1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * NXP Wireless LAN device driver: WMM 4 * 5 * Copyright 2011-2020 NXP 6 */ 7 8 #include "decl.h" 9 #include "ioctl.h" 10 #include "util.h" 11 #include "fw.h" 12 #include "main.h" 13 #include "wmm.h" 14 #include "11n.h" 15 16 17 /* Maximum value FW can accept for driver delay in packet transmission */ 18 #define DRV_PKT_DELAY_TO_FW_MAX 512 19 20 21 #define WMM_QUEUED_PACKET_LOWER_LIMIT 180 22 23 #define WMM_QUEUED_PACKET_UPPER_LIMIT 200 24 25 /* Offset for TOS field in the IP header */ 26 #define IPTOS_OFFSET 5 27 28 static bool disable_tx_amsdu; 29 module_param(disable_tx_amsdu, bool, 0644); 30 31 /* This table inverses the tos_to_tid operation to get a priority 32 * which is in sequential order, and can be compared. 33 * Use this to compare the priority of two different TIDs. 34 */ 35 const u8 tos_to_tid_inv[] = { 36 0x02, /* from tos_to_tid[2] = 0 */ 37 0x00, /* from tos_to_tid[0] = 1 */ 38 0x01, /* from tos_to_tid[1] = 2 */ 39 0x03, 40 0x04, 41 0x05, 42 0x06, 43 0x07 44 }; 45 46 /* WMM information IE */ 47 static const u8 wmm_info_ie[] = { WLAN_EID_VENDOR_SPECIFIC, 0x07, 48 0x00, 0x50, 0xf2, 0x02, 49 0x00, 0x01, 0x00 50 }; 51 52 static const u8 wmm_aci_to_qidx_map[] = { WMM_AC_BE, 53 WMM_AC_BK, 54 WMM_AC_VI, 55 WMM_AC_VO 56 }; 57 58 static u8 tos_to_tid[] = { 59 /* TID DSCP_P2 DSCP_P1 DSCP_P0 WMM_AC */ 60 0x01, /* 0 1 0 AC_BK */ 61 0x02, /* 0 0 0 AC_BK */ 62 0x00, /* 0 0 1 AC_BE */ 63 0x03, /* 0 1 1 AC_BE */ 64 0x04, /* 1 0 0 AC_VI */ 65 0x05, /* 1 0 1 AC_VI */ 66 0x06, /* 1 1 0 AC_VO */ 67 0x07 /* 1 1 1 AC_VO */ 68 }; 69 70 static u8 ac_to_tid[4][2] = { {1, 2}, {0, 3}, {4, 5}, {6, 7} }; 71 72 /* 73 * This function debug prints the priority parameters for a WMM AC. 74 */ 75 static void 76 mwifiex_wmm_ac_debug_print(const struct ieee_types_wmm_ac_parameters *ac_param) 77 { 78 const char *ac_str[] = { "BK", "BE", "VI", "VO" }; 79 80 pr_debug("info: WMM AC_%s: ACI=%d, ACM=%d, Aifsn=%d, " 81 "EcwMin=%d, EcwMax=%d, TxopLimit=%d\n", 82 ac_str[wmm_aci_to_qidx_map[(ac_param->aci_aifsn_bitmap 83 & MWIFIEX_ACI) >> 5]], 84 (ac_param->aci_aifsn_bitmap & MWIFIEX_ACI) >> 5, 85 (ac_param->aci_aifsn_bitmap & MWIFIEX_ACM) >> 4, 86 ac_param->aci_aifsn_bitmap & MWIFIEX_AIFSN, 87 ac_param->ecw_bitmap & MWIFIEX_ECW_MIN, 88 (ac_param->ecw_bitmap & MWIFIEX_ECW_MAX) >> 4, 89 le16_to_cpu(ac_param->tx_op_limit)); 90 } 91 92 /* 93 * This function allocates a route address list. 94 * 95 * The function also initializes the list with the provided RA. 96 */ 97 static struct mwifiex_ra_list_tbl * 98 mwifiex_wmm_allocate_ralist_node(struct mwifiex_adapter *adapter, const u8 *ra) 99 { 100 struct mwifiex_ra_list_tbl *ra_list; 101 102 ra_list = kzalloc(sizeof(struct mwifiex_ra_list_tbl), GFP_ATOMIC); 103 if (!ra_list) 104 return NULL; 105 106 INIT_LIST_HEAD(&ra_list->list); 107 skb_queue_head_init(&ra_list->skb_head); 108 109 memcpy(ra_list->ra, ra, ETH_ALEN); 110 111 ra_list->total_pkt_count = 0; 112 113 mwifiex_dbg(adapter, INFO, "info: allocated ra_list %p\n", ra_list); 114 115 return ra_list; 116 } 117 118 /* This function returns random no between 16 and 32 to be used as threshold 119 * for no of packets after which BA setup is initiated. 120 */ 121 static u8 mwifiex_get_random_ba_threshold(void) 122 { 123 u64 ns; 124 /* setup ba_packet_threshold here random number between 125 * [BA_SETUP_PACKET_OFFSET, 126 * BA_SETUP_PACKET_OFFSET+BA_SETUP_MAX_PACKET_THRESHOLD-1] 127 */ 128 ns = ktime_get_ns(); 129 ns += (ns >> 32) + (ns >> 16); 130 131 return ((u8)ns % BA_SETUP_MAX_PACKET_THRESHOLD) + BA_SETUP_PACKET_OFFSET; 132 } 133 134 /* 135 * This function allocates and adds a RA list for all TIDs 136 * with the given RA. 137 */ 138 void mwifiex_ralist_add(struct mwifiex_private *priv, const u8 *ra) 139 { 140 int i; 141 struct mwifiex_ra_list_tbl *ra_list; 142 struct mwifiex_adapter *adapter = priv->adapter; 143 struct mwifiex_sta_node *node; 144 145 146 for (i = 0; i < MAX_NUM_TID; ++i) { 147 ra_list = mwifiex_wmm_allocate_ralist_node(adapter, ra); 148 mwifiex_dbg(adapter, INFO, 149 "info: created ra_list %p\n", ra_list); 150 151 if (!ra_list) 152 break; 153 154 ra_list->is_11n_enabled = 0; 155 ra_list->tdls_link = false; 156 ra_list->ba_status = BA_SETUP_NONE; 157 ra_list->amsdu_in_ampdu = false; 158 if (!mwifiex_queuing_ra_based(priv)) { 159 if (mwifiex_is_tdls_link_setup 160 (mwifiex_get_tdls_link_status(priv, ra))) { 161 ra_list->tdls_link = true; 162 ra_list->is_11n_enabled = 163 mwifiex_tdls_peer_11n_enabled(priv, ra); 164 } else { 165 ra_list->is_11n_enabled = IS_11N_ENABLED(priv); 166 } 167 } else { 168 spin_lock_bh(&priv->sta_list_spinlock); 169 node = mwifiex_get_sta_entry(priv, ra); 170 if (node) 171 ra_list->tx_paused = node->tx_pause; 172 ra_list->is_11n_enabled = 173 mwifiex_is_sta_11n_enabled(priv, node); 174 if (ra_list->is_11n_enabled) 175 ra_list->max_amsdu = node->max_amsdu; 176 spin_unlock_bh(&priv->sta_list_spinlock); 177 } 178 179 mwifiex_dbg(adapter, DATA, "data: ralist %p: is_11n_enabled=%d\n", 180 ra_list, ra_list->is_11n_enabled); 181 182 if (ra_list->is_11n_enabled) { 183 ra_list->ba_pkt_count = 0; 184 ra_list->ba_packet_thr = 185 mwifiex_get_random_ba_threshold(); 186 } 187 list_add_tail(&ra_list->list, 188 &priv->wmm.tid_tbl_ptr[i].ra_list); 189 } 190 } 191 192 /* 193 * This function sets the WMM queue priorities to their default values. 