1 /* 2 * Implement cfg80211 ("iw") support. 3 * 4 * Copyright (C) 2009 M&N Solutions GmbH, 61191 Rosbach, Germany 5 * Holger Schurig <hs4233@mail.mn-solutions.de> 6 * 7 */ 8 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/hardirq.h> 12 #include <linux/sched.h> 13 #include <linux/wait.h> 14 #include <linux/slab.h> 15 #include <linux/ieee80211.h> 16 #include <net/cfg80211.h> 17 #include <asm/unaligned.h> 18 19 #include "decl.h" 20 #include "cfg.h" 21 #include "cmd.h" 22 #include "mesh.h" 23 24 25 #define CHAN2G(_channel, _freq, _flags) { \ 26 .band = NL80211_BAND_2GHZ, \ 27 .center_freq = (_freq), \ 28 .hw_value = (_channel), \ 29 .flags = (_flags), \ 30 .max_antenna_gain = 0, \ 31 .max_power = 30, \ 32 } 33 34 static struct ieee80211_channel lbs_2ghz_channels[] = { 35 CHAN2G(1, 2412, 0), 36 CHAN2G(2, 2417, 0), 37 CHAN2G(3, 2422, 0), 38 CHAN2G(4, 2427, 0), 39 CHAN2G(5, 2432, 0), 40 CHAN2G(6, 2437, 0), 41 CHAN2G(7, 2442, 0), 42 CHAN2G(8, 2447, 0), 43 CHAN2G(9, 2452, 0), 44 CHAN2G(10, 2457, 0), 45 CHAN2G(11, 2462, 0), 46 CHAN2G(12, 2467, 0), 47 CHAN2G(13, 2472, 0), 48 CHAN2G(14, 2484, 0), 49 }; 50 51 #define RATETAB_ENT(_rate, _hw_value, _flags) { \ 52 .bitrate = (_rate), \ 53 .hw_value = (_hw_value), \ 54 .flags = (_flags), \ 55 } 56 57 58 /* Table 6 in section 3.2.1.1 */ 59 static struct ieee80211_rate lbs_rates[] = { 60 RATETAB_ENT(10, 0, 0), 61 RATETAB_ENT(20, 1, 0), 62 RATETAB_ENT(55, 2, 0), 63 RATETAB_ENT(110, 3, 0), 64 RATETAB_ENT(60, 9, 0), 65 RATETAB_ENT(90, 6, 0), 66 RATETAB_ENT(120, 7, 0), 67 RATETAB_ENT(180, 8, 0), 68 RATETAB_ENT(240, 9, 0), 69 RATETAB_ENT(360, 10, 0), 70 RATETAB_ENT(480, 11, 0), 71 RATETAB_ENT(540, 12, 0), 72 }; 73 74 static struct ieee80211_supported_band lbs_band_2ghz = { 75 .channels = lbs_2ghz_channels, 76 .n_channels = ARRAY_SIZE(lbs_2ghz_channels), 77 .bitrates = lbs_rates, 78 .n_bitrates = ARRAY_SIZE(lbs_rates), 79 }; 80 81 82 static const u32 cipher_suites[] = { 83 WLAN_CIPHER_SUITE_WEP40, 84 WLAN_CIPHER_SUITE_WEP104, 85 WLAN_CIPHER_SUITE_TKIP, 86 WLAN_CIPHER_SUITE_CCMP, 87 }; 88 89 /* Time to stay on the channel */ 90 #define LBS_DWELL_PASSIVE 100 91 #define LBS_DWELL_ACTIVE 40 92 93 94 /*************************************************************************** 95 * Misc utility functions 96 * 97 * TLVs are Marvell specific. They are very similar to IEs, they have the 98 * same structure: type, length, data*. The only difference: for IEs, the 99 * type and length are u8, but for TLVs they're __le16. 100 */ 101 102 /* 103 * Convert NL80211's auth_type to the one from Libertas, see chapter 5.9.1 104 * in the firmware spec 105 */ 106 static int lbs_auth_to_authtype(enum nl80211_auth_type auth_type) 107 { 108 int ret = -ENOTSUPP; 109 110 switch (auth_type) { 111 case NL80211_AUTHTYPE_OPEN_SYSTEM: 112 case NL80211_AUTHTYPE_SHARED_KEY: 113 ret = auth_type; 114 break; 115 case NL80211_AUTHTYPE_AUTOMATIC: 116 ret = NL80211_AUTHTYPE_OPEN_SYSTEM; 117 break; 118 case NL80211_AUTHTYPE_NETWORK_EAP: 119 ret = 0x80; 120 break; 121 default: 122 /* silence compiler */ 123 break; 124 } 125 return ret; 126 } 127 128 129 /* 130 * Various firmware commands need the list of supported rates, but with 131 * the hight-bit set for basic rates 132 */ 133 static int lbs_add_rates(u8 *rates) 134 { 135 size_t i; 136 137 for (i = 0; i < ARRAY_SIZE(lbs_rates); i++) { 138 u8 rate = lbs_rates[i].bitrate / 5; 139 if (rate == 0x02 || rate == 0x04 || 140 rate == 0x0b || rate == 0x16) 141 rate |= 0x80; 142 rates[i] = rate; 143 } 144 return ARRAY_SIZE(lbs_rates); 145 } 146 147 148 /*************************************************************************** 149 * TLV utility functions 150 * 151 * TLVs are Marvell specific. They are very similar to IEs, they have the 152 * same structure: type, length, data*. The only difference: for IEs, the 153 * type and length are u8, but for TLVs they're __le16. 154 */ 155 156 157 /* 158 * Add ssid TLV 159 */ 160 #define LBS_MAX_SSID_TLV_SIZE \ 161 (sizeof(struct mrvl_ie_header) \ 162 + IEEE80211_MAX_SSID_LEN) 163 164 static int lbs_add_ssid_tlv(u8 *tlv, const u8 *ssid, int ssid_len) 165 { 166 struct mrvl_ie_ssid_param_set *ssid_tlv = (void *)tlv; 167 168 /* 169 * TLV-ID SSID 00 00 170 * length 06 00 171 * ssid 4d 4e 54 45 53 54 172 */ 173 ssid_tlv->header.type = cpu_to_le16(TLV_TYPE_SSID); 174 ssid_tlv->header.len = cpu_to_le16(ssid_len); 175 memcpy(ssid_tlv->ssid, ssid, ssid_len); 176 return sizeof(ssid_tlv->header) + ssid_len; 177 } 178 179 180 /* 181 * Add channel list TLV (section 8.4.2) 182 * 183 * Actual channel data comes from priv->wdev->wiphy->channels. 184 */ 185 #define LBS_MAX_CHANNEL_LIST_TLV_SIZE \ 186 (sizeof(struct mrvl_ie_header) \ 187 + (LBS_SCAN_BEFORE_NAP * sizeof(struct chanscanparamset))) 188 189 static int lbs_add_channel_list_tlv(struct lbs_private *priv, u8 *tlv, 190 int last_channel, int active_scan) 191 { 192 int chanscanparamsize = sizeof(struct chanscanparamset) * 193 (last_channel - priv->scan_channel); 194 195 struct mrvl_ie_header *header = (void *) tlv; 196 197 /* 198 * TLV-ID CHANLIST 01 01 199 * length 0e 00 200 * channel 00 01 00 00 00 64 00 201 * radio type 00 202 * channel 01 203 * scan type 00 204 * min scan time 00 00 205 * max scan time 64 00 206 * channel 2 00 02 00 00 00 64 00 207 * 208 */ 209 210 header->type = cpu_to_le16(TLV_TYPE_CHANLIST); 211 header->len = cpu_to_le16(chanscanparamsize); 212 tlv += sizeof(struct mrvl_ie_header); 213 214 /* lbs_deb_scan("scan: channels %d to %d\n", priv->scan_channel, 215 last_channel); */ 216 memset(tlv, 0, chanscanparamsize); 217 218 while (priv->scan_channel < last_channel) { 219 struct chanscanparamset *param = (void *) tlv; 220 221 param->radiotype = CMD_SCAN_RADIO_TYPE_BG; 222 param->channumber = 223 priv->scan_req->channels[priv->scan_channel]->hw_value; 224 if (active_scan) { 225 param->maxscantime = cpu_to_le16(LBS_DWELL_ACTIVE); 226 } else { 227 param->chanscanmode.passivescan = 1; 228 param->maxscantime = cpu_to_le16(LBS_DWELL_PASSIVE); 229 } 230 tlv += sizeof(struct chanscanparamset); 231 priv->scan_channel++; 232 } 233 return sizeof(struct mrvl_ie_header) + chanscanparamsize; 234 } 235 236 237 /* 238 * Add rates TLV 239 * 240 * The rates are in lbs_bg_rates[], but for the 802.11b 241 * rates the high bit is set. We add this TLV only because 242 * there's a firmware which otherwise doesn't report all 243 * APs in range. 244 */ 245 #define LBS_MAX_RATES_TLV_SIZE \ 246 (sizeof(struct mrvl_ie_header) \ 247 + (ARRAY_SIZE(lbs_rates))) 248 249 /* Adds a TLV with all rates the hardware supports */ 250 static int lbs_add_supported_rates_tlv(u8 *tlv) 251 { 252 size_t i; 253 struct mrvl_ie_rates_param_set *rate_tlv = (void *)tlv; 254 255 /* 256 * TLV-ID RATES 01 00 257 * length 0e 00 258 * rates 82 84 8b 96 0c 12 18 24 30 48 60 6c 259 */ 260 rate_tlv->header.type = cpu_to_le16(TLV_TYPE_RATES); 261 tlv += sizeof(rate_tlv->header); 262 i = lbs_add_rates(tlv); 263 tlv += i; 264 rate_tlv->header.len = cpu_to_le16(i); 265 return sizeof(rate_tlv->header) + i; 266 } 267 268 /* Add common rates from a TLV and return the new end of the TLV */ 269 static u8 * 270 add_ie_rates(u8 *tlv, const u8 *ie, int *nrates) 271 { 272 int hw, ap, ap_max = ie[1]; 273 u8 hw_rate; 274 275 /* Advance past IE header */ 276 ie += 2; 277 278 lbs_deb_hex(LBS_DEB_ASSOC, "AP IE Rates", (u8 *) ie, ap_max); 279 280 for (hw = 0; hw < ARRAY_SIZE(lbs_rates); hw++) { 281 hw_rate = lbs_rates[hw].bitrate / 5; 282 for (ap = 0; ap < ap_max; ap++) { 283 if (hw_rate == (ie[ap] & 0x7f)) { 284 *tlv++ = ie[ap]; 285 *nrates = *nrates + 1; 286 } 287 } 288 } 289 return tlv; 290 } 291 292 /* 293 * Adds a TLV with all rates the hardware *and* BSS supports. 