1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Implement cfg80211 ("iw") support. 4 * 5 * Copyright (C) 2009 M&N Solutions GmbH, 61191 Rosbach, Germany 6 * Holger Schurig <hs4233@mail.mn-solutions.de> 7 * 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/hardirq.h> 13 #include <linux/sched.h> 14 #include <linux/wait.h> 15 #include <linux/slab.h> 16 #include <linux/ieee80211.h> 17 #include <net/cfg80211.h> 18 #include <asm/unaligned.h> 19 20 #include "decl.h" 21 #include "cfg.h" 22 #include "cmd.h" 23 #include "mesh.h" 24 25 26 #define CHAN2G(_channel, _freq, _flags) { \ 27 .band = NL80211_BAND_2GHZ, \ 28 .center_freq = (_freq), \ 29 .hw_value = (_channel), \ 30 .flags = (_flags), \ 31 .max_antenna_gain = 0, \ 32 .max_power = 30, \ 33 } 34 35 static struct ieee80211_channel lbs_2ghz_channels[] = { 36 CHAN2G(1, 2412, 0), 37 CHAN2G(2, 2417, 0), 38 CHAN2G(3, 2422, 0), 39 CHAN2G(4, 2427, 0), 40 CHAN2G(5, 2432, 0), 41 CHAN2G(6, 2437, 0), 42 CHAN2G(7, 2442, 0), 43 CHAN2G(8, 2447, 0), 44 CHAN2G(9, 2452, 0), 45 CHAN2G(10, 2457, 0), 46 CHAN2G(11, 2462, 0), 47 CHAN2G(12, 2467, 0), 48 CHAN2G(13, 2472, 0), 49 CHAN2G(14, 2484, 0), 50 }; 51 52 #define RATETAB_ENT(_rate, _hw_value, _flags) { \ 53 .bitrate = (_rate), \ 54 .hw_value = (_hw_value), \ 55 .flags = (_flags), \ 56 } 57 58 59 /* Table 6 in section 3.2.1.1 */ 60 static struct ieee80211_rate lbs_rates[] = { 61 RATETAB_ENT(10, 0, 0), 62 RATETAB_ENT(20, 1, 0), 63 RATETAB_ENT(55, 2, 0), 64 RATETAB_ENT(110, 3, 0), 65 RATETAB_ENT(60, 9, 0), 66 RATETAB_ENT(90, 6, 0), 67 RATETAB_ENT(120, 7, 0), 68 RATETAB_ENT(180, 8, 0), 69 RATETAB_ENT(240, 9, 0), 70 RATETAB_ENT(360, 10, 0), 71 RATETAB_ENT(480, 11, 0), 72 RATETAB_ENT(540, 12, 0), 73 }; 74 75 static struct ieee80211_supported_band lbs_band_2ghz = { 76 .channels = lbs_2ghz_channels, 77 .n_channels = ARRAY_SIZE(lbs_2ghz_channels), 78 .bitrates = lbs_rates, 79 .n_bitrates = ARRAY_SIZE(lbs_rates), 80 }; 81 82 83 static const u32 cipher_suites[] = { 84 WLAN_CIPHER_SUITE_WEP40, 85 WLAN_CIPHER_SUITE_WEP104, 86 WLAN_CIPHER_SUITE_TKIP, 87 WLAN_CIPHER_SUITE_CCMP, 88 }; 89 90 /* Time to stay on the channel */ 91 #define LBS_DWELL_PASSIVE 100 92 #define LBS_DWELL_ACTIVE 40 93 94 95 /*************************************************************************** 96 * Misc utility functions 97 * 98 * TLVs are Marvell specific. They are very similar to IEs, they have the 99 * same structure: type, length, data*. The only difference: for IEs, the 100 * type and length are u8, but for TLVs they're __le16. 101 */ 102 103 /* 104 * Convert NL80211's auth_type to the one from Libertas, see chapter 5.9.1 105 * in the firmware spec 106 */ 107 static int lbs_auth_to_authtype(enum nl80211_auth_type auth_type) 108 { 109 int ret = -ENOTSUPP; 110 111 switch (auth_type) { 112 case NL80211_AUTHTYPE_OPEN_SYSTEM: 113 case NL80211_AUTHTYPE_SHARED_KEY: 114 ret = auth_type; 115 break; 116 case NL80211_AUTHTYPE_AUTOMATIC: 117 ret = NL80211_AUTHTYPE_OPEN_SYSTEM; 118 break; 119 case NL80211_AUTHTYPE_NETWORK_EAP: 120 ret = 0x80; 121 break; 122 default: 123 /* silence compiler */ 124 break; 125 } 126 return ret; 127 } 128 129 130 /* 131 * Various firmware commands need the list of supported rates, but with 132 * the hight-bit set for basic rates 133 */ 134 static int lbs_add_rates(u8 *rates) 135 { 136 size_t i; 137 138 for (i = 0; i < ARRAY_SIZE(lbs_rates); i++) { 139 u8 rate = lbs_rates[i].bitrate / 5; 140 if (rate == 0x02 || rate == 0x04 || 141 rate == 0x0b || rate == 0x16) 142 rate |= 0x80; 143 rates[i] = rate; 144 } 145 return ARRAY_SIZE(lbs_rates); 146 } 147 148 149 /*************************************************************************** 150 * TLV utility functions 151 * 152 * TLVs are Marvell specific. They are very similar to IEs, they have the 153 * same structure: type, length, data*. The only difference: for IEs, the 154 * type and length are u8, but for TLVs they're __le16. 155 */ 156 157 158 /* 159 * Add ssid TLV 160 */ 161 #define LBS_MAX_SSID_TLV_SIZE \ 162 (sizeof(struct mrvl_ie_header) \ 163 + IEEE80211_MAX_SSID_LEN) 164 165 static int lbs_add_ssid_tlv(u8 *tlv, const u8 *ssid, int ssid_len) 166 { 167 struct mrvl_ie_ssid_param_set *ssid_tlv = (void *)tlv; 168 169 /* 170 * TLV-ID SSID 00 00 171 * length 06 00 172 * ssid 4d 4e 54 45 53 54 173 */ 174 ssid_tlv->header.type = cpu_to_le16(TLV_TYPE_SSID); 175 ssid_tlv->header.len = cpu_to_le16(ssid_len); 176 memcpy(ssid_tlv->ssid, ssid, ssid_len); 177 return sizeof(ssid_tlv->header) + ssid_len; 178 } 179 180 181 /* 182 * Add channel list TLV (section 8.4.2) 183 * 184 * Actual channel data comes from priv->wdev->wiphy->channels. 185 */ 186 #define LBS_MAX_CHANNEL_LIST_TLV_SIZE \ 187 (sizeof(struct mrvl_ie_header) \ 188 + (LBS_SCAN_BEFORE_NAP * sizeof(struct chanscanparamset))) 189 190 static int lbs_add_channel_list_tlv(struct lbs_private *priv, u8 *tlv, 191 int last_channel, int active_scan) 192 { 193 int chanscanparamsize = sizeof(struct chanscanparamset) * 194 (last_channel - priv->scan_channel); 195 196 struct mrvl_ie_header *header = (void *) tlv; 197 198 /* 199 * TLV-ID CHANLIST 01 01 200 * length 0e 00 201 * channel 00 01 00 00 00 64 00 202 * radio type 00 203 * channel 01 204 * scan type 00 205 * min scan time 00 00 206 * max scan time 64 00 207 * channel 2 00 02 00 00 00 64 00 208 * 209 */ 210 211 header->type = cpu_to_le16(TLV_TYPE_CHANLIST); 212 header->len = cpu_to_le16(chanscanparamsize); 213 tlv += sizeof(struct mrvl_ie_header); 214 215 /* lbs_deb_scan("scan: channels %d to %d\n", priv->scan_channel, 216 last_channel); */ 217 memset(tlv, 0, chanscanparamsize); 218 219 while (priv->scan_channel < last_channel) { 220 struct chanscanparamset *param = (void *) tlv; 221 222 param->radiotype = CMD_SCAN_RADIO_TYPE_BG; 223 param->channumber = 224 priv->scan_req->channels[priv->scan_channel]->hw_value; 225 if (active_scan) { 226 param->maxscantime = cpu_to_le16(LBS_DWELL_ACTIVE); 227 } else { 228 param->chanscanmode.passivescan = 1; 229 param->maxscantime = cpu_to_le16(LBS_DWELL_PASSIVE); 230 } 231 tlv += sizeof(struct chanscanparamset); 232 priv->scan_channel++; 233 } 234 return sizeof(struct mrvl_ie_header) + chanscanparamsize; 235 } 236 237 238 /* 239 * Add rates TLV 240 * 241 * The rates are in lbs_bg_rates[], but for the 802.11b 242 * rates the high bit is set. We add this TLV only because 243 * there's a firmware which otherwise doesn't report all 244 * APs in range. 245 */ 246 #define LBS_MAX_RATES_TLV_SIZE \ 247 (sizeof(struct mrvl_ie_header) \ 248 + (ARRAY_SIZE(lbs_rates))) 249 250 /* Adds a TLV with all rates the hardware supports */ 251 static int lbs_add_supported_rates_tlv(u8 *tlv) 252 { 253 size_t i; 254 struct mrvl_ie_rates_param_set *rate_tlv = (void *)tlv; 255 256 /* 257 * TLV-ID RATES 01 00 258 * length 0e 00 259 * rates 82 84 8b 96 0c 12 18 24 30 48 60 6c 260 */ 261 rate_tlv->header.type = cpu_to_le16(TLV_TYPE_RATES); 262 tlv += sizeof(rate_tlv->header); 263 i = lbs_add_rates(tlv); 264 tlv += i; 265 rate_tlv->header.len = cpu_to_le16(i); 266 return sizeof(rate_tlv->header) + i; 267 } 268 269 /* Add common rates from a TLV and return the new end of the TLV */ 270 static u8 * 271 add_ie_rates(u8 *tlv, const u8 *ie, int *nrates) 272 { 273 int hw, ap, ap_max = ie[1]; 274 u8 hw_rate; 275 276 if (ap_max > MAX_RATES) { 277 lbs_deb_assoc("invalid rates\n"); 278 return tlv; 279 } 280 /* Advance past IE header */ 281 ie += 2; 282 283 lbs_deb_hex(LBS_DEB_ASSOC, "AP IE Rates", (u8 *) ie, ap_max); 284 285 for (hw = 0; hw < ARRAY_SIZE(lbs_rates); hw++) { 286 hw_rate = lbs_rates[hw].bitrate / 5; 287 for (ap = 0; ap < ap_max; ap++) { 288 if (hw_rate == (ie[ap] & 0x7f)) { 289 *tlv++ = ie[ap]; 290 *nrates = *nrates + 1; 291 } 292 } 293 } 294 return tlv; 295 } 296 297 /* 298 * Adds a TLV with all rates the hardware *and* BSS supports. 