194 */ 195 static void mwifiex_wmm_default_queue_priorities(struct mwifiex_private *priv) 196 { 197 /* Default queue priorities: VO->VI->BE->BK */ 198 priv->wmm.queue_priority[0] = WMM_AC_VO; 199 priv->wmm.queue_priority[1] = WMM_AC_VI; 200 priv->wmm.queue_priority[2] = WMM_AC_BE; 201 priv->wmm.queue_priority[3] = WMM_AC_BK; 202 } 203 204 /* 205 * This function map ACs to TIDs. 206 */ 207 static void 208 mwifiex_wmm_queue_priorities_tid(struct mwifiex_private *priv) 209 { 210 struct mwifiex_wmm_desc *wmm = &priv->wmm; 211 u8 *queue_priority = wmm->queue_priority; 212 int i; 213 214 for (i = 0; i < 4; ++i) { 215 tos_to_tid[7 - (i * 2)] = ac_to_tid[queue_priority[i]][1]; 216 tos_to_tid[6 - (i * 2)] = ac_to_tid[queue_priority[i]][0]; 217 } 218 219 for (i = 0; i < MAX_NUM_TID; ++i) 220 priv->tos_to_tid_inv[tos_to_tid[i]] = (u8)i; 221 222 atomic_set(&wmm->highest_queued_prio, HIGH_PRIO_TID); 223 } 224 225 /* 226 * This function initializes WMM priority queues. 227 */ 228 void 229 mwifiex_wmm_setup_queue_priorities(struct mwifiex_private *priv, 230 struct ieee_types_wmm_parameter *wmm_ie) 231 { 232 u16 cw_min, avg_back_off, tmp[4]; 233 u32 i, j, num_ac; 234 u8 ac_idx; 235 236 if (!wmm_ie || !priv->wmm_enabled) { 237 /* WMM is not enabled, just set the defaults and return */ 238 mwifiex_wmm_default_queue_priorities(priv); 239 return; 240 } 241 242 mwifiex_dbg(priv->adapter, INFO, 243 "info: WMM Parameter IE: version=%d,\t" 244 "qos_info Parameter Set Count=%d, Reserved=%#x\n", 245 wmm_ie->version, wmm_ie->qos_info_bitmap & 246 IEEE80211_WMM_IE_AP_QOSINFO_PARAM_SET_CNT_MASK, 247 wmm_ie->reserved); 248 249 for (num_ac = 0; num_ac < ARRAY_SIZE(wmm_ie->ac_params); num_ac++) { 250 u8 ecw = wmm_ie->ac_params[num_ac].ecw_bitmap; 251 u8 aci_aifsn = wmm_ie->ac_params[num_ac].aci_aifsn_bitmap; 252 cw_min = (1 << (ecw & MWIFIEX_ECW_MIN)) - 1; 253 avg_back_off = (cw_min >> 1) + (aci_aifsn & MWIFIEX_AIFSN); 254 255 ac_idx = wmm_aci_to_qidx_map[(aci_aifsn & MWIFIEX_ACI) >> 5]; 256 priv->wmm.queue_priority[ac_idx] = ac_idx; 257 tmp[ac_idx] = avg_back_off; 258 259 mwifiex_dbg(priv->adapter, INFO, 260 "info: WMM: CWmax=%d CWmin=%d Avg Back-off=%d\n", 261 (1 << ((ecw & MWIFIEX_ECW_MAX) >> 4)) - 1, 262 cw_min, avg_back_off); 263 mwifiex_wmm_ac_debug_print(&wmm_ie->ac_params[num_ac]); 264 } 265 266 /* Bubble sort */ 267 for (i = 0; i < num_ac; i++) { 268 for (j = 1; j < num_ac - i; j++) { 269 if (tmp[j - 1] > tmp[j]) { 270 swap(tmp[j - 1], tmp[j]); 271 swap(priv->wmm.queue_priority[j - 1], 272 priv->wmm.queue_priority[j]); 273 } else if (tmp[j - 1] == tmp[j]) { 274 if (priv->wmm.queue_priority[j - 1] 275 < priv->wmm.queue_priority[j]) 276 swap(priv->wmm.queue_priority[j - 1], 277 priv->wmm.queue_priority[j]); 278 } 279 } 280 } 281 282 mwifiex_wmm_queue_priorities_tid(priv); 283 } 284 285 /* 286 * This function evaluates whether or not an AC is to be downgraded. 287 * 288 * In case the AC is not enabled, the highest AC is returned that is 289 * enabled and does not require admission control. 290 */ 291 static enum mwifiex_wmm_ac_e 292 mwifiex_wmm_eval_downgrade_ac(struct mwifiex_private *priv, 293 enum mwifiex_wmm_ac_e eval_ac) 294 { 295 int down_ac; 296 enum mwifiex_wmm_ac_e ret_ac; 297 struct mwifiex_wmm_ac_status *ac_status; 298 299 ac_status = &priv->wmm.ac_status[eval_ac]; 300 301 if (!ac_status->disabled) 302 /* Okay to use this AC, its enabled */ 303 return eval_ac; 304 305 /* Setup a default return value of the lowest priority */ 306 ret_ac = WMM_AC_BK; 307 308 /* 309 * Find the highest AC that is enabled and does not require 310 * admission control. The spec disallows downgrading to an AC, 311 * which is enabled due to a completed admission control. 312 * Unadmitted traffic is not to be sent on an AC with admitted 313 * traffic. 314 */ 315 for (down_ac = WMM_AC_BK; down_ac < eval_ac; down_ac++) { 316 ac_status = &priv->wmm.ac_status[down_ac]; 317 318 if (!ac_status->disabled && !ac_status->flow_required) 319 /* AC is enabled and does not require admission 320 control */ 321 ret_ac = (enum mwifiex_wmm_ac_e) down_ac; 322 } 323 324 return ret_ac; 325 } 326 327 /* 328 * This function downgrades WMM priority queue. 329 */ 330 void 331 mwifiex_wmm_setup_ac_downgrade(struct mwifiex_private *priv) 332 { 333 int ac_val; 334 335 mwifiex_dbg(priv->adapter, INFO, "info: WMM: AC Priorities:\t" 336 "BK(0), BE(1), VI(2), VO(3)\n"); 337 338 if (!priv->wmm_enabled) { 339 /* WMM is not enabled, default priorities */ 340 for (ac_val = WMM_AC_BK; ac_val <= WMM_AC_VO; ac_val++) 341 priv->wmm.ac_down_graded_vals[ac_val] = 342 (enum mwifiex_wmm_ac_e) ac_val; 343 } else { 344 for (ac_val = WMM_AC_BK; ac_val <= WMM_AC_VO; ac_val++) { 345 priv->wmm.ac_down_graded_vals[ac_val] 346 = mwifiex_wmm_eval_downgrade_ac(priv, 347 (enum mwifiex_wmm_ac_e) ac_val); 348 mwifiex_dbg(priv->adapter, INFO, 349 "info: WMM: AC PRIO %d maps to %d\n", 350 ac_val, 351 priv->wmm.ac_down_graded_vals[ac_val]); 352 } 353 } 354 } 355 356 /* 357 * This function converts the IP TOS field to an WMM AC 358 * Queue assignment. 359 */ 360 static enum mwifiex_wmm_ac_e 361 mwifiex_wmm_convert_tos_to_ac(struct mwifiex_adapter *adapter, u32 tos) 362 { 363 /* Map of TOS UP values to WMM AC */ 364 static const enum mwifiex_wmm_ac_e tos_to_ac[] = { 365 WMM_AC_BE, 366 WMM_AC_BK, 367 WMM_AC_BK, 368 WMM_AC_BE, 369 WMM_AC_VI, 370 WMM_AC_VI, 371 WMM_AC_VO, 372 WMM_AC_VO 373 }; 374 375 if (tos >= ARRAY_SIZE(tos_to_ac)) 376 return WMM_AC_BE; 377 378 return tos_to_ac[tos]; 379 } 380 381 /* 382 * This function evaluates a given TID and downgrades it to a lower 383 * TID if the WMM Parameter IE received from the AP indicates that the 384 * AP is disabled (due to call admission control (ACM bit). Mapping 385 * of TID to AC is taken care of internally. 