294 */ 295 static int lbs_add_common_rates_tlv(u8 *tlv, struct cfg80211_bss *bss) 296 { 297 struct mrvl_ie_rates_param_set *rate_tlv = (void *)tlv; 298 const u8 *rates_eid, *ext_rates_eid; 299 int n = 0; 300 301 rcu_read_lock(); 302 rates_eid = ieee80211_bss_get_ie(bss, WLAN_EID_SUPP_RATES); 303 ext_rates_eid = ieee80211_bss_get_ie(bss, WLAN_EID_EXT_SUPP_RATES); 304 305 /* 306 * 01 00 TLV_TYPE_RATES 307 * 04 00 len 308 * 82 84 8b 96 rates 309 */ 310 rate_tlv->header.type = cpu_to_le16(TLV_TYPE_RATES); 311 tlv += sizeof(rate_tlv->header); 312 313 /* Add basic rates */ 314 if (rates_eid) { 315 tlv = add_ie_rates(tlv, rates_eid, &n); 316 317 /* Add extended rates, if any */ 318 if (ext_rates_eid) 319 tlv = add_ie_rates(tlv, ext_rates_eid, &n); 320 } else { 321 lbs_deb_assoc("assoc: bss had no basic rate IE\n"); 322 /* Fallback: add basic 802.11b rates */ 323 *tlv++ = 0x82; 324 *tlv++ = 0x84; 325 *tlv++ = 0x8b; 326 *tlv++ = 0x96; 327 n = 4; 328 } 329 rcu_read_unlock(); 330 331 rate_tlv->header.len = cpu_to_le16(n); 332 return sizeof(rate_tlv->header) + n; 333 } 334 335 336 /* 337 * Add auth type TLV. 338 * 339 * This is only needed for newer firmware (V9 and up). 340 */ 341 #define LBS_MAX_AUTH_TYPE_TLV_SIZE \ 342 sizeof(struct mrvl_ie_auth_type) 343 344 static int lbs_add_auth_type_tlv(u8 *tlv, enum nl80211_auth_type auth_type) 345 { 346 struct mrvl_ie_auth_type *auth = (void *) tlv; 347 348 /* 349 * 1f 01 TLV_TYPE_AUTH_TYPE 350 * 01 00 len 351 * 01 auth type 352 */ 353 auth->header.type = cpu_to_le16(TLV_TYPE_AUTH_TYPE); 354 auth->header.len = cpu_to_le16(sizeof(*auth)-sizeof(auth->header)); 355 auth->auth = cpu_to_le16(lbs_auth_to_authtype(auth_type)); 356 return sizeof(*auth); 357 } 358 359 360 /* 361 * Add channel (phy ds) TLV 362 */ 363 #define LBS_MAX_CHANNEL_TLV_SIZE \ 364 sizeof(struct mrvl_ie_header) 365 366 static int lbs_add_channel_tlv(u8 *tlv, u8 channel) 367 { 368 struct mrvl_ie_ds_param_set *ds = (void *) tlv; 369 370 /* 371 * 03 00 TLV_TYPE_PHY_DS 372 * 01 00 len 373 * 06 channel 374 */ 375 ds->header.type = cpu_to_le16(TLV_TYPE_PHY_DS); 376 ds->header.len = cpu_to_le16(sizeof(*ds)-sizeof(ds->header)); 377 ds->channel = channel; 378 return sizeof(*ds); 379 } 380 381 382 /* 383 * Add (empty) CF param TLV of the form: 384 */ 385 #define LBS_MAX_CF_PARAM_TLV_SIZE \ 386 sizeof(struct mrvl_ie_header) 387 388 static int lbs_add_cf_param_tlv(u8 *tlv) 389 { 390 struct mrvl_ie_cf_param_set *cf = (void *)tlv; 391 392 /* 393 * 04 00 TLV_TYPE_CF 394 * 06 00 len 395 * 00 cfpcnt 396 * 00 cfpperiod 397 * 00 00 cfpmaxduration 398 * 00 00 cfpdurationremaining 399 */ 400 cf->header.type = cpu_to_le16(TLV_TYPE_CF); 401 cf->header.len = cpu_to_le16(sizeof(*cf)-sizeof(cf->header)); 402 return sizeof(*cf); 403 } 404 405 /* 406 * Add WPA TLV 407 */ 408 #define LBS_MAX_WPA_TLV_SIZE \ 409 (sizeof(struct mrvl_ie_header) \ 410 + 128 /* TODO: I guessed the size */) 411 412 static int lbs_add_wpa_tlv(u8 *tlv, const u8 *ie, u8 ie_len) 413 { 414 size_t tlv_len; 415 416 /* 417 * We need just convert an IE to an TLV. IEs use u8 for the header, 418 * u8 type 419 * u8 len 420 * u8[] data 421 * but TLVs use __le16 instead: 422 * __le16 type 423 * __le16 len 424 * u8[] data 425 */ 426 *tlv++ = *ie++; 427 *tlv++ = 0; 428 tlv_len = *tlv++ = *ie++; 429 *tlv++ = 0; 430 while (tlv_len--) 431 *tlv++ = *ie++; 432 /* the TLV is two bytes larger than the IE */ 433 return ie_len + 2; 434 } 435 436 /* 437 * Set Channel 438 */ 439 440 static int lbs_cfg_set_monitor_channel(struct wiphy *wiphy, 441 struct cfg80211_chan_def *chandef) 442 { 443 struct lbs_private *priv = wiphy_priv(wiphy); 444 int ret = -ENOTSUPP; 445 446 if (cfg80211_get_chandef_type(chandef) != NL80211_CHAN_NO_HT) 447 goto out; 448 449 ret = lbs_set_channel(priv, chandef->chan->hw_value); 450 451 out: 452 return ret; 453 } 454 455 static int lbs_cfg_set_mesh_channel(struct wiphy *wiphy, 456 struct net_device *netdev, 457 struct ieee80211_channel *channel) 458 { 459 struct lbs_private *priv = wiphy_priv(wiphy); 460 int ret = -ENOTSUPP; 461 462 if (netdev != priv->mesh_dev) 463 goto out; 464 465 ret = lbs_mesh_set_channel(priv, channel->hw_value); 466 467 out: 468 return ret; 469 } 470 471 472 473 /* 474 * Scanning 475 */ 476 477 /* 478 * When scanning, the firmware doesn't send a nul packet with the power-safe 479 * bit to the AP. So we cannot stay away from our current channel too long, 480 * otherwise we loose data. So take a "nap" while scanning every other 481 * while. 482 */ 483 #define LBS_SCAN_BEFORE_NAP 4 484 485 486 /* 487 * When the firmware reports back a scan-result, it gives us an "u8 rssi", 488 * which isn't really an RSSI, as it becomes larger when moving away from 489 * the AP. Anyway, we need to convert that into mBm. 490 */ 491 #define LBS_SCAN_RSSI_TO_MBM(rssi) \ 492 ((-(int)rssi + 3)*100) 493 494 static int lbs_ret_scan(struct lbs_private *priv, unsigned long dummy, 495 struct cmd_header *resp) 496 { 497 struct cfg80211_bss *bss; 498 struct cmd_ds_802_11_scan_rsp *scanresp = (void *)resp; 499 int bsssize; 500 const u8 *pos; 501 const u8 *tsfdesc; 502 int tsfsize; 503 int i; 504 int ret = -EILSEQ; 505 506 bsssize = get_unaligned_le16(&scanresp->bssdescriptsize); 507 508 lbs_deb_scan("scan response: %d BSSs (%d bytes); resp size %d bytes\n", 509 scanresp->nr_sets, bsssize, le16_to_cpu(resp->size)); 510 511 if (scanresp->nr_sets == 0) { 512 ret = 0; 513 goto done; 514 } 515 516 /* 517 * The general layout of the scan response is described in chapter 518 * 5.7.1. Basically we have a common part, then any number of BSS 519 * descriptor sections. Finally we have section with the same number 520 * of TSFs. 521 * 522 * cmd_ds_802_11_scan_rsp 523 * cmd_header 524 * pos_size 525 * nr_sets 526 * bssdesc 1 527 * bssid 528 * rssi 529 * timestamp 530 * intvl 531 * capa 532 * IEs 533 * bssdesc 2 534 * bssdesc n 535 * MrvlIEtypes_TsfFimestamp_t 536 * TSF for BSS 1 537 * TSF for BSS 2 538 * TSF for BSS n 539 */ 540 541 pos = scanresp->bssdesc_and_tlvbuffer; 542 543 lbs_deb_hex(LBS_DEB_SCAN, "SCAN_RSP", scanresp->bssdesc_and_tlvbuffer, 544 scanresp->bssdescriptsize); 545 546 tsfdesc = pos + bsssize; 547 tsfsize = 4 + 8 * scanresp->nr_sets; 548 lbs_deb_hex(LBS_DEB_SCAN, "SCAN_TSF", (u8 *) tsfdesc, tsfsize); 549 550 /* Validity check: we expect a Marvell-Local TLV */ 551 i = get_unaligned_le16(tsfdesc); 552 tsfdesc += 2; 553 if (i != TLV_TYPE_TSFTIMESTAMP) { 554 lbs_deb_scan("scan response: invalid TSF Timestamp %d\n", i); 555 goto done; 556 } 557 558 /* 559 * Validity check: the TLV holds TSF values with 8 bytes each, so 560 * the size in the TLV must match the nr_sets value 561 */ 562 i = get_unaligned_le16(tsfdesc); 563 tsfdesc += 2; 564 if (i / 8 != scanresp->nr_sets) { 565 lbs_deb_scan("scan response: invalid number of TSF timestamp " 566 "sets (expected %d got %d)\n", scanresp->nr_sets, 567 i / 8); 568 goto done; 569 } 570 571 for (i = 0; i < scanresp->nr_sets; i++) { 572 const