299 */ 300 static int lbs_add_common_rates_tlv(u8 *tlv, struct cfg80211_bss *bss) 301 { 302 struct mrvl_ie_rates_param_set *rate_tlv = (void *)tlv; 303 const u8 *rates_eid, *ext_rates_eid; 304 int n = 0; 305 306 rcu_read_lock(); 307 rates_eid = ieee80211_bss_get_ie(bss, WLAN_EID_SUPP_RATES); 308 ext_rates_eid = ieee80211_bss_get_ie(bss, WLAN_EID_EXT_SUPP_RATES); 309 310 /* 311 * 01 00 TLV_TYPE_RATES 312 * 04 00 len 313 * 82 84 8b 96 rates 314 */ 315 rate_tlv->header.type = cpu_to_le16(TLV_TYPE_RATES); 316 tlv += sizeof(rate_tlv->header); 317 318 /* Add basic rates */ 319 if (rates_eid) { 320 tlv = add_ie_rates(tlv, rates_eid, &n); 321 322 /* Add extended rates, if any */ 323 if (ext_rates_eid) 324 tlv = add_ie_rates(tlv, ext_rates_eid, &n); 325 } else { 326 lbs_deb_assoc("assoc: bss had no basic rate IE\n"); 327 /* Fallback: add basic 802.11b rates */ 328 *tlv++ = 0x82; 329 *tlv++ = 0x84; 330 *tlv++ = 0x8b; 331 *tlv++ = 0x96; 332 n = 4; 333 } 334 rcu_read_unlock(); 335 336 rate_tlv->header.len = cpu_to_le16(n); 337 return sizeof(rate_tlv->header) + n; 338 } 339 340 341 /* 342 * Add auth type TLV. 343 * 344 * This is only needed for newer firmware (V9 and up). 345 */ 346 #define LBS_MAX_AUTH_TYPE_TLV_SIZE \ 347 sizeof(struct mrvl_ie_auth_type) 348 349 static int lbs_add_auth_type_tlv(u8 *tlv, enum nl80211_auth_type auth_type) 350 { 351 struct mrvl_ie_auth_type *auth = (void *) tlv; 352 353 /* 354 * 1f 01 TLV_TYPE_AUTH_TYPE 355 * 01 00 len 356 * 01 auth type 357 */ 358 auth->header.type = cpu_to_le16(TLV_TYPE_AUTH_TYPE); 359 auth->header.len = cpu_to_le16(sizeof(*auth)-sizeof(auth->header)); 360 auth->auth = cpu_to_le16(lbs_auth_to_authtype(auth_type)); 361 return sizeof(*auth); 362 } 363 364 365 /* 366 * Add channel (phy ds) TLV 367 */ 368 #define LBS_MAX_CHANNEL_TLV_SIZE \ 369 sizeof(struct mrvl_ie_header) 370 371 static int lbs_add_channel_tlv(u8 *tlv, u8 channel) 372 { 373 struct mrvl_ie_ds_param_set *ds = (void *) tlv; 374 375 /* 376 * 03 00 TLV_TYPE_PHY_DS 377 * 01 00 len 378 * 06 channel 379 */ 380 ds->header.type = cpu_to_le16(TLV_TYPE_PHY_DS); 381 ds->header.len = cpu_to_le16(sizeof(*ds)-sizeof(ds->header)); 382 ds->channel = channel; 383 return sizeof(*ds); 384 } 385 386 387 /* 388 * Add (empty) CF param TLV of the form: 389 */ 390 #define LBS_MAX_CF_PARAM_TLV_SIZE \ 391 sizeof(struct mrvl_ie_header) 392 393 static int lbs_add_cf_param_tlv(u8 *tlv) 394 { 395 struct mrvl_ie_cf_param_set *cf = (void *)tlv; 396 397 /* 398 * 04 00 TLV_TYPE_CF 399 * 06 00 len 400 * 00 cfpcnt 401 * 00 cfpperiod 402 * 00 00 cfpmaxduration 403 * 00 00 cfpdurationremaining 404 */ 405 cf->header.type = cpu_to_le16(TLV_TYPE_CF); 406 cf->header.len = cpu_to_le16(sizeof(*cf)-sizeof(cf->header)); 407 return sizeof(*cf); 408 } 409 410 /* 411 * Add WPA TLV 412 */ 413 #define LBS_MAX_WPA_TLV_SIZE \ 414 (sizeof(struct mrvl_ie_header) \ 415 + 128 /* TODO: I guessed the size */) 416 417 static int lbs_add_wpa_tlv(u8 *tlv, const u8 *ie, u8 ie_len) 418 { 419 size_t tlv_len; 420 421 /* 422 * We need just convert an IE to an TLV. IEs use u8 for the header, 423 * u8 type 424 * u8 len 425 * u8[] data 426 * but TLVs use __le16 instead: 427 * __le16 type 428 * __le16 len 429 * u8[] data 430 */ 431 *tlv++ = *ie++; 432 *tlv++ = 0; 433 tlv_len = *tlv++ = *ie++; 434 *tlv++ = 0; 435 while (tlv_len--) 436 *tlv++ = *ie++; 437 /* the TLV is two bytes larger than the IE */ 438 return ie_len + 2; 439 } 440 441 /* 442 * Set Channel 443 */ 444 445 static int lbs_cfg_set_monitor_channel(struct wiphy *wiphy, 446 struct cfg80211_chan_def *chandef) 447 { 448 struct lbs_private *priv = wiphy_priv(wiphy); 449 int ret = -ENOTSUPP; 450 451 if (cfg80211_get_chandef_type(chandef) != NL80211_CHAN_NO_HT) 452 goto out; 453 454 ret = lbs_set_channel(priv, chandef->chan->hw_value); 455 456 out: 457 return ret; 458 } 459 460 static int lbs_cfg_set_mesh_channel(struct wiphy *wiphy, 461 struct net_device *netdev, 462 struct ieee80211_channel *channel) 463 { 464 struct lbs_private *priv = wiphy_priv(wiphy); 465 int ret = -ENOTSUPP; 466 467 if (netdev != priv->mesh_dev) 468 goto out; 469 470 ret = lbs_mesh_set_channel(priv, channel->hw_value); 471 472 out: 473 return ret; 474 } 475 476 477 478 /* 479 * Scanning 480 */ 481 482 /* 483 * When scanning, the firmware doesn't send a nul packet with the power-safe 484 * bit to the AP. So we cannot stay away from our current channel too long, 485 * otherwise we loose data. So take a "nap" while scanning every other 486 * while. 487 */ 488 #define LBS_SCAN_BEFORE_NAP 4 489 490 491 /* 492 * When the firmware reports back a scan-result, it gives us an "u8 rssi", 493 * which isn't really an RSSI, as it becomes larger when moving away from 494 * the AP. Anyway, we need to convert that into mBm. 495 */ 496 #define LBS_SCAN_RSSI_TO_MBM(rssi) \ 497 ((-(int)rssi + 3)*100) 498 499 static int lbs_ret_scan(struct lbs_private *priv, unsigned long dummy, 500 struct cmd_header *resp) 501 { 502 struct cfg80211_bss *bss; 503 struct cmd_ds_802_11_scan_rsp *scanresp = (void *)resp; 504 int bsssize; 505 const u8 *pos; 506 const u8 *tsfdesc; 507 int tsfsize; 508 int i; 509 int ret = -EILSEQ; 510 511 bsssize = get_unaligned_le16(&scanresp->bssdescriptsize); 512 513 lbs_deb_scan("scan response: %d BSSs (%d bytes); resp size %d bytes\n", 514 scanresp->nr_sets, bsssize, le16_to_cpu(resp->size)); 515 516 if (scanresp->nr_sets == 0) { 517 ret = 0; 518 goto done; 519 } 520 521 /* 522 * The general layout of the scan response is described in chapter 523 * 5.7.1. Basically we have a common part, then any number of BSS 524 * descriptor sections. Finally we have section with the same number 525 * of TSFs. 526 * 527 * cmd_ds_802_11_scan_rsp 528 * cmd_header 529 * pos_size 530 * nr_sets 531 * bssdesc 1 532 * bssid 533 * rssi 534 * timestamp 535 * intvl 536 * capa 537 * IEs 538 * bssdesc 2 539 * bssdesc n 540 * MrvlIEtypes_TsfFimestamp_t 541 * TSF for BSS 1 542 * TSF for BSS 2 543 * TSF for BSS n 544 */ 545 546 pos = scanresp->bssdesc_and_tlvbuffer; 547 548 lbs_deb_hex(LBS_DEB_SCAN, "SCAN_RSP", scanresp->bssdesc_and_tlvbuffer, 549 bsssize); 550 551 tsfdesc = pos + bsssize; 552 tsfsize = 4 + 8 * scanresp->nr_sets; 553 lbs_deb_hex(LBS_DEB_SCAN, "SCAN_TSF", (u8 *) tsfdesc, tsfsize); 554 555 /* Validity check: we expect a Marvell-Local TLV */ 556 i = get_unaligned_le16(tsfdesc); 557 tsfdesc += 2; 558 if (i != TLV_TYPE_TSFTIMESTAMP) { 559 lbs_deb_scan("scan response: invalid TSF Timestamp %d\n", i); 560 goto done; 561 } 562 563 /* 564 * Validity check: the TLV holds TSF values with 8 bytes each, so 565 * the size in the TLV must match the nr_sets value 566 */ 567 i = get_unaligned_le16(tsfdesc); 568 tsfdesc += 2; 569 if (i / 8 != scanresp->nr_sets) { 570 lbs_deb_scan("scan response: invalid number of TSF timestamp " 571 "sets (expected %d got %d)\n", scanresp->nr_sets, 572 i / 8); 573 goto done; 574 } 575 576 for (i = 0; i < scanresp->nr_sets; i++) { 577 const u8 *bssid; 578 const u8 *ie; 579 int left; 580 int ielen; 581 int rssi; 582 u16 intvl; 583 u16 capa; 584 int chan_no = -1; 585 const u8 *ssid = NULL; 586 u8 ssid_len = 0; 587 588 int len = get_unaligned_le16(pos); 589 pos += 2; 590 591 /* BSSID */ 592 bssid = pos; 593 pos += ETH_ALEN; 594 /* RSSI */ 595 rssi = *pos++; 596 /* Packet time stamp */ 597 pos += 8; 598 /* Beacon interval */ 599 intvl = get_unaligned_le16(pos); 600 pos += 2; 601 /* Capabilities */ 602 capa = get_unaligned_le16(pos); 603 pos += 2; 604 605 /* To find out the channel, we must parse the IEs */ 606 ie = pos; 607 /* 608 * 6+1+8+2+2: size of BSSID, RSSI, time stamp, beacon 609 * interval, capabilities 610 */ 611 ielen = left = len - (6 + 1 + 8 + 2 + 2); 612 while (left >= 2) { 613 u8 id, elen; 614 id = *pos++; 615 elen = *pos++; 616 left -= 2; 617 if (elen > left) { 618 lbs_deb_scan("scan response: invalid IE fmt\n"); 619 goto done; 620 } 621 622 if (id == WLAN_EID_DS_PARAMS) 623 chan_no = *pos; 624 if (id == WLAN_EID_SSID) { 625 ssid = pos; 626 ssid_len = elen; 627 } 628 left -= elen; 629 pos += elen; 630 } 631 632 /* No channel, no luck */ 633 if (chan_no != -1) { 634 struct wiphy *wiphy = priv->wdev->wiphy; 635 int freq = ieee80211_channel_to_frequency(chan_no, 636 NL80211_BAND_2GHZ); 637 struct ieee80211_channel *channel = 638 ieee80211_get_channel(wiphy, freq); 639 640 lbs_deb_scan("scan: %pM, capa %04x, chan %2d, %*pE, %d dBm\n", 641 bssid, capa, chan_no, ssid_len, ssid, 642 LBS_SCAN_RSSI_TO_MBM(rssi)/100); 643 644 if (channel && 645 !(channel->flags & IEEE80211_CHAN_DISABLED)) { 646 bss = cfg80211_inform_bss(wiphy, channel, 647 CFG80211_BSS_FTYPE_UNKNOWN, 648 bssid, get_unaligned_le64(tsfdesc), 649 capa, intvl, ie, ielen, 650 LBS_SCAN_RSSI_TO_MBM(rssi), 651 GFP_KERNEL); 652 cfg80211_put_bss(wiphy, bss); 653 } 654 } else 655 lbs_deb_scan("scan response: missing BSS channel IE\n"); 656 657 tsfdesc += 8; 658 } 659 ret = 0; 660 661 done: 662 return ret; 663 } 664 665 666 /* 667 * Our scan command contains a TLV, consting of a SSID TLV, a channel list 668 * TLV and a rates TLV. Determine the maximum size of them: 669 */ 670 #define LBS_SCAN_MAX_CMD_SIZE \ 671 (sizeof(struct cmd_ds_802_11_scan) \ 672 + LBS_MAX_SSID_TLV_SIZE \ 673 + LBS_MAX_CHANNEL_LIST_TLV_SIZE \ 674 + LBS_MAX_RATES_TLV_SIZE) 675 676 /* 677 * Assumes priv->scan_req is initialized and valid 678 * Assumes priv->scan_channel is initialized 679 */ 680 static void lbs_scan_worker(struct work_struct *work) 681 { 682 struct lbs_private *priv = 683 container_of(work, struct lbs_private, scan_work.work); 684 struct cmd_ds_802_11_scan *scan_cmd; 685 u8 *tlv; /* pointer into our current, growing TLV storage area */ 686 int last_channel; 687 int running, carrier; 688 689 scan_cmd = kzalloc(LBS_SCAN_MAX_CMD_SIZE, GFP_KERNEL); 690 if (scan_cmd == NULL) 691 return; 692 693 /* prepare fixed part of scan command */ 694 scan_cmd->bsstype = CMD_BSS_TYPE_ANY; 695 696 /* stop network while we're away from our main channel */ 697 running = !netif_queue_stopped(priv->dev); 698 carrier = netif_carrier_ok(priv->dev); 699 if (running) 700 netif_stop_queue(priv->dev); 701 if (carrier) 702 netif_carrier_off(priv->dev); 703 704 /* prepare fixed part of scan command */ 705 tlv = scan_cmd->tlvbuffer; 706 707 /* add SSID TLV */ 708 if (priv->scan_req->n_ssids && priv->scan_req->ssids[0].ssid_len > 0) 709 tlv += lbs_add_ssid_tlv(tlv, 710 priv->scan_req->ssids[0].ssid, 711 priv->scan_req->ssids[0].ssid_len); 712 713 /* add channel TLVs */ 714 last_channel = priv->scan_channel + LBS_SCAN_BEFORE_NAP; 715 if (last_channel > priv->scan_req->n_channels) 716 last_channel = priv->scan_req->n_channels; 717 tlv += lbs_add_channel_list_tlv(priv, tlv, last_channel, 718 priv->scan_req->n_ssids); 719 720 /* add rates TLV */ 721 tlv += lbs_add_supported_rates_tlv(tlv); 722 723 if (priv->scan_channel < priv->scan_req->n_channels) { 724 cancel_delayed_work(&priv->scan_work); 725 if (netif_running(priv->dev)) 726 queue_delayed_work(priv->work_thread, &priv->scan_work, 727 msecs_to_jiffies(300)); 728 } 729 730 /* This is the final data we are about to send */ 731 scan_cmd->hdr.size = cpu_to_le16(tlv - (u8 *)scan_cmd); 732 lbs_deb_hex(LBS_DEB_SCAN, "SCAN_CMD", (void *)scan_cmd, 733 sizeof(*scan_cmd)); 734 lbs_deb_hex(LBS_DEB_SCAN, "SCAN_TLV", scan_cmd->tlvbuffer, 735 tlv - scan_cmd->tlvbuffer); 736 737 __lbs_cmd(priv, CMD_802_11_SCAN, &scan_cmd->hdr, 738 le16_to_cpu(scan_cmd->hdr.size), 739 lbs_ret_scan, 0); 740 741 if (priv->scan_channel >= priv->scan_req->n_channels) { 742 /* Mark scan done */ 743 cancel_delayed_work(&priv->scan_work); 744 lbs_scan_done(priv); 745 } 746 747 /* Restart network */ 748 if (carrier) 749 netif_carrier_on(priv->dev); 750 if (running && !priv->tx_pending_len) 751 netif_wake_queue(priv->dev); 752 753 kfree(scan_cmd); 754 755 /* Wake up anything waiting on scan completion */ 756 if (priv->scan_req == NULL) { 757 lbs_deb_scan("scan: waking up waiters\n"); 758 wake_up_all(&priv->scan_q); 759 } 760 } 761 762 static void _internal_start_scan(struct lbs_private *priv, bool internal, 763 struct cfg80211_scan_request *request) 764 { 765 lbs_deb_scan("scan: ssids %d, channels %d, ie_len %zd\n", 766 request->n_ssids, request->n_channels, request->ie_len); 767 768 priv->scan_channel = 0; 769 priv->scan_req = request; 770 priv->internal_scan = internal; 771 772 queue_delayed_work(priv->work_thread, &priv->scan_work, 773 msecs_to_jiffies(50)); 774 } 775 776 /* 777 * Clean up priv->scan_req. Should be used to handle the allocation details. 778 */ 779 void lbs_scan_done(struct lbs_private *priv) 780 { 781 WARN_ON(!priv->scan_req); 782 783 if (priv->internal_scan) { 784 kfree(priv->scan_req); 785 } else { 786 struct cfg80211_scan_info info = { 787 .aborted = false, 788 }; 789 790 cfg80211_scan_done(priv->scan_req, &info); 791 } 792 793 priv->scan_req = NULL; 794 } 795 796 static int lbs_cfg_scan(struct wiphy *wiphy, 797 struct cfg80211_scan_request *request) 798 { 799 struct lbs_private *priv = wiphy_priv(wiphy); 800 int ret = 0; 801 802 if (priv->scan_req || delayed_work_pending(&priv->scan_work)) { 803 /* old scan request not yet processed */ 804 ret = -EAGAIN; 805 goto out; 806 } 807 808 _internal_start_scan(priv, false, request); 809 810 if (priv->surpriseremoved) 811 ret = -EIO; 812 813 out: 814 return ret; 815 } 816 817 818 819 820 /* 821 * Events 822 */ 823 824 void lbs_send_disconnect_notification(struct lbs_private *priv, 825 bool locally_generated) 826 { 827 cfg80211_disconnected(priv->dev, 0, NULL, 0, locally_generated, 828 GFP_KERNEL); 829 } 830 831 void lbs_send_mic_failureevent(struct lbs_private *priv, u32 event) 832 { 833 cfg80211_michael_mic_failure(priv->dev, 834 priv->assoc_bss, 835 event == MACREG_INT_CODE_MIC_ERR_MULTICAST ? 