1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Implement cfg80211 ("iw") support. 4 * 5 * Copyright (C) 2009 M&N Solutions GmbH, 61191 Rosbach, Germany 6 * Holger Schurig <hs4233@mail.mn-solutions.de> 7 * 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/hardirq.h> 13 #include <linux/sched.h> 14 #include <linux/wait.h> 15 #include <linux/slab.h> 16 #include <linux/ieee80211.h> 17 #include <net/cfg80211.h> 18 #include <asm/unaligned.h> 19 20 #include "decl.h" 21 #include "cfg.h" 22 #include "cmd.h" 23 #include "mesh.h" 24 25 26 #define CHAN2G(_channel, _freq, _flags) { \ 27 .band = NL80211_BAND_2GHZ, \ 28 .center_freq = (_freq), \ 29 .hw_value = (_channel), \ 30 .flags = (_flags), \ 31 .max_antenna_gain = 0, \ 32 .max_power = 30, \ 33 } 34 35 static struct ieee80211_channel lbs_2ghz_channels[] = { 36 CHAN2G(1, 2412, 0), 37 CHAN2G(2, 2417, 0), 38 CHAN2G(3, 2422, 0), 39 CHAN2G(4, 2427, 0), 40 CHAN2G(5, 2432, 0), 41 CHAN2G(6, 2437, 0), 42 CHAN2G(7, 2442, 0), 43 CHAN2G(8, 2447, 0), 44 CHAN2G(9, 2452, 0), 45 CHAN2G(10, 2457, 0), 46 CHAN2G(11, 2462, 0), 47 CHAN2G(12, 2467, 0), 48 CHAN2G(13, 2472, 0), 49 CHAN2G(14, 2484, 0), 50 }; 51 52 #define RATETAB_ENT(_rate, _hw_value, _flags) { \ 53 .bitrate = (_rate), \ 54 .hw_value = (_hw_value), \ 55 .flags = (_flags), \ 56 } 57 58 59 /* Table 6 in section 3.2.1.1 */ 60 static struct ieee80211_rate lbs_rates[] = { 61 RATETAB_ENT(10, 0, 0), 62 RATETAB_ENT(20, 1, 0), 63 RATETAB_ENT(55, 2, 0), 64 RATETAB_ENT(110, 3, 0), 65 RATETAB_ENT(60, 9, 0), 66 RATETAB_ENT(90, 6, 0), 67 RATETAB_ENT(120, 7, 0), 68 RATETAB_ENT(180, 8, 0), 69 RATETAB_ENT(240, 9, 0), 70 RATETAB_ENT(360, 10, 0), 71 RATETAB_ENT(480, 11, 0), 72 RATETAB_ENT(540, 12, 0), 73 }; 74 75 static struct ieee80211_supported_band lbs_band_2ghz = { 76 .channels = lbs_2ghz_channels, 77 .n_channels = ARRAY_SIZE(lbs_2ghz_channels), 78 .bitrates = lbs_rates, 79 .n_bitrates = ARRAY_SIZE(lbs_rates), 80 }; 81 82 83 static const u32 cipher_suites[] = { 84 WLAN_CIPHER_SUITE_WEP40, 85 WLAN_CIPHER_SUITE_WEP104, 86 WLAN_CIPHER_SUITE_TKIP, 87 WLAN_CIPHER_SUITE_CCMP, 88 }; 89 90 /* Time to stay on the channel */ 91 #define LBS_DWELL_PASSIVE 100 92 #define LBS_DWELL_ACTIVE 40 93 94 95 /*************************************************************************** 96 * Misc utility functions 97 * 98 * TLVs are Marvell specific. They are very similar to IEs, they have the 99 * same structure: type, length, data*. The only difference: for IEs, the 100 * type and length are u8, but for TLVs they're __le16. 101 */ 102 103 /* 104 * Convert NL80211's auth_type to the one from Libertas, see chapter 5.9.1 105 * in the firmware spec 106 */ 107 static int lbs_auth_to_authtype(enum nl80211_auth_type auth_type) 108 { 109 int ret = -ENOTSUPP; 110 111 switch (auth_type) { 112 case NL80211_AUTHTYPE_OPEN_SYSTEM: 113 case NL80211_AUTHTYPE_SHARED_KEY: 114 ret = auth_type; 115 break; 116 case NL80211_AUTHTYPE_AUTOMATIC: 117 ret = NL80211_AUTHTYPE_OPEN_SYSTEM; 118 break; 119 case NL80211_AUTHTYPE_NETWORK_EAP: 120 ret = 0x80; 121 break; 122 default: 123 /* silence compiler */ 124 break; 125 } 126 return ret; 127 } 128 129 130 /* 131 * Various firmware commands need the list of supported rates, but with 132 * the hight-bit set for basic rates 133 */ 134 static int lbs_add_rates(u8 *rates) 135 { 136 size_t i; 137 138 for (i = 0; i < ARRAY_SIZE(lbs_rates); i++) { 139 u8 rate = lbs_rates[i].bitrate / 5; 140 if (rate == 0x02 || rate == 0x04 || 141 rate == 0x0b || rate == 0x16) 142 rate |= 0x80; 143 rates[i] = rate; 144 } 145 return ARRAY_SIZE(lbs_rates); 146 } 147 148 149 /*************************************************************************** 150 * TLV utility functions 151 * 152 * TLVs are Marvell specific. They are very similar to IEs, they have the 153 * same structure: type, length, data*. The only difference: for IEs, the 154 * type and length are u8, but for TLVs they're __le16. 155 */ 156 157 158 /* 159 * Add ssid TLV 160 */ 161 #define LBS_MAX_SSID_TLV_SIZE \ 162 (sizeof(struct mrvl_ie_header) \ 163 + IEEE80211_MAX_SSID_LEN) 164 165 static int lbs_add_ssid_tlv(u8 *tlv, const u8 *ssid, int ssid_len) 166 { 167 struct mrvl_ie_ssid_param_set *ssid_tlv = (void *)tlv; 168 169 /* 170 * TLV-ID SSID 00 00 171 * length 06 00 172 * ssid 4d 4e 54 45 53 54 173 */ 174 ssid_tlv->header.type = cpu_to_le16(TLV_TYPE_SSID); 175 ssid_tlv->header.len = cpu_to_le16(ssid_len); 176 memcpy(ssid_tlv->ssid, ssid, ssid_len); 177 return sizeof(ssid_tlv->header) + ssid_len; 178 } 179 180 181 /* 182 * Add channel list TLV (section 8.4.2) 183 * 184 * Actual channel data comes from priv->wdev->wiphy->channels. 185 */ 186 #define LBS_MAX_CHANNEL_LIST_TLV_SIZE \ 187 (sizeof(struct mrvl_ie_header) \ 188 + (LBS_SCAN_BEFORE_NAP * sizeof(struct chanscanparamset))) 189 190 static int lbs_add_channel_list_tlv(struct lbs_private *priv, u8 *tlv, 191 int last_channel, int active_scan) 192 { 193 int chanscanparamsize = sizeof(struct chanscanparamset) * 194 (last_channel - priv->scan_channel); 195 196 struct mrvl_ie_header *header = (void *) tlv; 197 198 /* 199 * TLV-ID CHANLIST 01 01 200 * length 0e 00 201 * channel 00 01 00 00 00 64 00 202 * radio type 00 203 * channel 01 204 * scan type 00 205 * min scan time 00 00 206 * max scan time 64 00 207 * channel 2 00 02 00 00 00 64 00 208 * 209 */ 210 211 header->type = cpu_to_le16(TLV_TYPE_CHANLIST); 212 header->len = cpu_to_le16(chanscanparamsize); 213 tlv += sizeof(struct mrvl_ie_header); 214 215 /* lbs_deb_scan("scan: channels %d to %d\n", priv->scan_channel, 216 last_channel); */ 217 memset(tlv, 0, chanscanparamsize); 218 219 while (priv->scan_channel < last_channel) { 220 struct chanscanparamset *param = (void *) tlv; 221 222 param->radiotype = CMD_SCAN_RADIO_TYPE_BG; 223 param->channumber = 224 priv->scan_req->channels[priv->scan_channel]->hw_value; 225 if (active_scan) { 226 param->maxscantime = cpu_to_le16(LBS_DWELL_ACTIVE); 227 } else { 228 param->chanscanmode.passivescan = 1; 229 param->maxscantime = cpu_to_le16(LBS_DWELL_PASSIVE); 230 } 231 tlv += sizeof(struct chanscanparamset); 232 priv->scan_channel++; 233 } 234 return sizeof(struct mrvl_ie_header) + chanscanparamsize; 235 } 236 237 238 /* 239 * Add rates TLV 240 * 241 * The rates are in lbs_bg_rates[], but for the 802.11b 242 * rates the high bit is set. We add this TLV only because 243 * there's a firmware which otherwise doesn't report all 244 * APs in range. 245 */ 246 #define LBS_MAX_RATES_TLV_SIZE \ 247 (sizeof(struct mrvl_ie_header) \ 248 + (ARRAY_SIZE(lbs_rates))) 249 250 /* Adds a TLV with all rates the hardware supports */ 251 static int lbs_add_supported_rates_tlv(u8 *tlv) 252 { 253 size_t i; 254 struct mrvl_ie_rates_param_set *rate_tlv = (void *)tlv; 255 256 /* 257 * TLV-ID RATES 01 00 258 * length 0e 00 259 * rates 82 84 8b 96 0c 12 18 24 30 48 60 6c 260 */ 261 rate_tlv->header.type = cpu_to_le16(TLV_TYPE_RATES); 262 tlv += sizeof(rate_tlv->header); 263 i = lbs_add_rates(tlv); 264 tlv += i; 265 rate_tlv->header.len = cpu_to_le16(i); 266 return sizeof(rate_tlv->header) + i; 267 } 268 269 /* Add common rates from a TLV and return the new end of the TLV */ 270 static u8 * 271 add_ie_rates(u8 *tlv, const u8 *ie, int *nrates) 272 { 273 int hw, ap, ap_max = ie[1]; 274 u8 hw_rate; 275 276 /* Advance past IE header */ 277 ie += 2; 278 279 lbs_deb_hex(LBS_DEB_ASSOC, "AP IE Rates", (u8 *) ie, ap_max); 280 281 for (hw = 0; hw < ARRAY_SIZE(lbs_rates); hw++) { 282 hw_rate = lbs_rates[hw].bitrate / 5; 283 for (ap = 0; ap < ap_max; ap++) { 284 if (hw_rate == (ie[ap] & 0x7f)) { 285 *tlv++ = ie[ap]; 286 *nrates = *nrates + 1; 287 } 288 } 289 } 290 return tlv; 291 } 292 293 /* 294 * Adds a TLV with all rates the hardware *and* BSS supports. 