u8 *bssid; 573 const u8 *ie; 574 int left; 575 int ielen; 576 int rssi; 577 u16 intvl; 578 u16 capa; 579 int chan_no = -1; 580 const u8 *ssid = NULL; 581 u8 ssid_len = 0; 582 583 int len = get_unaligned_le16(pos); 584 pos += 2; 585 586 /* BSSID */ 587 bssid = pos; 588 pos += ETH_ALEN; 589 /* RSSI */ 590 rssi = *pos++; 591 /* Packet time stamp */ 592 pos += 8; 593 /* Beacon interval */ 594 intvl = get_unaligned_le16(pos); 595 pos += 2; 596 /* Capabilities */ 597 capa = get_unaligned_le16(pos); 598 pos += 2; 599 600 /* To find out the channel, we must parse the IEs */ 601 ie = pos; 602 /* 603 * 6+1+8+2+2: size of BSSID, RSSI, time stamp, beacon 604 * interval, capabilities 605 */ 606 ielen = left = len - (6 + 1 + 8 + 2 + 2); 607 while (left >= 2) { 608 u8 id, elen; 609 id = *pos++; 610 elen = *pos++; 611 left -= 2; 612 if (elen > left) { 613 lbs_deb_scan("scan response: invalid IE fmt\n"); 614 goto done; 615 } 616 617 if (id == WLAN_EID_DS_PARAMS) 618 chan_no = *pos; 619 if (id == WLAN_EID_SSID) { 620 ssid = pos; 621 ssid_len = elen; 622 } 623 left -= elen; 624 pos += elen; 625 } 626 627 /* No channel, no luck */ 628 if (chan_no != -1) { 629 struct wiphy *wiphy = priv->wdev->wiphy; 630 int freq = ieee80211_channel_to_frequency(chan_no, 631 NL80211_BAND_2GHZ); 632 struct ieee80211_channel *channel = 633 ieee80211_get_channel(wiphy, freq); 634 635 lbs_deb_scan("scan: %pM, capa %04x, chan %2d, %*pE, %d dBm\n", 636 bssid, capa, chan_no, ssid_len, ssid, 637 LBS_SCAN_RSSI_TO_MBM(rssi)/100); 638 639 if (channel && 640 !(channel->flags & IEEE80211_CHAN_DISABLED)) { 641 bss = cfg80211_inform_bss(wiphy, channel, 642 CFG80211_BSS_FTYPE_UNKNOWN, 643 bssid, get_unaligned_le64(tsfdesc), 644 capa, intvl, ie, ielen, 645 LBS_SCAN_RSSI_TO_MBM(rssi), 646 GFP_KERNEL); 647 cfg80211_put_bss(wiphy, bss); 648 } 649 } else 650 lbs_deb_scan("scan response: missing BSS channel IE\n"); 651 652 tsfdesc += 8; 653 } 654 ret = 0; 655 656 done: 657 return ret; 658 } 659 660 661 /* 662 * Our scan command contains a TLV, consting of a SSID TLV, a channel list 663 * TLV and a rates TLV. Determine the maximum size of them: 664 */ 665 #define LBS_SCAN_MAX_CMD_SIZE \ 666 (sizeof(struct cmd_ds_802_11_scan) \ 667 + LBS_MAX_SSID_TLV_SIZE \ 668 + LBS_MAX_CHANNEL_LIST_TLV_SIZE \ 669 + LBS_MAX_RATES_TLV_SIZE) 670 671 /* 672 * Assumes priv->scan_req is initialized and valid 673 * Assumes priv->scan_channel is initialized 674 */ 675 static void lbs_scan_worker(struct work_struct *work) 676 { 677 struct lbs_private *priv = 678 container_of(work, struct lbs_private, scan_work.work); 679 struct cmd_ds_802_11_scan *scan_cmd; 680 u8 *tlv; /* pointer into our current, growing TLV storage area */ 681 int last_channel; 682 int running, carrier; 683 684 scan_cmd = kzalloc(LBS_SCAN_MAX_CMD_SIZE, GFP_KERNEL); 685 if (scan_cmd == NULL) 686 return; 687 688 /* prepare fixed part of scan command */ 689 scan_cmd->bsstype = CMD_BSS_TYPE_ANY; 690 691 /* stop network while we're away from our main channel */ 692 running = !netif_queue_stopped(priv->dev); 693 carrier = netif_carrier_ok(priv->dev); 694 if (running) 695 netif_stop_queue(priv->dev); 696 if (carrier) 697 netif_carrier_off(priv->dev); 698 699 /* prepare fixed part of scan command */ 700 tlv = scan_cmd->tlvbuffer; 701 702 /* add SSID TLV */ 703 if (priv->scan_req->n_ssids && priv->scan_req->ssids[0].ssid_len > 0) 704 tlv += lbs_add_ssid_tlv(tlv, 705 priv->scan_req->ssids[0].ssid, 706 priv->scan_req->ssids[0].ssid_len); 707 708 /* add channel TLVs */ 709 last_channel = priv->scan_channel + LBS_SCAN_BEFORE_NAP; 710 if (last_channel > priv->scan_req->n_channels) 711 last_channel = priv->scan_req->n_channels; 712 tlv += lbs_add_channel_list_tlv(priv, tlv, last_channel, 713 priv->scan_req->n_ssids); 714 715 /* add rates TLV */ 716 tlv += lbs_add_supported_rates_tlv(tlv); 717 718 if (priv->scan_channel < priv->scan_req->n_channels) { 719 cancel_delayed_work(&priv->scan_work); 720 if (netif_running(priv->dev)) 721 queue_delayed_work(priv->work_thread, &priv->scan_work, 722 msecs_to_jiffies(300)); 723 } 724 725 /* This is the final data we are about to send */ 726 scan_cmd->hdr.size = cpu_to_le16(tlv - (u8 *)scan_cmd); 727 lbs_deb_hex(LBS_DEB_SCAN, "SCAN_CMD", (void *)scan_cmd, 728 sizeof(*scan_cmd)); 729 lbs_deb_hex(LBS_DEB_SCAN, "SCAN_TLV", scan_cmd->tlvbuffer, 730 tlv - scan_cmd->tlvbuffer); 731 732 __lbs_cmd(priv, CMD_802_11_SCAN, &scan_cmd->hdr, 733 le16_to_cpu(scan_cmd->hdr.size), 734 lbs_ret_scan, 0); 735 736 if (priv->scan_channel >= priv->scan_req->n_channels) { 737 /* Mark scan done */ 738 cancel_delayed_work(&priv->scan_work); 739 lbs_scan_done(priv); 740 } 741 742 /* Restart network */ 743 if (carrier) 744 netif_carrier_on(priv->dev); 745 if (running && !priv->tx_pending_len) 746 netif_wake_queue(priv->dev); 747 748 kfree(scan_cmd); 749 750 /* Wake up anything waiting on scan completion */ 751 if (priv->scan_req == NULL) { 752 lbs_deb_scan("scan: waking up waiters\n"); 753 wake_up_all(&priv->scan_q); 754 } 755 } 756 757 static void _internal_start_scan(struct lbs_private *priv, bool internal, 758 struct cfg80211_scan_request *request) 759 { 760 lbs_deb_scan("scan: ssids %d, channels %d, ie_len %zd\n", 761 request->n_ssids, request->n_channels, request->ie_len); 762 763 priv->scan_channel = 0; 764 priv->scan_req = request; 765 priv->internal_scan = internal; 766 767 queue_delayed_work(priv->work_thread, &priv->scan_work, 768 msecs_to_jiffies(50)); 769 } 770 771 /* 772 * Clean up priv->scan_req. Should be used to handle the allocation details. 773 */ 774 void lbs_scan_done(struct lbs_private *priv) 775 { 776 WARN_ON(!priv->scan_req); 777 778 if (priv->internal_scan) { 779 kfree(priv->scan_req); 780 } else { 781 struct cfg80211_scan_info info = { 782 .aborted = false, 783 }; 784 785 cfg80211_scan_done(priv->scan_req, &info); 786 } 787 788 priv->scan_req = NULL; 789 } 790 791 static int lbs_cfg_scan(struct wiphy *wiphy, 792 struct cfg80211_scan_request *request) 793 { 794 struct lbs_private *priv = wiphy_priv(wiphy); 795 int ret = 0; 796 797 if (priv->scan_req || delayed_work_pending(&priv->scan_work)) { 798 /* old scan request not yet processed */ 799 ret = -EAGAIN; 800 goto out; 801 } 802 803 _internal_start_scan(priv, false, request); 804 805 if (priv->surpriseremoved) 806 ret = -EIO; 807 808 out: 809 return ret; 810 } 811 812 813 814 815 /* 816 * Events 817 */ 818 819 void lbs_send_disconnect_notification(struct lbs_private *priv, 820 bool locally_generated) 821 { 822 cfg80211_disconnected(priv->dev, 0, NULL, 0, locally_generated, 823 GFP_KERNEL); 824 } 825 826 void lbs_send_mic_failureevent(struct lbs_private *priv, u32 event) 827 { 828 cfg80211_michael_mic_failure(priv->dev, 829 priv->assoc_bss, 830 event == MACREG_INT_CODE_MIC_ERR_MULTICAST ? 