386 */ 387 u8 mwifiex_wmm_downgrade_tid(struct mwifiex_private *priv, u32 tid) 388 { 389 enum mwifiex_wmm_ac_e ac, ac_down; 390 u8 new_tid; 391 392 ac = mwifiex_wmm_convert_tos_to_ac(priv->adapter, tid); 393 ac_down = priv->wmm.ac_down_graded_vals[ac]; 394 395 /* Send the index to tid array, picking from the array will be 396 * taken care by dequeuing function 397 */ 398 new_tid = ac_to_tid[ac_down][tid % 2]; 399 400 return new_tid; 401 } 402 403 /* 404 * This function initializes the WMM state information and the 405 * WMM data path queues. 406 */ 407 void 408 mwifiex_wmm_init(struct mwifiex_adapter *adapter) 409 { 410 int i, j; 411 struct mwifiex_private *priv; 412 413 for (j = 0; j < adapter->priv_num; ++j) { 414 priv = adapter->priv[j]; 415 if (!priv) 416 continue; 417 418 for (i = 0; i < MAX_NUM_TID; ++i) { 419 if (!disable_tx_amsdu && 420 adapter->tx_buf_size > MWIFIEX_TX_DATA_BUF_SIZE_2K) 421 priv->aggr_prio_tbl[i].amsdu = 422 priv->tos_to_tid_inv[i]; 423 else 424 priv->aggr_prio_tbl[i].amsdu = 425 BA_STREAM_NOT_ALLOWED; 426 priv->aggr_prio_tbl[i].ampdu_ap = 427 priv->tos_to_tid_inv[i]; 428 priv->aggr_prio_tbl[i].ampdu_user = 429 priv->tos_to_tid_inv[i]; 430 } 431 432 priv->aggr_prio_tbl[6].amsdu 433 = priv->aggr_prio_tbl[6].ampdu_ap 434 = priv->aggr_prio_tbl[6].ampdu_user 435 = BA_STREAM_NOT_ALLOWED; 436 437 priv->aggr_prio_tbl[7].amsdu = priv->aggr_prio_tbl[7].ampdu_ap 438 = priv->aggr_prio_tbl[7].ampdu_user 439 = BA_STREAM_NOT_ALLOWED; 440 441 mwifiex_set_ba_params(priv); 442 mwifiex_reset_11n_rx_seq_num(priv); 443 444 priv->wmm.drv_pkt_delay_max = MWIFIEX_WMM_DRV_DELAY_MAX; 445 atomic_set(&priv->wmm.tx_pkts_queued, 0); 446 atomic_set(&priv->wmm.highest_queued_prio, HIGH_PRIO_TID); 447 } 448 } 449 450 int mwifiex_bypass_txlist_empty(struct mwifiex_adapter *adapter) 451 { 452 struct mwifiex_private *priv; 453 int i; 454 455 for (i = 0; i < adapter->priv_num; i++) { 456 priv = adapter->priv[i]; 457 if (!priv) 458 continue; 459 if (adapter->if_ops.is_port_ready && 460 !adapter->if_ops.is_port_ready(priv)) 461 continue; 462 if (!skb_queue_empty(&priv->bypass_txq)) 463 return false; 464 } 465 466 return true; 467 } 468 469 /* 470 * This function checks if WMM Tx queue is empty. 471 */ 472 int 473 mwifiex_wmm_lists_empty(struct mwifiex_adapter *adapter) 474 { 475 int i; 476 struct mwifiex_private *priv; 477 478 for (i = 0; i < adapter->priv_num; ++i) { 479 priv = adapter->priv[i]; 480 if (!priv) 481 continue; 482 if (!priv->port_open && 483 (priv->bss_mode != NL80211_IFTYPE_ADHOC)) 484 continue; 485 if (adapter->if_ops.is_port_ready && 486 !adapter->if_ops.is_port_ready(priv)) 487 continue; 488 if (atomic_read(&priv->wmm.tx_pkts_queued)) 489 return false; 490 } 491 492 return true; 493 } 494 495 /* 496 * This function deletes all packets in an RA list node. 497 * 498 * The packet sent completion callback handler are called with 499 * status failure, after they are dequeued to ensure proper 500 * cleanup. The RA list node itself is freed at the end. 501 */ 502 static void 503 mwifiex_wmm_del_pkts_in_ralist_node(struct mwifiex_private *priv, 504 struct mwifiex_ra_list_tbl *ra_list) 505 { 506 struct mwifiex_adapter *adapter = priv->adapter; 507 struct sk_buff *skb, *tmp; 508 509 skb_queue_walk_safe(&ra_list->skb_head, skb, tmp) { 510 skb_unlink(skb, &ra_list->skb_head); 511 mwifiex_write_data_complete(adapter, skb, 0, -1); 512 } 513 } 514 515 /* 516 * This function deletes all packets in an RA list. 517 * 518 * Each nodes in the RA list are freed individually first, and then 519 * the RA list itself is freed. 520 */ 521 static void 522 mwifiex_wmm_del_pkts_in_ralist(struct mwifiex_private *priv, 523 struct list_head *ra_list_head) 524 { 525 struct mwifiex_ra_list_tbl *ra_list; 526 527 list_for_each_entry(ra_list, ra_list_head, list) 528 mwifiex_wmm_del_pkts_in_ralist_node(priv, ra_list); 529 } 530 531 /* 532 * This function deletes all packets in all RA lists. 533 */ 534 static void mwifiex_wmm_cleanup_queues(struct mwifiex_private *priv) 535 { 536 int i; 537 538 for (i = 0; i < MAX_NUM_TID; i++) 539 mwifiex_wmm_del_pkts_in_ralist(priv, &priv->wmm.tid_tbl_ptr[i]. 540 ra_list); 541 542 atomic_set(&priv->wmm.tx_pkts_queued, 0); 543 atomic_set(&priv->wmm.highest_queued_prio, HIGH_PRIO_TID); 544 } 545 546 /* 547 * This function deletes all route addresses from all RA lists. 548 */ 549 static void mwifiex_wmm_delete_all_ralist(struct mwifiex_private *priv) 550 { 551 struct mwifiex_ra_list_tbl *ra_list, *tmp_node; 552 int i; 553 554 for (i = 0; i < MAX_NUM_TID; ++i) { 555 mwifiex_dbg(priv->adapter, INFO, 556 "info: ra_list: freeing buf for tid %d\n", i); 557 list_for_each_entry_safe(ra_list, tmp_node, 558 &priv->wmm.tid_tbl_ptr[i].ra_list, 559 list) { 560 list_del(&ra_list->list); 561 kfree(ra_list); 562 } 563 564 INIT_LIST_HEAD(&priv->wmm.tid_tbl_ptr[i].ra_list); 565 } 566 } 567 568 static int mwifiex_free_ack_frame(int id, void *p, void *data) 569 { 570 pr_warn("Have pending ack frames!\n"); 571 kfree_skb(p); 572 return 0; 573 } 574 575 /* 576 * This function cleans up the Tx and Rx queues. 