295 */ 296 static int lbs_add_common_rates_tlv(u8 *tlv, struct cfg80211_bss *bss) 297 { 298 struct mrvl_ie_rates_param_set *rate_tlv = (void *)tlv; 299 const u8 *rates_eid, *ext_rates_eid; 300 int n = 0; 301 302 rcu_read_lock(); 303 rates_eid = ieee80211_bss_get_ie(bss, WLAN_EID_SUPP_RATES); 304 ext_rates_eid = ieee80211_bss_get_ie(bss, WLAN_EID_EXT_SUPP_RATES); 305 306 /* 307 * 01 00 TLV_TYPE_RATES 308 * 04 00 len 309 * 82 84 8b 96 rates 310 */ 311 rate_tlv->header.type = cpu_to_le16(TLV_TYPE_RATES); 312 tlv += sizeof(rate_tlv->header); 313 314 /* Add basic rates */ 315 if (rates_eid) { 316 tlv = add_ie_rates(tlv, rates_eid, &n); 317 318 /* Add extended rates, if any */ 319 if (ext_rates_eid) 320 tlv = add_ie_rates(tlv, ext_rates_eid, &n); 321 } else { 322 lbs_deb_assoc("assoc: bss had no basic rate IE\n"); 323 /* Fallback: add basic 802.11b rates */ 324 *tlv++ = 0x82; 325 *tlv++ = 0x84; 326 *tlv++ = 0x8b; 327 *tlv++ = 0x96; 328 n = 4; 329 } 330 rcu_read_unlock(); 331 332 rate_tlv->header.len = cpu_to_le16(n); 333 return sizeof(rate_tlv->header) + n; 334 } 335 336 337 /* 338 * Add auth type TLV. 339 * 340 * This is only needed for newer firmware (V9 and up). 341 */ 342 #define LBS_MAX_AUTH_TYPE_TLV_SIZE \ 343 sizeof(struct mrvl_ie_auth_type) 344 345 static int lbs_add_auth_type_tlv(u8 *tlv, enum nl80211_auth_type auth_type) 346 { 347 struct mrvl_ie_auth_type *auth = (void *) tlv; 348 349 /* 350 * 1f 01 TLV_TYPE_AUTH_TYPE 351 * 01 00 len 352 * 01 auth type 353 */ 354 auth->header.type = cpu_to_le16(TLV_TYPE_AUTH_TYPE); 355 auth->header.len = cpu_to_le16(sizeof(*auth)-sizeof(auth->header)); 356 auth->auth = cpu_to_le16(lbs_auth_to_authtype(auth_type)); 357 return sizeof(*auth); 358 } 359 360 361 /* 362 * Add channel (phy ds) TLV 363 */ 364 #define LBS_MAX_CHANNEL_TLV_SIZE \ 365 sizeof(struct mrvl_ie_header) 366 367 static int lbs_add_channel_tlv(u8 *tlv, u8 channel) 368 { 369 struct mrvl_ie_ds_param_set *ds = (void *) tlv; 370 371 /* 372 * 03 00 TLV_TYPE_PHY_DS 373 * 01 00 len 374 * 06 channel 375 */ 376 ds->header.type = cpu_to_le16(TLV_TYPE_PHY_DS); 377 ds->header.len = cpu_to_le16(sizeof(*ds)-sizeof(ds->header)); 378 ds->channel = channel; 379 return sizeof(*ds); 380 } 381 382 383 /* 384 * Add (empty) CF param TLV of the form: 385 */ 386 #define LBS_MAX_CF_PARAM_TLV_SIZE \ 387 sizeof(struct mrvl_ie_header) 388 389 static int lbs_add_cf_param_tlv(u8 *tlv) 390 { 391 struct mrvl_ie_cf_param_set *cf = (void *)tlv; 392 393 /* 394 * 04 00 TLV_TYPE_CF 395 * 06 00 len 396 * 00 cfpcnt 397 * 00 cfpperiod 398 * 00 00 cfpmaxduration 399 * 00 00 cfpdurationremaining 400 */ 401 cf->header.type = cpu_to_le16(TLV_TYPE_CF); 402 cf->header.len = cpu_to_le16(sizeof(*cf)-sizeof(cf->header)); 403 return sizeof(*cf); 404 } 405 406 /* 407 * Add WPA TLV 408 */ 409 #define LBS_MAX_WPA_TLV_SIZE \ 410 (sizeof(struct mrvl_ie_header) \ 411 + 128 /* TODO: I guessed the size */) 412 413 static int lbs_add_wpa_tlv(u8 *tlv, const u8 *ie, u8 ie_len) 414 { 415 size_t tlv_len; 416 417 /* 418 * We need just convert an IE to an TLV. IEs use u8 for the header, 419 * u8 type 420 * u8 len 421 * u8[] data 422 * but TLVs use __le16 instead: 423 * __le16 type 424 * __le16 len 425 * u8[] data 426 */ 427 *tlv++ = *ie++; 428 *tlv++ = 0; 429 tlv_len = *tlv++ = *ie++; 430 *tlv++ = 0; 431 while (tlv_len--) 432 *tlv++ = *ie++; 433 /* the TLV is two bytes larger than the IE */ 434 return ie_len + 2; 435 } 436 437 /* 438 * Set Channel 439 */ 440 441 static int lbs_cfg_set_monitor_channel(struct wiphy *wiphy, 442 struct cfg80211_chan_def *chandef) 443 { 444 struct lbs_private *priv = wiphy_priv(wiphy); 445 int ret = -ENOTSUPP; 446 447 if (cfg80211_get_chandef_type(chandef) != NL80211_CHAN_NO_HT) 448 goto out; 449 450 ret = lbs_set_channel(priv, chandef->chan->hw_value); 451 452 out: 453 return ret; 454 } 455 456 static int lbs_cfg_set_mesh_channel(struct wiphy *wiphy, 457 struct net_device *netdev, 458 struct ieee80211_channel *channel) 459 { 460 struct lbs_private *priv = wiphy_priv(wiphy); 461 int ret = -ENOTSUPP; 462 463 if (netdev != priv->mesh_dev) 464 goto out; 465 466 ret = lbs_mesh_set_channel(priv, channel->hw_value); 467 468 out: 469 return ret; 470 } 471 472 473 474 /* 475 * Scanning 476 */ 477 478 /* 479 * When scanning, the firmware doesn't send a nul packet with the power-safe 480 * bit to the AP. So we cannot stay away from our current channel too long, 481 * otherwise we loose data. So take a "nap" while scanning every other 482 * while. 483 */ 484 #define LBS_SCAN_BEFORE_NAP 4 485 486 487 /* 488 * When the firmware reports back a scan-result, it gives us an "u8 rssi", 489 * which isn't really an RSSI, as it becomes larger when moving away from 490 * the AP. Anyway, we need to convert that into mBm. 491 */ 492 #define LBS_SCAN_RSSI_TO_MBM(rssi) \ 493 ((-(int)rssi + 3)*100) 494 495 static int lbs_ret_scan(struct lbs_private *priv, unsigned long dummy, 496 struct cmd_header *resp) 497 { 498 struct cfg80211_bss *bss; 499 struct cmd_ds_802_11_scan_rsp *scanresp = (void *)resp; 500 int bsssize; 501 const u8 *pos; 502 const u8 *tsfdesc; 503 int tsfsize; 504 int i; 505 int ret = -EILSEQ; 506 507 bsssize = get_unaligned_le16(&scanresp->bssdescriptsize); 508 509 lbs_deb_scan("scan response: %d BSSs (%d bytes); resp size %d bytes\n", 510 scanresp->nr_sets, bsssize, le16_to_cpu(resp->size)); 511 512 if (scanresp->nr_sets == 0) { 513 ret = 0; 514 goto done; 515 } 516 517 /* 518 * The general layout of the scan response is described in chapter 519 * 5.7.1. Basically we have a common part, then any number of BSS 520 * descriptor sections. Finally we have section with the same number 521 * of TSFs. 522 * 523 * cmd_ds_802_11_scan_rsp 524 * cmd_header 525 * pos_size 526 * nr_sets 527 * bssdesc 1 528 * bssid 529 * rssi 530 * timestamp 531 * intvl 532 * capa 533 * IEs 534 * bssdesc 2 535 * bssdesc n 536 * MrvlIEtypes_TsfFimestamp_t 537 * TSF for BSS 1 538 * TSF for BSS 2 539 * TSF for BSS n 540 */ 541 542 pos = scanresp->bssdesc_and_tlvbuffer; 543 544 lbs_deb_hex(LBS_DEB_SCAN, "SCAN_RSP", scanresp->bssdesc_and_tlvbuffer, 545 scanresp->bssdescriptsize); 546 547 tsfdesc = pos + bsssize; 548 tsfsize = 4 + 8 * scanresp->nr_sets; 549 lbs_deb_hex(LBS_DEB_SCAN, "SCAN_TSF", (u8 *) tsfdesc, tsfsize); 550 551 /* Validity check: we expect a Marvell-Local TLV */ 552 i = get_unaligned_le16(tsfdesc); 553 tsfdesc += 2; 554 if (i != TLV_TYPE_TSFTIMESTAMP) { 555 lbs_deb_scan("scan response: invalid TSF Timestamp %d\n", i); 556 goto done; 557 } 558 559 /* 560 * Validity check: the TLV holds TSF values with 8 bytes each, so 561 * the size in the TLV must match the nr_sets value 562 */ 563 i = get_unaligned_le16(tsfdesc); 564 tsfdesc += 2; 565 if (i / 8 != scanresp->nr_sets) { 566 lbs_deb_scan("scan response: invalid number of TSF timestamp " 567 "sets (expected %d got %d)\n", scanresp->nr_sets, 568 i / 8); 569 goto done; 570 } 571 572 for (i = 0; i < scanresp->nr_sets; i++) { 573 const u8 *bssid; 574 const u8 *ie; 575 int left; 576 int ielen; 577 int rssi; 578 u16 intvl; 579 u16 capa; 580 int chan_no = -1; 581 const u8 *ssid = NULL; 582 u8 ssid_len = 0; 583 584 int len = get_unaligned_le16(pos); 585 pos += 2; 586 587 /* BSSID */ 588 bssid = pos; 589 pos += ETH_ALEN; 590 /* RSSI */ 591 rssi = *pos++; 592 /* Packet time stamp */ 593 pos += 8; 594 /* Beacon interval */ 595 intvl = get_unaligned_le16(pos); 596 pos += 2; 597 /* Capabilities */ 598 capa = get_unaligned_le16(pos); 599 pos += 2; 600 601 /* To find out the channel, we must parse the IEs */ 602 ie = pos; 603 /* 604 * 6+1+8+2+2: size of BSSID, RSSI, time stamp, beacon 605 * interval, capabilities 606 */ 607 ielen = left = len - (6 + 1 + 8 + 2 + 2); 608 while (left >= 2) { 609 u8 id, elen; 610 id = *pos++; 611 elen = *pos++; 612 left -= 2; 613 if (elen > left) { 614 lbs_deb_scan("scan response: invalid IE fmt\n"); 615 goto done; 616 } 617 618 if (id == WLAN_EID_DS_PARAMS) 619 chan_no = *pos; 620 if (id == WLAN_EID_SSID) { 621 ssid = pos; 622 ssid_len = elen; 623 } 624 left -= elen; 625 pos += elen; 626 } 627 628 /* No channel, no luck */ 629 if (chan_no != -1) { 630 struct wiphy *wiphy = priv->wdev->wiphy; 631 int freq = ieee80211_channel_to_frequency(chan_no, 632 NL80211_BAND_2GHZ); 633 struct ieee80211_channel *channel = 634 ieee80211_get_channel(wiphy, freq); 635 636 lbs_deb_scan("scan: %pM, capa %04x, chan %2d, %*pE, %d dBm\n", 637 bssid, capa, chan_no, ssid_len, ssid, 638 LBS_SCAN_RSSI_TO_MBM(rssi)/100); 639 640 if (channel && 641 !(channel->flags & IEEE80211_CHAN_DISABLED)) { 642 bss = cfg80211_inform_bss(wiphy, channel, 643 CFG80211_BSS_FTYPE_UNKNOWN, 644 bssid, get_unaligned_le64(tsfdesc), 645 capa, intvl, ie, ielen, 646 LBS_SCAN_RSSI_TO_MBM(rssi), 647 GFP_KERNEL); 648 cfg80211_put_bss(wiphy, bss); 649 } 650 } else 651 lbs_deb_scan("scan response: missing BSS channel IE\n"); 652 653 tsfdesc += 8; 654 } 655 ret = 0; 656 657 done: 658 return ret; 659 } 660 661 662 /* 663 * Our scan command contains a TLV, consting of a SSID TLV, a channel list 664 * TLV and a rates TLV. Determine the maximum size of them: 665 */ 666 #define LBS_SCAN_MAX_CMD_SIZE \ 667 (sizeof(struct cmd_ds_802_11_scan) \ 668 + LBS_MAX_SSID_TLV_SIZE \ 669 + LBS_MAX_CHANNEL_LIST_TLV_SIZE \ 670 + LBS_MAX_RATES_TLV_SIZE) 671 672 /* 673 * Assumes priv->scan_req is initialized and valid 674 * Assumes priv->scan_channel is initialized 675 */ 676 static void lbs_scan_worker(struct work_struct *work) 677 { 678 struct lbs_private *priv = 679 container_of(work, struct lbs_private, scan_work.work); 680 struct cmd_ds_802_11_scan *scan_cmd; 681 u8 *tlv; /* pointer into our current, growing TLV storage area */ 682 int last_channel; 683 int running, carrier; 684 685 scan_cmd = kzalloc(LBS_SCAN_MAX_CMD_SIZE, GFP_KERNEL); 686 if (scan_cmd == NULL) 687 return; 688 689 /* prepare fixed part of scan command */ 690 scan_cmd->bsstype = CMD_BSS_TYPE_ANY; 691 692 /* stop network while we're away from our main channel */ 693 running = !netif_queue_stopped(priv->dev); 694 carrier = netif_carrier_ok(priv->dev); 695 if (running) 696 netif_stop_queue(priv->dev); 697 if (carrier) 698 netif_carrier_off(priv->dev); 699 700 /* prepare fixed part of scan command */ 701 tlv = scan_cmd->tlvbuffer; 702 703 /* add SSID TLV */ 704 if (priv->scan_req->n_ssids && priv->scan_req->ssids[0].ssid_len > 0) 705 tlv += lbs_add_ssid_tlv(tlv, 706 priv->scan_req->ssids[0].ssid, 707 priv->scan_req->ssids[0].ssid_len); 708 709 /* add channel TLVs */ 710 last_channel = priv->scan_channel + LBS_SCAN_BEFORE_NAP; 711 if (last_channel > priv->scan_req->n_channels) 712 last_channel = priv->scan_req->n_channels; 713 tlv += lbs_add_channel_list_tlv(priv, tlv, last_channel, 714 priv->scan_req->n_ssids); 715 716 /* add rates TLV */ 717 tlv += lbs_add_supported_rates_tlv(tlv); 718 719 if (priv->scan_channel < priv->scan_req->n_channels) { 720 cancel_delayed_work(&priv->scan_work); 721 if (netif_running(priv->dev)) 722 queue_delayed_work(priv->work_thread, &priv->scan_work, 723 msecs_to_jiffies(300)); 724 } 725 726 /* This is the final data we are about to send */ 727 scan_cmd->hdr.size = cpu_to_le16(tlv - (u8 *)scan_cmd); 728 lbs_deb_hex(LBS_DEB_SCAN, "SCAN_CMD", (void *)scan_cmd, 729 sizeof(*scan_cmd)); 730 lbs_deb_hex(LBS_DEB_SCAN, "SCAN_TLV", scan_cmd->tlvbuffer, 731 tlv - scan_cmd->tlvbuffer); 732 733 __lbs_cmd(priv, CMD_802_11_SCAN, &scan_cmd->hdr, 734 le16_to_cpu(scan_cmd->hdr.size), 735 lbs_ret_scan, 0); 736 737 if (priv->scan_channel >= priv->scan_req->n_channels) { 738 /* Mark scan done */ 739 cancel_delayed_work(&priv->scan_work); 740 lbs_scan_done(priv); 741 } 742 743 /* Restart network */ 744 if (carrier) 745 netif_carrier_on(priv->dev); 746 if (running && !priv->tx_pending_len) 747 netif_wake_queue(priv->dev); 748 749 kfree(scan_cmd); 750 751 /* Wake up anything waiting on scan completion */ 752 if (priv->scan_req == NULL) { 753 lbs_deb_scan("scan: waking up waiters\n"); 754 wake_up_all(&priv->scan_q); 755 } 756 } 757 758 static void _internal_start_scan(struct lbs_private *priv, bool internal, 759 struct cfg80211_scan_request *request) 760 { 761 lbs_deb_scan("scan: ssids %d, channels %d, ie_len %zd\n", 762 request->n_ssids, request->n_channels, request->ie_len); 763 764 priv->scan_channel = 0; 765 priv->scan_req = request; 766 priv->internal_scan = internal; 767 768 queue_delayed_work(priv->work_thread, &priv->scan_work, 769 msecs_to_jiffies(50)); 770 } 771 772 /* 773 * Clean up priv->scan_req. Should be used to handle the allocation details. 774 */ 775 void lbs_scan_done(struct lbs_private *priv) 776 { 777 WARN_ON(!priv->scan_req); 778 779 if (priv->internal_scan) { 780 kfree(priv->scan_req); 781 } else { 782 struct cfg80211_scan_info info = { 783 .aborted = false, 784 }; 785 786 cfg80211_scan_done(priv->scan_req, &info); 787 } 788 789 priv->scan_req = NULL; 790 } 791 792 static int lbs_cfg_scan(struct wiphy *wiphy, 793 struct cfg80211_scan_request *request) 794 { 795 struct lbs_private *priv = wiphy_priv(wiphy); 796 int ret = 0; 797 798 if (priv->scan_req || delayed_work_pending(&priv->scan_work)) { 799 /* old scan request not yet processed */ 800 ret = -EAGAIN; 801 goto out; 802 } 803 804 _internal_start_scan(priv, false, request); 805 806 if (priv->surpriseremoved) 807 ret = -EIO; 808 809 out: 810 return ret; 811 } 812 813 814 815 816 /* 817 * Events 818 */ 819 820 void lbs_send_disconnect_notification(struct lbs_private *priv, 821 bool locally_generated) 822 { 823 cfg80211_disconnected(priv->dev, 0, NULL, 0, locally_generated, 824 GFP_KERNEL); 825 } 826 827 void lbs_send_mic_failureevent(struct lbs_private *priv, u32 event) 828 { 829 cfg80211_michael_mic_failure(priv->dev, 830 priv->assoc_bss, 831 event == MACREG_INT_CODE_MIC_ERR_MULTICAST ? 