831 NL80211_KEYTYPE_GROUP : 832 NL80211_KEYTYPE_PAIRWISE, 833 -1, 834 NULL, 835 GFP_KERNEL); 836 } 837 838 839 840 841 /* 842 * Connect/disconnect 843 */ 844 845 846 /* 847 * This removes all WEP keys 848 */ 849 static int lbs_remove_wep_keys(struct lbs_private *priv) 850 { 851 struct cmd_ds_802_11_set_wep cmd; 852 int ret; 853 854 memset(&cmd, 0, sizeof(cmd)); 855 cmd.hdr.size = cpu_to_le16(sizeof(cmd)); 856 cmd.keyindex = cpu_to_le16(priv->wep_tx_key); 857 cmd.action = cpu_to_le16(CMD_ACT_REMOVE); 858 859 ret = lbs_cmd_with_response(priv, CMD_802_11_SET_WEP, &cmd); 860 861 return ret; 862 } 863 864 /* 865 * Set WEP keys 866 */ 867 static int lbs_set_wep_keys(struct lbs_private *priv) 868 { 869 struct cmd_ds_802_11_set_wep cmd; 870 int i; 871 int ret; 872 873 /* 874 * command 13 00 875 * size 50 00 876 * sequence xx xx 877 * result 00 00 878 * action 02 00 ACT_ADD 879 * transmit key 00 00 880 * type for key 1 01 WEP40 881 * type for key 2 00 882 * type for key 3 00 883 * type for key 4 00 884 * key 1 39 39 39 39 39 00 00 00 885 * 00 00 00 00 00 00 00 00 886 * key 2 00 00 00 00 00 00 00 00 887 * 00 00 00 00 00 00 00 00 888 * key 3 00 00 00 00 00 00 00 00 889 * 00 00 00 00 00 00 00 00 890 * key 4 00 00 00 00 00 00 00 00 891 */ 892 if (priv->wep_key_len[0] || priv->wep_key_len[1] || 893 priv->wep_key_len[2] || priv->wep_key_len[3]) { 894 /* Only set wep keys if we have at least one of them */ 895 memset(&cmd, 0, sizeof(cmd)); 896 cmd.hdr.size = cpu_to_le16(sizeof(cmd)); 897 cmd.keyindex = cpu_to_le16(priv->wep_tx_key); 898 cmd.action = cpu_to_le16(CMD_ACT_ADD); 899 900 for (i = 0; i < 4; i++) { 901 switch (priv->wep_key_len[i]) { 902 case WLAN_KEY_LEN_WEP40: 903 cmd.keytype[i] = CMD_TYPE_WEP_40_BIT; 904 break; 905 case WLAN_KEY_LEN_WEP104: 906 cmd.keytype[i] = CMD_TYPE_WEP_104_BIT; 907 break; 908 default: 909 cmd.keytype[i] = 0; 910 break; 911 } 912 memcpy(cmd.keymaterial[i], priv->wep_key[i], 913 priv->wep_key_len[i]); 914 } 915 916 ret = lbs_cmd_with_response(priv, CMD_802_11_SET_WEP, &cmd); 917 } else { 918 /* Otherwise remove all wep keys */ 919 ret = lbs_remove_wep_keys(priv); 920 } 921 922 return ret; 923 } 924 925 926 /* 927 * Enable/Disable RSN status 928 */ 929 static int lbs_enable_rsn(struct lbs_private *priv, int enable) 930 { 931 struct cmd_ds_802_11_enable_rsn cmd; 932 int ret; 933 934 /* 935 * cmd 2f 00 936 * size 0c 00 937 * sequence xx xx 938 * result 00 00 939 * action 01 00 ACT_SET 940 * enable 01 00 941 */ 942 memset(&cmd, 0, sizeof(cmd)); 943 cmd.hdr.size = cpu_to_le16(sizeof(cmd)); 944 cmd.action = cpu_to_le16(CMD_ACT_SET); 945 cmd.enable = cpu_to_le16(enable); 946 947 ret = lbs_cmd_with_response(priv, CMD_802_11_ENABLE_RSN, &cmd); 948 949 return ret; 950 } 951 952 953 /* 954 * Set WPA/WPA key material 955 */ 956 957 /* 958 * like "struct cmd_ds_802_11_key_material", but with cmd_header. Once we 959 * get rid of WEXT, this should go into host.h 960 */ 961 962 struct cmd_key_material { 963 struct cmd_header hdr; 964 965 __le16 action; 966 struct MrvlIEtype_keyParamSet param; 967 } __packed; 968 969 static int lbs_set_key_material(struct lbs_private *priv, 970 int key_type, int key_info, 971 const u8 *key, u16 key_len) 972 { 973 struct cmd_key_material cmd; 974 int ret; 975 976 /* 977 * Example for WPA (TKIP): 978 * 979 * cmd 5e 00 980 * size 34 00 981 * sequence xx xx 982 * result 00 00 983 * action 01 00 984 * TLV type 00 01 key param 985 * length 00 26 986 * key type 01 00 TKIP 987 * key info 06 00 UNICAST | ENABLED 988 * key len 20 00 989 * key 32 bytes 990 */ 991 memset(&cmd, 0, sizeof(cmd)); 992 cmd.hdr.size = cpu_to_le16(sizeof(cmd)); 993 cmd.action = cpu_to_le16(CMD_ACT_SET); 994 cmd.param.type = cpu_to_le16(TLV_TYPE_KEY_MATERIAL); 995 cmd.param.length = cpu_to_le16(sizeof(cmd.param) - 4); 996 cmd.param.keytypeid = cpu_to_le16(key_type); 997 cmd.param.keyinfo = cpu_to_le16(key_info); 998 cmd.param.keylen = cpu_to_le16(key_len); 999 if (key && key_len) 1000 memcpy(cmd.param.key, key, key_len); 1001 1002 ret = lbs_cmd_with_response(priv, CMD_802_11_KEY_MATERIAL, &cmd); 1003 1004 return ret; 1005 } 1006 1007 1008 /* 1009 * Sets the auth type (open, shared, etc) in the firmware. That 1010 * we use CMD_802_11_AUTHENTICATE is misleading, this firmware 1011 * command doesn't send an authentication frame at all, it just 1012 * stores the auth_type. 1013 */ 1014 static int lbs_set_authtype(struct lbs_private *priv, 1015 struct cfg80211_connect_params *sme) 1016 { 1017 struct cmd_ds_802_11_authenticate cmd; 1018 int ret; 1019 1020 /* 1021 * cmd 11 00 1022 * size 19 00 1023 * sequence xx xx 1024 * result 00 00 1025 * BSS id 00 13 19 80 da 30 1026 * auth type 00 1027 * reserved 00 00 00 00 00 00 00 00 00 00 1028 */ 1029 memset(&cmd, 0, sizeof(cmd)); 1030 cmd.hdr.size = cpu_to_le16(sizeof(cmd)); 1031 if (sme->bssid) 1032 memcpy(cmd.bssid, sme->bssid, ETH_ALEN); 1033 /* convert auth_type */ 1034 ret = lbs_auth_to_authtype(sme->auth_type); 1035 if (ret < 0) 1036 goto done; 1037 1038 cmd.authtype = ret; 1039 ret = lbs_cmd_with_response(priv, CMD_802_11_AUTHENTICATE, &cmd); 1040 1041 done: 1042 return ret; 1043 } 1044 1045 1046 /* 1047 * Create association request 1048 */ 1049 #define LBS_ASSOC_MAX_CMD_SIZE \ 1050 (sizeof(struct cmd_ds_802_11_associate) \ 1051 - 512 /* cmd_ds_802_11_associate.iebuf */ \ 1052 + LBS_MAX_SSID_TLV_SIZE \ 1053 + LBS_MAX_CHANNEL_TLV_SIZE \ 1054 + LBS_MAX_CF_PARAM_TLV_SIZE \ 1055 + LBS_MAX_AUTH_TYPE_TLV_SIZE \ 1056 + LBS_MAX_WPA_TLV_SIZE) 1057 1058 static int lbs_associate(struct lbs_private *priv, 1059 struct cfg80211_bss *bss, 1060 struct cfg80211_connect_params *sme) 1061 { 1062 struct cmd_ds_802_11_associate_response *resp; 1063 struct cmd_ds_802_11_associate *cmd = kzalloc(LBS_ASSOC_MAX_CMD_SIZE, 1064 GFP_KERNEL); 1065 const u8 *ssid_eid; 1066 size_t len, resp_ie_len; 1067 int status; 1068 int ret; 1069 u8 *pos; 1070 u8 *tmp; 1071 1072 if (!cmd) { 1073 ret = -ENOMEM; 1074 goto done; 1075 } 1076 pos = &cmd->iebuf[0]; 1077 1078 /* 1079 * cmd 50 00 1080 * length 34 00 1081 * sequence xx xx 1082 * result 00 00 1083 * BSS id 00 13 19 80 da 30 1084 * capabilities 11 00 1085 * listen interval 0a 00 1086 * beacon interval 00 00 1087 * DTIM period 00 1088 * TLVs xx (up to 512 bytes) 1089 */ 1090 cmd->hdr.command = cpu_to_le16(CMD_802_11_ASSOCIATE); 1091 1092 /* Fill in static fields */ 1093 memcpy(cmd->bssid, bss->bssid, ETH_ALEN); 1094 cmd->listeninterval = cpu_to_le16(MRVDRV_DEFAULT_LISTEN_INTERVAL); 1095 cmd->capability = cpu_to_le16(bss->capability); 1096 1097 /* add SSID TLV */ 1098 rcu_read_lock(); 1099 ssid_eid = ieee80211_bss_get_ie(bss, WLAN_EID_SSID); 1100 if (ssid_eid) 1101 pos += lbs_add_ssid_tlv(pos, ssid_eid + 2, ssid_eid[1]); 1102 else 1103 lbs_deb_assoc("no SSID\n"); 1104 rcu_read_unlock(); 1105 1106 /* add DS param TLV */ 1107 if (bss->channel) 1108 pos += lbs_add_channel_tlv(pos, bss->channel->hw_value); 1109 else 1110 lbs_deb_assoc("no channel\n"); 1111 1112 /* add (empty) CF param TLV */ 1113 pos += lbs_add_cf_param_tlv(pos); 1114 1115 /* add rates TLV */ 1116 tmp = pos + 4; /* skip Marvell IE header */ 1117 pos += lbs_add_common_rates_tlv(pos, bss); 1118 lbs_deb_hex(LBS_DEB_ASSOC, "Common Rates", tmp, pos - tmp); 1119 1120 /* add auth type TLV */ 1121 if (MRVL_FW_MAJOR_REV(priv->fwrelease) >= 9) 1122 pos += lbs_add_auth_type_tlv(pos, sme->auth_type); 1123 1124 /* add WPA/WPA2 TLV */ 1125 if (sme->ie && sme->ie_len) 1126 pos += lbs_add_wpa_tlv(pos, sme->ie, sme->ie_len); 1127 1128 len = (sizeof(*cmd) - sizeof(cmd->iebuf)) + 1129 (u16)(pos - (u8 *) &cmd->iebuf); 1130 cmd->hdr.size = cpu_to_le16(len); 1131 1132 lbs_deb_hex(LBS_DEB_ASSOC, "ASSOC_CMD", (u8 *) cmd, 1133 le16_to_cpu(cmd->hdr.size)); 1134 1135 /* store for later use */ 1136 memcpy(priv->assoc_bss, bss->bssid, ETH_ALEN); 1137 1138 ret = lbs_cmd_with_response(priv, CMD_802_11_ASSOCIATE, cmd); 