1 /*
2  * NXP Wireless LAN device driver: station command response handling
3  *
4  * Copyright 2011-2020 NXP
5  *
6  * This software file (the "File") is distributed by NXP
7  * under the terms of the GNU General Public License Version 2, June 1991
8  * (the "License").  You may use, redistribute and/or modify this File in
9  * accordance with the terms and conditions of the License, a copy of which
10  * is available by writing to the Free Software Foundation, Inc.,
11  * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA or on the
12  * worldwide web at http://www.gnu.org/licenses/old-licenses/gpl-2.0.txt.
13  *
14  * THE FILE IS DISTRIBUTED AS-IS, WITHOUT WARRANTY OF ANY KIND, AND THE
15  * IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE
16  * ARE EXPRESSLY DISCLAIMED.  The License provides additional details about
17  * this warranty disclaimer.
18  */
19 
20 #include "decl.h"
21 #include "ioctl.h"
22 #include "util.h"
23 #include "fw.h"
24 #include "main.h"
25 #include "wmm.h"
26 #include "11n.h"
27 #include "11ac.h"
28 
29 
30 /*
31  * This function handles the command response error case.
32  *
33  * For scan response error, the function cancels all the pending
34  * scan commands and generates an event to inform the applications
35  * of the scan completion.
36  *
37  * For Power Save command failure, we do not retry enter PS
38  * command in case of Ad-hoc mode.
39  *
40  * For all other response errors, the current command buffer is freed
41  * and returned to the free command queue.
42  */
43 static void
44 mwifiex_process_cmdresp_error(struct mwifiex_private *priv,
45 			      struct host_cmd_ds_command *resp)
46 {
47 	struct mwifiex_adapter *adapter = priv->adapter;
48 	struct host_cmd_ds_802_11_ps_mode_enh *pm;
49 
50 	mwifiex_dbg(adapter, ERROR,
51 		    "CMD_RESP: cmd %#x error, result=%#x\n",
52 		    resp->command, resp->result);
53 
54 	if (adapter->curr_cmd->wait_q_enabled)
55 		adapter->cmd_wait_q.status = -1;
56 
57 	switch (le16_to_cpu(resp->command)) {
58 	case HostCmd_CMD_802_11_PS_MODE_ENH:
59 		pm = &resp->params.psmode_enh;
60 		mwifiex_dbg(adapter, ERROR,
61 			    "PS_MODE_ENH cmd failed: result=0x%x action=0x%X\n",
62 			    resp->result, le16_to_cpu(pm->action));
63 		/* We do not re-try enter-ps command in ad-hoc mode. */
64 		if (le16_to_cpu(pm->action) == EN_AUTO_PS &&
65 		    (le16_to_cpu(pm->params.ps_bitmap) & BITMAP_STA_PS) &&
66 		    priv->bss_mode == NL80211_IFTYPE_ADHOC)
67 			adapter->ps_mode = MWIFIEX_802_11_POWER_MODE_CAM;
68 
69 		break;
70 	case HostCmd_CMD_802_11_SCAN:
71 	case HostCmd_CMD_802_11_SCAN_EXT:
72 		mwifiex_cancel_scan(adapter);
73 		break;
74 
75 	case HostCmd_CMD_MAC_CONTROL:
76 		break;
77 
78 	case HostCmd_CMD_SDIO_SP_RX_AGGR_CFG:
79 		mwifiex_dbg(adapter, MSG,
80 			    "SDIO RX single-port aggregation Not support\n");
81 		break;
82 
83 	default:
84 		break;
85 	}
86 	/* Handling errors here */
87 	mwifiex_recycle_cmd_node(adapter, adapter->curr_cmd);
88 
89 	spin_lock_bh(&adapter->mwifiex_cmd_lock);
90 	adapter->curr_cmd = NULL;
91 	spin_unlock_bh(&adapter->mwifiex_cmd_lock);
92 }
93 
94 /*
95  * This function handles the command response of get RSSI info.
96  *
97  * Handling includes changing the header fields into CPU format
98  * and saving the following parameters in driver -
99  *      - Last data and beacon RSSI value
100  *      - Average data and beacon RSSI value
101  *      - Last data and beacon NF value
102  *      - Average data and beacon NF value
103  *
104  * The parameters are send to the application as well, along with
105  * calculated SNR values.
106  */
107 static int mwifiex_ret_802_11_rssi_info(struct mwifiex_private *priv,
108 					struct host_cmd_ds_command *resp)
109 {
110 	struct host_cmd_ds_802_11_rssi_info_rsp *rssi_info_rsp =
111 						&resp->params.rssi_info_rsp;
112 	struct mwifiex_ds_misc_subsc_evt *subsc_evt =
113 						&priv->async_subsc_evt_storage;
114 
115 	priv->data_rssi_last = le16_to_cpu(rssi_info_rsp->data_rssi_last);
116 	priv->data_nf_last = le16_to_cpu(rssi_info_rsp->data_nf_last);
117 
118 	priv->data_rssi_avg = le16_to_cpu(rssi_info_rsp->data_rssi_avg);
119 	priv->data_nf_avg = le16_to_cpu(rssi_info_rsp->data_nf_avg);
120 
121 	priv->bcn_rssi_last = le16_to_cpu(rssi_info_rsp->bcn_rssi_last);
122 	priv->bcn_nf_last = le16_to_cpu(rssi_info_rsp->bcn_nf_last);
123 
124 	priv->bcn_rssi_avg = le16_to_cpu(rssi_info_rsp->bcn_rssi_avg);
125 	priv->bcn_nf_avg = le16_to_cpu(rssi_info_rsp->bcn_nf_avg);
126 
127 	if (priv->subsc_evt_rssi_state == EVENT_HANDLED)
128 		return 0;
129 
130 	memset(subsc_evt, 0x00, sizeof(struct mwifiex_ds_misc_subsc_evt));
131 
132 	/* Resubscribe low and high rssi events with new thresholds */
133 	subsc_evt->events = BITMASK_BCN_RSSI_LOW | BITMASK_BCN_RSSI_HIGH;
134 	subsc_evt->action = HostCmd_ACT_BITWISE_SET;
135 	if (priv->subsc_evt_rssi_state == RSSI_LOW_RECVD) {
136 		subsc_evt->bcn_l_rssi_cfg.abs_value = abs(priv->bcn_rssi_avg -
137 				priv->cqm_rssi_hyst);
138 		subsc_evt->bcn_h_rssi_cfg.abs_value = abs(priv->cqm_rssi_thold);
139 	} else if (priv->subsc_evt_rssi_state == RSSI_HIGH_RECVD) {
140 		subsc_evt->bcn_l_rssi_cfg.abs_value = abs(priv->cqm_rssi_thold);
141 		subsc_evt->bcn_h_rssi_cfg.abs_value = abs(priv->bcn_rssi_avg +
142 				priv->cqm_rssi_hyst);
143 	}
144 	subsc_evt->bcn_l_rssi_cfg.evt_freq = 1;
145 	subsc_evt->bcn_h_rssi_cfg.evt_freq = 1;
146 
147 	priv->subsc_evt_rssi_state = EVENT_HANDLED;
148 
149 	mwifiex_send_cmd(priv, HostCmd_CMD_802_11_SUBSCRIBE_EVENT,
150 			 0, 0, subsc_evt, false);
151 
152 	return 0;
153 }
154 
155 /*
156  * This function handles the command response of set/get SNMP
157  * MIB parameters.
158  *
159  * Handling includes changing the header fields into CPU format
160  * and saving the parameter in driver.