577 * 578 * Cleanup includes - 579 * - All packets in RA lists 580 * - All entries in Rx reorder table 581 * - All entries in Tx BA stream table 582 * - MPA buffer (if required) 583 * - All RA lists 584 */ 585 void 586 mwifiex_clean_txrx(struct mwifiex_private *priv) 587 { 588 struct sk_buff *skb, *tmp; 589 590 mwifiex_11n_cleanup_reorder_tbl(priv); 591 spin_lock_bh(&priv->wmm.ra_list_spinlock); 592 593 mwifiex_wmm_cleanup_queues(priv); 594 mwifiex_11n_delete_all_tx_ba_stream_tbl(priv); 595 596 if (priv->adapter->if_ops.cleanup_mpa_buf) 597 priv->adapter->if_ops.cleanup_mpa_buf(priv->adapter); 598 599 mwifiex_wmm_delete_all_ralist(priv); 600 memcpy(tos_to_tid, ac_to_tid, sizeof(tos_to_tid)); 601 602 if (priv->adapter->if_ops.clean_pcie_ring && 603 !test_bit(MWIFIEX_SURPRISE_REMOVED, &priv->adapter->work_flags)) 604 priv->adapter->if_ops.clean_pcie_ring(priv->adapter); 605 spin_unlock_bh(&priv->wmm.ra_list_spinlock); 606 607 skb_queue_walk_safe(&priv->tdls_txq, skb, tmp) { 608 skb_unlink(skb, &priv->tdls_txq); 609 mwifiex_write_data_complete(priv->adapter, skb, 0, -1); 610 } 611 612 skb_queue_walk_safe(&priv->bypass_txq, skb, tmp) { 613 skb_unlink(skb, &priv->bypass_txq); 614 mwifiex_write_data_complete(priv->adapter, skb, 0, -1); 615 } 616 atomic_set(&priv->adapter->bypass_tx_pending, 0); 617 618 idr_for_each(&priv->ack_status_frames, mwifiex_free_ack_frame, NULL); 619 idr_destroy(&priv->ack_status_frames); 620 } 621 622 /* 623 * This function retrieves a particular RA list node, matching with the 624 * given TID and RA address. 625 */ 626 struct mwifiex_ra_list_tbl * 627 mwifiex_wmm_get_ralist_node(struct mwifiex_private *priv, u8 tid, 628 const u8 *ra_addr) 629 { 630 struct mwifiex_ra_list_tbl *ra_list; 631 632 list_for_each_entry(ra_list, &priv->wmm.tid_tbl_ptr[tid].ra_list, 633 list) { 634 if (!memcmp(ra_list->ra, ra_addr, ETH_ALEN)) 635 return ra_list; 636 } 637 638 return NULL; 639 } 640 641 void mwifiex_update_ralist_tx_pause(struct mwifiex_private *priv, u8 *mac, 642 u8 tx_pause) 643 { 644 struct mwifiex_ra_list_tbl *ra_list; 645 u32 pkt_cnt = 0, tx_pkts_queued; 646 int i; 647 648 spin_lock_bh(&priv->wmm.ra_list_spinlock); 649 650 for (i = 0; i < MAX_NUM_TID; ++i) { 651 ra_list = mwifiex_wmm_get_ralist_node(priv, i, mac); 652 if (ra_list && ra_list->tx_paused != tx_pause) { 653 pkt_cnt += ra_list->total_pkt_count; 654 ra_list->tx_paused = tx_pause; 655 if (tx_pause) 656 priv->wmm.pkts_paused[i] += 657 ra_list->total_pkt_count; 658 else 659 priv->wmm.pkts_paused[i] -= 660 ra_list->total_pkt_count; 661 } 662 } 663 664 if (pkt_cnt) { 665 tx_pkts_queued = atomic_read(&priv->wmm.tx_pkts_queued); 666 if (tx_pause) 667 tx_pkts_queued -= pkt_cnt; 668 else 669 tx_pkts_queued += pkt_cnt; 670 671 atomic_set(&priv->wmm.tx_pkts_queued, tx_pkts_queued); 672 atomic_set(&priv->wmm.highest_queued_prio, HIGH_PRIO_TID); 673 } 674 spin_unlock_bh(&priv->wmm.ra_list_spinlock); 675 } 676 677 /* This function updates non-tdls peer ralist tx_pause while 678 * tdls channel switching 679 */ 680 void mwifiex_update_ralist_tx_pause_in_tdls_cs(struct mwifiex_private *priv, 681 u8 *mac, u8 tx_pause) 682 { 683 struct mwifiex_ra_list_tbl *ra_list; 684 u32 pkt_cnt = 0, tx_pkts_queued; 685 int i; 686 687 spin_lock_bh(&priv->wmm.ra_list_spinlock); 688 689 for (i = 0; i < MAX_NUM_TID; ++i) { 690 list_for_each_entry(ra_list, &priv->wmm.tid_tbl_ptr[i].ra_list, 691 list) { 692 if (!memcmp(ra_list->ra, mac, ETH_ALEN)) 693 continue; 694 695 if (ra_list->tx_paused != tx_pause) { 696 pkt_cnt += ra_list->total_pkt_count; 697 ra_list->tx_paused = tx_pause; 698 if (tx_pause) 699 priv->wmm.pkts_paused[i] += 700 ra_list->total_pkt_count; 701 else 702 priv->wmm.pkts_paused[i] -= 703 ra_list->total_pkt_count; 704 } 705 } 706 } 707 708 if (pkt_cnt) { 709 tx_pkts_queued = atomic_read(&priv->wmm.tx_pkts_queued); 710 if (tx_pause) 711 tx_pkts_queued -= pkt_cnt; 712 else 713 tx_pkts_queued += pkt_cnt; 714 715 atomic_set(&priv->wmm.tx_pkts_queued, tx_pkts_queued); 716 atomic_set(&priv->wmm.highest_queued_prio, HIGH_PRIO_TID); 717 } 718 spin_unlock_bh(&priv->wmm.ra_list_spinlock); 719 } 720 721 /* 722 * This function retrieves an RA list node for a given TID and 723 * RA address pair. 724 * 725 * If no such node is found, a new node is added first and then 726 * retrieved. 727 */ 728 struct mwifiex_ra_list_tbl * 729 mwifiex_wmm_get_queue_raptr(struct mwifiex_private *priv, u8 tid, 730 const u8 *ra_addr) 731 { 732 struct mwifiex_ra_list_tbl *ra_list; 733 734 ra_list = mwifiex_wmm_get_ralist_node(priv, tid, ra_addr); 735 if (ra_list) 736 return ra_list; 737 mwifiex_ralist_add(priv, ra_addr); 738 739 return mwifiex_wmm_get_ralist_node(priv, tid, ra_addr); 740 } 741 742 /* 743 * This function deletes RA list nodes for given mac for all TIDs. 744 * Function also decrements TX pending count accordingly. 745 */ 746 void 747 mwifiex_wmm_del_peer_ra_list(struct mwifiex_private *priv, const u8 *ra_addr) 748 { 749 struct mwifiex_ra_list_tbl *ra_list; 750 int i; 751 752 spin_lock_bh(&priv->wmm.ra_list_spinlock); 753 754 for (i = 0; i < MAX_NUM_TID; ++i) { 755 ra_list = mwifiex_wmm_get_ralist_node(priv, i, ra_addr); 756 757 if (!ra_list) 758 continue; 759 mwifiex_wmm_del_pkts_in_ralist_node(priv, ra_list); 760 if (ra_list->tx_paused) 761 priv->wmm.pkts_paused[i] -= ra_list->total_pkt_count; 762 else 763 atomic_sub(ra_list->total_pkt_count, 764 &priv->wmm.tx_pkts_queued); 765 list_del(&ra_list->list); 766 kfree(ra_list); 767 } 768 spin_unlock_bh(&priv->wmm.ra_list_spinlock); 769 } 770 771 /* 772 * This function checks if a particular RA list node exists in a given TID 773 * table index. 774 */ 775 int 776 mwifiex_is_ralist_valid(struct mwifiex_private *priv, 777 struct mwifiex_ra_list_tbl *ra_list, int ptr_index) 778 { 779 struct mwifiex_ra_list_tbl *rlist; 780 781 list_for_each_entry(rlist, &priv->wmm.tid_tbl_ptr[ptr_index].ra_list, 782 list) { 783 if (rlist == ra_list) 784 return true; 785 } 786 787 return false; 788 } 789 790 /* 791 * This function adds a packet to bypass TX queue. 792 * This is special TX queue for packets which can be sent even when port_open 793 * is false. 794 */ 795 void 796 mwifiex_wmm_add_buf_bypass_txqueue(struct mwifiex_private *priv, 797 struct sk_buff *skb) 798 { 799 skb_queue_tail(&priv->bypass_txq, skb); 800 } 801 802 /* 803 * This function adds a packet to WMM queue. 