1139 if (ret) 1140 goto done; 1141 1142 /* generate connect message to cfg80211 */ 1143 1144 resp = (void *) cmd; /* recast for easier field access */ 1145 status = le16_to_cpu(resp->statuscode); 1146 1147 /* Older FW versions map the IEEE 802.11 Status Code in the association 1148 * response to the following values returned in resp->statuscode: 1149 * 1150 * IEEE Status Code Marvell Status Code 1151 * 0 -> 0x0000 ASSOC_RESULT_SUCCESS 1152 * 13 -> 0x0004 ASSOC_RESULT_AUTH_REFUSED 1153 * 14 -> 0x0004 ASSOC_RESULT_AUTH_REFUSED 1154 * 15 -> 0x0004 ASSOC_RESULT_AUTH_REFUSED 1155 * 16 -> 0x0004 ASSOC_RESULT_AUTH_REFUSED 1156 * others -> 0x0003 ASSOC_RESULT_REFUSED 1157 * 1158 * Other response codes: 1159 * 0x0001 -> ASSOC_RESULT_INVALID_PARAMETERS (unused) 1160 * 0x0002 -> ASSOC_RESULT_TIMEOUT (internal timer expired waiting for 1161 * association response from the AP) 1162 */ 1163 if (MRVL_FW_MAJOR_REV(priv->fwrelease) <= 8) { 1164 switch (status) { 1165 case 0: 1166 break; 1167 case 1: 1168 lbs_deb_assoc("invalid association parameters\n"); 1169 status = WLAN_STATUS_CAPS_UNSUPPORTED; 1170 break; 1171 case 2: 1172 lbs_deb_assoc("timer expired while waiting for AP\n"); 1173 status = WLAN_STATUS_AUTH_TIMEOUT; 1174 break; 1175 case 3: 1176 lbs_deb_assoc("association refused by AP\n"); 1177 status = WLAN_STATUS_ASSOC_DENIED_UNSPEC; 1178 break; 1179 case 4: 1180 lbs_deb_assoc("authentication refused by AP\n"); 1181 status = WLAN_STATUS_UNKNOWN_AUTH_TRANSACTION; 1182 break; 1183 default: 1184 lbs_deb_assoc("association failure %d\n", status); 1185 /* v5 OLPC firmware does return the AP status code if 1186 * it's not one of the values above. Let that through. 1187 */ 1188 break; 1189 } 1190 } 1191 1192 lbs_deb_assoc("status %d, statuscode 0x%04x, capability 0x%04x, " 1193 "aid 0x%04x\n", status, le16_to_cpu(resp->statuscode), 1194 le16_to_cpu(resp->capability), le16_to_cpu(resp->aid)); 1195 1196 resp_ie_len = le16_to_cpu(resp->hdr.size) 1197 - sizeof(resp->hdr) 1198 - 6; 1199 cfg80211_connect_result(priv->dev, 1200 priv->assoc_bss, 1201 sme->ie, sme->ie_len, 1202 resp->iebuf, resp_ie_len, 1203 status, 1204 GFP_KERNEL); 1205 1206 if (status == 0) { 1207 /* TODO: get rid of priv->connect_status */ 1208 priv->connect_status = LBS_CONNECTED; 1209 netif_carrier_on(priv->dev); 1210 if (!priv->tx_pending_len) 1211 netif_tx_wake_all_queues(priv->dev); 1212 } 1213 1214 kfree(cmd); 1215 done: 1216 return ret; 1217 } 1218 1219 static struct cfg80211_scan_request * 1220 _new_connect_scan_req(struct wiphy *wiphy, struct cfg80211_connect_params *sme) 1221 { 1222 struct cfg80211_scan_request *creq = NULL; 1223 int i, n_channels = ieee80211_get_num_supported_channels(wiphy); 1224 enum nl80211_band band; 1225 1226 creq = kzalloc(sizeof(*creq) + sizeof(struct cfg80211_ssid) + 1227 n_channels * sizeof(void *), 1228 GFP_ATOMIC); 1229 if (!creq) 1230 return NULL; 1231 1232 /* SSIDs come after channels */ 1233 creq->ssids = (void *)&creq->channels[n_channels]; 1234 creq->n_channels = n_channels; 1235 creq->n_ssids = 1; 1236 1237 /* Scan all available channels */ 1238 i = 0; 1239 for (band = 0; band < NUM_NL80211_BANDS; band++) { 1240 int j; 1241 1242 if (!wiphy->bands[band]) 1243 continue; 1244 1245 for (j = 0; j < wiphy->bands[band]->n_channels; j++) { 1246 /* ignore disabled channels */ 1247 if (wiphy->bands[band]->channels[j].flags & 1248 IEEE80211_CHAN_DISABLED) 1249 continue; 1250 1251 creq->channels[i] = &wiphy->bands[band]->channels[j]; 1252 i++; 1253 } 1254 } 1255 if (i) { 1256 /* Set real number of channels specified in creq->channels[] */ 1257 creq->n_channels = i; 1258 1259 /* Scan for the SSID we're going to connect to */ 1260 memcpy(creq->ssids[0].ssid, sme->ssid, sme->ssid_len); 1261 creq->ssids[0].ssid_len = sme->ssid_len; 1262 } else { 1263 /* No channels found... */ 1264 kfree(creq); 1265 creq = NULL; 1266 } 1267 1268 return creq; 1269 } 1270 1271 static int lbs_cfg_connect(struct wiphy *wiphy, struct net_device *dev, 1272 struct cfg80211_connect_params *sme) 1273 { 1274 struct lbs_private *priv = wiphy_priv(wiphy); 1275 struct cfg80211_bss *bss = NULL; 1276 int ret = 0; 1277 u8 preamble = RADIO_PREAMBLE_SHORT; 1278 1279 if (dev == priv->mesh_dev) 1280 return -EOPNOTSUPP; 1281 1282 if (!sme->bssid) { 1283 struct cfg80211_scan_request *creq; 1284 1285 /* 1286 * Scan for the requested network after waiting for existing 1287 * scans to finish. 1288 */ 1289 lbs_deb_assoc("assoc: waiting for existing scans\n"); 1290 wait_event_interruptible_timeout(priv->scan_q, 1291 (priv->scan_req == NULL), 1292 (15 * HZ)); 1293 1294 creq = _new_connect_scan_req(wiphy, sme); 1295 if (!creq) { 1296 ret = -EINVAL; 1297 goto done; 1298 } 1299 1300 lbs_deb_assoc("assoc: scanning for compatible AP\n"); 1301 _internal_start_scan(priv, true, creq); 1302 1303 lbs_deb_assoc("assoc: waiting for scan to complete\n"); 1304 wait_event_interruptible_timeout(priv->scan_q, 1305 (priv->scan_req == NULL), 1306 (15 * HZ)); 1307 lbs_deb_assoc("assoc: scanning completed\n"); 1308 } 1309 1310 /* Find the BSS we want using available scan results */ 1311 bss = cfg80211_get_bss(wiphy, sme->channel, sme->bssid, 1312 sme->ssid, sme->ssid_len, IEEE80211_BSS_TYPE_ESS, 1313 IEEE80211_PRIVACY_ANY); 1314 if (!bss) { 1315 wiphy_err(wiphy, "assoc: bss %pM not in scan results\n", 1316 sme->bssid); 1317 ret = -ENOENT; 1318 goto done; 1319 } 1320 lbs_deb_assoc("trying %pM\n", bss->bssid); 1321 lbs_deb_assoc("cipher 0x%x, key index %d, key len %d\n", 1322 sme->crypto.cipher_group, 1323 sme->key_idx, sme->key_len); 1324 1325 /* As this is a new connection, clear locally stored WEP keys */ 1326 priv->wep_tx_key = 0; 1327 memset(priv->wep_key, 0, sizeof(priv->wep_key)); 1328 memset(priv->wep_key_len, 0, sizeof(priv->wep_key_len)); 1329 1330 /* set/remove WEP keys */ 1331 switch (sme->crypto.cipher_group) { 1332 case WLAN_CIPHER_SUITE_WEP40: 1333 case WLAN_CIPHER_SUITE_WEP104: 1334 /* Store provided WEP keys in priv-> */ 1335 priv->wep_tx_key = sme->key_idx; 1336 priv->wep_key_len[sme->key_idx] = sme->key_len; 1337 memcpy(priv->wep_key[sme->key_idx], sme->key, sme->key_len); 1338 /* Set WEP keys and WEP mode */ 1339 lbs_set_wep_keys(priv); 1340 priv->mac_control |= CMD_ACT_MAC_WEP_ENABLE; 1341 lbs_set_mac_control(priv); 1342 /* No RSN mode for WEP */ 1343 lbs_enable_rsn(priv, 0); 1344 break; 1345 case 0: /* there's no WLAN_CIPHER_SUITE_NONE definition */ 1346 /* 1347 * If we don't have no WEP, no WPA and no WPA2, 1348 * we remove all keys like in the WPA/WPA2 setup, 1349 * we just don't set RSN. 1350 * 1351 * Therefore: fall-through 1352 */ 1353 case WLAN_CIPHER_SUITE_TKIP: 1354 case WLAN_CIPHER_SUITE_CCMP: 1355 /* Remove WEP keys and WEP mode */ 1356 lbs_remove_wep_keys(priv); 1357 priv->mac_control &= ~CMD_ACT_MAC_WEP_ENABLE; 1358 lbs_set_mac_control(priv); 1359 1360 /* clear the WPA/WPA2 keys */ 1361 lbs_set_key_material(priv, 1362 KEY_TYPE_ID_WEP, /* doesn't matter */ 1363 KEY_INFO_WPA_UNICAST, 1364 NULL, 0); 1365 lbs_set_key_material(priv, 1366 KEY_TYPE_ID_WEP, /* doesn't matter */ 1367 KEY_INFO_WPA_MCAST, 1368 NULL, 0); 1369 /* RSN mode for WPA/WPA2 */ 1370 lbs_enable_rsn(priv, sme->crypto.cipher_group != 0); 1371 break; 1372 default: 1373 wiphy_err(wiphy, "unsupported cipher group 0x%x\n", 1374 sme->crypto.cipher_group); 1375 ret = -ENOTSUPP; 1376 goto done; 1377 } 1378 1379 ret = lbs_set_authtype(priv, sme); 1380 if (ret == -ENOTSUPP) { 1381 wiphy_err(wiphy, "unsupported authtype 0x%x\n", sme->auth_type); 1382 goto done; 1383 } 1384 1385 lbs_set_radio(priv, preamble, 1); 1386 1387 /* Do the actual association */ 1388 ret = lbs_associate(priv, bss, sme); 1389 1390 done: 1391 if (bss) 1392 cfg80211_put_bss(wiphy, bss); 1393 return ret; 1394 } 1395 1396 int lbs_disconnect(struct lbs_private *priv, u16 reason) 1397 { 1398 struct cmd_ds_802_11_deauthenticate cmd; 1399 int ret; 1400 1401 memset(&cmd, 0, sizeof(cmd)); 1402 cmd.hdr.size = cpu_to_le16(sizeof(cmd)); 1403 /* Mildly ugly to use a locally store my own BSSID ... */ 1404 memcpy(cmd.macaddr, &priv->assoc_bss, ETH_ALEN); 1405 cmd.reasoncode = cpu_to_le16(reason); 1406 1407 ret = lbs_cmd_with_response(priv, CMD_802_11_DEAUTHENTICATE, &cmd); 1408 if (ret) 1409 return ret; 1410 1411 cfg80211_disconnected(priv->dev, 1412 reason, 1413 NULL, 0, true, 1414 GFP_KERNEL); 1415 priv->connect_status = LBS_DISCONNECTED; 1416 1417 return 0; 1418 } 1419 1420 static int lbs_cfg_disconnect(struct wiphy *wiphy, struct net_device *dev, 1421 u16 reason_code) 1422 { 1423 struct lbs_private *priv = wiphy_priv(wiphy); 1424 1425 if (dev == priv->mesh_dev) 1426 return -EOPNOTSUPP; 1427 1428 /* store for lbs_cfg_ret_disconnect() */ 1429 priv->disassoc_reason = reason_code; 1430 1431 return lbs_disconnect(priv, reason_code); 1432 } 1433 1434 static int lbs_cfg_set_default_key(struct wiphy *wiphy, 1435 struct net_device *netdev, 1436 u8 key_index, bool unicast, 1437 bool multicast) 1438 { 1439 struct lbs_private *priv = wiphy_priv(wiphy); 1440 1441 if (netdev == priv->mesh_dev) 1442 return -EOPNOTSUPP; 1443 1444 if (key_index != priv->wep_tx_key) { 1445 lbs_deb_assoc("set_default_key: to %d\n", key_index); 1446 priv->wep_tx_key = key_index; 1447 lbs_set_wep_keys(priv); 1448 } 1449 1450 return 0; 1451 } 1452 1453 1454 static int lbs_cfg_add_key(struct wiphy *wiphy, struct net_device *netdev, 1455 u8 idx, bool pairwise, const u8 *mac_addr, 1456 struct key_params *params) 1457 { 1458 struct lbs_private *priv = wiphy_priv(wiphy); 1459 u16 key_info; 1460 u16 key_type; 1461 int ret = 0; 1462 1463 if (netdev == priv->mesh_dev) 1464 return -EOPNOTSUPP; 1465 1466 lbs_deb_assoc("add_key: cipher 0x%x, mac_addr %pM\n", 1467 params->cipher, mac_addr); 1468 lbs_deb_assoc("add_key: key index %d, key len %d\n", 1469 idx, params->key_len); 1470 if (params->key_len) 1471 lbs_deb_hex(LBS_DEB_CFG80211, "KEY", 1472 params->key, params->key_len); 1473 1474 lbs_deb_assoc("add_key: seq len %d\n", params->seq_len); 1475 if (params->seq_len) 1476 lbs_deb_hex(LBS_DEB_CFG80211, "SEQ", 1477 params->seq, params->seq_len); 1478 1479 switch (params->cipher) { 1480 case WLAN_CIPHER_SUITE_WEP40: 1481 case WLAN_CIPHER_SUITE_WEP104: 1482 /* actually compare if something has changed ... */ 1483 if ((priv->wep_key_len[idx] != params->key_len) || 1484 memcmp(priv->wep_key[idx], 1485 params->key, params->key_len) != 0) { 1486 priv->wep_key_len[idx] = params->key_len; 1487 memcpy(priv->wep_key[idx], 1488 params->key, params->key_len); 1489 lbs_set_wep_keys(priv); 1490 } 1491 break; 1492 case WLAN_CIPHER_SUITE_TKIP: 1493 case WLAN_CIPHER_SUITE_CCMP: 1494 key_info = KEY_INFO_WPA_ENABLED | ((idx == 0) 1495 ? KEY_INFO_WPA_UNICAST 1496 : KEY_INFO_WPA_MCAST); 1497 key_type = (params->cipher == WLAN_CIPHER_SUITE_TKIP) 1498 ? KEY_TYPE_ID_TKIP 1499 : KEY_TYPE_ID_AES; 1500 lbs_set_key_material(priv, 1501 key_type, 1502 key_info, 1503 params->key, params->key_len); 1504 break; 1505 default: 1506 wiphy_err(wiphy, "unhandled cipher 0x%x\n", params->cipher); 1507 ret = -ENOTSUPP; 1508 break; 1509 } 1510 1511 return ret; 1512 } 1513 1514 1515 static int lbs_cfg_del_key(struct wiphy *wiphy, struct net_device *netdev, 1516 u8 key_index, bool pairwise, const u8 *mac_addr) 1517 { 1518 1519 lbs_deb_assoc("del_key: key_idx %d, mac_addr %pM\n", 1520 key_index, mac_addr); 1521 1522 #ifdef TODO 1523 struct lbs_private *priv = wiphy_priv(wiphy); 1524 /* 1525 * I think can keep this a NO-OP, because: 1526 1527 * - we clear all keys whenever we do lbs_cfg_connect() anyway 1528 * - neither "iw" nor "wpa_supplicant" won't call this during 1529 * an ongoing connection 1530 * - TODO: but I have to check if this is still true when 1531 * I set the AP to periodic re-keying 1532 * - we've not kzallec() something when we've added a key at 1533 * lbs_cfg_connect() or lbs_cfg_add_key(). 1534 * 1535 * This causes lbs_cfg_del_key() only called at disconnect time, 1536 * where we'd just waste time deleting a key that is not going 1537 * to be used anyway. 1538 */ 1539 if (key_index < 3 && priv->wep_key_len[key_index]) { 1540 priv->wep_key_len[key_index] = 0; 1541 lbs_set_wep_keys(priv); 1542 } 1543 #endif 1544 1545 return 0; 1546 } 1547 1548 1549 /* 1550 * Get station 1551 */ 1552 1553 static int lbs_cfg_get_station(struct wiphy *wiphy, struct net_device *dev, 1554 const u8 *mac, struct station_info *sinfo) 1555 { 1556 struct lbs_private *priv = wiphy_priv(wiphy); 1557 s8 signal, noise; 1558 int ret; 1559 size_t i; 1560 1561 sinfo->filled |= BIT(NL80211_STA_INFO_TX_BYTES) | 1562 BIT(NL80211_STA_INFO_TX_PACKETS) | 1563 BIT(NL80211_STA_INFO_RX_BYTES) | 1564 BIT(NL80211_STA_INFO_RX_PACKETS); 1565 sinfo->tx_bytes = priv->dev->stats.tx_bytes; 1566 sinfo->tx_packets = priv->dev->stats.tx_packets; 1567 sinfo->rx_bytes = priv->dev->stats.rx_bytes; 1568 sinfo->rx_packets = priv->dev->stats.rx_packets; 1569 1570 /* Get current RSSI */ 1571 ret = lbs_get_rssi(priv, &signal, &noise); 1572 if (ret == 0) { 1573 sinfo->signal = signal; 1574 sinfo->filled |= BIT(NL80211_STA_INFO_SIGNAL); 1575 } 1576 1577 /* Convert priv->cur_rate from hw_value to NL80211 value */ 1578 for (i = 0; i < ARRAY_SIZE(lbs_rates); i++) { 1579 if (priv->cur_rate == lbs_rates[i].hw_value) { 1580 sinfo->txrate.legacy = lbs_rates[i].bitrate; 1581 sinfo->filled |= BIT(NL80211_STA_INFO_TX_BITRATE); 1582 break; 1583 } 1584 } 1585 1586 return 0; 1587 } 1588 1589 1590 1591 1592 /* 1593 * Change interface 1594 */ 1595 1596 static int lbs_change_intf(struct wiphy *wiphy, struct net_device *dev, 1597 enum nl80211_iftype type, 1598 struct vif_params *params) 1599 { 1600 struct lbs_private *priv = wiphy_priv(wiphy); 1601 int ret = 0; 1602 1603 if (dev == priv->mesh_dev) 1604 return -EOPNOTSUPP; 1605 1606 switch (type) { 1607 case NL80211_IFTYPE_MONITOR: 1608 case NL80211_IFTYPE_STATION: 1609 case NL80211_IFTYPE_ADHOC: 1610 break; 1611 default: 1612 return -EOPNOTSUPP; 1613 } 1614 1615 if (priv->iface_running) 1616 ret = lbs_set_iface_type(priv, type); 1617 1618 if (!ret) 1619 priv->wdev->iftype = type; 1620 1621 return ret; 1622 } 1623 1624 1625 1626 /* 1627 * IBSS (Ad-Hoc) 1628 */ 1629 1630 /* 1631 * The firmware needs the following bits masked out of the beacon-derived 1632 * capability field when associating/joining to a BSS: 1633 * 9 (QoS), 11 (APSD), 12 (unused), 14 (unused), 15 (unused) 1634 */ 1635 #define CAPINFO_MASK (~(0xda00)) 1636 1637 1638 static void lbs_join_post(struct lbs_private *priv, 1639 struct cfg80211_ibss_params *params, 1640 u8 *bssid, u16 capability) 1641 { 1642 u8 fake_ie[2 + IEEE80211_MAX_SSID_LEN + /* ssid */ 1643 2 + 4 + /* basic rates */ 1644 2 + 1 + /* DS parameter */ 1645 2 + 2 + /* atim */ 1646 2 + 8]; /* extended rates */ 1647 u8 *fake = fake_ie; 1648 struct cfg80211_bss *bss; 1649 1650 /* 1651 * For cfg80211_inform_bss, we'll need a fake IE, as we can't get 1652 * the real IE from the firmware. So we fabricate a fake IE based on 1653 * what the firmware actually sends (sniffed with wireshark). 