161  *
162  * The following parameters are supported -
163  *      - Fragmentation threshold
164  *      - RTS threshold
165  *      - Short retry limit
166  */
167 static int mwifiex_ret_802_11_snmp_mib(struct mwifiex_private *priv,
168 				       struct host_cmd_ds_command *resp,
169 				       u32 *data_buf)
170 {
171 	struct host_cmd_ds_802_11_snmp_mib *smib = &resp->params.smib;
172 	u16 oid = le16_to_cpu(smib->oid);
173 	u16 query_type = le16_to_cpu(smib->query_type);
174 	u32 ul_temp;
175 
176 	mwifiex_dbg(priv->adapter, INFO,
177 		    "info: SNMP_RESP: oid value = %#x,\t"
178 		    "query_type = %#x, buf size = %#x\n",
179 		    oid, query_type, le16_to_cpu(smib->buf_size));
180 	if (query_type == HostCmd_ACT_GEN_GET) {
181 		ul_temp = get_unaligned_le16(smib->value);
182 		if (data_buf)
183 			*data_buf = ul_temp;
184 		switch (oid) {
185 		case FRAG_THRESH_I:
186 			mwifiex_dbg(priv->adapter, INFO,
187 				    "info: SNMP_RESP: FragThsd =%u\n",
188 				    ul_temp);
189 			break;
190 		case RTS_THRESH_I:
191 			mwifiex_dbg(priv->adapter, INFO,
192 				    "info: SNMP_RESP: RTSThsd =%u\n",
193 				    ul_temp);
194 			break;
195 		case SHORT_RETRY_LIM_I:
196 			mwifiex_dbg(priv->adapter, INFO,
197 				    "info: SNMP_RESP: TxRetryCount=%u\n",
198 				    ul_temp);
199 			break;
200 		case DTIM_PERIOD_I:
201 			mwifiex_dbg(priv->adapter, INFO,
202 				    "info: SNMP_RESP: DTIM period=%u\n",
203 				    ul_temp);
204 			break;
205 		default:
206 			break;
207 		}
208 	}
209 
210 	return 0;
211 }
212 
213 /*
214  * This function handles the command response of get log request
215  *
216  * Handling includes changing the header fields into CPU format
217  * and sending the received parameters to application.
218  */
219 static int mwifiex_ret_get_log(struct mwifiex_private *priv,
220 			       struct host_cmd_ds_command *resp,
221 			       struct mwifiex_ds_get_stats *stats)
222 {
223 	struct host_cmd_ds_802_11_get_log *get_log =
224 		&resp->params.get_log;
225 
226 	if (stats) {
227 		stats->mcast_tx_frame = le32_to_cpu(get_log->mcast_tx_frame);
228 		stats->failed = le32_to_cpu(get_log->failed);
229 		stats->retry = le32_to_cpu(get_log->retry);
230 		stats->multi_retry = le32_to_cpu(get_log->multi_retry);
231 		stats->frame_dup = le32_to_cpu(get_log->frame_dup);
232 		stats->rts_success = le32_to_cpu(get_log->rts_success);
233 		stats->rts_failure = le32_to_cpu(get_log->rts_failure);
234 		stats->ack_failure = le32_to_cpu(get_log->ack_failure);
235 		stats->rx_frag = le32_to_cpu(get_log->rx_frag);
236 		stats->mcast_rx_frame = le32_to_cpu(get_log->mcast_rx_frame);
237 		stats->fcs_error = le32_to_cpu(get_log->fcs_error);
238 		stats->tx_frame = le32_to_cpu(get_log->tx_frame);
239 		stats->wep_icv_error[0] =
240 			le32_to_cpu(get_log->wep_icv_err_cnt[0]);
241 		stats->wep_icv_error[1] =
242 			le32_to_cpu(get_log->wep_icv_err_cnt[1]);
243 		stats->wep_icv_error[2] =
244 			le32_to_cpu(get_log->wep_icv_err_cnt[2]);
245 		stats->wep_icv_error[3] =
246 			le32_to_cpu(get_log->wep_icv_err_cnt[3]);
247 		stats->bcn_rcv_cnt = le32_to_cpu(get_log->bcn_rcv_cnt);
248 		stats->bcn_miss_cnt = le32_to_cpu(get_log->bcn_miss_cnt);
249 	}
250 
251 	return 0;
252 }
253 
254 /*
255  * This function handles the command response of set/get Tx rate
256  * configurations.
257  *
258  * Handling includes changing the header fields into CPU format
259  * and saving the following parameters in driver -
260  *      - DSSS rate bitmap
261  *      - OFDM rate bitmap
262  *      - HT MCS rate bitmaps
263  *
264  * Based on the new rate bitmaps, the function re-evaluates if
265  * auto data rate has been activated. If not, it sends another
266  * query to the firmware to get the current Tx data rate.
267  */
268 static int mwifiex_ret_tx_rate_cfg(struct mwifiex_private *priv,
269 				   struct host_cmd_ds_command *resp)
270 {
271 	struct host_cmd_ds_tx_rate_cfg *rate_cfg = &resp->params.tx_rate_cfg;
272 	struct mwifiex_rate_scope *rate_scope;
273 	struct mwifiex_ie_types_header *head;
274 	u16 tlv, tlv_buf_len, tlv_buf_left;
275 	u8 *tlv_buf;
276 	u32 i;
277 
278 	tlv_buf = ((u8 *)rate_cfg) + sizeof(struct host_cmd_ds_tx_rate_cfg);
279 	tlv_buf_left = le16_to_cpu(resp->size) - S_DS_GEN - sizeof(*rate_cfg);
280 
281 	while (tlv_buf_left >= sizeof(*head)) {
282 		head = (struct mwifiex_ie_types_header *)tlv_buf;
283 		tlv = le16_to_cpu(head->type);
284 		tlv_buf_len = le16_to_cpu(head->len);
285 
286 		if (tlv_buf_left < (sizeof(*head) + tlv_buf_len))
287 			break;
288 
289 		switch (tlv) {
290 		case TLV_TYPE_RATE_SCOPE:
291 			rate_scope = (struct mwifiex_rate_scope *) tlv_buf;
292 			priv->bitmap_rates[0] =
293 				le16_to_cpu(rate_scope->hr_dsss_rate_bitmap);
294 			priv->bitmap_rates[1] =
295 				le16_to_cpu(rate_scope->ofdm_rate_bitmap);
296 			for (i = 0;
297 			     i < ARRAY_SIZE(rate_scope->ht_mcs_rate_bitmap);
298 			     i++)
299 				priv->bitmap_rates[2 + i] =
300 					le16_to_cpu(rate_scope->
301 						    ht_mcs_rate_bitmap[i]);
302 
303 			if (priv->adapter->fw_api_ver == MWIFIEX_FW_V15) {
304 				for (i = 0; i < ARRAY_SIZE(rate_scope->
305 							   vht_mcs_rate_bitmap);
306 				     i++)
307 					priv->bitmap_rates[10 + i] =
308 					    le16_to_cpu(rate_scope->
309 							vht_mcs_rate_bitmap[i]);
310 			}
311 			break;
312 			/* Add RATE_DROP tlv here */
313 		}
314 
315 		tlv_buf += (sizeof(*head) + tlv_buf_len);
316 		tlv_buf_left -= (sizeof(*head) + tlv_buf_len);
317 	}
318 
319 	priv->is_data_rate_auto = mwifiex_is_rate_auto(priv);
320 
321 	if (priv->is_data_rate_auto)
322 		priv->data_rate = 0;
323 	else
324 		return mwifiex_send_cmd(priv, HostCmd_CMD_802_11_TX_RATE_QUERY,
325 					HostCmd_ACT_GEN_GET, 0, NULL, false);
326 
327 	return 0;
328 }
329 
330 /*
331  * This function handles the command response of get Tx power level.
332  *
333  * Handling includes saving the maximum and minimum Tx power levels
334  * in driver, as well as sending the values to user.
335  */
336 static int mwifiex_get_power_level(struct mwifiex_private *priv, void *data_buf)
337 {
338 	int length, max_power = -1, min_power = -1;
339 	struct mwifiex_types_power_group *pg_tlv_hdr;
340 	struct mwifiex_power_group *pg;
341 
342 	if (!data_buf)
343 		return -1;
344 
345 	pg_tlv_hdr = (struct mwifiex_types_power_group *)((u8 *)data_buf);
346 	pg = (struct mwifiex_power_group *)
347 		((u8 *) pg_tlv_hdr + sizeof(struct mwifiex_types_power_group));
348 	length = le16_to_cpu(pg_tlv_hdr->length);
349 
350 	/* At least one structure required to update power */
351 	if (length < sizeof(struct mwifiex_power_group))
352 		return 0;
353 
354 	max_power = pg->power_max;
355 	min_power = pg->power_min;
356 	length -= sizeof(struct mwifiex_power_group);
357 
358 	while (length >= sizeof(struct mwifiex_power_group)) {
359 		pg++;
360 		if (max_power < pg->power_max)
361 			max_power = pg->power_max;
362 
363 		if (min_power > pg->power_min)
364 			min_power = pg->power_min;
365 
366 		length -= sizeof(struct mwifiex_power_group);
367 	}
368 	priv->min_tx_power_level = (u8) min_power;
369 	priv->max_tx_power_level = (u8) max_power;
370 
371 	return 0;
372 }
373 
374 /*
375  * This function handles the command response of set/get Tx power
376  * configurations.