804 * 805 * In disconnected state the packet is immediately dropped and the 806 * packet send completion callback is called with status failure. 807 * 808 * Otherwise, the correct RA list node is located and the packet 809 * is queued at the list tail. 810 */ 811 void 812 mwifiex_wmm_add_buf_txqueue(struct mwifiex_private *priv, 813 struct sk_buff *skb) 814 { 815 struct mwifiex_adapter *adapter = priv->adapter; 816 u32 tid; 817 struct mwifiex_ra_list_tbl *ra_list; 818 u8 ra[ETH_ALEN], tid_down; 819 struct list_head list_head; 820 int tdls_status = TDLS_NOT_SETUP; 821 struct ethhdr *eth_hdr = (struct ethhdr *)skb->data; 822 struct mwifiex_txinfo *tx_info = MWIFIEX_SKB_TXCB(skb); 823 824 memcpy(ra, eth_hdr->h_dest, ETH_ALEN); 825 826 if (GET_BSS_ROLE(priv) == MWIFIEX_BSS_ROLE_STA && 827 ISSUPP_TDLS_ENABLED(adapter->fw_cap_info)) { 828 if (ntohs(eth_hdr->h_proto) == ETH_P_TDLS) 829 mwifiex_dbg(adapter, DATA, 830 "TDLS setup packet for %pM.\t" 831 "Don't block\n", ra); 832 else if (memcmp(priv->cfg_bssid, ra, ETH_ALEN)) 833 tdls_status = mwifiex_get_tdls_link_status(priv, ra); 834 } 835 836 if (!priv->media_connected && !mwifiex_is_skb_mgmt_frame(skb)) { 837 mwifiex_dbg(adapter, DATA, "data: drop packet in disconnect\n"); 838 mwifiex_write_data_complete(adapter, skb, 0, -1); 839 return; 840 } 841 842 tid = skb->priority; 843 844 spin_lock_bh(&priv->wmm.ra_list_spinlock); 845 846 tid_down = mwifiex_wmm_downgrade_tid(priv, tid); 847 848 /* In case of infra as we have already created the list during 849 association we just don't have to call get_queue_raptr, we will 850 have only 1 raptr for a tid in case of infra */ 851 if (!mwifiex_queuing_ra_based(priv) && 852 !mwifiex_is_skb_mgmt_frame(skb)) { 853 switch (tdls_status) { 854 case TDLS_SETUP_COMPLETE: 855 case TDLS_CHAN_SWITCHING: 856 case TDLS_IN_BASE_CHAN: 857 case TDLS_IN_OFF_CHAN: 858 ra_list = mwifiex_wmm_get_queue_raptr(priv, tid_down, 859 ra); 860 tx_info->flags |= MWIFIEX_BUF_FLAG_TDLS_PKT; 861 break; 862 case TDLS_SETUP_INPROGRESS: 863 skb_queue_tail(&priv->tdls_txq, skb); 864 spin_unlock_bh(&priv->wmm.ra_list_spinlock); 865 return; 866 default: 867 list_head = priv->wmm.tid_tbl_ptr[tid_down].ra_list; 868 ra_list = list_first_entry_or_null(&list_head, 869 struct mwifiex_ra_list_tbl, list); 870 break; 871 } 872 } else { 873 memcpy(ra, skb->data, ETH_ALEN); 874 if (ra[0] & 0x01 || mwifiex_is_skb_mgmt_frame(skb)) 875 eth_broadcast_addr(ra); 876 ra_list = mwifiex_wmm_get_queue_raptr(priv, tid_down, ra); 877 } 878 879 if (!ra_list) { 880 spin_unlock_bh(&priv->wmm.ra_list_spinlock); 881 mwifiex_write_data_complete(adapter, skb, 0, -1); 882 return; 883 } 884 885 skb_queue_tail(&ra_list->skb_head, skb); 886 887 ra_list->ba_pkt_count++; 888 ra_list->total_pkt_count++; 889 890 if (atomic_read(&priv->wmm.highest_queued_prio) < 891 priv->tos_to_tid_inv[tid_down]) 892 atomic_set(&priv->wmm.highest_queued_prio, 893 priv->tos_to_tid_inv[tid_down]); 894 895 if (ra_list->tx_paused) 896 priv->wmm.pkts_paused[tid_down]++; 897 else 898 atomic_inc(&priv->wmm.tx_pkts_queued); 899 900 spin_unlock_bh(&priv->wmm.ra_list_spinlock); 901 } 902 903 /* 904 * This function processes the get WMM status command response from firmware. 905 * 906 * The response may contain multiple TLVs - 907 * - AC Queue status TLVs 908 * - Current WMM Parameter IE TLV 909 * - Admission Control action frame TLVs 910 * 911 * This function parses the TLVs and then calls further specific functions 912 * to process any changes in the queue prioritize or state. 913 */ 914 int mwifiex_ret_wmm_get_status(struct mwifiex_private *priv, 915 const struct host_cmd_ds_command *resp) 916 { 917 u8 *curr = (u8 *) &resp->params.get_wmm_status; 918 uint16_t resp_len = le16_to_cpu(resp->size), tlv_len; 919 int mask = IEEE80211_WMM_IE_AP_QOSINFO_PARAM_SET_CNT_MASK; 920 bool valid = true; 921 922 struct mwifiex_ie_types_data *tlv_hdr; 923 struct mwifiex_ie_types_wmm_queue_status *tlv_wmm_qstatus; 924 struct ieee_types_wmm_parameter *wmm_param_ie = NULL; 925 struct mwifiex_wmm_ac_status *ac_status; 926 927 mwifiex_dbg(priv->adapter, INFO, 928 "info: WMM: WMM_GET_STATUS cmdresp received: %d\n", 929 resp_len); 930 931 while ((resp_len >= sizeof(tlv_hdr->header)) && valid) { 932 tlv_hdr = (struct mwifiex_ie_types_data *) curr; 933 tlv_len = le16_to_cpu(tlv_hdr->header.len); 934 935 if (resp_len < tlv_len + sizeof(tlv_hdr->header)) 936 break; 937 938 switch (le16_to_cpu(tlv_hdr->header.type)) { 939 case TLV_TYPE_WMMQSTATUS: 940 tlv_wmm_qstatus = 941 (struct mwifiex_ie_types_wmm_queue_status *) 942 tlv_hdr; 943 mwifiex_dbg(priv->adapter, CMD, 944 "info: CMD_RESP: WMM_GET_STATUS:\t" 945 "QSTATUS TLV: %d, %d, %d\n", 946 tlv_wmm_qstatus->queue_index, 947 tlv_wmm_qstatus->flow_required, 948 tlv_wmm_qstatus->disabled); 949 950 ac_status = &priv->wmm.ac_status[tlv_wmm_qstatus-> 951 queue_index]; 952 ac_status->disabled = tlv_wmm_qstatus->disabled; 953 ac_status->flow_required = 954 tlv_wmm_qstatus->flow_required; 955 ac_status->flow_created = tlv_wmm_qstatus->flow_created; 956 break; 957 958 case WLAN_EID_VENDOR_SPECIFIC: 959 /* 960 * Point the regular IEEE IE 2 bytes into the Marvell IE 961 * and setup the IEEE IE type and length byte fields 962 */ 963 964 wmm_param_ie = 965 (struct ieee_types_wmm_parameter *) (curr + 966 2); 967 wmm_param_ie->vend_hdr.len = (u8) tlv_len; 968 wmm_param_ie->vend_hdr.element_id = 969 WLAN_EID_VENDOR_SPECIFIC; 970 971 mwifiex_dbg(priv->adapter, CMD, 972 "info: CMD_RESP: WMM_GET_STATUS:\t" 973 "WMM Parameter Set Count: %d\n", 974 wmm_param_ie->qos_info_bitmap & mask); 975 976 if (wmm_param_ie->vend_hdr.len + 2 > 977 sizeof(struct ieee_types_wmm_parameter)) 978 break; 979 980 memcpy((u8 *) &priv->curr_bss_params.bss_descriptor. 