1654 */ 1655 /* Fake SSID IE */ 1656 *fake++ = WLAN_EID_SSID; 1657 *fake++ = params->ssid_len; 1658 memcpy(fake, params->ssid, params->ssid_len); 1659 fake += params->ssid_len; 1660 /* Fake supported basic rates IE */ 1661 *fake++ = WLAN_EID_SUPP_RATES; 1662 *fake++ = 4; 1663 *fake++ = 0x82; 1664 *fake++ = 0x84; 1665 *fake++ = 0x8b; 1666 *fake++ = 0x96; 1667 /* Fake DS channel IE */ 1668 *fake++ = WLAN_EID_DS_PARAMS; 1669 *fake++ = 1; 1670 *fake++ = params->chandef.chan->hw_value; 1671 /* Fake IBSS params IE */ 1672 *fake++ = WLAN_EID_IBSS_PARAMS; 1673 *fake++ = 2; 1674 *fake++ = 0; /* ATIM=0 */ 1675 *fake++ = 0; 1676 /* Fake extended rates IE, TODO: don't add this for 802.11b only, 1677 * but I don't know how this could be checked */ 1678 *fake++ = WLAN_EID_EXT_SUPP_RATES; 1679 *fake++ = 8; 1680 *fake++ = 0x0c; 1681 *fake++ = 0x12; 1682 *fake++ = 0x18; 1683 *fake++ = 0x24; 1684 *fake++ = 0x30; 1685 *fake++ = 0x48; 1686 *fake++ = 0x60; 1687 *fake++ = 0x6c; 1688 lbs_deb_hex(LBS_DEB_CFG80211, "IE", fake_ie, fake - fake_ie); 1689 1690 bss = cfg80211_inform_bss(priv->wdev->wiphy, 1691 params->chandef.chan, 1692 CFG80211_BSS_FTYPE_UNKNOWN, 1693 bssid, 1694 0, 1695 capability, 1696 params->beacon_interval, 1697 fake_ie, fake - fake_ie, 1698 0, GFP_KERNEL); 1699 cfg80211_put_bss(priv->wdev->wiphy, bss); 1700 1701 memcpy(priv->wdev->ssid, params->ssid, params->ssid_len); 1702 priv->wdev->ssid_len = params->ssid_len; 1703 1704 cfg80211_ibss_joined(priv->dev, bssid, params->chandef.chan, 1705 GFP_KERNEL); 1706 1707 /* TODO: consider doing this at MACREG_INT_CODE_LINK_SENSED time */ 1708 priv->connect_status = LBS_CONNECTED; 1709 netif_carrier_on(priv->dev); 1710 if (!priv->tx_pending_len) 1711 netif_wake_queue(priv->dev); 1712 } 1713 1714 static int lbs_ibss_join_existing(struct lbs_private *priv, 1715 struct cfg80211_ibss_params *params, 1716 struct cfg80211_bss *bss) 1717 { 1718 const u8 *rates_eid; 1719 struct cmd_ds_802_11_ad_hoc_join cmd; 1720 u8 preamble = RADIO_PREAMBLE_SHORT; 1721 int ret = 0; 1722 1723 /* TODO: set preamble based on scan result */ 1724 ret = lbs_set_radio(priv, preamble, 1); 1725 if (ret) 1726 goto out; 1727 1728 /* 1729 * Example CMD_802_11_AD_HOC_JOIN command: 1730 * 1731 * command 2c 00 CMD_802_11_AD_HOC_JOIN 1732 * size 65 00 1733 * sequence xx xx 1734 * result 00 00 1735 * bssid 02 27 27 97 2f 96 1736 * ssid 49 42 53 53 00 00 00 00 1737 * 00 00 00 00 00 00 00 00 1738 * 00 00 00 00 00 00 00 00 1739 * 00 00 00 00 00 00 00 00 1740 * type 02 CMD_BSS_TYPE_IBSS 1741 * beacon period 64 00 1742 * dtim period 00 1743 * timestamp 00 00 00 00 00 00 00 00 1744 * localtime 00 00 00 00 00 00 00 00 1745 * IE DS 03 1746 * IE DS len 01 1747 * IE DS channel 01 1748 * reserveed 00 00 00 00 1749 * IE IBSS 06 1750 * IE IBSS len 02 1751 * IE IBSS atim 00 00 1752 * reserved 00 00 00 00 1753 * capability 02 00 1754 * rates 82 84 8b 96 0c 12 18 24 30 48 60 6c 00 1755 * fail timeout ff 00 1756 * probe delay 00 00 1757 */ 1758 memset(&cmd, 0, sizeof(cmd)); 1759 cmd.hdr.size = cpu_to_le16(sizeof(cmd)); 1760 1761 memcpy(cmd.bss.bssid, bss->bssid, ETH_ALEN); 1762 memcpy(cmd.bss.ssid, params->ssid, params->ssid_len); 1763 cmd.bss.type = CMD_BSS_TYPE_IBSS; 1764 cmd.bss.beaconperiod = cpu_to_le16(params->beacon_interval); 1765 cmd.bss.ds.header.id = WLAN_EID_DS_PARAMS; 1766 cmd.bss.ds.header.len = 1; 1767 cmd.bss.ds.channel = params->chandef.chan->hw_value; 1768 cmd.bss.ibss.header.id = WLAN_EID_IBSS_PARAMS; 1769 cmd.bss.ibss.header.len = 2; 1770 cmd.bss.ibss.atimwindow = 0; 1771 cmd.bss.capability = cpu_to_le16(bss->capability & CAPINFO_MASK); 1772 1773 /* set rates to the intersection of our rates and the rates in the 1774 bss */ 1775 rcu_read_lock(); 1776 rates_eid = ieee80211_bss_get_ie(bss, WLAN_EID_SUPP_RATES); 1777 if (!rates_eid) { 1778 lbs_add_rates(cmd.bss.rates); 1779 } else { 1780 int hw, i; 1781 u8 rates_max = rates_eid[1]; 1782 u8 *rates = cmd.bss.rates; 1783 for (hw = 0; hw < ARRAY_SIZE(lbs_rates); hw++) { 1784 u8 hw_rate = lbs_rates[hw].bitrate / 5; 1785 for (i = 0; i < rates_max; i++) { 1786 if (hw_rate == (rates_eid[i+2] & 0x7f)) { 1787 u8 rate = rates_eid[i+2]; 1788 if (rate == 0x02 || rate == 0x04 || 1789 rate == 0x0b || rate == 0x16) 1790 rate |= 0x80; 1791 *rates++ = rate; 1792 } 1793 } 1794 } 1795 } 1796 rcu_read_unlock(); 1797 1798 /* Only v8 and below support setting this */ 1799 if (MRVL_FW_MAJOR_REV(priv->fwrelease) <= 8) { 1800 cmd.failtimeout = cpu_to_le16(MRVDRV_ASSOCIATION_TIME_OUT); 1801 cmd.probedelay = cpu_to_le16(CMD_SCAN_PROBE_DELAY_TIME); 1802 } 1803 ret = lbs_cmd_with_response(priv, CMD_802_11_AD_HOC_JOIN, &cmd); 1804 if (ret) 1805 goto out; 1806 1807 /* 1808 * This is a sample response to CMD_802_11_AD_HOC_JOIN: 1809 * 1810 * response 2c 80 1811 * size 09 00 1812 * sequence xx xx 1813 * result 00 00 1814 * reserved 00 1815 */ 1816 lbs_join_post(priv, params, bss->bssid, bss->capability); 1817 1818 out: 1819 return ret; 1820 } 1821 1822 1823 1824 static int lbs_ibss_start_new(struct lbs_private *priv, 1825 struct cfg80211_ibss_params *params) 1826 { 1827 struct cmd_ds_802_11_ad_hoc_start cmd; 1828 struct cmd_ds_802_11_ad_hoc_result *resp = 1829 (struct cmd_ds_802_11_ad_hoc_result *) &cmd; 1830 u8 preamble = RADIO_PREAMBLE_SHORT; 1831 int ret = 0; 1832 u16 capability; 1833 1834 ret = lbs_set_radio(priv, preamble, 1); 1835 if (ret) 1836 goto out; 1837 1838 /* 1839 * Example CMD_802_11_AD_HOC_START command: 1840 * 1841 * command 2b 00 CMD_802_11_AD_HOC_START 1842 * size b1 00 1843 * sequence xx xx 1844 * result 00 00 1845 * ssid 54 45 53 54 00 00 00 00 1846 * 00 00 00 00 00 00 00 00 1847 * 00 00 00 00 00 00 00 00 1848 * 00 00 00 00 00 00 00 00 1849 * bss type 02 1850 * beacon period 64 00 1851 * dtim period 00 1852 * IE IBSS 06 1853 * IE IBSS len 02 1854 * IE IBSS atim 00 00 1855 * reserved 00 00 00 00 1856 * IE DS 03 1857 * IE DS len 01 1858 * IE DS channel 01 1859 * reserved 00 00 00 00 1860 * probe delay 00 00 1861 * capability 02 00 1862 * rates 82 84 8b 96 (basic rates with have bit 7 set) 1863 * 0c 12 18 24 30 48 60 6c 1864 * padding 100 bytes 1865 */ 1866 memset(&cmd, 0, sizeof(cmd)); 1867 cmd.hdr.size = cpu_to_le16(sizeof(cmd)); 1868 memcpy(cmd.ssid, params->ssid, params->ssid_len); 1869 cmd.bsstype = CMD_BSS_TYPE_IBSS; 1870 cmd.beaconperiod = cpu_to_le16(params->beacon_interval); 1871 cmd.ibss.header.id = WLAN_EID_IBSS_PARAMS; 1872 cmd.ibss.header.len = 2; 1873 cmd.ibss.atimwindow = 0; 1874 cmd.ds.header.id = WLAN_EID_DS_PARAMS; 1875 cmd.ds.header.len = 1; 1876 cmd.ds.channel = params->chandef.chan->hw_value; 1877 /* Only v8 and below support setting probe delay */ 1878 if (MRVL_FW_MAJOR_REV(priv->fwrelease) <= 8) 1879 cmd.probedelay = cpu_to_le16(CMD_SCAN_PROBE_DELAY_TIME); 1880 /* TODO: mix in WLAN_CAPABILITY_PRIVACY */ 1881 capability = WLAN_CAPABILITY_IBSS; 1882 cmd.capability = cpu_to_le16(capability); 1883 lbs_add_rates(cmd.rates); 1884 1885 1886 ret = lbs_cmd_with_response(priv, CMD_802_11_AD_HOC_START, &cmd); 