_len = 0; 1505 1506 if (mwifiex_process_tx(priv, skb, &tx_param) == -EBUSY) { 1507 skb_queue_head(&priv->bypass_txq, skb); 1508 tx_info->flags |= MWIFIEX_BUF_FLAG_REQUEUED_PKT; 1509 } else { 1510 atomic_dec(&adapter->bypass_tx_pending); 1511 } 1512 } 1513 } 1514 1515 /* 1516 * This function transmits the highest priority packet awaiting in the 1517 * WMM Queues. 1518 */ 1519 void 1520 mwifiex_wmm_process_tx(struct mwifiex_adapter *adapter) 1521 { 1522 do { 1523 if (mwifiex_dequeue_tx_packet(adapter)) 1524 break; 1525 if (adapter->iface_type != MWIFIEX_SDIO) { 1526 if (adapter->data_sent || 1527 adapter->tx_lock_flag) 1528 break; 1529 } else { 1530 if (atomic_read(&adapter->tx_queued) >= 1531 MWIFIEX_MAX_PKTS_TXQ) 1532 break; 1533 } 1534 } while (!mwifiex_wmm_lists_empty(adapter)); 1535 } 1536