981 wmm_ie, wmm_param_ie, 982 wmm_param_ie->vend_hdr.len + 2); 983 984 break; 985 986 default: 987 valid = false; 988 break; 989 } 990 991 curr += (tlv_len + sizeof(tlv_hdr->header)); 992 resp_len -= (tlv_len + sizeof(tlv_hdr->header)); 993 } 994 995 mwifiex_wmm_setup_queue_priorities(priv, wmm_param_ie); 996 mwifiex_wmm_setup_ac_downgrade(priv); 997 998 return 0; 999 } 1000 1001 /* 1002 * Callback handler from the command module to allow insertion of a WMM TLV. 1003 * 1004 * If the BSS we are associating to supports WMM, this function adds the 1005 * required WMM Information IE to the association request command buffer in 1006 * the form of a Marvell extended IEEE IE. 1007 */ 1008 u32 1009 mwifiex_wmm_process_association_req(struct mwifiex_private *priv, 1010 u8 **assoc_buf, 1011 struct ieee_types_wmm_parameter *wmm_ie, 1012 struct ieee80211_ht_cap *ht_cap) 1013 { 1014 struct mwifiex_ie_types_wmm_param_set *wmm_tlv; 1015 u32 ret_len = 0; 1016 1017 /* Null checks */ 1018 if (!assoc_buf) 1019 return 0; 1020 if (!(*assoc_buf)) 1021 return 0; 1022 1023 if (!wmm_ie) 1024 return 0; 1025 1026 mwifiex_dbg(priv->adapter, INFO, 1027 "info: WMM: process assoc req: bss->wmm_ie=%#x\n", 1028 wmm_ie->vend_hdr.element_id); 1029 1030 if ((priv->wmm_required || 1031 (ht_cap && (priv->adapter->config_bands & BAND_GN || 1032 priv->adapter->config_bands & BAND_AN))) && 1033 wmm_ie->vend_hdr.element_id == WLAN_EID_VENDOR_SPECIFIC) { 1034 wmm_tlv = (struct mwifiex_ie_types_wmm_param_set *) *assoc_buf; 1035 wmm_tlv->header.type = cpu_to_le16((u16) wmm_info_ie[0]); 1036 wmm_tlv->header.len = cpu_to_le16((u16) wmm_info_ie[1]); 1037 memcpy(wmm_tlv->wmm_ie, &wmm_info_ie[2], 1038 le16_to_cpu(wmm_tlv->header.len)); 1039 if (wmm_ie->qos_info_bitmap & IEEE80211_WMM_IE_AP_QOSINFO_UAPSD) 1040 memcpy((u8 *) (wmm_tlv->wmm_ie 1041 + le16_to_cpu(wmm_tlv->header.len) 1042 - sizeof(priv->wmm_qosinfo)), 1043 &priv->wmm_qosinfo, sizeof(priv->wmm_qosinfo)); 1044 1045 ret_len = sizeof(wmm_tlv->header) 1046 + le16_to_cpu(wmm_tlv->header.len); 1047 1048 *assoc_buf += ret_len; 1049 } 1050 1051 return ret_len; 1052 } 1053 1054 /* 1055 * This function computes the time delay in the driver queues for a 1056 * given packet. 1057 * 1058 * When the packet is received at the OS/Driver interface, the current 1059 * time is set in the packet structure. The difference between the present 1060 * time and that received time is computed in this function and limited 1061 * based on pre-compiled limits in the driver. 1062 */ 1063 u8 1064 mwifiex_wmm_compute_drv_pkt_delay(struct mwifiex_private *priv, 1065 const struct sk_buff *skb) 1066 { 1067 u32 queue_delay = ktime_to_ms(net_timedelta(skb->tstamp)); 1068 u8 ret_val; 1069 1070 /* 1071 * Queue delay is passed as a uint8 in units of 2ms (ms shifted 1072 * by 1). Min value (other than 0) is therefore 2ms, max is 510ms. 1073 * 1074 * Pass max value if queue_delay is beyond the uint8 range 1075 */ 1076 ret_val = (u8) (min(queue_delay, priv->wmm.drv_pkt_delay_max) >> 1); 1077 1078 mwifiex_dbg(priv->adapter, DATA, "data: WMM: Pkt Delay: %d ms,\t" 1079 "%d ms sent to FW\n", queue_delay, ret_val); 1080 1081 return ret_val; 1082 } 1083 1084 /* 1085 * This function retrieves the highest priority RA list table pointer. 1086 */ 1087 static struct mwifiex_ra_list_tbl * 1088 mwifiex_wmm_get_highest_priolist_ptr(struct mwifiex_adapter *adapter, 1089 struct mwifiex_private **priv, int *tid) 1090 { 1091 struct mwifiex_private *priv_tmp; 1092 struct mwifiex_ra_list_tbl *ptr; 1093 struct mwifiex_tid_tbl *tid_ptr; 1094 atomic_t *hqp; 1095 int i, j; 1096 1097 /* check the BSS with highest priority first */ 1098 for (j = adapter->priv_num - 1; j >= 0; --j) { 1099 /* iterate over BSS with the equal priority */ 1100 list_for_each_entry(adapter->bss_prio_tbl[j].bss_prio_cur, 1101 &adapter->bss_prio_tbl[j].bss_prio_head, 1102 list) { 1103 1104 try_again: 1105 priv_tmp = adapter->bss_prio_tbl[j].bss_prio_cur->priv; 1106 1107 if (((priv_tmp->bss_mode != NL80211_IFTYPE_ADHOC) && 1108 !priv_tmp->port_open) || 1109 (atomic_read(&priv_tmp->wmm.tx_pkts_queued) == 0)) 1110 continue; 1111 1112 if (adapter->if_ops.is_port_ready && 1113 !adapter->if_ops.is_port_ready(priv_tmp)) 1114 continue; 1115 1116 /* iterate over the WMM queues of the BSS */ 1117 hqp = &priv_tmp->wmm.highest_queued_prio; 1118 for (i = atomic_read(hqp); i >= LOW_PRIO_TID; --i) { 1119 1120 spin_lock_bh(&priv_tmp->wmm.ra_list_spinlock); 1121 1122 tid_ptr = &(priv_tmp)->wmm. 1123 tid_tbl_ptr[tos_to_tid[i]]; 1124 1125 /* iterate over receiver addresses */ 1126 list_for_each_entry(ptr, &tid_ptr->ra_list, 1127 list) { 1128 1129 if (!ptr->tx_paused && 1130 !skb_queue_empty(&ptr->skb_head)) 1131 /* holds both locks */ 1132 goto found; 1133 } 1134 1135 spin_unlock_bh(&priv_tmp->wmm.ra_list_spinlock); 1136 } 1137 1138 if (atomic_read(&priv_tmp->wmm.tx_pkts_queued) != 0) { 1139 atomic_set(&priv_tmp->wmm.highest_queued_prio, 1140 HIGH_PRIO_TID); 1141 /* Iterate current private once more, since 1142 * there still exist packets in data queue 1143 */ 1144 goto try_again; 1145 } else 1146 atomic_set(&priv_tmp->wmm.highest_queued_prio, 1147 NO_PKT_PRIO_TID); 1148 } 1149 } 1150 1151 return NULL; 1152 1153 found: 1154 /* holds ra_list_spinlock */ 1155 if (atomic_read(hqp) > i) 1156 atomic_set(hqp, i); 1157 spin_unlock_bh(&priv_tmp->wmm.ra_list_spinlock); 1158 1159 *priv = priv_tmp; 1160 *tid = tos_to_tid[i]; 1161 1162 return ptr; 1163 } 1164 1165 /* This functions rotates ra and bss lists so packets are picked round robin. 