377  *
378  * Handling includes changing the header fields into CPU format
379  * and saving the current Tx power level in driver.
380  */
381 static int mwifiex_ret_tx_power_cfg(struct mwifiex_private *priv,
382 				    struct host_cmd_ds_command *resp)
383 {
384 	struct mwifiex_adapter *adapter = priv->adapter;
385 	struct host_cmd_ds_txpwr_cfg *txp_cfg = &resp->params.txp_cfg;
386 	struct mwifiex_types_power_group *pg_tlv_hdr;
387 	struct mwifiex_power_group *pg;
388 	u16 action = le16_to_cpu(txp_cfg->action);
389 	u16 tlv_buf_left;
390 
391 	pg_tlv_hdr = (struct mwifiex_types_power_group *)
392 		((u8 *)txp_cfg +
393 		 sizeof(struct host_cmd_ds_txpwr_cfg));
394 
395 	pg = (struct mwifiex_power_group *)
396 		((u8 *)pg_tlv_hdr +
397 		 sizeof(struct mwifiex_types_power_group));
398 
399 	tlv_buf_left = le16_to_cpu(resp->size) - S_DS_GEN - sizeof(*txp_cfg);
400 	if (tlv_buf_left <
401 			le16_to_cpu(pg_tlv_hdr->length) + sizeof(*pg_tlv_hdr))
402 		return 0;
403 
404 	switch (action) {
405 	case HostCmd_ACT_GEN_GET:
406 		if (adapter->hw_status == MWIFIEX_HW_STATUS_INITIALIZING)
407 			mwifiex_get_power_level(priv, pg_tlv_hdr);
408 
409 		priv->tx_power_level = (u16) pg->power_min;
410 		break;
411 
412 	case HostCmd_ACT_GEN_SET:
413 		if (!le32_to_cpu(txp_cfg->mode))
414 			break;
415 
416 		if (pg->power_max == pg->power_min)
417 			priv->tx_power_level = (u16) pg->power_min;
418 		break;
419 	default:
420 		mwifiex_dbg(adapter, ERROR,
421 			    "CMD_RESP: unknown cmd action %d\n",
422 			    action);
423 		return 0;
424 	}
425 	mwifiex_dbg(adapter, INFO,
426 		    "info: Current TxPower Level = %d, Max Power=%d, Min Power=%d\n",
427 		    priv->tx_power_level, priv->max_tx_power_level,
428 		    priv->min_tx_power_level);
429 
430 	return 0;
431 }
432 
433 /*
434  * This function handles the command response of get RF Tx power.
435  */
436 static int mwifiex_ret_rf_tx_power(struct mwifiex_private *priv,
437 				   struct host_cmd_ds_command *resp)
438 {
439 	struct host_cmd_ds_rf_tx_pwr *txp = &resp->params.txp;
440 	u16 action = le16_to_cpu(txp->action);
441 
442 	priv->tx_power_level = le16_to_cpu(txp->cur_level);
443 
444 	if (action == HostCmd_ACT_GEN_GET) {
445 		priv->max_tx_power_level = txp->max_power;
446 		priv->min_tx_power_level = txp->min_power;
447 	}
448 
449 	mwifiex_dbg(priv->adapter, INFO,
450 		    "Current TxPower Level=%d, Max Power=%d, Min Power=%d\n",
451 		    priv->tx_power_level, priv->max_tx_power_level,
452 		    priv->min_tx_power_level);
453 
454 	return 0;
455 }
456 
457 /*
458  * This function handles the command response of set rf antenna
459  */
460 static int mwifiex_ret_rf_antenna(struct mwifiex_private *priv,
461 				  struct host_cmd_ds_command *resp)
462 {
463 	struct host_cmd_ds_rf_ant_mimo *ant_mimo = &resp->params.ant_mimo;
464 	struct host_cmd_ds_rf_ant_siso *ant_siso = &resp->params.ant_siso;
465 	struct mwifiex_adapter *adapter = priv->adapter;
466 
467 	if (adapter->hw_dev_mcs_support == HT_STREAM_2X2) {
468 		priv->tx_ant = le16_to_cpu(ant_mimo->tx_ant_mode);
469 		priv->rx_ant = le16_to_cpu(ant_mimo->rx_ant_mode);
470 		mwifiex_dbg(adapter, INFO,
471 			    "RF_ANT_RESP: Tx action = 0x%x, Tx Mode = 0x%04x\t"
472 			    "Rx action = 0x%x, Rx Mode = 0x%04x\n",
473 			    le16_to_cpu(ant_mimo->action_tx),
474 			    le16_to_cpu(ant_mimo->tx_ant_mode),
475 			    le16_to_cpu(ant_mimo->action_rx),
476 			    le16_to_cpu(ant_mimo->rx_ant_mode));
477 	} else {
478 		priv->tx_ant = le16_to_cpu(ant_siso->ant_mode);
479 		priv->rx_ant = le16_to_cpu(ant_siso->ant_mode);
480 		mwifiex_dbg(adapter, INFO,
481 			    "RF_ANT_RESP: action = 0x%x, Mode = 0x%04x\n",
482 			    le16_to_cpu(ant_siso->action),
483 			    le16_to_cpu(ant_siso->ant_mode));
484 	}
485 	return 0;
486 }
487 
488 /*
489  * This function handles the command response of set/get MAC address.
490  *
491  * Handling includes saving the MAC address in driver.
492  */
493 static int mwifiex_ret_802_11_mac_address(struct mwifiex_private *priv,
494 					  struct host_cmd_ds_command *resp)
495 {
496 	struct host_cmd_ds_802_11_mac_address *cmd_mac_addr =
497 							&resp->params.mac_addr;
498 
499 	memcpy(priv->curr_addr, cmd_mac_addr->mac_addr, ETH_ALEN);
500 
501 	mwifiex_dbg(priv->adapter, INFO,
502 		    "info: set mac address: %pM\n", priv->curr_addr);
503 
504 	return 0;
505 }
506 
507 /*
508  * This function handles the command response of set/get MAC multicast
509  * address.
510  */
511 static int mwifiex_ret_mac_multicast_adr(struct mwifiex_private *priv,
512 					 struct host_cmd_ds_command *resp)
513 {
514 	return 0;
515 }
516 
517 /*
518  * This function handles the command response of get Tx rate query.
519  *
520  * Handling includes changing the header fields into CPU format
521  * and saving the Tx rate and HT information parameters in driver.
522  *
523  * Both rate configuration and current data rate can be retrieved
524  * with this request.
525  */
526 static int mwifiex_ret_802_11_tx_rate_query(struct mwifiex_private *priv,
527 					    struct host_cmd_ds_command *resp)
528 {
529 	priv->tx_rate = resp->params.tx_rate.tx_rate;
530 	priv->tx_htinfo = resp->params.tx_rate.ht_info;
531 	if (!priv->is_data_rate_auto)
532 		priv->data_rate =
533 			mwifiex_index_to_data_rate(priv, priv->tx_rate,
534 						   priv->tx_htinfo);
535 
536 	return 0;
537 }
538 
539 /*
540  * This function handles the command response of a deauthenticate
541  * command.
542  *
543  * If the deauthenticated MAC matches the current BSS MAC, the connection
544  * state is reset.