836 NL80211_KEYTYPE_GROUP : 837 NL80211_KEYTYPE_PAIRWISE, 838 -1, 839 NULL, 840 GFP_KERNEL); 841 } 842 843 844 845 846 /* 847 * Connect/disconnect 848 */ 849 850 851 /* 852 * This removes all WEP keys 853 */ 854 static int lbs_remove_wep_keys(struct lbs_private *priv) 855 { 856 struct cmd_ds_802_11_set_wep cmd; 857 int ret; 858 859 memset(&cmd, 0, sizeof(cmd)); 860 cmd.hdr.size = cpu_to_le16(sizeof(cmd)); 861 cmd.keyindex = cpu_to_le16(priv->wep_tx_key); 862 cmd.action = cpu_to_le16(CMD_ACT_REMOVE); 863 864 ret = lbs_cmd_with_response(priv, CMD_802_11_SET_WEP, &cmd); 865 866 return ret; 867 } 868 869 /* 870 * Set WEP keys 871 */ 872 static int lbs_set_wep_keys(struct lbs_private *priv) 873 { 874 struct cmd_ds_802_11_set_wep cmd; 875 int i; 876 int ret; 877 878 /* 879 * command 13 00 880 * size 50 00 881 * sequence xx xx 882 * result 00 00 883 * action 02 00 ACT_ADD 884 * transmit key 00 00 885 * type for key 1 01 WEP40 886 * type for key 2 00 887 * type for key 3 00 888 * type for key 4 00 889 * key 1 39 39 39 39 39 00 00 00 890 * 00 00 00 00 00 00 00 00 891 * key 2 00 00 00 00 00 00 00 00 892 * 00 00 00 00 00 00 00 00 893 * key 3 00 00 00 00 00 00 00 00 894 * 00 00 00 00 00 00 00 00 895 * key 4 00 00 00 00 00 00 00 00 896 */ 897 if (priv->wep_key_len[0] || priv->wep_key_len[1] || 898 priv->wep_key_len[2] || priv->wep_key_len[3]) { 899 /* Only set wep keys if we have at least one of them */ 900 memset(&cmd, 0, sizeof(cmd)); 901 cmd.hdr.size = cpu_to_le16(sizeof(cmd)); 902 cmd.keyindex = cpu_to_le16(priv->wep_tx_key); 903 cmd.action = cpu_to_le16(CMD_ACT_ADD); 904 905 for (i = 0; i < 4; i++) { 906 switch (priv->wep_key_len[i]) { 907 case WLAN_KEY_LEN_WEP40: 908 cmd.keytype[i] = CMD_TYPE_WEP_40_BIT; 909 break; 910 case WLAN_KEY_LEN_WEP104: 911 cmd.keytype[i] = CMD_TYPE_WEP_104_BIT; 912 break; 913 default: 914 cmd.keytype[i] = 0; 915 break; 916 } 917 memcpy(cmd.keymaterial[i], priv->wep_key[i], 918 priv->wep_key_len[i]); 919 } 920 921 ret = lbs_cmd_with_response(priv, CMD_802_11_SET_WEP, &cmd); 922 } else { 923 /* Otherwise remove all wep keys */ 924 ret = lbs_remove_wep_keys(priv); 925 } 926 927 return ret; 928 } 929 930 931 /* 932 * Enable/Disable RSN status 933 */ 934 static int lbs_enable_rsn(struct lbs_private *priv, int enable) 935 { 936 struct cmd_ds_802_11_enable_rsn cmd; 937 int ret; 938 939 /* 940 * cmd 2f 00 941 * size 0c 00 942 * sequence xx xx 943 * result 00 00 944 * action 01 00 ACT_SET 945 * enable 01 00 946 */ 947 memset(&cmd, 0, sizeof(cmd)); 948 cmd.hdr.size = cpu_to_le16(sizeof(cmd)); 949 cmd.action = cpu_to_le16(CMD_ACT_SET); 950 cmd.enable = cpu_to_le16(enable); 951 952 ret = lbs_cmd_with_response(priv, CMD_802_11_ENABLE_RSN, &cmd); 953 954 return ret; 955 } 956 957 958 /* 959 * Set WPA/WPA key material 960 */ 961 962 /* 963 * like "struct cmd_ds_802_11_key_material", but with cmd_header. Once we 964 * get rid of WEXT, this should go into host.h 965 */ 966 967 struct cmd_key_material { 968 struct cmd_header hdr; 969 970 __le16 action; 971 struct MrvlIEtype_keyParamSet param; 972 } __packed; 973 974 static int lbs_set_key_material(struct lbs_private *priv, 975 int key_type, int key_info, 976 const u8 *key, u16 key_len) 977 { 978 struct cmd_key_material cmd; 979 int ret; 980 981 /* 982 * Example for WPA (TKIP): 983 * 984 * cmd 5e 00 985 * size 34 00 986 * sequence xx xx 987 * result 00 00 988 * action 01 00 989 * TLV type 00 01 key param 990 * length 00 26 991 * key type 01 00 TKIP 992 * key info 06 00 UNICAST | ENABLED 993 * key len 20 00 994 * key 32 bytes 995 */ 996 memset(&cmd, 0, sizeof(cmd)); 997 cmd.hdr.size = cpu_to_le16(sizeof(cmd)); 998 cmd.action = cpu_to_le16(CMD_ACT_SET); 999 cmd.param.type = cpu_to_le16(TLV_TYPE_KEY_MATERIAL); 1000 cmd.param.length = cpu_to_le16(sizeof(cmd.param) - 4); 1001 cmd.param.keytypeid = cpu_to_le16(key_type); 1002 cmd.param.keyinfo = cpu_to_le16(key_info); 1003 cmd.param.keylen = cpu_to_le16(key_len); 1004 if (key && key_len) 1005 memcpy(cmd.param.key, key, key_len); 1006 1007 ret = lbs_cmd_with_response(priv, CMD_802_11_KEY_MATERIAL, &cmd); 1008 1009 return ret; 1010 } 1011 1012 1013 /* 1014 * Sets the auth type (open, shared, etc) in the firmware. That 1015 * we use CMD_802_11_AUTHENTICATE is misleading, this firmware 1016 * command doesn't send an authentication frame at all, it just 1017 * stores the auth_type. 1018 */ 1019 static int lbs_set_authtype(struct lbs_private *priv, 1020 struct cfg80211_connect_params *sme) 1021 { 1022 struct cmd_ds_802_11_authenticate cmd; 1023 int ret; 1024 1025 /* 1026 * cmd 11 00 1027 * size 19 00 1028 * sequence xx xx 1029 * result 00 00 1030 * BSS id 00 13 19 80 da 30 1031 * auth type 00 1032 * reserved 00 00 00 00 00 00 00 00 00 00 1033 */ 1034 memset(&cmd, 0, sizeof(cmd)); 1035 cmd.hdr.size = cpu_to_le16(sizeof(cmd)); 1036 if (sme->bssid) 1037 memcpy(cmd.bssid, sme->bssid, ETH_ALEN); 1038 /* convert auth_type */ 1039 ret = lbs_auth_to_authtype(sme->auth_type); 1040 if (ret < 0) 1041 goto done; 1042 1043 cmd.authtype = ret; 1044 ret = lbs_cmd_with_response(priv, CMD_802_11_AUTHENTICATE, &cmd); 1045 1046 done: 1047 return ret; 1048 } 1049 1050 1051 /* 1052 * Create association request 1053 */ 1054 #define LBS_ASSOC_MAX_CMD_SIZE \ 1055 (sizeof(struct cmd_ds_802_11_associate) \ 1056 + LBS_MAX_SSID_TLV_SIZE \ 1057 + LBS_MAX_CHANNEL_TLV_SIZE \ 1058 + LBS_MAX_CF_PARAM_TLV_SIZE \ 1059 + LBS_MAX_AUTH_TYPE_TLV_SIZE \ 1060 + LBS_MAX_WPA_TLV_SIZE) 1061 1062 static int lbs_associate(struct lbs_private *priv, 1063 struct cfg80211_bss *bss, 1064 struct cfg80211_connect_params *sme) 1065 { 1066 struct cmd_ds_802_11_associate_response *resp; 1067 struct cmd_ds_802_11_associate *cmd = kzalloc(LBS_ASSOC_MAX_CMD_SIZE, 1068 GFP_KERNEL); 1069 const u8 *ssid_eid; 1070 size_t len, resp_ie_len; 1071 int status; 1072 int ret; 1073 u8 *pos; 1074 u8 *tmp; 1075 1076 if (!cmd) { 1077 ret = -ENOMEM; 1078 goto done; 1079 } 1080 pos = &cmd->iebuf[0]; 1081 1082 /* 1083 * cmd 50 00 1084 * length 34 00 1085 * sequence xx xx 1086 * result 00 00 1087 * BSS id 00 13 19 80 da 30 1088 * capabilities 11 00 1089 * listen interval 0a 00 1090 * beacon interval 00 00 1091 * DTIM period 00 1092 * TLVs xx (up to 512 bytes) 1093 */ 1094 cmd->hdr.command = cpu_to_le16(CMD_802_11_ASSOCIATE); 1095 1096 /* Fill in static fields */ 1097 memcpy(cmd->bssid, bss->bssid, ETH_ALEN); 1098 cmd->listeninterval = cpu_to_le16(MRVDRV_DEFAULT_LISTEN_INTERVAL); 1099 cmd->capability = cpu_to_le16(bss->capability); 1100 1101 /* add SSID TLV */ 1102 rcu_read_lock(); 1103 ssid_eid = ieee80211_bss_get_ie(bss, WLAN_EID_SSID); 1104 if (ssid_eid) 1105 pos += lbs_add_ssid_tlv(pos, ssid_eid + 2, ssid_eid[1]); 1106 else 1107 lbs_deb_assoc("no SSID\n"); 1108 rcu_read_unlock(); 1109 1110 /* add DS param TLV */ 1111 if (bss->channel) 1112 pos += lbs_add_channel_tlv(pos, bss->channel->hw_value); 1113 else 1114 lbs_deb_assoc("no channel\n"); 1115 1116 /* add (empty) CF param TLV */ 1117 pos += lbs_add_cf_param_tlv(pos); 1118 1119 /* add rates TLV */ 1120 tmp = pos + 4; /* skip Marvell IE header */ 1121 pos += lbs_add_common_rates_tlv(pos, bss); 1122 lbs_deb_hex(LBS_DEB_ASSOC, "Common Rates", tmp, pos - tmp); 1123 1124 /* add auth type TLV */ 1125 if (MRVL_FW_MAJOR_REV(priv->fwrelease) >= 9) 1126 pos += lbs_add_auth_type_tlv(pos, sme->auth_type); 1127 1128 /* add WPA/WPA2 TLV */ 1129 if (sme->ie && sme->ie_len) 1130 pos += lbs_add_wpa_tlv(pos, sme->ie, sme->ie_len); 1131 1132 len = sizeof(*cmd) + (u16)(pos - (u8 *) &cmd->iebuf); 1133 cmd->hdr.size = cpu_to_le16(len); 1134 1135 lbs_deb_hex(LBS_DEB_ASSOC, "ASSOC_CMD", (u8 *) cmd, 1136 le16_to_cpu(cmd->hdr.size)); 1137 1138 /* store for later use */ 1139 memcpy(priv->assoc_bss, bss->bssid, ETH_ALEN); 1140 1141 ret = lbs_cmd_with_response(priv, CMD_802_11_ASSOCIATE, cmd); 1142 if (ret) 1143 goto done; 1144 1145 /* generate