1887 if (ret) 1888 goto out; 1889 1890 /* 1891 * This is a sample response to CMD_802_11_AD_HOC_JOIN: 1892 * 1893 * response 2b 80 1894 * size 14 00 1895 * sequence xx xx 1896 * result 00 00 1897 * reserved 00 1898 * bssid 02 2b 7b 0f 86 0e 1899 */ 1900 lbs_join_post(priv, params, resp->bssid, capability); 1901 1902 out: 1903 return ret; 1904 } 1905 1906 1907 static int lbs_join_ibss(struct wiphy *wiphy, struct net_device *dev, 1908 struct cfg80211_ibss_params *params) 1909 { 1910 struct lbs_private *priv = wiphy_priv(wiphy); 1911 int ret = 0; 1912 struct cfg80211_bss *bss; 1913 1914 if (dev == priv->mesh_dev) 1915 return -EOPNOTSUPP; 1916 1917 if (!params->chandef.chan) { 1918 ret = -ENOTSUPP; 1919 goto out; 1920 } 1921 1922 ret = lbs_set_channel(priv, params->chandef.chan->hw_value); 1923 if (ret) 1924 goto out; 1925 1926 /* Search if someone is beaconing. This assumes that the 1927 * bss list is populated already */ 1928 bss = cfg80211_get_bss(wiphy, params->chandef.chan, params->bssid, 1929 params->ssid, params->ssid_len, 1930 IEEE80211_BSS_TYPE_IBSS, IEEE80211_PRIVACY_ANY); 1931 1932 if (bss) { 1933 ret = lbs_ibss_join_existing(priv, params, bss); 1934 cfg80211_put_bss(wiphy, bss); 1935 } else 1936 ret = lbs_ibss_start_new(priv, params); 1937 1938 1939 out: 1940 return ret; 1941 } 1942 1943 1944 static int lbs_leave_ibss(struct wiphy *wiphy, struct net_device *dev) 1945 { 1946 struct lbs_private *priv = wiphy_priv(wiphy); 1947 struct cmd_ds_802_11_ad_hoc_stop cmd; 1948 int ret = 0; 1949 1950 if (dev == priv->mesh_dev) 1951 return -EOPNOTSUPP; 1952 1953 memset(&cmd, 0, sizeof(cmd)); 1954 cmd.hdr.size = cpu_to_le16(sizeof(cmd)); 1955 ret = lbs_cmd_with_response(priv, CMD_802_11_AD_HOC_STOP, &cmd); 1956 1957 /* TODO: consider doing this at MACREG_INT_CODE_ADHOC_BCN_LOST time */ 1958 lbs_mac_event_disconnected(priv, true); 1959 1960 return ret; 1961 } 1962 1963 1964 1965 static int lbs_set_power_mgmt(struct wiphy *wiphy, struct net_device *dev, 1966 bool enabled, int timeout) 1967 { 1968 struct lbs_private *priv = wiphy_priv(wiphy); 1969 1970 if (!(priv->fwcapinfo & FW_CAPINFO_PS)) { 1971 if (!enabled) 1972 return 0; 1973 else 1974 return -EINVAL; 1975 } 1976 /* firmware does not work well with too long latency with power saving 1977 * enabled, so do not enable it if there is only polling, no 1978 * interrupts (like in some sdio hosts which can only 1979 * poll for sdio irqs) 1980 */ 1981 if (priv->is_polling) { 1982 if (!enabled) 1983 return 0; 1984 else 1985 return -EINVAL; 1986 } 1987 if (!enabled) { 1988 priv->psmode = LBS802_11POWERMODECAM; 1989 if (priv->psstate != PS_STATE_FULL_POWER) 1990 lbs_set_ps_mode(priv, 1991 PS_MODE_ACTION_EXIT_PS, 1992 true); 1993 return 0; 1994 } 1995 if (priv->psmode != LBS802_11POWERMODECAM) 1996 return 0; 1997 priv->psmode = LBS802_11POWERMODEMAX_PSP; 1998 if (priv->connect_status == LBS_CONNECTED) 1999 lbs_set_ps_mode(priv, PS_MODE_ACTION_ENTER_PS, true); 2000 return 0; 2001 } 2002 2003 /* 2004 * Initialization 2005 */ 2006 2007 static const struct cfg80211_ops lbs_cfg80211_ops = { 2008 .set_monitor_channel = lbs_cfg_set_monitor_channel, 2009 .libertas_set_mesh_channel = lbs_cfg_set_mesh_channel, 2010 .scan = lbs_cfg_scan, 2011 .connect = lbs_cfg_connect, 2012 .disconnect = lbs_cfg_disconnect, 2013 .add_key = lbs_cfg_add_key, 2014 .del_key = lbs_cfg_del_key, 2015 .set_default_key = lbs_cfg_set_default_key, 2016 .get_station = lbs_cfg_get_station, 2017 .change_virtual_intf = lbs_change_intf, 2018 .join_ibss = lbs_join_ibss, 2019 .leave_ibss = lbs_leave_ibss, 2020 .set_power_mgmt = lbs_set_power_mgmt, 2021 }; 2022 2023 2024 /* 2025 * At this time lbs_private *priv doesn't even exist, so we just allocate 2026 * memory and don't initialize the wiphy further. This is postponed until we 2027 * can talk to the firmware and happens at registration time in 2028 * lbs_cfg_wiphy_register(). 2029 */ 2030 struct wireless_dev *lbs_cfg_alloc(struct device *dev) 2031 { 2032 int ret = 0; 2033 struct wireless_dev *wdev; 2034 2035 wdev = kzalloc(sizeof(struct wireless_dev), GFP_KERNEL); 2036 if (!wdev) 2037 return ERR_PTR(-ENOMEM); 2038 2039 wdev->wiphy = wiphy_new(&lbs_cfg80211_ops, sizeof(struct lbs_private)); 2040 if (!wdev->wiphy) { 2041 dev_err(dev, "cannot allocate wiphy\n"); 2042 ret = -ENOMEM; 2043 goto err_wiphy_new; 2044 } 2045 2046 return wdev; 2047 2048 err_wiphy_new: 2049 kfree(wdev); 2050 return ERR_PTR(ret); 2051 } 2052 2053 2054 static void lbs_cfg_set_regulatory_hint(struct lbs_private *priv) 2055 { 2056 struct region_code_mapping { 2057 const char *cn; 2058 int code; 2059 }; 2060 2061 /* Section 5.17.2 */ 2062 static const struct region_code_mapping regmap[] = { 2063 {"US ", 0x10}, /* US FCC */ 2064 {"CA ", 0x20}, /* Canada */ 2065 {"EU ", 0x30}, /* ETSI */ 2066 {"ES ", 0x31}, /* Spain */ 2067 {"FR ", 0x32}, /* France */ 2068 {"JP ", 0x40}, /* Japan */ 2069 }; 2070 size_t i; 2071 2072 for (i = 0; i < ARRAY_SIZE(regmap); i++) 2073 if (regmap[i].code == priv->regioncode) { 2074 regulatory_hint(priv->wdev->wiphy, regmap[i].cn); 2075 break; 2076 } 2077 } 2078 2079 static void lbs_reg_notifier(struct wiphy *wiphy, 2080 struct regulatory_request *request) 2081 { 2082 struct lbs_private *priv = wiphy_priv(wiphy); 2083 2084 memcpy(priv->country_code, request->alpha2, sizeof(request->alpha2)); 2085 if (lbs_iface_active(priv)) 2086 lbs_set_11d_domain_info(priv); 2087 } 2088 2089 /* 2090 * This function get's called after lbs_setup_firmware() determined the 2091 * firmware capabities. So we can setup the wiphy according to our 2092 * hardware/firmware. 2093 */ 2094 int lbs_cfg_register(struct lbs_private *priv) 2095 { 2096 struct wireless_dev *wdev = priv->wdev; 2097 int ret; 2098 2099 wdev->wiphy->max_scan_ssids = 1; 2100 wdev->wiphy->signal_type = CFG80211_SIGNAL_TYPE_MBM; 2101 2102 wdev->wiphy->interface_modes = 2103 BIT(NL80211_IFTYPE_STATION) | 2104 BIT(NL80211_IFTYPE_ADHOC); 2105 if (lbs_rtap_supported(priv)) 2106 wdev->wiphy->interface_modes |= BIT(NL80211_IFTYPE_MONITOR); 2107 if (lbs_mesh_activated(priv)) 2108 wdev->wiphy->interface_modes |= BIT(NL80211_IFTYPE_MESH_POINT); 2109 2110 wdev->wiphy->bands[NL80211_BAND_2GHZ] = &lbs_band_2ghz; 2111 2112 /* 2113 * We could check priv->fwcapinfo && FW_CAPINFO_WPA, but I have 2114 * never seen a firmware without WPA 2115 */ 2116 wdev->wiphy->cipher_suites = cipher_suites; 2117 wdev->wiphy->n_cipher_suites = ARRAY_SIZE(cipher_suites); 2118 wdev->wiphy->reg_notifier = lbs_reg_notifier; 2119 2120 ret = wiphy_register(wdev->wiphy); 2121 if (ret < 0) 2122 pr_err("cannot register wiphy device\n"); 2123 2124 priv->wiphy_registered = true; 2125 2126 ret = register_netdev(priv->dev); 2127 if (ret) 2128 pr_err("cannot register network device\n"); 2129 2130 INIT_DELAYED_WORK(&priv->scan_work, lbs_scan_worker); 2131 2132 lbs_cfg_set_regulatory_hint(priv); 2133 2134 return ret; 2135 } 2136 2137 void lbs_scan_deinit(struct lbs_private *priv) 2138 { 2139 cancel_delayed_work_sync(&priv->scan_work); 2140 } 2141 2142 2143 void lbs_cfg_free(struct lbs_private *priv) 2144 { 2145 struct wireless_dev *wdev = priv->wdev; 2146 2147 if (!wdev) 2148 return; 2149 2150 if (priv->wiphy_registered) 2151 wiphy_unregister(wdev->wiphy); 2152 2153 if (wdev->wiphy) 2154 wiphy_free(wdev->wiphy); 2155 2156 kfree(wdev); 2157 } 2158