545  */
546 static int mwifiex_ret_802_11_deauthenticate(struct mwifiex_private *priv,
547 					     struct host_cmd_ds_command *resp)
548 {
549 	struct mwifiex_adapter *adapter = priv->adapter;
550 
551 	adapter->dbg.num_cmd_deauth++;
552 	if (!memcmp(resp->params.deauth.mac_addr,
553 		    &priv->curr_bss_params.bss_descriptor.mac_address,
554 		    sizeof(resp->params.deauth.mac_addr)))
555 		mwifiex_reset_connect_state(priv, WLAN_REASON_DEAUTH_LEAVING,
556 					    false);
557 
558 	return 0;
559 }
560 
561 /*
562  * This function handles the command response of ad-hoc stop.
563  *
564  * The function resets the connection state in driver.
565  */
566 static int mwifiex_ret_802_11_ad_hoc_stop(struct mwifiex_private *priv,
567 					  struct host_cmd_ds_command *resp)
568 {
569 	mwifiex_reset_connect_state(priv, WLAN_REASON_DEAUTH_LEAVING, false);
570 	return 0;
571 }
572 
573 /*
574  * This function handles the command response of set/get v1 key material.
575  *
576  * Handling includes updating the driver parameters to reflect the
577  * changes.
578  */
579 static int mwifiex_ret_802_11_key_material_v1(struct mwifiex_private *priv,
580 					      struct host_cmd_ds_command *resp)
581 {
582 	struct host_cmd_ds_802_11_key_material *key =
583 						&resp->params.key_material;
584 	int len;
585 
586 	len = le16_to_cpu(key->key_param_set.key_len);
587 	if (len > sizeof(key->key_param_set.key))
588 		return -EINVAL;
589 
590 	if (le16_to_cpu(key->action) == HostCmd_ACT_GEN_SET) {
591 		if ((le16_to_cpu(key->key_param_set.key_info) & KEY_MCAST)) {
592 			mwifiex_dbg(priv->adapter, INFO,
593 				    "info: key: GTK is set\n");
594 			priv->wpa_is_gtk_set = true;
595 			priv->scan_block = false;
596 			priv->port_open = true;
597 		}
598 	}
599 
600 	memset(priv->aes_key.key_param_set.key, 0,
601 	       sizeof(key->key_param_set.key));
602 	priv->aes_key.key_param_set.key_len = cpu_to_le16(len);
603 	memcpy(priv->aes_key.key_param_set.key, key->key_param_set.key, len);
604 
605 	return 0;
606 }
607 
608 /*
609  * This function handles the command response of set/get v2 key material.
610  *
611  * Handling includes updating the driver parameters to reflect the
612  * changes.
613  */
614 static int mwifiex_ret_802_11_key_material_v2(struct mwifiex_private *priv,
615 					      struct host_cmd_ds_command *resp)
616 {
617 	struct host_cmd_ds_802_11_key_material_v2 *key_v2;
618 	int len;
619 
620 	key_v2 = &resp->params.key_material_v2;
621 
622 	len = le16_to_cpu(key_v2->key_param_set.key_params.aes.key_len);
623 	if (len > sizeof(key_v2->key_param_set.key_params.aes.key))
624 		return -EINVAL;
625 
626 	if (le16_to_cpu(key_v2->action) == HostCmd_ACT_GEN_SET) {
627 		if ((le16_to_cpu(key_v2->key_param_set.key_info) & KEY_MCAST)) {
628 			mwifiex_dbg(priv->adapter, INFO, "info: key: GTK is set\n");
629 			priv->wpa_is_gtk_set = true;
630 			priv->scan_block = false;
631 			priv->port_open = true;
632 		}
633 	}
634 
635 	if (key_v2->key_param_set.key_type != KEY_TYPE_ID_AES)
636 		return 0;
637 
638 	memset(priv->aes_key_v2.key_param_set.key_params.aes.key, 0,
639 	       sizeof(key_v2->key_param_set.key_params.aes.key));
640 	priv->aes_key_v2.key_param_set.key_params.aes.key_len =
641 				cpu_to_le16(len);
642 	memcpy(priv->aes_key_v2.key_param_set.key_params.aes.key,
643 	       key_v2->key_param_set.key_params.aes.key, len);
644 
645 	return 0;
646 }
647 
648 /* Wrapper function for processing response of key material command */
649 static int mwifiex_ret_802_11_key_material(struct mwifiex_private *priv,
650 					   struct host_cmd_ds_command *resp)
651 {
652 	if (priv->adapter->key_api_major_ver == KEY_API_VER_MAJOR_V2)
653 		return mwifiex_ret_802_11_key_material_v2(priv, resp);
654 	else
655 		return mwifiex_ret_802_11_key_material_v1(priv, resp);
656 }
657 
658 /*
659  * This function handles the command response of get 11d domain information.
660  */
661 static int mwifiex_ret_802_11d_domain_info(struct mwifiex_private *priv,
662 					   struct host_cmd_ds_command *resp)
663 {
664 	struct host_cmd_ds_802_11d_domain_info_rsp *domain_info =
665 		&resp->params.domain_info_resp;
666 	struct mwifiex_ietypes_domain_param_set *domain = &domain_info->domain;
667 	u16 action = le16_to_cpu(domain_info->action);
668 	u8 no_of_triplet;
669 
670 	no_of_triplet = (u8) ((le16_to_cpu(domain->header.len)
671 				- IEEE80211_COUNTRY_STRING_LEN)
672 			      / sizeof(struct ieee80211_country_ie_triplet));
673 
674 	mwifiex_dbg(priv->adapter, INFO,
675 		    "info: 11D Domain Info Resp: no_of_triplet=%d\n",
676 		    no_of_triplet);
677 
678 	if (no_of_triplet > MWIFIEX_MAX_TRIPLET_802_11D) {
679 		mwifiex_dbg(priv->adapter, FATAL,
680 			    "11D: invalid number of triplets %d returned\n",
681 			    no_of_triplet);
682 		return -1;
683 	}
684 
685 	switch (action) {
686 	case HostCmd_ACT_GEN_SET:  /* Proc Set Action */
687 		break;
688 	case HostCmd_ACT_GEN_GET:
689 		break;
690 	default:
691 		mwifiex_dbg(priv->adapter, ERROR,
692 			    "11D: invalid action:%d\n", domain_info->action);
693 		return -1;
694 	}
695 
696 	return 0;
697 }
698 
699 /*
700  * This function handles the command response of get extended version.
701  *
702  * Handling includes forming the extended version string and sending it
703  * to application.
704  */
705 static int mwifiex_ret_ver_ext(struct mwifiex_private *priv,
706 			       struct host_cmd_ds_command *resp,
707 			       struct host_cmd_ds_version_ext *version_ext)
708 {
709 	struct host_cmd_ds_version_ext *ver_ext = &resp->params.verext;
710 
711 	if (version_ext) {
712 		version_ext->version_str_sel = ver_ext->version_str_sel;
713 		memcpy(version_ext->version_str, ver_ext->version_str,
714 		       sizeof(char) * 128);
715 		memcpy(priv->version_str, ver_ext->version_str, 128);
716 	}
717 	return 0;
718 }
719 
720 /*
721  * This function handles the command response of remain on channel.
722  */
723 static int
724 mwifiex_ret_remain_on_chan(struct mwifiex_private *priv,
725 			   struct host_cmd_ds_command *resp,
726 			   struct host_cmd_ds_remain_on_chan *roc_cfg)
727 {
728 	struct host_cmd_ds_remain_on_chan *resp_cfg = &resp->params.roc_cfg;
729 
730 	if (roc_cfg)
731 		memcpy(roc_cfg, resp_cfg, sizeof(*roc_cfg));
732 
733 	return 0;
734 }
735 
736 /*
737  * This function handles the command response of P2P mode cfg.
738  */
739 static int
740 mwifiex_ret_p2p_mode_cfg(struct mwifiex_private *priv,
741 			 struct host_cmd_ds_command *resp,
742 			 void *data_buf)
743 {
744 	struct host_cmd_ds_p2p_mode_cfg *mode_cfg = &resp->params.mode_cfg;
745 
746 	if (data_buf)
747 		put_unaligned_le16(le16_to_cpu(mode_cfg->mode), data_buf);
748 
749 	return 0;
750 }
751 
752 /* This function handles the command response of mem_access command
753  */
754 static int
755 mwifiex_ret_mem_access(struct mwifiex_private *priv,
756 		       struct host_cmd_ds_command *resp, void *pioctl_buf)
757 {
758 	struct host_cmd_ds_mem_access *mem = (void *)&resp->params.mem;
759 
760 	priv->mem_rw.addr = le32_to_cpu(mem->addr);
761 	priv->mem_rw.value = le32_to_cpu(mem->value);
762 
763 	return 0;
764 }
765 /*
766  * This function handles the command response of register access.