connect message to cfg80211 */ 1146 1147 resp = (void *) cmd; /* recast for easier field access */ 1148 status = le16_to_cpu(resp->statuscode); 1149 1150 /* Older FW versions map the IEEE 802.11 Status Code in the association 1151 * response to the following values returned in resp->statuscode: 1152 * 1153 * IEEE Status Code Marvell Status Code 1154 * 0 -> 0x0000 ASSOC_RESULT_SUCCESS 1155 * 13 -> 0x0004 ASSOC_RESULT_AUTH_REFUSED 1156 * 14 -> 0x0004 ASSOC_RESULT_AUTH_REFUSED 1157 * 15 -> 0x0004 ASSOC_RESULT_AUTH_REFUSED 1158 * 16 -> 0x0004 ASSOC_RESULT_AUTH_REFUSED 1159 * others -> 0x0003 ASSOC_RESULT_REFUSED 1160 * 1161 * Other response codes: 1162 * 0x0001 -> ASSOC_RESULT_INVALID_PARAMETERS (unused) 1163 * 0x0002 -> ASSOC_RESULT_TIMEOUT (internal timer expired waiting for 1164 * association response from the AP) 1165 */ 1166 if (MRVL_FW_MAJOR_REV(priv->fwrelease) <= 8) { 1167 switch (status) { 1168 case 0: 1169 break; 1170 case 1: 1171 lbs_deb_assoc("invalid association parameters\n"); 1172 status = WLAN_STATUS_CAPS_UNSUPPORTED; 1173 break; 1174 case 2: 1175 lbs_deb_assoc("timer expired while waiting for AP\n"); 1176 status = WLAN_STATUS_AUTH_TIMEOUT; 1177 break; 1178 case 3: 1179 lbs_deb_assoc("association refused by AP\n"); 1180 status = WLAN_STATUS_ASSOC_DENIED_UNSPEC; 1181 break; 1182 case 4: 1183 lbs_deb_assoc("authentication refused by AP\n"); 1184 status = WLAN_STATUS_UNKNOWN_AUTH_TRANSACTION; 1185 break; 1186 default: 1187 lbs_deb_assoc("association failure %d\n", status); 1188 /* v5 OLPC firmware does return the AP status code if 1189 * it's not one of the values above. Let that through. 1190 */ 1191 break; 1192 } 1193 } 1194 1195 lbs_deb_assoc("status %d, statuscode 0x%04x, capability 0x%04x, " 1196 "aid 0x%04x\n", status, le16_to_cpu(resp->statuscode), 1197 le16_to_cpu(resp->capability), le16_to_cpu(resp->aid)); 1198 1199 resp_ie_len = le16_to_cpu(resp->hdr.size) 1200 - sizeof(resp->hdr) 1201 - 6; 1202 cfg80211_connect_result(priv->dev, 1203 priv->assoc_bss, 1204 sme->ie, sme->ie_len, 1205 resp->iebuf, resp_ie_len, 1206 status, 1207 GFP_KERNEL); 1208 1209 if (status == 0) { 1210 /* TODO: get rid of priv->connect_status */ 1211 priv->connect_status = LBS_CONNECTED; 1212 netif_carrier_on(priv->dev); 1213 if (!priv->tx_pending_len) 1214 netif_tx_wake_all_queues(priv->dev); 1215 } 1216 1217 kfree(cmd); 1218 done: 1219 return ret; 1220 } 1221 1222 static struct cfg80211_scan_request * 1223 _new_connect_scan_req(struct wiphy *wiphy, struct cfg80211_connect_params *sme) 1224 { 1225 struct cfg80211_scan_request *creq = NULL; 1226 int i, n_channels = ieee80211_get_num_supported_channels(wiphy); 1227 enum nl80211_band band; 1228 1229 creq = kzalloc(sizeof(*creq) + sizeof(struct cfg80211_ssid) + 1230 n_channels * sizeof(void *), 1231 GFP_ATOMIC); 1232 if (!creq) 1233 return NULL; 1234 1235 /* SSIDs come after channels */ 1236 creq->ssids = (void *)&creq->channels[n_channels]; 1237 creq->n_channels = n_channels; 1238 creq->n_ssids = 1; 1239 1240 /* Scan all available channels */ 1241 i = 0; 1242 for (band = 0; band < NUM_NL80211_BANDS; band++) { 1243 int j; 1244 1245 if (!wiphy->bands[band]) 1246 continue; 1247 1248 for (j = 0; j < wiphy->bands[band]->n_channels; j++) { 1249 /* ignore disabled channels */ 1250 if (wiphy->bands[band]->channels[j].flags & 1251 IEEE80211_CHAN_DISABLED) 1252 continue; 1253 1254 creq->channels[i] = &wiphy->bands[band]->channels[j]; 1255 i++; 1256 } 1257 } 1258 if (i) { 1259 /* Set real number of channels specified in creq->channels[] */ 1260 creq->n_channels = i; 1261 1262 /* Scan for the SSID we're going to connect to */ 1263 memcpy(creq->ssids[0].ssid, sme->ssid, sme->ssid_len); 1264 creq->ssids[0].ssid_len = sme->ssid_len; 1265 } else { 1266 /* No channels found... */ 1267 kfree(creq); 1268 creq = NULL; 1269 } 1270 1271 return creq; 1272 } 1273 1274 static int lbs_cfg_connect(struct wiphy *wiphy, struct net_device *dev, 1275 struct cfg80211_connect_params *sme) 1276 { 1277 struct lbs_private *priv = wiphy_priv(wiphy); 1278 struct cfg80211_bss *bss = NULL; 1279 int ret = 0; 1280 u8 preamble = RADIO_PREAMBLE_SHORT; 1281 1282 if (dev == priv->mesh_dev) 1283 return -EOPNOTSUPP; 1284 1285 if (!sme->bssid) { 1286 struct cfg80211_scan_request *creq; 1287 1288 /* 1289 * Scan for the requested network after waiting for existing 1290 * scans to finish. 1291 */ 1292 lbs_deb_assoc("assoc: waiting for existing scans\n"); 1293 wait_event_interruptible_timeout(priv->scan_q, 1294 (priv->scan_req == NULL), 1295 (15 * HZ)); 1296 1297 creq = _new_connect_scan_req(wiphy, sme); 1298 if (!creq) { 1299 ret = -EINVAL; 1300 goto done; 1301 } 1302 1303 lbs_deb_assoc("assoc: scanning for compatible AP\n"); 1304 _internal_start_scan(priv, true, creq); 1305 1306 lbs_deb_assoc("assoc: waiting for scan to complete\n"); 1307 wait_event_interruptible_timeout(priv->scan_q, 1308 (priv->scan_req == NULL), 1309 (15 * HZ)); 1310 lbs_deb_assoc("assoc: scanning completed\n"); 1311 } 1312 1313 /* Find the BSS we want using available scan results */ 1314 bss = cfg80211_get_bss(wiphy, sme->channel, sme->bssid, 1315 sme->ssid, sme->ssid_len, IEEE80211_BSS_TYPE_ESS, 1316 IEEE80211_PRIVACY_ANY); 1317 if (!bss) { 1318 wiphy_err(wiphy, "assoc: bss %pM not in scan results\n", 1319 sme->bssid); 1320 ret = -ENOENT; 1321 goto done; 1322 } 1323 lbs_deb_assoc("trying %pM\n", bss->bssid); 1324 lbs_deb_assoc("cipher 0x%x, key index %d, key len %d\n", 1325 sme->crypto.cipher_group, 1326 sme->key_idx, sme->key_len); 1327 1328 /* As this is a new connection, clear locally stored WEP keys */ 1329 priv->wep_tx_key = 0; 1330 memset(priv->wep_key, 0, sizeof(priv->wep_key)); 1331 memset(priv->wep_key_len, 0, sizeof(priv->wep_key_len)); 1332 1333 /* set/remove WEP keys */ 1334 switch (sme->crypto.cipher_group) { 1335 case WLAN_CIPHER_SUITE_WEP40: 1336 case WLAN_CIPHER_SUITE_WEP104: 1337 /* Store provided WEP keys in priv-> */ 1338 priv->wep_tx_key = sme->key_idx; 1339 priv->wep_key_len[sme->key_idx] = sme->key_len; 1340 memcpy(priv->wep_key[sme->key_idx], sme->key, sme->key_len); 1341 /* Set WEP keys and WEP mode */ 1342 lbs_set_wep_keys(priv); 1343 priv->mac_control |= CMD_ACT_MAC_WEP_ENABLE; 1344 lbs_set_mac_control(priv); 1345 /* No RSN mode for WEP */ 1346 lbs_enable_rsn(priv, 0); 1347 break; 1348 case 0: /* there's no WLAN_CIPHER_SUITE_NONE definition */ 1349 /* 1350 * If we don't have no WEP, no WPA and no WPA2, 1351 * we remove all keys like in the WPA/WPA2 setup, 1352 * we just don't set RSN. 1353 * 1354 * Therefore: fall-through 1355 */ 1356 case WLAN_CIPHER_SUITE_TKIP: 1357 case WLAN_CIPHER_SUITE_CCMP: 1358 /* Remove WEP keys and WEP mode */ 1359 lbs_remove_wep_keys(priv); 1360 priv->mac_control &= ~CMD_ACT_MAC_WEP_ENABLE; 1361 lbs_set_mac_control(priv); 1362 1363 /* clear the WPA/WPA2 keys */ 1364 lbs_set_key_material(priv, 1365 KEY_TYPE_ID_WEP, /* doesn't matter */ 1366 KEY_INFO_WPA_UNICAST, 1367 NULL, 0); 1368 lbs_set_key_material(priv, 1369 KEY_TYPE_ID_WEP, /* doesn't matter */ 1370 KEY_INFO_WPA_MCAST, 1371 NULL, 0); 1372 /* RSN mode for WPA/WPA2 */ 1373 lbs_enable_rsn(priv, sme->crypto.cipher_group != 0); 1374 break; 1375 default: 1376 wiphy_err(wiphy, "unsupported cipher group 0x%x\n", 1377 sme->crypto.cipher_group); 1378 ret = -ENOTSUPP; 1379 goto done; 1380 } 1381 1382 ret = lbs_set_authtype(priv, sme); 