832 NL80211_KEYTYPE_GROUP : 833 NL80211_KEYTYPE_PAIRWISE, 834 -1, 835 NULL, 836 GFP_KERNEL); 837 } 838 839 840 841 842 /* 843 * Connect/disconnect 844 */ 845 846 847 /* 848 * This removes all WEP keys 849 */ 850 static int lbs_remove_wep_keys(struct lbs_private *priv) 851 { 852 struct cmd_ds_802_11_set_wep cmd; 853 int ret; 854 855 memset(&cmd, 0, sizeof(cmd)); 856 cmd.hdr.size = cpu_to_le16(sizeof(cmd)); 857 cmd.keyindex = cpu_to_le16(priv->wep_tx_key); 858 cmd.action = cpu_to_le16(CMD_ACT_REMOVE); 859 860 ret = lbs_cmd_with_response(priv, CMD_802_11_SET_WEP, &cmd); 861 862 return ret; 863 } 864 865 /* 866 * Set WEP keys 867 */ 868 static int lbs_set_wep_keys(struct lbs_private *priv) 869 { 870 struct cmd_ds_802_11_set_wep cmd; 871 int i; 872 int ret; 873 874 /* 875 * command 13 00 876 * size 50 00 877 * sequence xx xx 878 * result 00 00 879 * action 02 00 ACT_ADD 880 * transmit key 00 00 881 * type for key 1 01 WEP40 882 * type for key 2 00 883 * type for key 3 00 884 * type for key 4 00 885 * key 1 39 39 39 39 39 00 00 00 886 * 00 00 00 00 00 00 00 00 887 * key 2 00 00 00 00 00 00 00 00 888 * 00 00 00 00 00 00 00 00 889 * key 3 00 00 00 00 00 00 00 00 890 * 00 00 00 00 00 00 00 00 891 * key 4 00 00 00 00 00 00 00 00 892 */ 893 if (priv->wep_key_len[0] || priv->wep_key_len[1] || 894 priv->wep_key_len[2] || priv->wep_key_len[3]) { 895 /* Only set wep keys if we have at least one of them */ 896 memset(&cmd, 0, sizeof(cmd)); 897 cmd.hdr.size = cpu_to_le16(sizeof(cmd)); 898 cmd.keyindex = cpu_to_le16(priv->wep_tx_key); 899 cmd.action = cpu_to_le16(CMD_ACT_ADD); 900 901 for (i = 0; i < 4; i++) { 902 switch (priv->wep_key_len[i]) { 903 case WLAN_KEY_LEN_WEP40: 904 cmd.keytype[i] = CMD_TYPE_WEP_40_BIT; 905 break; 906 case WLAN_KEY_LEN_WEP104: 907 cmd.keytype[i] = CMD_TYPE_WEP_104_BIT; 908 break; 909 default: 910 cmd.keytype[i] = 0; 911 break; 912 } 913 memcpy(cmd.keymaterial[i], priv->wep_key[i], 914 priv->wep_key_len[i]); 915 } 916 917 ret = lbs_cmd_with_response(priv, CMD_802_11_SET_WEP, &cmd); 918 } else { 919 /* Otherwise remove all wep keys */ 920 ret = lbs_remove_wep_keys(priv); 921 } 922 923 return ret; 924 } 925 926 927 /* 928 * Enable/Disable RSN status 929 */ 930 static int lbs_enable_rsn(struct lbs_private *priv, int enable) 931 { 932 struct cmd_ds_802_11_enable_rsn cmd; 933 int ret; 934 935 /* 936 * cmd 2f 00 937 * size 0c 00 938 * sequence xx xx 939 * result 00 00 940 * action 01 00 ACT_SET 941 * enable 01 00 942 */ 943 memset(&cmd, 0, sizeof(cmd)); 944 cmd.hdr.size = cpu_to_le16(sizeof(cmd)); 945 cmd.action = cpu_to_le16(CMD_ACT_SET); 946 cmd.enable = cpu_to_le16(enable); 947 948 ret = lbs_cmd_with_response(priv, CMD_802_11_ENABLE_RSN, &cmd); 949 950 return ret; 951 } 952 953 954 /* 955 * Set WPA/WPA key material 956 */ 957 958 /* 959 * like "struct cmd_ds_802_11_key_material", but with cmd_header. Once we 960 * get rid of WEXT, this should go into host.h 961 */ 962 963 struct cmd_key_material { 964 struct cmd_header hdr; 965 966 __le16 action; 967 struct MrvlIEtype_keyParamSet param; 968 } __packed; 969 970 static int lbs_set_key_material(struct lbs_private *priv, 971 int key_type, int key_info, 972 const u8 *key, u16 key_len) 973 { 974 struct cmd_key_material cmd; 975 int ret; 976 977 /* 978 * Example for WPA (TKIP): 979 * 980 * cmd 5e 00 981 * size 34 00 982 * sequence xx xx 983 * result 00 00 984 * action 01 00 985 * TLV type 00 01 key param 986 * length 00 26 987 * key type 01 00 TKIP 988 * key info 06 00 UNICAST | ENABLED 989 * key len 20 00 990 * key 32 bytes 991 */ 992 memset(&cmd, 0, sizeof(cmd)); 993 cmd.hdr.size = cpu_to_le16(sizeof(cmd)); 994 cmd.action = cpu_to_le16(CMD_ACT_SET); 995 cmd.param.type = cpu_to_le16(TLV_TYPE_KEY_MATERIAL); 996 cmd.param.length = cpu_to_le16(sizeof(cmd.param) - 4); 997 cmd.param.keytypeid = cpu_to_le16(key_type); 998 cmd.param.keyinfo = cpu_to_le16(key_info); 999 cmd.param.keylen = cpu_to_le16(key_len); 1000 if (key && key_len) 1001 memcpy(cmd.param.key, key, key_len); 1002 1003 ret = lbs_cmd_with_response(priv, CMD_802_11_KEY_MATERIAL, &cmd); 1004 1005 return ret; 1006 } 1007 1008 1009 /* 1010 * Sets the auth type (open, shared, etc) in the firmware. That 1011 * we use CMD_802_11_AUTHENTICATE is misleading, this firmware 1012 * command doesn't send an authentication frame at all, it just 1013 * stores the auth_type. 1014 */ 1015 static int lbs_set_authtype(struct lbs_private *priv, 1016 struct cfg80211_connect_params *sme) 1017 { 1018 struct cmd_ds_802_11_authenticate cmd; 1019 int ret; 1020 1021 /* 1022 * cmd 11 00 1023 * size 19 00 1024 * sequence xx xx 1025 * result 00 00 1026 * BSS id 00 13 19 80 da 30 1027 * auth type 00 1028 * reserved 00 00 00 00 00 00 00 00 00 00 1029 */ 1030 memset(&cmd, 0, sizeof(cmd)); 1031 cmd.hdr.size = cpu_to_le16(sizeof(cmd)); 1032 if (sme->bssid) 1033 memcpy(cmd.bssid, sme->bssid, ETH_ALEN); 1034 /* convert auth_type */ 1035 ret = lbs_auth_to_authtype(sme->auth_type); 1036 if (ret < 0) 1037 goto done; 1038 1039 cmd.authtype = ret; 1040 ret = lbs_cmd_with_response(priv, CMD_802_11_AUTHENTICATE, &cmd); 1041 1042 done: 1043 return ret; 1044 } 1045 1046 1047 /* 1048 * Create association request 1049 */ 1050 #define LBS_ASSOC_MAX_CMD_SIZE \ 1051 (sizeof(struct cmd_ds_802_11_associate) \ 1052 - 512 /* cmd_ds_802_11_associate.iebuf */ \ 1053 + LBS_MAX_SSID_TLV_SIZE \ 1054 + LBS_MAX_CHANNEL_TLV_SIZE \ 1055 + LBS_MAX_CF_PARAM_TLV_SIZE \ 1056 + LBS_MAX_AUTH_TYPE_TLV_SIZE \ 1057 + LBS_MAX_WPA_TLV_SIZE) 1058 1059 static int lbs_associate(struct lbs_private *priv, 1060 struct cfg80211_bss *bss, 1061 struct cfg80211_connect_params *sme) 1062 { 1063 struct cmd_ds_802_11_associate_response *resp; 1064 struct cmd_ds_802_11_associate *cmd = kzalloc(LBS_ASSOC_MAX_CMD_SIZE, 1065 GFP_KERNEL); 1066 const u8 *ssid_eid; 1067 size_t len, resp_ie_len; 1068 int status; 1069 int ret; 1070 u8 *pos; 1071 u8 *tmp; 1072 1073 if (!cmd) { 1074 ret = -ENOMEM; 1075 goto done; 1076 } 1077 pos = &cmd->iebuf[0]; 1078 1079 /* 1080 * cmd 50 00 1081 * length 34 00 1082 * sequence xx xx 1083 * result 00 00 1084 * BSS id 00 13 19 80 da 30 1085 * capabilities 11 00 1086 * listen interval 0a 00 1087 * beacon interval 00 00 1088 * DTIM period 00 1089 * TLVs xx (up to 512 bytes) 1090 */ 1091 cmd->hdr.command = cpu_to_le16(CMD_802_11_ASSOCIATE); 1092 1093 /* Fill in static fields */ 1094 memcpy(cmd->bssid, bss->bssid, ETH_ALEN); 1095 cmd->listeninterval = cpu_to_le16(MRVDRV_DEFAULT_LISTEN_INTERVAL); 1096 cmd->capability = cpu_to_le16(bss->capability); 1097 1098 /* add SSID TLV */ 1099 rcu_read_lock(); 1100 ssid_eid = ieee80211_bss_get_ie(bss, WLAN_EID_SSID); 1101 if (ssid_eid) 1102 pos += lbs_add_ssid_tlv(pos, ssid_eid + 2, ssid_eid[1]); 1103 else 1104 lbs_deb_assoc("no SSID\n"); 1105 rcu_read_unlock(); 1106 1107 /* add DS param TLV */ 1108 if (bss->channel) 1109 pos += lbs_add_channel_tlv(pos, bss->channel->hw_value); 1110 else 1111 lbs_deb_assoc("no channel\n"); 1112 1113 /* add (empty) CF param TLV */ 1114 pos += lbs_add_cf_param_tlv(pos); 1115 1116 /* add rates TLV */ 1117 tmp = pos + 4; /* skip Marvell IE header */ 1118 pos += lbs_add_common_rates_tlv(pos, bss); 1119 lbs_deb_hex(LBS_DEB_ASSOC, "Common Rates", tmp, pos - tmp); 1120 1121 /* add auth type TLV */ 1122 if (MRVL_FW_MAJOR_REV(priv->fwrelease) >= 9) 1123 pos += lbs_add_auth_type_tlv(pos, sme->auth_type); 1124 1125 /* add WPA/WPA2 TLV */ 1126 if (sme->ie && sme->ie_len) 1127 pos += lbs_add_wpa_tlv(pos, sme->ie, sme->ie_len); 1128 1129 len = (sizeof(*cmd) - sizeof(cmd->iebuf)) + 1130 (u16)(pos - (u8 *) &cmd->iebuf); 1131 cmd->hdr.size = cpu_to_le16(len); 1132 1133 lbs_deb_hex(LBS_DEB_ASSOC, "ASSOC_CMD", (u8 *) cmd, 1134 le16_to_cpu(cmd->hdr.size)); 1135 1136 /* store for later use */ 1137 memcpy(priv->assoc_bss, bss->bssid, ETH_ALEN); 1138 1139 ret = lbs_cmd_with_response(priv, CMD_802_11_ASSOCIATE, cmd); 1140 if (ret) 1141 goto done; 1142 1143 /* generate connect message to cfg80211 */ 1144 1145 resp = (void *) cmd; /* recast for easier field access */ 1146 status = le16_to_cpu(resp->statuscode); 1147 1148 /* Older FW versions map the IEEE 802.11 Status Code in the association 1149 * response to the following values returned in resp->statuscode: 1150 * 1151 * IEEE Status Code Marvell Status Code 1152 * 0 -> 0x0000 ASSOC_RESULT_SUCCESS 1153 * 13 -> 0x0004 ASSOC_RESULT_AUTH_REFUSED 1154 * 14 -> 0x0004 ASSOC_RESULT_AUTH_REFUSED 1155 * 15 -> 0x0004 ASSOC_RESULT_AUTH_REFUSED 1156 * 16 -> 0x0004 ASSOC_RESULT_AUTH_REFUSED 1157 * others -> 0x0003 ASSOC_RESULT_REFUSED 1158 * 1159 * Other response codes: 1160 * 0x0001 -> ASSOC_RESULT_INVALID_PARAMETERS (unused) 1161 * 0x0002 -> ASSOC_RESULT_TIMEOUT (internal timer expired waiting for 1162 * association response from the AP) 1163 */ 1164 if (MRVL_FW_MAJOR_REV(priv->fwrelease) <= 8) { 1165 switch (status) { 1166 case 0: 1167 break; 1168 case 1: 1169 lbs_deb_assoc("invalid association parameters\n"); 1170 status = WLAN_STATUS_CAPS_UNSUPPORTED; 1171 break; 1172 case 2: 1173 lbs_deb_assoc("timer expired while waiting for AP\n"); 1174 status = WLAN_STATUS_AUTH_TIMEOUT; 1175 break; 1176 case 3: 1177 lbs_deb_assoc("association refused by AP\n"); 1178 status = WLAN_STATUS_ASSOC_DENIED_UNSPEC; 1179 break; 1180 case 4: 1181 lbs_deb_assoc("authentication refused by AP\n"); 1182 status = WLAN_STATUS_UNKNOWN_AUTH_TRANSACTION; 1183 break; 1184 default: 1185 lbs_deb_assoc("association failure %d\n", status); 1186 /* v5 OLPC firmware does return the AP status code if 1187 * it's not one of the values above. Let that through. 1188 */ 1189 break; 1190 } 1191 } 1192 1193 lbs_deb_assoc("status %d, statuscode 0x%04x, capability 0x%04x, " 1194 "aid 0x%04x\n", status, le16_to_cpu(resp->statuscode), 1195 le16_to_cpu(resp->capability), le16_to_cpu(resp->aid)); 1196 1197 resp_ie_len = le16_to_cpu(resp->hdr.size) 1198 - sizeof(resp->hdr) 1199 - 6; 1200 cfg80211_connect_result(priv->dev, 1201 priv->assoc_bss, 1202 sme->ie, sme->ie_len, 1203 resp->iebuf, resp_ie_len, 1204 status, 1205 GFP_KERNEL); 1206 1207 if (status == 0) { 1208 /* TODO: get rid of priv->connect_status */ 1209 priv->connect_status = LBS_CONNECTED; 1210 netif_carrier_on(priv->dev); 1211 if (!priv->tx_pending_len) 1212 netif_tx_wake_all_queues(priv->dev); 1213 } 1214 1215 kfree(cmd); 1216 done: 1217 return ret; 1218 } 1219 1220 static struct cfg80211_scan_request * 1221 _new_connect_scan_req(struct wiphy *wiphy, struct cfg80211_connect_params *sme) 1222 { 1223 struct cfg80211_scan_request *creq = NULL; 1224 int i, n_channels = ieee80211_get_num_supported_channels(wiphy); 1225 enum nl80211_band band; 1226 1227 creq = kzalloc(sizeof(*creq) + sizeof(struct cfg80211_ssid) + 1228 n_channels * sizeof(void *), 1229 GFP_ATOMIC); 1230 if (!creq) 1231 return NULL; 1232 1233 /* SSIDs come after channels */ 1234 creq->ssids = (void *)&creq->channels[n_channels]; 1235 creq->n_channels = n_channels; 1236 creq->n_ssids = 1; 1237 1238 /* Scan all available channels */ 1239 i = 0; 1240 for (band = 0; band < NUM_NL80211_BANDS; band++) { 1241 int j; 1242 1243 if (!wiphy->bands[band]) 1244 continue; 1245 1246 for (j = 0; j < wiphy->bands[band]->n_channels; j++) { 1247 /* ignore disabled channels */ 1248 if (wiphy->bands[band]->channels[j].flags & 1249 IEEE80211_CHAN_DISABLED) 1250 continue; 1251 1252 creq->channels[i] = &wiphy->bands[band]->channels[j]; 1253 i++; 1254 } 1255 } 1256 if (i) { 1257 /* Set real number of channels specified in creq->channels[] */ 1258 creq->n_channels = i; 1259 1260 /* Scan for the SSID we're going to connect to */ 1261 memcpy(creq->ssids[0].ssid, sme->ssid, sme->ssid_len); 1262 creq->ssids[0].ssid_len = sme->ssid_len; 1263 } else { 1264 /* No channels found... */ 1265 kfree(creq); 1266 creq = NULL; 1267 } 1268 1269 return creq; 1270 } 1271 1272 static int lbs_cfg_connect(struct wiphy *wiphy, struct net_device *dev, 1273 struct cfg80211_connect_params *sme) 1274 { 1275 struct lbs_private *priv = wiphy_priv(wiphy); 1276 struct cfg80211_bss *bss = NULL; 1277 int ret = 0; 1278 u8 preamble = RADIO_PREAMBLE_SHORT; 1279 1280 if (dev == priv->mesh_dev) 1281 return -EOPNOTSUPP; 1282 1283 if (!sme->bssid) { 1284 struct cfg80211_scan_request *creq; 1285 1286 /* 1287 * Scan for the requested network after waiting for existing 1288 * scans to finish. 1289 */ 1290 lbs_deb_assoc("assoc: waiting for existing scans\n"); 1291 wait_event_interruptible_timeout(priv->scan_q, 1292 (priv->scan_req == NULL), 1293 (15 * HZ)); 1294 1295 creq = _new_connect_scan_req(wiphy, sme); 1296 if (!creq) { 1297 ret = -EINVAL; 1298 goto done; 1299 } 1300 1301 lbs_deb_assoc("assoc: scanning for compatible AP\n"); 1302 _internal_start_scan(priv, true, creq); 1303 1304 lbs_deb_assoc("assoc: waiting for scan to complete\n"); 1305 wait_event_interruptible_timeout(priv->scan_q, 1306 (priv->scan_req == NULL), 1307 (15 * HZ)); 1308 lbs_deb_assoc("assoc: scanning completed\n"); 1309 } 1310 1311 /* Find the BSS we want using available scan results */ 1312 bss = cfg80211_get_bss(wiphy, sme->channel, sme->bssid, 1313 sme->ssid, sme->ssid_len, IEEE80211_BSS_TYPE_ESS, 1314 IEEE80211_PRIVACY_ANY); 1315 if (!bss) { 1316 wiphy_err(wiphy, "assoc: bss %pM not in scan results\n", 1317 sme->bssid); 1318 ret = -ENOENT; 1319 goto done; 1320 } 1321 lbs_deb_assoc("trying %pM\n", bss->bssid); 1322 lbs_deb_assoc("cipher 0x%x, key index %d, key len %d\n", 1323 sme->crypto.cipher_group, 1324 sme->key_idx, sme->key_len); 1325 1326 /* As this is a new connection, clear locally stored WEP keys */ 1327 priv->wep_tx_key = 0; 1328 memset(priv->wep_key, 0, sizeof(priv->wep_key)); 1329 memset(priv->wep_key_len, 0, sizeof(priv->wep_key_len)); 1330 1331 /* set/remove WEP keys */ 1332 switch (sme->crypto.cipher_group) { 1333 case WLAN_CIPHER_SUITE_WEP40: 1334 case WLAN_CIPHER_SUITE_WEP104: 1335 /* Store provided WEP keys in priv-> */ 1336 priv->wep_tx_key = sme->key_idx; 1337 priv->wep_key_len[sme->key_idx] = sme->key_len; 1338 memcpy(priv->wep_key[sme->key_idx], sme->key, sme->key_len); 1339 /* Set WEP keys and WEP mode */ 1340 lbs_set_wep_keys(priv); 1341 priv->mac_control |= CMD_ACT_MAC_WEP_ENABLE; 1342 lbs_set_mac_control(priv); 1343 /* No RSN mode for WEP */ 1344 lbs_enable_rsn(priv, 0); 1345 break; 1346 case 0: /* there's no WLAN_CIPHER_SUITE_NONE definition */ 1347 /* 1348 * If we don't have no WEP, no WPA and no WPA2, 1349 * we remove all keys like in the WPA/WPA2 setup, 1350 * we just don't set RSN. 1351 * 1352 * Therefore: fall-through 1353 */ 1354 case WLAN_CIPHER_SUITE_TKIP: 1355 case WLAN_CIPHER_SUITE_CCMP: 1356 /* Remove WEP keys and WEP mode */ 1357 lbs_remove_wep_keys(priv); 1358 priv->mac_control &= ~CMD_ACT_MAC_WEP_ENABLE; 1359 