767  *
768  * The register value and offset are returned to the user. For EEPROM
769  * access, the byte count is also returned.
770  */
771 static int mwifiex_ret_reg_access(u16 type, struct host_cmd_ds_command *resp,
772 				  void *data_buf)
773 {
774 	struct mwifiex_ds_reg_rw *reg_rw;
775 	struct mwifiex_ds_read_eeprom *eeprom;
776 	union reg {
777 		struct host_cmd_ds_mac_reg_access *mac;
778 		struct host_cmd_ds_bbp_reg_access *bbp;
779 		struct host_cmd_ds_rf_reg_access *rf;
780 		struct host_cmd_ds_pmic_reg_access *pmic;
781 		struct host_cmd_ds_802_11_eeprom_access *eeprom;
782 	} r;
783 
784 	if (!data_buf)
785 		return 0;
786 
787 	reg_rw = data_buf;
788 	eeprom = data_buf;
789 	switch (type) {
790 	case HostCmd_CMD_MAC_REG_ACCESS:
791 		r.mac = &resp->params.mac_reg;
792 		reg_rw->offset = (u32) le16_to_cpu(r.mac->offset);
793 		reg_rw->value = le32_to_cpu(r.mac->value);
794 		break;
795 	case HostCmd_CMD_BBP_REG_ACCESS:
796 		r.bbp = &resp->params.bbp_reg;
797 		reg_rw->offset = (u32) le16_to_cpu(r.bbp->offset);
798 		reg_rw->value = (u32) r.bbp->value;
799 		break;
800 
801 	case HostCmd_CMD_RF_REG_ACCESS:
802 		r.rf = &resp->params.rf_reg;
803 		reg_rw->offset = (u32) le16_to_cpu(r.rf->offset);
804 		reg_rw->value = (u32) r.bbp->value;
805 		break;
806 	case HostCmd_CMD_PMIC_REG_ACCESS:
807 		r.pmic = &resp->params.pmic_reg;
808 		reg_rw->offset = (u32) le16_to_cpu(r.pmic->offset);
809 		reg_rw->value = (u32) r.pmic->value;
810 		break;
811 	case HostCmd_CMD_CAU_REG_ACCESS:
812 		r.rf = &resp->params.rf_reg;
813 		reg_rw->offset = (u32) le16_to_cpu(r.rf->offset);
814 		reg_rw->value = (u32) r.rf->value;
815 		break;
816 	case HostCmd_CMD_802_11_EEPROM_ACCESS:
817 		r.eeprom = &resp->params.eeprom;
818 		pr_debug("info: EEPROM read len=%x\n",
819 				le16_to_cpu(r.eeprom->byte_count));
820 		if (eeprom->byte_count < le16_to_cpu(r.eeprom->byte_count)) {
821 			eeprom->byte_count = 0;
822 			pr_debug("info: EEPROM read length is too big\n");
823 			return -1;
824 		}
825 		eeprom->offset = le16_to_cpu(r.eeprom->offset);
826 		eeprom->byte_count = le16_to_cpu(r.eeprom->byte_count);
827 		if (eeprom->byte_count > 0)
828 			memcpy(&eeprom->value, &r.eeprom->value,
829 			       min((u16)MAX_EEPROM_DATA, eeprom->byte_count));
830 		break;
831 	default:
832 		return -1;
833 	}
834 	return 0;
835 }
836 
837 /*
838  * This function handles the command response of get IBSS coalescing status.
839  *
840  * If the received BSSID is different than the current one, the current BSSID,
841  * beacon interval, ATIM window and ERP information are updated, along with
842  * changing the ad-hoc state accordingly.
843  */
844 static int mwifiex_ret_ibss_coalescing_status(struct mwifiex_private *priv,
845 					      struct host_cmd_ds_command *resp)
846 {
847 	struct host_cmd_ds_802_11_ibss_status *ibss_coal_resp =
848 					&(resp->params.ibss_coalescing);
849 
850 	if (le16_to_cpu(ibss_coal_resp->action) == HostCmd_ACT_GEN_SET)
851 		return 0;
852 
853 	mwifiex_dbg(priv->adapter, INFO,
854 		    "info: new BSSID %pM\n", ibss_coal_resp->bssid);
855 
856 	/* If rsp has NULL BSSID, Just return..... No Action */
857 	if (is_zero_ether_addr(ibss_coal_resp->bssid)) {
858 		mwifiex_dbg(priv->adapter, FATAL, "new BSSID is NULL\n");
859 		return 0;
860 	}
861 
862 	/* If BSSID is diff, modify current BSS parameters */
863 	if (!ether_addr_equal(priv->curr_bss_params.bss_descriptor.mac_address, ibss_coal_resp->bssid)) {
864 		/* BSSID */
865 		memcpy(priv->curr_bss_params.bss_descriptor.mac_address,
866 		       ibss_coal_resp->bssid, ETH_ALEN);
867 
868 		/* Beacon Interval */
869 		priv->curr_bss_params.bss_descriptor.beacon_period
870 			= le16_to_cpu(ibss_coal_resp->beacon_interval);
871 
872 		/* ERP Information */
873 		priv->curr_bss_params.bss_descriptor.erp_flags =
874 			(u8) le16_to_cpu(ibss_coal_resp->use_g_rate_protect);
875 
876 		priv->adhoc_state = ADHOC_COALESCED;
877 	}
878 
879 	return 0;
880 }
881 static int mwifiex_ret_tdls_oper(struct mwifiex_private *priv,
882 				 struct host_cmd_ds_command *resp)
883 {
884 	struct host_cmd_ds_tdls_oper *cmd_tdls_oper = &resp->params.tdls_oper;
885 	u16 reason = le16_to_cpu(cmd_tdls_oper->reason);
886 	u16 action = le16_to_cpu(cmd_tdls_oper->tdls_action);
887 	struct mwifiex_sta_node *node =
888 			   mwifiex_get_sta_entry(priv, cmd_tdls_oper->peer_mac);
889 
890 	switch (action) {
891 	case ACT_TDLS_DELETE:
892 		if (reason) {
893 			if (!node || reason == TDLS_ERR_LINK_NONEXISTENT)
894 				mwifiex_dbg(priv->adapter, MSG,
895 					    "TDLS link delete for %pM failed: reason %d\n",
896 					    cmd_tdls_oper->peer_mac, reason);
897 			else
898 				mwifiex_dbg(priv->adapter, ERROR,
899 					    "TDLS link delete for %pM failed: reason %d\n",
900 					    cmd_tdls_oper->peer_mac, reason);
901 		} else {
902 			mwifiex_dbg(priv->adapter, MSG,
903 				    "TDLS link delete for %pM successful\n",
904 				    cmd_tdls_oper->peer_mac);
905 		}
906 		break;
907 	case ACT_TDLS_CREATE:
908 		if (reason) {
909 			mwifiex_dbg(priv->adapter, ERROR,
910 				    "TDLS link creation for %pM failed: reason %d",
911 				    cmd_tdls_oper->peer_mac, reason);
912 			if (node && reason != TDLS_ERR_LINK_EXISTS)
913 				node->tdls_status = TDLS_SETUP_FAILURE;
914 		} else {
915 			mwifiex_dbg(priv->adapter, MSG,
916 				    "TDLS link creation for %pM successful",
917 				    cmd_tdls_oper->peer_mac);
918 		}
919 		break;
920 	case ACT_TDLS_CONFIG:
921 		if (reason) {
922 			mwifiex_dbg(priv->adapter, ERROR,
923 				    "TDLS link config for %pM failed, reason %d\n",
924 				    cmd_tdls_oper->peer_mac, reason);
925 			if (node)
926 				node->tdls_status = TDLS_SETUP_FAILURE;
927 		} else {
928 			mwifiex_dbg(priv->adapter, MSG,
929 				    "TDLS link config for %pM successful\n",
930 				    cmd_tdls_oper->peer_mac);
931 		}
932 		break;
933 	default:
934 		mwifiex_dbg(priv->adapter, ERROR,
935 			    "Unknown TDLS command action response %d", action);
936 		return -1;
937 	}
938 
939 	return 0;
940 }
941 /*
942  * This function handles the command response for subscribe event command.