1383 if (ret == -ENOTSUPP) { 1384 wiphy_err(wiphy, "unsupported authtype 0x%x\n", sme->auth_type); 1385 goto done; 1386 } 1387 1388 lbs_set_radio(priv, preamble, 1); 1389 1390 /* Do the actual association */ 1391 ret = lbs_associate(priv, bss, sme); 1392 1393 done: 1394 if (bss) 1395 cfg80211_put_bss(wiphy, bss); 1396 return ret; 1397 } 1398 1399 int lbs_disconnect(struct lbs_private *priv, u16 reason) 1400 { 1401 struct cmd_ds_802_11_deauthenticate cmd; 1402 int ret; 1403 1404 memset(&cmd, 0, sizeof(cmd)); 1405 cmd.hdr.size = cpu_to_le16(sizeof(cmd)); 1406 /* Mildly ugly to use a locally store my own BSSID ... */ 1407 memcpy(cmd.macaddr, &priv->assoc_bss, ETH_ALEN); 1408 cmd.reasoncode = cpu_to_le16(reason); 1409 1410 ret = lbs_cmd_with_response(priv, CMD_802_11_DEAUTHENTICATE, &cmd); 1411 if (ret) 1412 return ret; 1413 1414 cfg80211_disconnected(priv->dev, 1415 reason, 1416 NULL, 0, true, 1417 GFP_KERNEL); 1418 priv->connect_status = LBS_DISCONNECTED; 1419 1420 return 0; 1421 } 1422 1423 static int lbs_cfg_disconnect(struct wiphy *wiphy, struct net_device *dev, 1424 u16 reason_code) 1425 { 1426 struct lbs_private *priv = wiphy_priv(wiphy); 1427 1428 if (dev == priv->mesh_dev) 1429 return -EOPNOTSUPP; 1430 1431 /* store for lbs_cfg_ret_disconnect() */ 1432 priv->disassoc_reason = reason_code; 1433 1434 return lbs_disconnect(priv, reason_code); 1435 } 1436 1437 static int lbs_cfg_set_default_key(struct wiphy *wiphy, 1438 struct net_device *netdev, int link_id, 1439 u8 key_index, bool unicast, 1440 bool multicast) 1441 { 1442 struct lbs_private *priv = wiphy_priv(wiphy); 1443 1444 if (netdev == priv->mesh_dev) 1445 return -EOPNOTSUPP; 1446 1447 if (key_index != priv->wep_tx_key) { 1448 lbs_deb_assoc("set_default_key: to %d\n", key_index); 1449 priv->wep_tx_key = key_index; 1450 lbs_set_wep_keys(priv); 1451 } 1452 1453 return 0; 1454 } 1455 1456 1457 static int lbs_cfg_add_key(struct wiphy *wiphy, struct net_device *netdev, 1458 int link_id, u8 idx, bool pairwise, 1459 const u8 *mac_addr, struct key_params *params) 1460 { 1461 struct lbs_private *priv = wiphy_priv(wiphy); 1462 u16 key_info; 1463 u16 key_type; 1464 int ret = 0; 1465 1466 if (netdev == priv->mesh_dev) 1467 return -EOPNOTSUPP; 1468 1469 lbs_deb_assoc("add_key: cipher 0x%x, mac_addr %pM\n", 1470 params->cipher, mac_addr); 1471 lbs_deb_assoc("add_key: key index %d, key len %d\n", 1472 idx, params->key_len); 1473 if (params->key_len) 1474 lbs_deb_hex(LBS_DEB_CFG80211, "KEY", 1475 params->key, params->key_len); 1476 1477 lbs_deb_assoc("add_key: seq len %d\n", params->seq_len); 1478 if (params->seq_len) 1479 lbs_deb_hex(LBS_DEB_CFG80211, "SEQ", 1480 params->seq, params->seq_len); 1481 1482 switch (params->cipher) { 1483 case WLAN_CIPHER_SUITE_WEP40: 1484 case WLAN_CIPHER_SUITE_WEP104: 1485 /* actually compare if something has changed ... */ 1486 if ((priv->wep_key_len[idx] != params->key_len) || 1487 memcmp(priv->wep_key[idx], 1488 params->key, params->key_len) != 0) { 1489 priv->wep_key_len[idx] = params->key_len; 1490 memcpy(priv->wep_key[idx], 1491 params->key, params->key_len); 1492 lbs_set_wep_keys(priv); 1493 } 1494 break; 1495 case WLAN_CIPHER_SUITE_TKIP: 1496 case WLAN_CIPHER_SUITE_CCMP: 1497 key_info = KEY_INFO_WPA_ENABLED | ((idx == 0) 1498 ? KEY_INFO_WPA_UNICAST 1499 : KEY_INFO_WPA_MCAST); 1500 key_type = (params->cipher == WLAN_CIPHER_SUITE_TKIP) 1501 ? KEY_TYPE_ID_TKIP 1502 : KEY_TYPE_ID_AES; 1503 lbs_set_key_material(priv, 1504 key_type, 1505 key_info, 1506 params->key, params->key_len); 1507 break; 1508 default: 1509 wiphy_err(wiphy, "unhandled cipher 0x%x\n", params->cipher); 1510 ret = -ENOTSUPP; 1511 break; 1512 } 1513 1514 return ret; 1515 } 1516 1517 1518 static int lbs_cfg_del_key(struct wiphy *wiphy, struct net_device *netdev, 1519 int link_id, u8 key_index, bool pairwise, 1520 const u8 *mac_addr) 1521 { 1522 1523 lbs_deb_assoc("del_key: key_idx %d, mac_addr %pM\n", 1524 key_index, mac_addr); 1525 1526 #ifdef TODO 1527 struct lbs_private *priv = wiphy_priv(wiphy); 1528 /* 1529 * I think can keep this a NO-OP, because: 1530 1531 * - we clear all keys whenever we do lbs_cfg_connect() anyway 1532 * - neither "iw" nor "wpa_supplicant" won't call this during 1533 * an ongoing connection 1534 * - TODO: but I have to check if this is still true when 1535 * I set the AP to periodic re-keying 1536 * - we've not kzallec() something when we've added a key at 1537 * lbs_cfg_connect() or lbs_cfg_add_key(). 1538 * 1539 * This causes lbs_cfg_del_key() only called at disconnect time, 1540 * where we'd just waste time deleting a key that is not going 1541 * to be used anyway. 1542 */ 1543 if (key_index < 3 && priv->wep_key_len[key_index]) { 1544 priv->wep_key_len[key_index] = 0; 1545 lbs_set_wep_keys(priv); 1546 } 1547 #endif 1548 1549 return 0; 1550 } 1551 1552 1553 /* 1554 * Get station 1555 */ 1556 1557 static int lbs_cfg_get_station(struct wiphy *wiphy, struct net_device *dev, 1558 const u8 *mac, struct station_info *sinfo) 1559 { 1560 struct lbs_private *priv = wiphy_priv(wiphy); 1561 s8 signal, noise; 1562 int ret; 1563 size_t i; 1564 1565 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_BYTES) | 1566 BIT_ULL(NL80211_STA_INFO_TX_PACKETS) | 1567 BIT_ULL(NL80211_STA_INFO_RX_BYTES) | 1568 BIT_ULL(NL80211_STA_INFO_RX_PACKETS); 1569 sinfo->tx_bytes = priv->dev->stats.tx_bytes; 1570 sinfo->tx_packets = priv->dev->stats.tx_packets; 1571 sinfo->rx_bytes = priv->dev->stats.rx_bytes; 1572 sinfo->rx_packets = priv->dev->stats.rx_packets; 1573 1574 /* Get current RSSI */ 1575 ret = lbs_get_rssi(priv, &signal, &noise); 1576 if (ret == 0) { 1577 sinfo->signal = signal; 1578 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_SIGNAL); 1579 } 1580 1581 /* Convert priv->cur_rate from hw_value to NL80211 value */ 1582 for (i = 0; i < ARRAY_SIZE(lbs_rates); i++) { 1583 if (priv->cur_rate == lbs_rates[i].hw_value) { 1584 sinfo->txrate.legacy = lbs_rates[i].bitrate; 1585 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_BITRATE); 1586 break; 1587 } 1588 } 1589 1590 return 0; 1591 } 1592 1593 1594 1595 1596 /* 1597 * Change interface 1598 */ 1599 1600 static int lbs_change_intf(struct wiphy *wiphy, struct net_device *dev, 1601 enum nl80211_iftype type, 1602 struct vif_params *params) 1603 { 1604 struct lbs_private *priv = wiphy_priv(wiphy); 1605 int ret = 0; 1606 1607 if (dev == priv->mesh_dev) 1608 return -EOPNOTSUPP; 1609 1610 switch (type) { 1611 case NL80211_IFTYPE_MONITOR: 1612 case NL80211_IFTYPE_STATION: 1613 case NL80211_IFTYPE_ADHOC: 1614 break; 1615 default: 1616 return -EOPNOTSUPP; 1617 } 1618 1619 if (priv->iface_running) 1620 ret = lbs_set_iface_type(priv, type); 1621 1622 if (!ret) 1623 priv->wdev->iftype = type; 1624 1625 return ret; 1626 } 1627 1628 1629 1630 /* 1631 * IBSS (Ad-Hoc) 1632 */ 1633 1634 /* 1635 * The firmware needs the following bits masked out of the beacon-derived 1636 * capability field when associating/joining to a BSS: 1637 * 9 (QoS), 11 (APSD), 12 (unused), 14 (unused), 15 (unused) 1638 */ 1639 #define CAPINFO_MASK (~(0xda00)) 1640 1641 1642 static void lbs_join_post(struct lbs_private *priv, 1643 struct cfg80211_ibss_params *params, 1644 u8 *bssid, u16 capability) 1645 { 1646 u8 fake_ie[2 + IEEE80211_MAX_SSID_LEN + /* ssid */ 1647 2 + 4 + /* basic rates */ 1648 2 + 1 + /* DS parameter */ 1649 2 + 2 + /* atim */ 1650 2 + 8]; /* extended rates */ 1651 u8 *fake = fake_ie; 1652 struct cfg80211_bss *bss; 1653 1654 /* 1655 * For cfg80211_inform_bss, we'll need a fake IE, as we can't get 1656 * the real IE from the firmware. So we fabricate a fake IE based on 1657 * what the firmware actually sends (sniffed with wireshark). 