1166 * 1167 * After a packet is successfully transmitted, rotate the ra list, so the ra 1168 * next to the one transmitted, will come first in the list. This way we pick 1169 * the ra' in a round robin fashion. Same applies to bss nodes of equal 1170 * priority. 1171 * 1172 * Function also increments wmm.packets_out counter. 1173 */ 1174 void mwifiex_rotate_priolists(struct mwifiex_private *priv, 1175 struct mwifiex_ra_list_tbl *ra, 1176 int tid) 1177 { 1178 struct mwifiex_adapter *adapter = priv->adapter; 1179 struct mwifiex_bss_prio_tbl *tbl = adapter->bss_prio_tbl; 1180 struct mwifiex_tid_tbl *tid_ptr = &priv->wmm.tid_tbl_ptr[tid]; 1181 1182 spin_lock_bh(&tbl[priv->bss_priority].bss_prio_lock); 1183 /* 1184 * dirty trick: we remove 'head' temporarily and reinsert it after 1185 * curr bss node. imagine list to stay fixed while head is moved 1186 */ 1187 list_move(&tbl[priv->bss_priority].bss_prio_head, 1188 &tbl[priv->bss_priority].bss_prio_cur->list); 1189 spin_unlock_bh(&tbl[priv->bss_priority].bss_prio_lock); 1190 1191 spin_lock_bh(&priv->wmm.ra_list_spinlock); 1192 if (mwifiex_is_ralist_valid(priv, ra, tid)) { 1193 priv->wmm.packets_out[tid]++; 1194 /* same as above */ 1195 list_move(&tid_ptr->ra_list, &ra->list); 1196 } 1197 spin_unlock_bh(&priv->wmm.ra_list_spinlock); 1198 } 1199 1200 /* 1201 * This function checks if 11n aggregation is possible. 1202 */ 1203 static int 1204 mwifiex_is_11n_aggragation_possible(struct mwifiex_private *priv, 1205 struct mwifiex_ra_list_tbl *ptr, 1206 int max_buf_size) 1207 { 1208 int count = 0, total_size = 0; 1209 struct sk_buff *skb, *tmp; 1210 int max_amsdu_size; 1211 1212 if (priv->bss_role == MWIFIEX_BSS_ROLE_UAP && priv->ap_11n_enabled && 1213 ptr->is_11n_enabled) 1214 max_amsdu_size = min_t(int, ptr->max_amsdu, max_buf_size); 1215 else 1216 max_amsdu_size = max_buf_size; 1217 1218 skb_queue_walk_safe(&ptr->skb_head, skb, tmp) { 1219 total_size += skb->len; 1220 if (total_size >= max_amsdu_size) 1221 break; 1222 if (++count >= MIN_NUM_AMSDU) 1223 return true; 1224 } 1225 1226 return false; 1227 } 1228 1229 /* 1230 * This function sends a single packet to firmware for transmission. 1231 */ 1232 static void 1233 mwifiex_send_single_packet(struct mwifiex_private *priv, 1234 struct mwifiex_ra_list_tbl *ptr, int ptr_index) 1235 __releases(&priv->wmm.ra_list_spinlock) 1236 { 1237 struct sk_buff *skb, *skb_next; 1238 struct mwifiex_tx_param tx_param; 1239 struct mwifiex_adapter *adapter = priv->adapter; 1240 struct mwifiex_txinfo *tx_info; 1241 1242 if (skb_queue_empty(&ptr->skb_head)) { 1243 spin_unlock_bh(&priv->wmm.ra_list_spinlock); 1244 mwifiex_dbg(adapter, DATA, "data: nothing to send\n"); 1245 return; 1246 } 1247 1248 skb = skb_dequeue(&ptr->skb_head); 1249 1250 tx_info = MWIFIEX_SKB_TXCB(skb); 1251 mwifiex_dbg(adapter, DATA, 1252 "data: dequeuing the packet %p %p\n", ptr, skb); 1253 1254 ptr->total_pkt_count--; 1255 1256 if (!skb_queue_empty(&ptr->skb_head)) 1257 skb_next = skb_peek(&ptr->skb_head); 1258 else 1259 skb_next = NULL; 1260 1261 spin_unlock_bh(&priv->wmm.ra_list_spinlock); 1262 1263 tx_param.next_pkt_len = ((skb_next) ? skb_next->len + 1264 sizeof(struct txpd) : 0); 1265 1266 if (mwifiex_process_tx(priv, skb, &tx_param) == -EBUSY) { 1267 /* Queue the packet back at the head */ 1268 spin_lock_bh(&priv->wmm.ra_list_spinlock); 1269 1270 if (!mwifiex_is_ralist_valid(priv, ptr, ptr_index)) { 1271 spin_unlock_bh(&priv->wmm.ra_list_spinlock); 1272 mwifiex_write_data_complete(adapter, skb, 0, -1); 1273 return; 1274 } 1275 1276 skb_queue_tail(&ptr->skb_head, skb); 1277 1278 ptr->total_pkt_count++; 1279 ptr->ba_pkt_count++; 1280 tx_info->flags |= MWIFIEX_BUF_FLAG_REQUEUED_PKT; 1281 spin_unlock_bh(&priv->wmm.ra_list_spinlock); 1282 } else { 1283 mwifiex_rotate_priolists(priv, ptr, ptr_index); 1284 atomic_dec(&priv->wmm.tx_pkts_queued); 1285 } 1286 } 1287 1288 /* 1289 * This function checks if the first packet in the given RA list 1290 * is already processed or not. 1291 */ 1292 static int 1293 mwifiex_is_ptr_processed(struct mwifiex_private *priv, 1294 struct mwifiex_ra_list_tbl *ptr) 1295 { 1296 struct sk_buff *skb; 1297 struct mwifiex_txinfo *tx_info; 1298 1299 if (skb_queue_empty(&ptr->skb_head)) 1300 return false; 1301 1302 skb = skb_peek(&ptr->skb_head); 1303 1304 tx_info = MWIFIEX_SKB_TXCB(skb); 1305 if (tx_info->flags & MWIFIEX_BUF_FLAG_REQUEUED_PKT) 1306 return true; 1307 1308 return false; 1309 } 1310 1311 /* 1312 * This function sends a single processed packet to firmware for 1313 * transmission. 1314 */ 1315 static void 1316 mwifiex_send_processed_packet(struct mwifiex_private *priv, 1317 struct mwifiex_ra_list_tbl *ptr, int ptr_index) 1318 __releases(&priv->wmm.ra_list_spinlock) 1319 { 1320 struct mwifiex_tx_param tx_param; 1321 struct mwifiex_adapter *adapter = priv->adapter; 1322 int ret = -1; 1323 struct sk_buff *skb, *skb_next; 1324 struct mwifiex_txinfo *tx_info; 1325 1326 if (skb_queue_empty(&ptr->skb_head)) { 1327 spin_unlock_bh(&priv->wmm.ra_list_spinlock); 1328 return; 1329 } 1330 1331 skb = skb_dequeue(&ptr->skb_head); 1332 1333 if (adapter->data_sent || adapter->tx_lock_flag) { 1334 ptr->total_pkt_count--; 1335 spin_unlock_bh(&priv->wmm.ra_list_spinlock); 1336 skb_queue_tail(&adapter->tx_data_q, skb); 1337 atomic_dec(&priv->wmm.tx_pkts_queued); 1338 atomic_inc(&adapter->tx_queued); 1339 return; 1340 } 1341 1342 if (!skb_queue_empty(&ptr->skb_head)) 1343 skb_next = skb_peek(&ptr->skb_head); 1344 else 1345 skb_next = NULL; 1346 