943  */
944 static int mwifiex_ret_subsc_evt(struct mwifiex_private *priv,
945 				 struct host_cmd_ds_command *resp)
946 {
947 	struct host_cmd_ds_802_11_subsc_evt *cmd_sub_event =
948 		&resp->params.subsc_evt;
949 
950 	/* For every subscribe event command (Get/Set/Clear), FW reports the
951 	 * current set of subscribed events*/
952 	mwifiex_dbg(priv->adapter, EVENT,
953 		    "Bitmap of currently subscribed events: %16x\n",
954 		    le16_to_cpu(cmd_sub_event->events));
955 
956 	return 0;
957 }
958 
959 static int mwifiex_ret_uap_sta_list(struct mwifiex_private *priv,
960 				    struct host_cmd_ds_command *resp)
961 {
962 	struct host_cmd_ds_sta_list *sta_list =
963 		&resp->params.sta_list;
964 	struct mwifiex_ie_types_sta_info *sta_info = (void *)&sta_list->tlv;
965 	int i;
966 	struct mwifiex_sta_node *sta_node;
967 
968 	for (i = 0; i < (le16_to_cpu(sta_list->sta_count)); i++) {
969 		sta_node = mwifiex_get_sta_entry(priv, sta_info->mac);
970 		if (unlikely(!sta_node))
971 			continue;
972 
973 		sta_node->stats.rssi = sta_info->rssi;
974 		sta_info++;
975 	}
976 
977 	return 0;
978 }
979 
980 /* This function handles the command response of set_cfg_data */
981 static int mwifiex_ret_cfg_data(struct mwifiex_private *priv,
982 				struct host_cmd_ds_command *resp)
983 {
984 	if (resp->result != HostCmd_RESULT_OK) {
985 		mwifiex_dbg(priv->adapter, ERROR, "Cal data cmd resp failed\n");
986 		return -1;
987 	}
988 
989 	return 0;
990 }
991 
992 /** This Function handles the command response of sdio rx aggr */
993 static int mwifiex_ret_sdio_rx_aggr_cfg(struct mwifiex_private *priv,
994 					struct host_cmd_ds_command *resp)
995 {
996 	struct mwifiex_adapter *adapter = priv->adapter;
997 	struct host_cmd_sdio_sp_rx_aggr_cfg *cfg =
998 				&resp->params.sdio_rx_aggr_cfg;
999 
1000 	adapter->sdio_rx_aggr_enable = cfg->enable;
1001 	adapter->sdio_rx_block_size = le16_to_cpu(cfg->block_size);
1002 
1003 	return 0;
1004 }
1005 
1006 static int mwifiex_ret_robust_coex(struct mwifiex_private *priv,
1007 				   struct host_cmd_ds_command *resp,
1008 				   bool *is_timeshare)
1009 {
1010 	struct host_cmd_ds_robust_coex *coex = &resp->params.coex;
1011 	struct mwifiex_ie_types_robust_coex *coex_tlv;
1012 	u16 action = le16_to_cpu(coex->action);
1013 	u32 mode;
1014 
1015 	coex_tlv = (struct mwifiex_ie_types_robust_coex
1016 		    *)((u8 *)coex + sizeof(struct host_cmd_ds_robust_coex));
1017 	if (action == HostCmd_ACT_GEN_GET) {
1018 		mode = le32_to_cpu(coex_tlv->mode);
1019 		if (mode == MWIFIEX_COEX_MODE_TIMESHARE)
1020 			*is_timeshare = true;
1021 		else
1022 			*is_timeshare = false;
1023 	}
1024 
1025 	return 0;
1026 }
1027 
1028 static struct ieee80211_regdomain *
1029 mwifiex_create_custom_regdomain(struct mwifiex_private *priv,
1030 				u8 *buf, u16 buf_len)
1031 {
1032 	u16 num_chan = buf_len / 2;
1033 	struct ieee80211_regdomain *regd;
1034 	struct ieee80211_reg_rule *rule;
1035 	bool new_rule;
1036 	int idx, freq, prev_freq = 0;
1037 	u32 bw, prev_bw = 0;
1038 	u8 chflags, prev_chflags = 0, valid_rules = 0;
1039 
1040 	if (WARN_ON_ONCE(num_chan > NL80211_MAX_SUPP_REG_RULES))
1041 		return ERR_PTR(-EINVAL);
1042 
1043 	regd = kzalloc(struct_size(regd, reg_rules, num_chan), GFP_KERNEL);
1044 	if (!regd)
1045 		return ERR_PTR(-ENOMEM);
1046 
1047 	for (idx = 0; idx < num_chan; idx++) {
1048 		u8 chan;
1049 		enum nl80211_band band;
1050 
1051 		chan = *buf++;
1052 		if (!chan) {
1053 			kfree(regd);
1054 			return NULL;
1055 		}
1056 		chflags = *buf++;
1057 		band = (chan <= 14) ? NL80211_BAND_2GHZ : NL80211_BAND_5GHZ;
1058 		freq = ieee80211_channel_to_frequency(chan, band);
1059 		new_rule = false;
1060 
1061 		if (chflags & MWIFIEX_CHANNEL_DISABLED)
1062 			continue;
1063 
1064 		if (band == NL80211_BAND_5GHZ) {
1065 			if (!(chflags & MWIFIEX_CHANNEL_NOHT80))
1066 				bw = MHZ_TO_KHZ(80);
1067 			else if (!(chflags & MWIFIEX_CHANNEL_NOHT40))
1068 				bw = MHZ_TO_KHZ(40);
1069 			else
1070 				bw = MHZ_TO_KHZ(20);
1071 		} else {
1072 			if (!(chflags & MWIFIEX_CHANNEL_NOHT40))
1073 				bw = MHZ_TO_KHZ(40);
1074 			else
1075 				bw = MHZ_TO_KHZ(20);
1076 		}
1077 
1078 		if (idx == 0 || prev_chflags != chflags || prev_bw != bw ||
1079 		    freq - prev_freq > 20) {
1080 			valid_rules++;
1081 			new_rule = true;
1082 		}
1083 
1084 		rule = &regd->reg_rules[valid_rules - 1];
1085 
1086 		rule->freq_range.end_freq_khz = MHZ_TO_KHZ(freq + 10);
1087 
1088 		prev_chflags = chflags;
1089 		prev_freq = freq;
1090 		prev_bw = bw;
1091 
1092 		if (!new_rule)
1093 			continue;
1094 
1095 		rule->freq_range.start_freq_khz = MHZ_TO_KHZ(freq - 10);
1096 		rule->power_rule.max_eirp = DBM_TO_MBM(19);
1097 
1098 		if (chflags & MWIFIEX_CHANNEL_PASSIVE)
1099 			rule->flags = NL80211_RRF_NO_IR;
1100 
1101 		if (chflags & MWIFIEX_CHANNEL_DFS)
1102 			rule->flags = NL80211_RRF_DFS;
1103 
1104 		rule->freq_range.max_bandwidth_khz = bw;
1105 	}
1106 
1107 	regd->n_reg_rules = valid_rules;
1108 	regd->alpha2[0] = '9';
1109 	regd->alpha2[1] = '9';
1110 
1111 	return regd;
1112 }
1113 
1114 static int mwifiex_ret_chan_region_cfg(struct mwifiex_private *priv,
1115 				       struct host_cmd_ds_command *resp)
1116 {
1117 	struct host_cmd_ds_chan_region_cfg *reg = &resp->params.reg_cfg;
1118 	u16 action = le16_to_cpu(reg->action);
1119 	u16 tlv, tlv_buf_len, tlv_buf_left;