1658 */ 1659 /* Fake SSID IE */ 1660 *fake++ = WLAN_EID_SSID; 1661 *fake++ = params->ssid_len; 1662 memcpy(fake, params->ssid, params->ssid_len); 1663 fake += params->ssid_len; 1664 /* Fake supported basic rates IE */ 1665 *fake++ = WLAN_EID_SUPP_RATES; 1666 *fake++ = 4; 1667 *fake++ = 0x82; 1668 *fake++ = 0x84; 1669 *fake++ = 0x8b; 1670 *fake++ = 0x96; 1671 /* Fake DS channel IE */ 1672 *fake++ = WLAN_EID_DS_PARAMS; 1673 *fake++ = 1; 1674 *fake++ = params->chandef.chan->hw_value; 1675 /* Fake IBSS params IE */ 1676 *fake++ = WLAN_EID_IBSS_PARAMS; 1677 *fake++ = 2; 1678 *fake++ = 0; /* ATIM=0 */ 1679 *fake++ = 0; 1680 /* Fake extended rates IE, TODO: don't add this for 802.11b only, 1681 * but I don't know how this could be checked */ 1682 *fake++ = WLAN_EID_EXT_SUPP_RATES; 1683 *fake++ = 8; 1684 *fake++ = 0x0c; 1685 *fake++ = 0x12; 1686 *fake++ = 0x18; 1687 *fake++ = 0x24; 1688 *fake++ = 0x30; 1689 *fake++ = 0x48; 1690 *fake++ = 0x60; 1691 *fake++ = 0x6c; 1692 lbs_deb_hex(LBS_DEB_CFG80211, "IE", fake_ie, fake - fake_ie); 1693 1694 bss = cfg80211_inform_bss(priv->wdev->wiphy, 1695 params->chandef.chan, 1696 CFG80211_BSS_FTYPE_UNKNOWN, 1697 bssid, 1698 0, 1699 capability, 1700 params->beacon_interval, 1701 fake_ie, fake - fake_ie, 1702 0, GFP_KERNEL); 1703 cfg80211_put_bss(priv->wdev->wiphy, bss); 1704 1705 cfg80211_ibss_joined(priv->dev, bssid, params->chandef.chan, 1706 GFP_KERNEL); 1707 1708 /* TODO: consider doing this at MACREG_INT_CODE_LINK_SENSED time */ 1709 priv->connect_status = LBS_CONNECTED; 1710 netif_carrier_on(priv->dev); 1711 if (!priv->tx_pending_len) 1712 netif_wake_queue(priv->dev); 1713 } 1714 1715 static int lbs_ibss_join_existing(struct lbs_private *priv, 1716 struct cfg80211_ibss_params *params, 1717 struct cfg80211_bss *bss) 1718 { 1719 const u8 *rates_eid; 1720 struct cmd_ds_802_11_ad_hoc_join cmd; 1721 u8 preamble = RADIO_PREAMBLE_SHORT; 1722 int ret = 0; 1723 int hw, i; 1724 u8 rates_max; 1725 u8 *rates; 1726 1727 /* TODO: set preamble based on scan result */ 1728 ret = lbs_set_radio(priv, preamble, 1); 1729 if (ret) 1730 goto out; 1731 1732 /* 1733 * Example CMD_802_11_AD_HOC_JOIN command: 1734 * 1735 * command 2c 00 CMD_802_11_AD_HOC_JOIN 1736 * size 65 00 1737 * sequence xx xx 1738 * result 00 00 1739 * bssid 02 27 27 97 2f 96 1740 * ssid 49 42 53 53 00 00 00 00 1741 * 00 00 00 00 00 00 00 00 1742 * 00 00 00 00 00 00 00 00 1743 * 00 00 00 00 00 00 00 00 1744 * type 02 CMD_BSS_TYPE_IBSS 1745 * beacon period 64 00 1746 * dtim period 00 1747 * timestamp 00 00 00 00 00 00 00 00 1748 * localtime 00 00 00 00 00 00 00 00 1749 * IE DS 03 1750 * IE DS len 01 1751 * IE DS channel 01 1752 * reserveed 00 00 00 00 1753 * IE IBSS 06 1754 * IE IBSS len 02 1755 * IE IBSS atim 00 00 1756 * reserved 00 00 00 00 1757 * capability 02 00 1758 * rates 82 84 8b 96 0c 12 18 24 30 48 60 6c 00 1759 * fail timeout ff 00 1760 * probe delay 00 00 1761 */ 1762 memset(&cmd, 0, sizeof(cmd)); 1763 cmd.hdr.size = cpu_to_le16(sizeof(cmd)); 1764 1765 memcpy(cmd.bss.bssid, bss->bssid, ETH_ALEN); 1766 memcpy(cmd.bss.ssid, params->ssid, params->ssid_len); 1767 cmd.bss.type = CMD_BSS_TYPE_IBSS; 1768 cmd.bss.beaconperiod = cpu_to_le16(params->beacon_interval); 1769 cmd.bss.ds.header.id = WLAN_EID_DS_PARAMS; 1770 cmd.bss.ds.header.len = 1; 1771 cmd.bss.ds.channel = params->chandef.chan->hw_value; 1772 cmd.bss.ibss.header.id = WLAN_EID_IBSS_PARAMS; 1773 cmd.bss.ibss.header.len = 2; 1774 cmd.bss.ibss.atimwindow = 0; 1775 cmd.bss.capability = cpu_to_le16(bss->capability & CAPINFO_MASK); 1776 1777 /* set rates to the intersection of our rates and the rates in the 1778 bss */ 1779 rcu_read_lock(); 1780 rates_eid = ieee80211_bss_get_ie(bss, WLAN_EID_SUPP_RATES); 1781 if (!rates_eid) { 1782 lbs_add_rates(cmd.bss.rates); 1783 } else { 1784 rates_max = rates_eid[1]; 1785 if (rates_max > MAX_RATES) { 1786 lbs_deb_join("invalid rates"); 1787 rcu_read_unlock(); 1788 ret = -EINVAL; 1789 goto out; 1790 } 1791 rates = cmd.bss.rates; 1792 for (hw = 0; hw < ARRAY_SIZE(lbs_rates); hw++) { 1793 u8 hw_rate = lbs_rates[hw].bitrate / 5; 1794 for (i = 0; i < rates_max; i++) { 1795 if (hw_rate == (rates_eid[i+2] & 0x7f)) { 1796 u8 rate = rates_eid[i+2]; 1797 if (rate == 0x02 || rate == 0x04 || 1798 rate == 0x0b || rate == 0x16) 1799 rate |= 0x80; 1800 *rates++ = rate; 1801 } 1802 } 1803 } 1804 } 1805 rcu_read_unlock(); 1806 1807 /* Only v8 and below support setting this */ 1808 if (MRVL_FW_MAJOR_REV(priv->fwrelease) <= 8) { 1809 cmd.failtimeout = cpu_to_le16(MRVDRV_ASSOCIATION_TIME_OUT); 1810 cmd.probedelay = cpu_to_le16(CMD_SCAN_PROBE_DELAY_TIME); 1811 } 1812 ret = lbs_cmd_with_response(priv, CMD_802_11_AD_HOC_JOIN, &cmd); 1813 if (ret) 1814 goto out; 1815 1816 /* 1817 * This is a sample response to CMD_802_11_AD_HOC_JOIN: 1818 * 1819 * response 2c 80 1820 * size 09 00 1821 * sequence xx xx 1822 * result 00 00 1823 * reserved 00 1824 */ 1825 lbs_join_post(priv, params, bss->bssid, bss->capability); 1826 1827 out: 1828 return ret; 1829 } 1830 1831 1832 1833 static int lbs_ibss_start_new(struct lbs_private *priv, 1834 struct cfg80211_ibss_params *params) 1835 { 1836 struct cmd_ds_802_11_ad_hoc_start cmd; 1837 struct cmd_ds_802_11_ad_hoc_result *resp = 1838 (struct cmd_ds_802_11_ad_hoc_result *) &cmd; 1839 u8 preamble = RADIO_PREAMBLE_SHORT; 1840 int ret = 0; 1841 u16 capability; 1842 1843 ret = lbs_set_radio(priv, preamble, 1); 1844 if (ret) 1845 goto out; 1846 1847 /* 1848 * Example CMD_802_11_AD_HOC_START command: 1849 * 1850 * command 2b 00 CMD_802_11_AD_HOC_START 1851 * size b1 00 1852 * sequence xx xx 1853 * result 00 00 1854 * ssid 54 45 53 54 00 00 00 00 1855 * 00 00 00 00 00 00 00 00 1856 * 00 00 00 00 00 00 00 00 1857 * 00 00 00 00 00 00 00 00 1858 * bss type 02 1859 * beacon period 64 00 1860 * dtim period 00 1861 * IE IBSS 06 1862 * IE IBSS len 02 1863 * IE IBSS atim 00 00 1864 * reserved 00 00 00 00 1865 * IE DS 03 1866 * IE DS len 01 1867 * IE DS channel 01 1868 * reserved 00 00 00 00 1869 * probe delay 00 00 1870 * capability 02 00 1871 * rates 82 84 8b 96 (basic rates with have bit 7 set) 1872 * 0c 12 18 24 30 48 60 6c 1873 * padding 100 bytes 1874 */ 1875 memset(&cmd, 0, sizeof(cmd)); 1876 cmd.hdr.size = cpu_to_le16(sizeof(cmd)); 1877 memcpy(cmd.ssid, params->ssid, params->ssid_len); 1878 cmd.bsstype = CMD_BSS_TYPE_IBSS; 1879 cmd.beaconperiod = cpu_to_le16(params->beacon_interval); 1880 cmd.ibss.header.id = WLAN_EID_IBSS_PARAMS; 1881 cmd.ibss.header.len = 2; 1882 cmd.ibss.atimwindow = 0; 1883 cmd.ds.header.id = WLAN_EID_DS_PARAMS; 1884 cmd.ds.header.len = 1; 1885 cmd.ds.channel = params->chandef.chan->hw_value; 1886 /* Only v8 and below support setting probe delay */ 1887 if (MRVL_FW_MAJOR_REV(priv->fwrelease) <= 8) 1888 cmd.probedelay = cpu_to_le16(CMD_SCAN_PROBE_DELAY_TIME); 1889 /* TODO: mix in WLAN_CAPABILITY_PRIVACY */ 1890 capability = WLAN_CAPABILITY_IBSS; 1891 cmd.capability = cpu_to_le16(capability); 1892 lbs_add_rates(cmd.rates); 1893 1894 1895 ret = lbs_cmd_with_response(priv, CMD_802_11_AD_HOC_START, &cmd); 