1347 tx_info = MWIFIEX_SKB_TXCB(skb); 1348 1349 spin_unlock_bh(&priv->wmm.ra_list_spinlock); 1350 1351 tx_param.next_pkt_len = 1352 ((skb_next) ? skb_next->len + 1353 sizeof(struct txpd) : 0); 1354 if (adapter->iface_type == MWIFIEX_USB) { 1355 ret = adapter->if_ops.host_to_card(adapter, priv->usb_port, 1356 skb, &tx_param); 1357 } else { 1358 ret = adapter->if_ops.host_to_card(adapter, MWIFIEX_TYPE_DATA, 1359 skb, &tx_param); 1360 } 1361 1362 switch (ret) { 1363 case -EBUSY: 1364 mwifiex_dbg(adapter, ERROR, "data: -EBUSY is returned\n"); 1365 spin_lock_bh(&priv->wmm.ra_list_spinlock); 1366 1367 if (!mwifiex_is_ralist_valid(priv, ptr, ptr_index)) { 1368 spin_unlock_bh(&priv->wmm.ra_list_spinlock); 1369 mwifiex_write_data_complete(adapter, skb, 0, -1); 1370 return; 1371 } 1372 1373 skb_queue_tail(&ptr->skb_head, skb); 1374 1375 tx_info->flags |= MWIFIEX_BUF_FLAG_REQUEUED_PKT; 1376 spin_unlock_bh(&priv->wmm.ra_list_spinlock); 1377 break; 1378 case -1: 1379 mwifiex_dbg(adapter, ERROR, "host_to_card failed: %#x\n", ret); 1380 adapter->dbg.num_tx_host_to_card_failure++; 1381 mwifiex_write_data_complete(adapter, skb, 0, ret); 1382 break; 1383 case -EINPROGRESS: 1384 break; 1385 case 0: 1386 mwifiex_write_data_complete(adapter, skb, 0, ret); 1387 break; 1388 default: 1389 break; 1390 } 1391 if (ret != -EBUSY) { 1392 mwifiex_rotate_priolists(priv, ptr, ptr_index); 1393 atomic_dec(&priv->wmm.tx_pkts_queued); 1394 spin_lock_bh(&priv->wmm.ra_list_spinlock); 1395 ptr->total_pkt_count--; 1396 spin_unlock_bh(&priv->wmm.ra_list_spinlock); 1397 } 1398 } 1399 1400 /* 1401 * This function dequeues a packet from the highest priority list 1402 * and transmits it. 1403 */ 1404 static int 1405 mwifiex_dequeue_tx_packet(struct mwifiex_adapter *adapter) 1406 { 1407 struct mwifiex_ra_list_tbl *ptr; 1408 struct mwifiex_private *priv = NULL; 1409 int ptr_index = 0; 1410 u8 ra[ETH_ALEN]; 1411 int tid_del = 0, tid = 0; 1412 1413 ptr = mwifiex_wmm_get_highest_priolist_ptr(adapter, &priv, &ptr_index); 1414 if (!ptr) 1415 return -1; 1416 1417 tid = mwifiex_get_tid(ptr); 1418 1419 mwifiex_dbg(adapter, DATA, "data: tid=%d\n", tid); 1420 1421 spin_lock_bh(&priv->wmm.ra_list_spinlock); 1422 if (!mwifiex_is_ralist_valid(priv, ptr, ptr_index)) { 1423 spin_unlock_bh(&priv->wmm.ra_list_spinlock); 1424 return -1; 1425 } 1426 1427 if (mwifiex_is_ptr_processed(priv, ptr)) { 1428 mwifiex_send_processed_packet(priv, ptr, ptr_index); 1429 /* ra_list_spinlock has been freed in 1430 mwifiex_send_processed_packet() */ 1431 return 0; 1432 } 1433 1434 if (!ptr->is_11n_enabled || 1435 ptr->ba_status || 1436 priv->wps.session_enable) { 1437 if (ptr->is_11n_enabled && 1438 ptr->ba_status && 1439 ptr->amsdu_in_ampdu && 1440 mwifiex_is_amsdu_allowed(priv, tid) && 1441 mwifiex_is_11n_aggragation_possible(priv, ptr, 1442 adapter->tx_buf_size)) 1443 mwifiex_11n_aggregate_pkt(priv, ptr, ptr_index); 1444 /* ra_list_spinlock has been freed in 1445 * mwifiex_11n_aggregate_pkt() 1446 */ 1447 else 1448 mwifiex_send_single_packet(priv, ptr, ptr_index); 1449 /* ra_list_spinlock has been freed in 1450 * mwifiex_send_single_packet() 1451 */ 1452 } else { 1453 if (mwifiex_is_ampdu_allowed(priv, ptr, tid) && 1454 ptr->ba_pkt_count > ptr->ba_packet_thr) { 1455 if (mwifiex_space_avail_for_new_ba_stream(adapter)) { 1456 mwifiex_create_ba_tbl(priv, ptr->ra, tid, 1457 BA_SETUP_INPROGRESS); 1458 mwifiex_send_addba(priv, tid, ptr->ra); 1459 } else if (mwifiex_find_stream_to_delete 1460 (priv, tid, &tid_del, ra)) { 1461 mwifiex_create_ba_tbl(priv, ptr->ra, tid, 1462 BA_SETUP_INPROGRESS); 1463 mwifiex_send_delba(priv, tid_del, ra, 1); 1464 } 1465 } 1466 if (mwifiex_is_amsdu_allowed(priv, tid) && 1467 mwifiex_is_11n_aggragation_possible(priv, ptr, 1468 adapter->tx_buf_size)) 1469 mwifiex_11n_aggregate_pkt(priv, ptr, ptr_index); 1470 /* ra_list_spinlock has been freed in 1471 mwifiex_11n_aggregate_pkt() */ 1472 else 1473 mwifiex_send_single_packet(priv, ptr, ptr_index); 1474 /* ra_list_spinlock has been freed in 1475 mwifiex_send_single_packet() */ 1476 } 1477 return 0; 1478 } 1479 1480 void mwifiex_process_bypass_tx(struct mwifiex_adapter *adapter) 1481 { 1482 struct mwifiex_tx_param tx_param; 1483 struct sk_buff *skb; 1484 struct mwifiex_txinfo *tx_info; 1485 struct mwifiex_private *priv; 1486 int i; 1487 1488 if (adapter->data_sent || adapter->tx_lock_flag) 1489 return; 1490 1491 for (i = 0; i < adapter->priv_num; ++i) { 1492 priv = adapter->priv[i]; 1493 1494 if (!priv) 1495 continue; 1496 1497 if (adapter->if_ops.is_port_ready && 1498 !adapter->if_ops.is_port_ready(priv)) 1499 continue; 1500 1501 if (skb_queue_empty(&priv->bypass_txq)) 1502 continue; 1503 1504 skb = skb_dequeue(&priv->bypass_txq); 1505 tx_info = MWIFIEX_SKB_TXCB(skb); 1506 1507 /* no aggregation for bypass packets */ 1508 tx_param.next_pkt_len = 0; 1509 1510 if (mwifiex_process_tx(priv, skb, &tx_param) == -EBUSY) { 1511 skb_queue_head(&priv->bypass_txq, skb); 1512 tx_info->flags |= MWIFIEX_BUF_FLAG_REQUEUED_PKT; 1513 } else { 1514 atomic_dec(&adapter->bypass_tx_pending); 1515 } 1516 } 1517 } 1518 1519 /* 1520 * This function transmits the highest priority packet awaiting in the 1521 * WMM Queues. 1522 */ 1523 void 1524 mwifiex_wmm_process_tx(struct mwifiex_adapter *adapter) 1525 { 1526 do { 1527 if (mwifiex_dequeue_tx_packet(adapter)) 1528 break; 1529 if (adapter->iface_type != MWIFIEX_SDIO) { 1530 if (adapter->data_sent || 1531 adapter->tx_lock_flag) 1532 break; 1533 } else { 1534 if (atomic_read(&adapter->tx_queued) >= 1535 MWIFIEX_MAX_PKTS_TXQ) 1536 break; 1537 } 1538 } while (!mwifiex_wmm_lists_empty(adapter)); 1539 } 1540