lbs_set_mac_control(priv); 1360 1361 /* clear the WPA/WPA2 keys */ 1362 lbs_set_key_material(priv, 1363 KEY_TYPE_ID_WEP, /* doesn't matter */ 1364 KEY_INFO_WPA_UNICAST, 1365 NULL, 0); 1366 lbs_set_key_material(priv, 1367 KEY_TYPE_ID_WEP, /* doesn't matter */ 1368 KEY_INFO_WPA_MCAST, 1369 NULL, 0); 1370 /* RSN mode for WPA/WPA2 */ 1371 lbs_enable_rsn(priv, sme->crypto.cipher_group != 0); 1372 break; 1373 default: 1374 wiphy_err(wiphy, "unsupported cipher group 0x%x\n", 1375 sme->crypto.cipher_group); 1376 ret = -ENOTSUPP; 1377 goto done; 1378 } 1379 1380 ret = lbs_set_authtype(priv, sme); 1381 if (ret == -ENOTSUPP) { 1382 wiphy_err(wiphy, "unsupported authtype 0x%x\n", sme->auth_type); 1383 goto done; 1384 } 1385 1386 lbs_set_radio(priv, preamble, 1); 1387 1388 /* Do the actual association */ 1389 ret = lbs_associate(priv, bss, sme); 1390 1391 done: 1392 if (bss) 1393 cfg80211_put_bss(wiphy, bss); 1394 return ret; 1395 } 1396 1397 int lbs_disconnect(struct lbs_private *priv, u16 reason) 1398 { 1399 struct cmd_ds_802_11_deauthenticate cmd; 1400 int ret; 1401 1402 memset(&cmd, 0, sizeof(cmd)); 1403 cmd.hdr.size = cpu_to_le16(sizeof(cmd)); 1404 /* Mildly ugly to use a locally store my own BSSID ... */ 1405 memcpy(cmd.macaddr, &priv->assoc_bss, ETH_ALEN); 1406 cmd.reasoncode = cpu_to_le16(reason); 1407 1408 ret = lbs_cmd_with_response(priv, CMD_802_11_DEAUTHENTICATE, &cmd); 1409 if (ret) 1410 return ret; 1411 1412 cfg80211_disconnected(priv->dev, 1413 reason, 1414 NULL, 0, true, 1415 GFP_KERNEL); 1416 priv->connect_status = LBS_DISCONNECTED; 1417 1418 return 0; 1419 } 1420 1421 static int lbs_cfg_disconnect(struct wiphy *wiphy, struct net_device *dev, 1422 u16 reason_code) 1423 { 1424 struct lbs_private *priv = wiphy_priv(wiphy); 1425 1426 if (dev == priv->mesh_dev) 1427 return -EOPNOTSUPP; 1428 1429 /* store for lbs_cfg_ret_disconnect() */ 1430 priv->disassoc_reason = reason_code; 1431 1432 return lbs_disconnect(priv, reason_code); 1433 } 1434 1435 static int lbs_cfg_set_default_key(struct wiphy *wiphy, 1436 struct net_device *netdev, 1437 u8 key_index, bool unicast, 1438 bool multicast) 1439 { 1440 struct lbs_private *priv = wiphy_priv(wiphy); 1441 1442 if (netdev == priv->mesh_dev) 1443 return -EOPNOTSUPP; 1444 1445 if (key_index != priv->wep_tx_key) { 1446 lbs_deb_assoc("set_default_key: to %d\n", key_index); 1447 priv->wep_tx_key = key_index; 1448 lbs_set_wep_keys(priv); 1449 } 1450 1451 return 0; 1452 } 1453 1454 1455 static int lbs_cfg_add_key(struct wiphy *wiphy, struct net_device *netdev, 1456 u8 idx, bool pairwise, const u8 *mac_addr, 1457 struct key_params *params) 1458 { 1459 struct lbs_private *priv = wiphy_priv(wiphy); 1460 u16 key_info; 1461 u16 key_type; 1462 int ret = 0; 1463 1464 if (netdev == priv->mesh_dev) 1465 return -EOPNOTSUPP; 1466 1467 lbs_deb_assoc("add_key: cipher 0x%x, mac_addr %pM\n", 1468 params->cipher, mac_addr); 1469 lbs_deb_assoc("add_key: key index %d, key len %d\n", 1470 idx, params->key_len); 1471 if (params->key_len) 1472 lbs_deb_hex(LBS_DEB_CFG80211, "KEY", 1473 params->key, params->key_len); 1474 1475 lbs_deb_assoc("add_key: seq len %d\n", params->seq_len); 1476 if (params->seq_len) 1477 lbs_deb_hex(LBS_DEB_CFG80211, "SEQ", 1478 params->seq, params->seq_len); 1479 1480 switch (params->cipher) { 1481 case WLAN_CIPHER_SUITE_WEP40: 1482 case WLAN_CIPHER_SUITE_WEP104: 1483 /* actually compare if something has changed ... */ 1484 if ((priv->wep_key_len[idx] != params->key_len) || 1485 memcmp(priv->wep_key[idx], 1486 params->key, params->key_len) != 0) { 1487 priv->wep_key_len[idx] = params->key_len; 1488 memcpy(priv->wep_key[idx], 1489 params->key, params->key_len); 1490 lbs_set_wep_keys(priv); 1491 } 1492 break; 1493 case WLAN_CIPHER_SUITE_TKIP: 1494 case WLAN_CIPHER_SUITE_CCMP: 1495 key_info = KEY_INFO_WPA_ENABLED | ((idx == 0) 1496 ? KEY_INFO_WPA_UNICAST 1497 : KEY_INFO_WPA_MCAST); 1498 key_type = (params->cipher == WLAN_CIPHER_SUITE_TKIP) 1499 ? KEY_TYPE_ID_TKIP 1500 : KEY_TYPE_ID_AES; 1501 lbs_set_key_material(priv, 1502 key_type, 1503 key_info, 1504 params->key, params->key_len); 1505 break; 1506 default: 1507 wiphy_err(wiphy, "unhandled cipher 0x%x\n", params->cipher); 1508 ret = -ENOTSUPP; 1509 break; 1510 } 1511 1512 return ret; 1513 } 1514 1515 1516 static int lbs_cfg_del_key(struct wiphy *wiphy, struct net_device *netdev, 1517 u8 key_index, bool pairwise, const u8 *mac_addr) 1518 { 1519 1520 lbs_deb_assoc("del_key: key_idx %d, mac_addr %pM\n", 1521 key_index, mac_addr); 1522 1523 #ifdef TODO 1524 struct lbs_private *priv = wiphy_priv(wiphy); 1525 /* 1526 * I think can keep this a NO-OP, because: 1527 1528 * - we clear all keys whenever we do lbs_cfg_connect() anyway 1529 * - neither "iw" nor "wpa_supplicant" won't call this during 1530 * an ongoing connection 1531 * - TODO: but I have to check if this is still true when 1532 * I set the AP to periodic re-keying 1533 * - we've not kzallec() something when we've added a key at 1534 * lbs_cfg_connect() or lbs_cfg_add_key(). 1535 * 1536 * This causes lbs_cfg_del_key() only called at disconnect time, 1537 * where we'd just waste time deleting a key that is not going 1538 * to be used anyway. 1539 */ 1540 if (key_index < 3 && priv->wep_key_len[key_index]) { 1541 priv->wep_key_len[key_index] = 0; 1542 lbs_set_wep_keys(priv); 1543 } 1544 #endif 1545 1546 return 0; 1547 } 1548 1549 1550 /* 1551 * Get station 1552 */ 1553 1554 static int lbs_cfg_get_station(struct wiphy *wiphy, struct net_device *dev, 1555 const u8 *mac, struct station_info *sinfo) 1556 { 1557 struct lbs_private *priv = wiphy_priv(wiphy); 1558 s8 signal, noise; 1559 int ret; 1560 size_t i; 1561 1562 sinfo->filled |= BIT(NL80211_STA_INFO_TX_BYTES) | 1563 BIT(NL80211_STA_INFO_TX_PACKETS) | 1564 BIT(NL80211_STA_INFO_RX_BYTES) | 1565 BIT(NL80211_STA_INFO_RX_PACKETS); 1566 sinfo->tx_bytes = priv->dev->stats.tx_bytes; 1567 sinfo->tx_packets = priv->dev->stats.tx_packets; 1568 sinfo->rx_bytes = priv->dev->stats.rx_bytes; 1569 sinfo->rx_packets = priv->dev->stats.rx_packets; 1570 1571 /* Get current RSSI */ 1572 ret = lbs_get_rssi(priv, &signal, &noise); 1573 if (ret == 0) { 1574 sinfo->signal = signal; 1575 sinfo->filled |= BIT(NL80211_STA_INFO_SIGNAL); 1576 } 1577 1578 /* Convert priv->cur_rate from hw_value to NL80211 value */ 1579 for (i = 0; i < ARRAY_SIZE(lbs_rates); i++) { 1580 if (priv->cur_rate == lbs_rates[i].hw_value) { 1581 sinfo->txrate.legacy = lbs_rates[i].bitrate; 1582 sinfo->filled |= BIT(NL80211_STA_INFO_TX_BITRATE); 1583 break; 1584 } 1585 } 1586 1587 return 0; 1588 } 1589 1590 1591 1592 1593 /* 1594 * Change interface 1595 */ 1596 1597 static int lbs_change_intf(struct wiphy *wiphy, struct net_device *dev, 1598 enum nl80211_iftype type, 1599 struct vif_params *params) 1600 { 1601 struct lbs_private *priv = wiphy_priv(wiphy); 1602 int ret = 0; 1603 1604 if (dev == priv->mesh_dev) 1605 return -EOPNOTSUPP; 1606 1607 switch (type) { 1608 case NL80211_IFTYPE_MONITOR: 1609 case NL80211_IFTYPE_STATION: 1610 case NL80211_IFTYPE_ADHOC: 1611 break; 1612 default: 1613 return -EOPNOTSUPP; 1614 } 1615 1616 if (priv->iface_running) 1617 ret = lbs_set_iface_type(priv, type); 1618 1619 if (!ret) 1620 priv->wdev->iftype = type; 1621 1622 return ret; 1623 } 1624 1625 1626 1627 /* 1628 * IBSS (Ad-Hoc) 1629 */ 1630 1631 /* 1632 * The firmware needs the following bits masked out of the beacon-derived 1633 * capability field when associating/joining to a BSS: 1634 * 9 (QoS), 11 (APSD), 12 (unused), 14 (unused), 15 (unused) 1635 */ 1636 #define CAPINFO_MASK (~(0xda00)) 1637 1638 1639 static void lbs_join_post(struct lbs_private *priv, 1640 struct cfg80211_ibss_params *params, 1641 u8 *bssid, u16 capability) 1642 { 1643 u8 fake_ie[2 + IEEE80211_MAX_SSID_LEN + /* ssid */ 1644 2 + 4 + /* basic rates */ 1645 2 + 1 + /* DS parameter */ 1646 2 + 2 + /* atim */ 1647 2 + 8]; /* extended rates */ 1648 u8 *fake = fake_ie; 1649 struct cfg80211_bss *bss; 1650 1651 /* 1652 * For cfg80211_inform_bss, we'll need a fake IE, as we can't get 1653 * the real IE from the firmware. So we fabricate a fake IE based on 1654 * what the firmware actually sends (sniffed with wireshark). 