1120 	struct mwifiex_ie_types_header *head;
1121 	struct ieee80211_regdomain *regd;
1122 	u8 *tlv_buf;
1123 
1124 	if (action != HostCmd_ACT_GEN_GET)
1125 		return 0;
1126 
1127 	tlv_buf = (u8 *)reg + sizeof(*reg);
1128 	tlv_buf_left = le16_to_cpu(resp->size) - S_DS_GEN - sizeof(*reg);
1129 
1130 	while (tlv_buf_left >= sizeof(*head)) {
1131 		head = (struct mwifiex_ie_types_header *)tlv_buf;
1132 		tlv = le16_to_cpu(head->type);
1133 		tlv_buf_len = le16_to_cpu(head->len);
1134 
1135 		if (tlv_buf_left < (sizeof(*head) + tlv_buf_len))
1136 			break;
1137 
1138 		switch (tlv) {
1139 		case TLV_TYPE_CHAN_ATTR_CFG:
1140 			mwifiex_dbg_dump(priv->adapter, CMD_D, "CHAN:",
1141 					 (u8 *)head + sizeof(*head),
1142 					 tlv_buf_len);
1143 			regd = mwifiex_create_custom_regdomain(priv,
1144 				(u8 *)head + sizeof(*head), tlv_buf_len);
1145 			if (!IS_ERR(regd))
1146 				priv->adapter->regd = regd;
1147 			break;
1148 		}
1149 
1150 		tlv_buf += (sizeof(*head) + tlv_buf_len);
1151 		tlv_buf_left -= (sizeof(*head) + tlv_buf_len);
1152 	}
1153 
1154 	return 0;
1155 }
1156 
1157 static int mwifiex_ret_pkt_aggr_ctrl(struct mwifiex_private *priv,
1158 				     struct host_cmd_ds_command *resp)
1159 {
1160 	struct host_cmd_ds_pkt_aggr_ctrl *pkt_aggr_ctrl =
1161 					&resp->params.pkt_aggr_ctrl;
1162 	struct mwifiex_adapter *adapter = priv->adapter;
1163 
1164 	adapter->bus_aggr.enable = le16_to_cpu(pkt_aggr_ctrl->enable);
1165 	if (adapter->bus_aggr.enable)
1166 		adapter->intf_hdr_len = INTF_HEADER_LEN;
1167 	adapter->bus_aggr.mode = MWIFIEX_BUS_AGGR_MODE_LEN_V2;
1168 	adapter->bus_aggr.tx_aggr_max_size =
1169 				le16_to_cpu(pkt_aggr_ctrl->tx_aggr_max_size);
1170 	adapter->bus_aggr.tx_aggr_max_num =
1171 				le16_to_cpu(pkt_aggr_ctrl->tx_aggr_max_num);
1172 	adapter->bus_aggr.tx_aggr_align =
1173 				le16_to_cpu(pkt_aggr_ctrl->tx_aggr_align);
1174 
1175 	return 0;
1176 }
1177 
1178 static int mwifiex_ret_get_chan_info(struct mwifiex_private *priv,
1179 				     struct host_cmd_ds_command *resp,
1180 				     struct mwifiex_channel_band *channel_band)
1181 {
1182 	struct host_cmd_ds_sta_configure *sta_cfg_cmd = &resp->params.sta_cfg;
1183 	struct host_cmd_tlv_channel_band *tlv_band_channel;
1184 
1185 	tlv_band_channel =
1186 	(struct host_cmd_tlv_channel_band *)sta_cfg_cmd->tlv_buffer;
1187 	memcpy(&channel_band->band_config, &tlv_band_channel->band_config,
1188 	       sizeof(struct mwifiex_band_config));
1189 	channel_band->channel = tlv_band_channel->channel;
1190 
1191 	return 0;
1192 }
1193 
1194 /*
1195  * This function handles the command responses.
1196  *
1197  * This is a generic function, which calls command specific
1198  * response handlers based on the command ID.
1199  */
1200 int mwifiex_process_sta_cmdresp(struct mwifiex_private *priv, u16 cmdresp_no,
1201 				struct host_cmd_ds_command *resp)
1202 {
1203 	int ret = 0;
1204 	struct mwifiex_adapter *adapter = priv->adapter;
1205 	void *data_buf = adapter->curr_cmd->data_buf;
1206 
1207 	/* If the command is not successful, cleanup and return failure */
1208 	if (resp->result != HostCmd_RESULT_OK) {
1209 		mwifiex_process_cmdresp_error(priv, resp);
1210 		return -1;
1211 	}
1212 	/* Command successful, handle response */
1213 	switch (cmdresp_no) {
1214 	case HostCmd_CMD_GET_HW_SPEC:
1215 		ret = mwifiex_ret_get_hw_spec(priv, resp);
1216 		break;
1217 	case HostCmd_CMD_CFG_DATA:
1218 		ret = mwifiex_ret_cfg_data(priv, resp);
1219 		break;
1220 	case HostCmd_CMD_MAC_CONTROL:
1221 		break;
1222 	case HostCmd_CMD_802_11_MAC_ADDRESS:
1223 		ret = mwifiex_ret_802_11_mac_address(priv, resp);
1224 		break;
1225 	case HostCmd_CMD_MAC_MULTICAST_ADR:
1226 		ret = mwifiex_ret_mac_multicast_adr(priv, resp);
1227 		break;
1228 	case HostCmd_CMD_TX_RATE_CFG:
1229 		ret = mwifiex_ret_tx_rate_cfg(priv, resp);
1230 		break;
1231 	case HostCmd_CMD_802_11_SCAN:
1232 		ret = mwifiex_ret_802_11_scan(priv, resp);
1233 		adapter->curr_cmd->wait_q_enabled = false;
1234 		break;
1235 	case HostCmd_CMD_802_11_SCAN_EXT:
1236 		ret = mwifiex_ret_802_11_scan_ext(priv, resp);
1237 		adapter->curr_cmd->wait_q_enabled = false;
1238 		break;
1239 	case HostCmd_CMD_802_11_BG_SCAN_QUERY:
1240 		ret = mwifiex_ret_802_11_scan(priv, resp);
1241 		cfg80211_sched_scan_results(priv->wdev.wiphy, 0);
1242 		mwifiex_dbg(adapter, CMD,
1243 			    "info: CMD_RESP: BG_SCAN result is ready!\n");
1244 		break;
1245 	case HostCmd_CMD_802_11_BG_SCAN_CONFIG:
1246 		break;
1247 	case HostCmd_CMD_TXPWR_CFG:
1248 		ret = mwifiex_ret_tx_power_cfg(priv, resp);
1249 		break;
1250 	case HostCmd_CMD_RF_TX_PWR:
1251 		ret = mwifiex_ret_rf_tx_power(priv, resp);
1252 		break;
1253 	case HostCmd_CMD_RF_ANTENNA:
1254 		ret = mwifiex_ret_rf_antenna(priv, resp);
1255 		break;
1256 	case HostCmd_CMD_802_11_PS_MODE_ENH:
1257 		ret = mwifiex_ret_enh_power_mode(priv, resp, data_buf);
1258 		break;
1259 	case HostCmd_CMD_802_11_HS_CFG_ENH:
1260 		ret = mwifiex_ret_802_11_hs_cfg(priv, resp);
1261 		break;
1262 	case HostCmd_CMD_802_11_ASSOCIATE:
1263 		ret = mwifiex_ret_802_11_associate(priv, resp);
1264 		break;
1265 	case HostCmd_CMD_802_11_DEAUTHENTICATE:
1266 		ret = mwifiex_ret_802_11_deauthenticate(priv, resp);
1267 		break;
1268 	case HostCmd_CMD_802_11_AD_HOC_START:
1269 	case HostCmd_CMD_802_11_AD_HOC_JOIN:
1270 		ret = mwifiex_ret_802_11_ad_hoc(priv, resp);
1271 		break;