1896 if (ret) 1897 goto out; 1898 1899 /* 1900 * This is a sample response to CMD_802_11_AD_HOC_JOIN: 1901 * 1902 * response 2b 80 1903 * size 14 00 1904 * sequence xx xx 1905 * result 00 00 1906 * reserved 00 1907 * bssid 02 2b 7b 0f 86 0e 1908 */ 1909 lbs_join_post(priv, params, resp->bssid, capability); 1910 1911 out: 1912 return ret; 1913 } 1914 1915 1916 static int lbs_join_ibss(struct wiphy *wiphy, struct net_device *dev, 1917 struct cfg80211_ibss_params *params) 1918 { 1919 struct lbs_private *priv = wiphy_priv(wiphy); 1920 int ret = 0; 1921 struct cfg80211_bss *bss; 1922 1923 if (dev == priv->mesh_dev) 1924 return -EOPNOTSUPP; 1925 1926 if (!params->chandef.chan) { 1927 ret = -ENOTSUPP; 1928 goto out; 1929 } 1930 1931 ret = lbs_set_channel(priv, params->chandef.chan->hw_value); 1932 if (ret) 1933 goto out; 1934 1935 /* Search if someone is beaconing. This assumes that the 1936 * bss list is populated already */ 1937 bss = cfg80211_get_bss(wiphy, params->chandef.chan, params->bssid, 1938 params->ssid, params->ssid_len, 1939 IEEE80211_BSS_TYPE_IBSS, IEEE80211_PRIVACY_ANY); 1940 1941 if (bss) { 1942 ret = lbs_ibss_join_existing(priv, params, bss); 1943 cfg80211_put_bss(wiphy, bss); 1944 } else 1945 ret = lbs_ibss_start_new(priv, params); 1946 1947 1948 out: 1949 return ret; 1950 } 1951 1952 1953 static int lbs_leave_ibss(struct wiphy *wiphy, struct net_device *dev) 1954 { 1955 struct lbs_private *priv = wiphy_priv(wiphy); 1956 struct cmd_ds_802_11_ad_hoc_stop cmd; 1957 int ret = 0; 1958 1959 if (dev == priv->mesh_dev) 1960 return -EOPNOTSUPP; 1961 1962 memset(&cmd, 0, sizeof(cmd)); 1963 cmd.hdr.size = cpu_to_le16(sizeof(cmd)); 1964 ret = lbs_cmd_with_response(priv, CMD_802_11_AD_HOC_STOP, &cmd); 1965 1966 /* TODO: consider doing this at MACREG_INT_CODE_ADHOC_BCN_LOST time */ 1967 lbs_mac_event_disconnected(priv, true); 1968 1969 return ret; 1970 } 1971 1972 1973 1974 static int lbs_set_power_mgmt(struct wiphy *wiphy, struct net_device *dev, 1975 bool enabled, int timeout) 1976 { 1977 struct lbs_private *priv = wiphy_priv(wiphy); 1978 1979 if (!(priv->fwcapinfo & FW_CAPINFO_PS)) { 1980 if (!enabled) 1981 return 0; 1982 else 1983 return -EINVAL; 1984 } 1985 /* firmware does not work well with too long latency with power saving 1986 * enabled, so do not enable it if there is only polling, no 1987 * interrupts (like in some sdio hosts which can only 1988 * poll for sdio irqs) 1989 */ 1990 if (priv->is_polling) { 1991 if (!enabled) 1992 return 0; 1993 else 1994 return -EINVAL; 1995 } 1996 if (!enabled) { 1997 priv->psmode = LBS802_11POWERMODECAM; 1998 if (priv->psstate != PS_STATE_FULL_POWER) 1999 lbs_set_ps_mode(priv, 2000 PS_MODE_ACTION_EXIT_PS, 2001 true); 2002 return 0; 2003 } 2004 if (priv->psmode != LBS802_11POWERMODECAM) 2005 return 0; 2006 priv->psmode = LBS802_11POWERMODEMAX_PSP; 2007 if (priv->connect_status == LBS_CONNECTED) 2008 lbs_set_ps_mode(priv, PS_MODE_ACTION_ENTER_PS, true); 2009 return 0; 2010 } 2011 2012 /* 2013 * Initialization 2014 */ 2015 2016 static const struct cfg80211_ops lbs_cfg80211_ops = { 2017 .set_monitor_channel = lbs_cfg_set_monitor_channel, 2018 .libertas_set_mesh_channel = lbs_cfg_set_mesh_channel, 2019 .scan = lbs_cfg_scan, 2020 .connect = lbs_cfg_connect, 2021 .disconnect = lbs_cfg_disconnect, 2022 .add_key = lbs_cfg_add_key, 2023 .del_key = lbs_cfg_del_key, 2024 .set_default_key = lbs_cfg_set_default_key, 2025 .get_station = lbs_cfg_get_station, 2026 .change_virtual_intf = lbs_change_intf, 2027 .join_ibss = lbs_join_ibss, 2028 .leave_ibss = lbs_leave_ibss, 2029 .set_power_mgmt = lbs_set_power_mgmt, 2030 }; 2031 2032 2033 /* 2034 * At this time lbs_private *priv doesn't even exist, so we just allocate 2035 * memory and don't initialize the wiphy further. This is postponed until we 2036 * can talk to the firmware and happens at registration time in 2037 * lbs_cfg_wiphy_register(). 2038 */ 2039 struct wireless_dev *lbs_cfg_alloc(struct device *dev) 2040 { 2041 int ret = 0; 2042 struct wireless_dev *wdev; 2043 2044 wdev = kzalloc(sizeof(struct wireless_dev), GFP_KERNEL); 2045 if (!wdev) 2046 return ERR_PTR(-ENOMEM); 2047 2048 wdev->wiphy = wiphy_new(&lbs_cfg80211_ops, sizeof(struct lbs_private)); 2049 if (!wdev->wiphy) { 2050 dev_err(dev, "cannot allocate wiphy\n"); 2051 ret = -ENOMEM; 2052 goto err_wiphy_new; 2053 } 2054 2055 return wdev; 2056 2057 err_wiphy_new: 2058 kfree(wdev); 2059 return ERR_PTR(ret); 2060 } 2061 2062 2063 static void lbs_cfg_set_regulatory_hint(struct lbs_private *priv) 2064 { 2065 struct region_code_mapping { 2066 const char *cn; 2067 int code; 2068 }; 2069 2070 /* Section 5.17.2 */ 2071 static const struct region_code_mapping regmap[] = { 2072 {"US ", 0x10}, /* US FCC */ 2073 {"CA ", 0x20}, /* Canada */ 2074 {"EU ", 0x30}, /* ETSI */ 2075 {"ES ", 0x31}, /* Spain */ 2076 {"FR ", 0x32}, /* France */ 2077 {"JP ", 0x40}, /* Japan */ 2078 }; 2079 size_t i; 2080 2081 for (i = 0; i < ARRAY_SIZE(regmap); i++) 2082 if (regmap[i].code == priv->regioncode) { 2083 regulatory_hint(priv->wdev->wiphy, regmap[i].cn); 2084 break; 2085 } 2086 } 2087 2088 static void lbs_reg_notifier(struct wiphy *wiphy, 2089 struct regulatory_request *request) 2090 { 2091 struct lbs_private *priv = wiphy_priv(wiphy); 2092 2093 memcpy(priv->country_code, request->alpha2, sizeof(request->alpha2)); 2094 if (lbs_iface_active(priv)) 2095 lbs_set_11d_domain_info(priv); 2096 } 2097 2098 /* 2099 * This function get's called after lbs_setup_firmware() determined the 2100 * firmware capabities. So we can setup the wiphy according to our 2101 * hardware/firmware. 2102 */ 2103 int lbs_cfg_register(struct lbs_private *priv) 2104 { 2105 struct wireless_dev *wdev = priv->wdev; 2106 int ret; 2107 2108 wdev->wiphy->max_scan_ssids = 1; 2109 wdev->wiphy->signal_type = CFG80211_SIGNAL_TYPE_MBM; 2110 2111 wdev->wiphy->interface_modes = 2112 BIT(NL80211_IFTYPE_STATION) | 2113 BIT(NL80211_IFTYPE_ADHOC); 2114 if (lbs_rtap_supported(priv)) 2115 wdev->wiphy->interface_modes |= BIT(NL80211_IFTYPE_MONITOR); 2116 if (lbs_mesh_activated(priv)) 2117 wdev->wiphy->interface_modes |= BIT(NL80211_IFTYPE_MESH_POINT); 2118 2119 wdev->wiphy->bands[NL80211_BAND_2GHZ] = &lbs_band_2ghz; 2120 2121 /* 2122 * We could check priv->fwcapinfo && FW_CAPINFO_WPA, but I have 2123 * never seen a firmware without WPA 2124 */ 2125 wdev->wiphy->cipher_suites = cipher_suites; 2126 wdev->wiphy->n_cipher_suites = ARRAY_SIZE(cipher_suites); 2127 wdev->wiphy->reg_notifier = lbs_reg_notifier; 2128 2129 ret = wiphy_register(wdev->wiphy); 2130 if (ret < 0) 2131 pr_err("cannot register wiphy device\n"); 2132 2133 priv->wiphy_registered = true; 2134 2135 ret = register_netdev(priv->dev); 2136 if (ret) 2137 pr_err("cannot register network device\n"); 2138 2139 INIT_DELAYED_WORK(&priv->scan_work, lbs_scan_worker); 2140 2141 lbs_cfg_set_regulatory_hint(priv); 2142 2143 return ret; 2144 } 2145 2146 void lbs_scan_deinit(struct lbs_private *priv) 2147 { 2148 cancel_delayed_work_sync(&priv->scan_work); 2149 } 2150 2151 2152 void lbs_cfg_free(struct lbs_private *priv) 2153 { 2154 struct wireless_dev *wdev = priv->wdev; 2155 2156 if (!wdev) 2157 return; 2158 2159 if (priv->wiphy_registered) 2160 wiphy_unregister(wdev->wiphy); 2161 2162 if (wdev->wiphy) 2163 wiphy_free(wdev->wiphy); 2164 2165 kfree(wdev); 2166 } 2167