1655 */ 1656 /* Fake SSID IE */ 1657 *fake++ = WLAN_EID_SSID; 1658 *fake++ = params->ssid_len; 1659 memcpy(fake, params->ssid, params->ssid_len); 1660 fake += params->ssid_len; 1661 /* Fake supported basic rates IE */ 1662 *fake++ = WLAN_EID_SUPP_RATES; 1663 *fake++ = 4; 1664 *fake++ = 0x82; 1665 *fake++ = 0x84; 1666 *fake++ = 0x8b; 1667 *fake++ = 0x96; 1668 /* Fake DS channel IE */ 1669 *fake++ = WLAN_EID_DS_PARAMS; 1670 *fake++ = 1; 1671 *fake++ = params->chandef.chan->hw_value; 1672 /* Fake IBSS params IE */ 1673 *fake++ = WLAN_EID_IBSS_PARAMS; 1674 *fake++ = 2; 1675 *fake++ = 0; /* ATIM=0 */ 1676 *fake++ = 0; 1677 /* Fake extended rates IE, TODO: don't add this for 802.11b only, 1678 * but I don't know how this could be checked */ 1679 *fake++ = WLAN_EID_EXT_SUPP_RATES; 1680 *fake++ = 8; 1681 *fake++ = 0x0c; 1682 *fake++ = 0x12; 1683 *fake++ = 0x18; 1684 *fake++ = 0x24; 1685 *fake++ = 0x30; 1686 *fake++ = 0x48; 1687 *fake++ = 0x60; 1688 *fake++ = 0x6c; 1689 lbs_deb_hex(LBS_DEB_CFG80211, "IE", fake_ie, fake - fake_ie); 1690 1691 bss = cfg80211_inform_bss(priv->wdev->wiphy, 1692 params->chandef.chan, 1693 CFG80211_BSS_FTYPE_UNKNOWN, 1694 bssid, 1695 0, 1696 capability, 1697 params->beacon_interval, 1698 fake_ie, fake - fake_ie, 1699 0, GFP_KERNEL); 1700 cfg80211_put_bss(priv->wdev->wiphy, bss); 1701 1702 cfg80211_ibss_joined(priv->dev, bssid, params->chandef.chan, 1703 GFP_KERNEL); 1704 1705 /* TODO: consider doing this at MACREG_INT_CODE_LINK_SENSED time */ 1706 priv->connect_status = LBS_CONNECTED; 1707 netif_carrier_on(priv->dev); 1708 if (!priv->tx_pending_len) 1709 netif_wake_queue(priv->dev); 1710 } 1711 1712 static int lbs_ibss_join_existing(struct lbs_private *priv, 1713 struct cfg80211_ibss_params *params, 1714 struct cfg80211_bss *bss) 1715 { 1716 const u8 *rates_eid; 1717 struct cmd_ds_802_11_ad_hoc_join cmd; 1718 u8 preamble = RADIO_PREAMBLE_SHORT; 1719 int ret = 0; 1720 1721 /* TODO: set preamble based on scan result */ 1722 ret = lbs_set_radio(priv, preamble, 1); 1723 if (ret) 1724 goto out; 1725 1726 /* 1727 * Example CMD_802_11_AD_HOC_JOIN command: 1728 * 1729 * command 2c 00 CMD_802_11_AD_HOC_JOIN 1730 * size 65 00 1731 * sequence xx xx 1732 * result 00 00 1733 * bssid 02 27 27 97 2f 96 1734 * ssid 49 42 53 53 00 00 00 00 1735 * 00 00 00 00 00 00 00 00 1736 * 00 00 00 00 00 00 00 00 1737 * 00 00 00 00 00 00 00 00 1738 * type 02 CMD_BSS_TYPE_IBSS 1739 * beacon period 64 00 1740 * dtim period 00 1741 * timestamp 00 00 00 00 00 00 00 00 1742 * localtime 00 00 00 00 00 00 00 00 1743 * IE DS 03 1744 * IE DS len 01 1745 * IE DS channel 01 1746 * reserveed 00 00 00 00 1747 * IE IBSS 06 1748 * IE IBSS len 02 1749 * IE IBSS atim 00 00 1750 * reserved 00 00 00 00 1751 * capability 02 00 1752 * rates 82 84 8b 96 0c 12 18 24 30 48 60 6c 00 1753 * fail timeout ff 00 1754 * probe delay 00 00 1755 */ 1756 memset(&cmd, 0, sizeof(cmd)); 1757 cmd.hdr.size = cpu_to_le16(sizeof(cmd)); 1758 1759 memcpy(cmd.bss.bssid, bss->bssid, ETH_ALEN); 1760 memcpy(cmd.bss.ssid, params->ssid, params->ssid_len); 1761 cmd.bss.type = CMD_BSS_TYPE_IBSS; 1762 cmd.bss.beaconperiod = cpu_to_le16(params->beacon_interval); 1763 cmd.bss.ds.header.id = WLAN_EID_DS_PARAMS; 1764 cmd.bss.ds.header.len = 1; 1765 cmd.bss.ds.channel = params->chandef.chan->hw_value; 1766 cmd.bss.ibss.header.id = WLAN_EID_IBSS_PARAMS; 1767 cmd.bss.ibss.header.len = 2; 1768 cmd.bss.ibss.atimwindow = 0; 1769 cmd.bss.capability = cpu_to_le16(bss->capability & CAPINFO_MASK); 1770 1771 /* set rates to the intersection of our rates and the rates in the 1772 bss */ 1773 rcu_read_lock(); 1774 rates_eid = ieee80211_bss_get_ie(bss, WLAN_EID_SUPP_RATES); 1775 if (!rates_eid) { 1776 lbs_add_rates(cmd.bss.rates); 1777 } else { 1778 int hw, i; 1779 u8 rates_max = rates_eid[1]; 1780 u8 *rates = cmd.bss.rates; 1781 for (hw = 0; hw < ARRAY_SIZE(lbs_rates); hw++) { 1782 u8 hw_rate = lbs_rates[hw].bitrate / 5; 1783 for (i = 0; i < rates_max; i++) { 1784 if (hw_rate == (rates_eid[i+2] & 0x7f)) { 1785 u8 rate = rates_eid[i+2]; 1786 if (rate == 0x02 || rate == 0x04 || 1787 rate == 0x0b || rate == 0x16) 1788 rate |= 0x80; 1789 *rates++ = rate; 1790 } 1791 } 1792 } 1793 } 1794 rcu_read_unlock(); 1795 1796 /* Only v8 and below support setting this */ 1797 if (MRVL_FW_MAJOR_REV(priv->fwrelease) <= 8) { 1798 cmd.failtimeout = cpu_to_le16(MRVDRV_ASSOCIATION_TIME_OUT); 1799 cmd.probedelay = cpu_to_le16(CMD_SCAN_PROBE_DELAY_TIME); 1800 } 1801 ret = lbs_cmd_with_response(priv, CMD_802_11_AD_HOC_JOIN, &cmd); 1802 if (ret) 1803 goto out; 1804 1805 /* 1806 * This is a sample response to CMD_802_11_AD_HOC_JOIN: 1807 * 1808 * response 2c 80 1809 * size 09 00 1810 * sequence xx xx 1811 * result 00 00 1812 * reserved 00 1813 */ 1814 lbs_join_post(priv, params, bss->bssid, bss->capability); 1815 1816 out: 1817 return ret; 1818 } 1819 1820 1821 1822 static int lbs_ibss_start_new(struct lbs_private *priv, 1823 struct cfg80211_ibss_params *params) 1824 { 1825 struct cmd_ds_802_11_ad_hoc_start cmd; 1826 struct cmd_ds_802_11_ad_hoc_result *resp = 1827 (struct cmd_ds_802_11_ad_hoc_result *) &cmd; 1828 u8 preamble = RADIO_PREAMBLE_SHORT; 1829 int ret = 0; 1830 u16 capability; 1831 1832 ret = lbs_set_radio(priv, preamble, 1); 1833 if (ret) 1834 goto out; 1835 1836 /* 1837 * Example CMD_802_11_AD_HOC_START command: 1838 * 1839 * command 2b 00 CMD_802_11_AD_HOC_START 1840 * size b1 00 1841 * sequence xx xx 1842 * result 00 00 1843 * ssid 54 45 53 54 00 00 00 00 1844 * 00 00 00 00 00 00 00 00 1845 * 00 00 00 00 00 00 00 00 1846 * 00 00 00 00 00 00 00 00 1847 * bss type 02 1848 * beacon period 64 00 1849 * dtim period 00 1850 * IE IBSS 06 1851 * IE IBSS len 02 1852 * IE IBSS atim 00 00 1853 * reserved 00 00 00 00 1854 * IE DS 03 1855 * IE DS len 01 1856 * IE DS channel 01 1857 * reserved 00 00 00 00 1858 * probe delay 00 00 1859 * capability 02 00 1860 * rates 82 84 8b 96 (basic rates with have bit 7 set) 1861 * 0c 12 18 24 30 48 60 6c 1862 * padding 100 bytes 1863 */ 1864 memset(&cmd, 0, sizeof(cmd)); 1865 cmd.hdr.size = cpu_to_le16(sizeof(cmd)); 1866 memcpy(cmd.ssid, params->ssid, params->ssid_len); 1867 cmd.bsstype = CMD_BSS_TYPE_IBSS; 1868 cmd.beaconperiod = cpu_to_le16(params->beacon_interval); 1869 cmd.ibss.header.id = WLAN_EID_IBSS_PARAMS; 1870 