1272 	case HostCmd_CMD_802_11_AD_HOC_STOP:
1273 		ret = mwifiex_ret_802_11_ad_hoc_stop(priv, resp);
1274 		break;
1275 	case HostCmd_CMD_802_11_GET_LOG:
1276 		ret = mwifiex_ret_get_log(priv, resp, data_buf);
1277 		break;
1278 	case HostCmd_CMD_RSSI_INFO:
1279 		ret = mwifiex_ret_802_11_rssi_info(priv, resp);
1280 		break;
1281 	case HostCmd_CMD_802_11_SNMP_MIB:
1282 		ret = mwifiex_ret_802_11_snmp_mib(priv, resp, data_buf);
1283 		break;
1284 	case HostCmd_CMD_802_11_TX_RATE_QUERY:
1285 		ret = mwifiex_ret_802_11_tx_rate_query(priv, resp);
1286 		break;
1287 	case HostCmd_CMD_VERSION_EXT:
1288 		ret = mwifiex_ret_ver_ext(priv, resp, data_buf);
1289 		break;
1290 	case HostCmd_CMD_REMAIN_ON_CHAN:
1291 		ret = mwifiex_ret_remain_on_chan(priv, resp, data_buf);
1292 		break;
1293 	case HostCmd_CMD_11AC_CFG:
1294 		break;
1295 	case HostCmd_CMD_PACKET_AGGR_CTRL:
1296 		ret = mwifiex_ret_pkt_aggr_ctrl(priv, resp);
1297 		break;
1298 	case HostCmd_CMD_P2P_MODE_CFG:
1299 		ret = mwifiex_ret_p2p_mode_cfg(priv, resp, data_buf);
1300 		break;
1301 	case HostCmd_CMD_MGMT_FRAME_REG:
1302 	case HostCmd_CMD_FUNC_INIT:
1303 	case HostCmd_CMD_FUNC_SHUTDOWN:
1304 		break;
1305 	case HostCmd_CMD_802_11_KEY_MATERIAL:
1306 		ret = mwifiex_ret_802_11_key_material(priv, resp);
1307 		break;
1308 	case HostCmd_CMD_802_11D_DOMAIN_INFO:
1309 		ret = mwifiex_ret_802_11d_domain_info(priv, resp);
1310 		break;
1311 	case HostCmd_CMD_11N_ADDBA_REQ:
1312 		ret = mwifiex_ret_11n_addba_req(priv, resp);
1313 		break;
1314 	case HostCmd_CMD_11N_DELBA:
1315 		ret = mwifiex_ret_11n_delba(priv, resp);
1316 		break;
1317 	case HostCmd_CMD_11N_ADDBA_RSP:
1318 		ret = mwifiex_ret_11n_addba_resp(priv, resp);
1319 		break;
1320 	case HostCmd_CMD_RECONFIGURE_TX_BUFF:
1321 		if (0xffff == (u16)le16_to_cpu(resp->params.tx_buf.buff_size)) {
1322 			if (adapter->iface_type == MWIFIEX_USB &&
1323 			    adapter->usb_mc_setup) {
1324 				if (adapter->if_ops.multi_port_resync)
1325 					adapter->if_ops.
1326 						multi_port_resync(adapter);
1327 				adapter->usb_mc_setup = false;
1328 				adapter->tx_lock_flag = false;
1329 			}
1330 			break;
1331 		}
1332 		adapter->tx_buf_size = (u16) le16_to_cpu(resp->params.
1333 							     tx_buf.buff_size);
1334 		adapter->tx_buf_size = (adapter->tx_buf_size
1335 					/ MWIFIEX_SDIO_BLOCK_SIZE)
1336 				       * MWIFIEX_SDIO_BLOCK_SIZE;
1337 		adapter->curr_tx_buf_size = adapter->tx_buf_size;
1338 		mwifiex_dbg(adapter, CMD, "cmd: curr_tx_buf_size=%d\n",
1339 			    adapter->curr_tx_buf_size);
1340 
1341 		if (adapter->if_ops.update_mp_end_port)
1342 			adapter->if_ops.update_mp_end_port(adapter,
1343 				le16_to_cpu(resp->params.tx_buf.mp_end_port));
1344 		break;
1345 	case HostCmd_CMD_AMSDU_AGGR_CTRL:
1346 		break;
1347 	case HostCmd_CMD_WMM_GET_STATUS:
1348 		ret = mwifiex_ret_wmm_get_status(priv, resp);
1349 		break;
1350 	case HostCmd_CMD_802_11_IBSS_COALESCING_STATUS:
1351 		ret = mwifiex_ret_ibss_coalescing_status(priv, resp);
1352 		break;
1353 	case HostCmd_CMD_MEM_ACCESS:
1354 		ret = mwifiex_ret_mem_access(priv, resp, data_buf);
1355 		break;
1356 	case HostCmd_CMD_MAC_REG_ACCESS:
1357 	case HostCmd_CMD_BBP_REG_ACCESS:
1358 	case HostCmd_CMD_RF_REG_ACCESS:
1359 	case HostCmd_CMD_PMIC_REG_ACCESS:
1360 	case HostCmd_CMD_CAU_REG_ACCESS:
1361 	case HostCmd_CMD_802_11_EEPROM_ACCESS:
1362 		ret = mwifiex_ret_reg_access(cmdresp_no, resp, data_buf);
1363 		break;
1364 	case HostCmd_CMD_SET_BSS_MODE:
1365 		break;
1366 	case HostCmd_CMD_11N_CFG:
1367 		break;
1368 	case HostCmd_CMD_PCIE_DESC_DETAILS:
1369 		break;
1370 	case HostCmd_CMD_802_11_SUBSCRIBE_EVENT:
1371 		ret = mwifiex_ret_subsc_evt(priv, resp);
1372 		break;
1373 	case HostCmd_CMD_UAP_SYS_CONFIG:
1374 		break;
1375 	case HOST_CMD_APCMD_STA_LIST:
1376 		ret = mwifiex_ret_uap_sta_list(priv, resp);
1377 		break;
1378 	case HostCmd_CMD_UAP_BSS_START:
1379 		adapter->tx_lock_flag = false;
1380 		adapter->pps_uapsd_mode = false;
1381 		adapter->delay_null_pkt = false;
1382 		priv->bss_started = 1;
1383 		break;
1384 	case HostCmd_CMD_UAP_BSS_STOP:
1385 		priv->bss_started = 0;
1386 		break;
1387 	case HostCmd_CMD_UAP_STA_DEAUTH:
1388 		break;
1389 	case HOST_CMD_APCMD_SYS_RESET:
1390 		break;
1391 	case HostCmd_CMD_MEF_CFG:
1392 		break;
1393 	case HostCmd_CMD_COALESCE_CFG:
1394 		break;
1395 	case HostCmd_CMD_TDLS_OPER:
1396 		ret = mwifiex_ret_tdls_oper(priv, resp);
1397 		break;
1398 	case HostCmd_CMD_MC_POLICY:
1399 		break;
1400 	case HostCmd_CMD_CHAN_REPORT_REQUEST:
1401 		break;
1402 	case HostCmd_CMD_SDIO_SP_RX_AGGR_CFG:
1403 		ret = mwifiex_ret_sdio_rx_aggr_cfg(priv, resp);
1404 		break;
1405 	case HostCmd_CMD_HS_WAKEUP_REASON:
1406 		ret = mwifiex_ret_wakeup_reason(priv, resp, data_buf);
1407 		break;
1408 	case HostCmd_CMD_TDLS_CONFIG:
1409 		break;
1410 	case HostCmd_CMD_ROBUST_COEX:
1411 		ret = mwifiex_ret_robust_coex(priv, resp, data_buf);
1412 		break;
1413 	case HostCmd_CMD_GTK_REKEY_OFFLOAD_CFG:
1414 		break;
1415 	case HostCmd_CMD_CHAN_REGION_CFG:
1416 		ret = mwifiex_ret_chan_region_cfg(priv, resp);
1417 		break;
1418 	case HostCmd_CMD_STA_CONFIGURE:
1419 		ret = mwifiex_ret_get_chan_info(priv, resp, data_buf);
1420 		break;
1421 	default:
1422 		mwifiex_dbg(adapter, ERROR,
1423 			    "CMD_RESP: unknown cmd response %#x\n",
1424 			    resp->command);
1425 		break;
1426 	}
1427 
1428 	return ret;
1429 }
1430