cmd.ibss.header.len = 2; 1871 cmd.ibss.atimwindow = 0; 1872 cmd.ds.header.id = WLAN_EID_DS_PARAMS; 1873 cmd.ds.header.len = 1; 1874 cmd.ds.channel = params->chandef.chan->hw_value; 1875 /* Only v8 and below support setting probe delay */ 1876 if (MRVL_FW_MAJOR_REV(priv->fwrelease) <= 8) 1877 cmd.probedelay = cpu_to_le16(CMD_SCAN_PROBE_DELAY_TIME); 1878 /* TODO: mix in WLAN_CAPABILITY_PRIVACY */ 1879 capability = WLAN_CAPABILITY_IBSS; 1880 cmd.capability = cpu_to_le16(capability); 1881 lbs_add_rates(cmd.rates); 1882 1883 1884 ret = lbs_cmd_with_response(priv, CMD_802_11_AD_HOC_START, &cmd); 1885 if (ret) 1886 goto out; 1887 1888 /* 1889 * This is a sample response to CMD_802_11_AD_HOC_JOIN: 1890 * 1891 * response 2b 80 1892 * size 14 00 1893 * sequence xx xx 1894 * result 00 00 1895 * reserved 00 1896 * bssid 02 2b 7b 0f 86 0e 1897 */ 1898 lbs_join_post(priv, params, resp->bssid, capability); 1899 1900 out: 1901 return ret; 1902 } 1903 1904 1905 static int lbs_join_ibss(struct wiphy *wiphy, struct net_device *dev, 1906 struct cfg80211_ibss_params *params) 1907 { 1908 struct lbs_private *priv = wiphy_priv(wiphy); 1909 int ret = 0; 1910 struct cfg80211_bss *bss; 1911 1912 if (dev == priv->mesh_dev) 1913 return -EOPNOTSUPP; 1914 1915 if (!params->chandef.chan) { 1916 ret = -ENOTSUPP; 1917 goto out; 1918 } 1919 1920 ret = lbs_set_channel(priv, params->chandef.chan->hw_value); 1921 if (ret) 1922 goto out; 1923 1924 /* Search if someone is beaconing. This assumes that the 1925 * bss list is populated already */ 1926 bss = cfg80211_get_bss(wiphy, params->chandef.chan, params->bssid, 1927 params->ssid, params->ssid_len, 1928 IEEE80211_BSS_TYPE_IBSS, IEEE80211_PRIVACY_ANY); 1929 1930 if (bss) { 1931 ret = lbs_ibss_join_existing(priv, params, bss); 1932 cfg80211_put_bss(wiphy, bss); 1933 } else 1934 ret = lbs_ibss_start_new(priv, params); 1935 1936 1937 out: 1938 return ret; 1939 } 1940 1941 1942 static int lbs_leave_ibss(struct wiphy *wiphy, struct net_device *dev) 1943 { 1944 struct lbs_private *priv = wiphy_priv(wiphy); 1945 struct cmd_ds_802_11_ad_hoc_stop cmd; 1946 int ret = 0; 1947 1948 if (dev == priv->mesh_dev) 1949 return -EOPNOTSUPP; 1950 1951 memset(&cmd, 0, sizeof(cmd)); 1952 cmd.hdr.size = cpu_to_le16(sizeof(cmd)); 1953 ret = lbs_cmd_with_response(priv, CMD_802_11_AD_HOC_STOP, &cmd); 1954 1955 /* TODO: consider doing this at MACREG_INT_CODE_ADHOC_BCN_LOST time */ 1956 lbs_mac_event_disconnected(priv, true); 1957 1958 return ret; 1959 } 1960 1961 1962 1963 static int lbs_set_power_mgmt(struct wiphy *wiphy, struct net_device *dev, 1964 bool enabled, int timeout) 1965 { 1966 struct lbs_private *priv = wiphy_priv(wiphy); 1967 1968 if (!(priv->fwcapinfo & FW_CAPINFO_PS)) { 1969 if (!enabled) 1970 return 0; 1971 else 1972 return -EINVAL; 1973 } 1974 /* firmware does not work well with too long latency with power saving 1975 * enabled, so do not enable it if there is only polling, no 1976 * interrupts (like in some sdio hosts which can only 1977 * poll for sdio irqs) 1978 */ 1979 if (priv->is_polling) { 1980 if (!enabled) 1981 return 0; 1982 else 1983 return -EINVAL; 1984 } 1985 if (!enabled) { 1986 priv->psmode = LBS802_11POWERMODECAM; 1987 if (priv->psstate != PS_STATE_FULL_POWER) 1988 lbs_set_ps_mode(priv, 1989 PS_MODE_ACTION_EXIT_PS, 1990 true); 1991 return 0; 1992 } 1993 if (priv->psmode != LBS802_11POWERMODECAM) 1994 return 0; 1995 priv->psmode = LBS802_11POWERMODEMAX_PSP; 1996 if (priv->connect_status == LBS_CONNECTED) 1997 lbs_set_ps_mode(priv, PS_MODE_ACTION_ENTER_PS, true); 1998 return 0; 1999 } 2000 2001 /* 2002 * Initialization 2003 */ 2004 2005 static const struct cfg80211_ops lbs_cfg80211_ops = { 2006 .set_monitor_channel = lbs_cfg_set_monitor_channel, 2007 .libertas_set_mesh_channel = lbs_cfg_set_mesh_channel, 2008 .scan = lbs_cfg_scan, 2009 .connect = lbs_cfg_connect, 2010 .disconnect = lbs_cfg_disconnect, 2011 .add_key = lbs_cfg_add_key, 2012 .del_key = lbs_cfg_del_key, 2013 .set_default_key = lbs_cfg_set_default_key, 2014 .get_station = lbs_cfg_get_station, 2015 .change_virtual_intf = lbs_change_intf, 2016 .join_ibss = lbs_join_ibss, 2017 .leave_ibss = lbs_leave_ibss, 2018 .set_power_mgmt = lbs_set_power_mgmt, 2019 }; 2020 2021 2022 /* 2023 * At this time lbs_private *priv doesn't even exist, so we just allocate 2024 * memory and don't initialize the wiphy further. This is postponed until we 2025 * can talk to the firmware and happens at registration time in 2026 * lbs_cfg_wiphy_register(). 2027 */ 2028 struct wireless_dev *lbs_cfg_alloc(struct device *dev) 2029 { 2030 int ret = 0; 2031 struct wireless_dev *wdev; 2032 2033 wdev = kzalloc(sizeof(struct wireless_dev), GFP_KERNEL); 2034 if (!wdev) 2035 return ERR_PTR(-ENOMEM); 2036 2037 wdev->wiphy = wiphy_new(&lbs_cfg80211_ops, sizeof(struct lbs_private)); 2038 if (!wdev->wiphy) { 2039 dev_err(dev, "cannot allocate wiphy\n"); 2040 ret = -ENOMEM; 2041 goto err_wiphy_new; 2042 } 2043 2044 return wdev; 2045 2046 err_wiphy_new: 2047 kfree(wdev); 2048 return ERR_PTR(ret); 2049 } 2050 2051 2052 static void lbs_cfg_set_regulatory_hint(struct lbs_private *priv) 2053 { 2054 struct region_code_mapping { 2055 const char *cn; 2056 int code; 2057 }; 2058 2059 /* Section 5.17.2 */ 2060 static const struct region_code_mapping regmap[] = { 2061 {"US ", 0x10}, /* US FCC */ 2062 {"CA ", 0x20}, /* Canada */ 2063 {"EU ", 0x30}, /* ETSI */ 2064 {"ES ", 0x31}, /* Spain */ 2065 {"FR ", 0x32}, /* France */ 2066 {"JP ", 0x40}, /* Japan */ 2067 }; 2068 size_t i; 2069 2070 for (i = 0; i < ARRAY_SIZE(regmap); i++) 2071 if (regmap[i].code == priv->regioncode) { 2072 regulatory_hint(priv->wdev->wiphy, regmap[i].cn); 2073 break; 2074 } 2075 } 2076 2077 static void lbs_reg_notifier(struct wiphy *wiphy, 2078 struct regulatory_request *request) 2079 { 2080 struct lbs_private *priv = wiphy_priv(wiphy); 2081 2082 memcpy(priv->country_code, request->alpha2, sizeof(request->alpha2)); 2083 if (lbs_iface_active(priv)) 2084 lbs_set_11d_domain_info(priv); 2085 } 2086 2087 /* 2088 * This function get's called after lbs_setup_firmware() determined the 2089 * firmware capabities. So we can setup the wiphy according to our 2090 * hardware/firmware. 2091 */ 2092 int lbs_cfg_register(struct lbs_private *priv) 2093 { 2094 struct wireless_dev *wdev = priv->wdev; 2095 int ret; 2096 2097 wdev->wiphy->max_scan_ssids = 1; 2098 wdev->wiphy->signal_type = CFG80211_SIGNAL_TYPE_MBM; 2099 2100 wdev->wiphy->interface_modes = 2101 BIT(NL80211_IFTYPE_STATION) | 2102 BIT(NL80211_IFTYPE_ADHOC); 2103 if (lbs_rtap_supported(priv)) 2104 wdev->wiphy->interface_modes |= BIT(NL80211_IFTYPE_MONITOR); 2105 if (lbs_mesh_activated(priv)) 2106 wdev->wiphy->interface_modes |= BIT(NL80211_IFTYPE_MESH_POINT); 2107 2108 wdev->wiphy->bands[NL80211_BAND_2GHZ] = &lbs_band_2ghz; 2109 2110 /* 2111 * We could check priv->fwcapinfo && FW_CAPINFO_WPA, but I have 2112 * never seen a firmware without WPA 2113 */ 2114 wdev->wiphy->cipher_suites = cipher_suites; 2115 wdev->wiphy->n_cipher_suites = ARRAY_SIZE(cipher_suites); 2116 wdev->wiphy->reg_notifier = lbs_reg_notifier; 2117 2118 ret = wiphy_register(wdev->wiphy); 2119 if (ret < 0) 2120 pr_err("cannot register wiphy device\n"); 2121 2122 priv->wiphy_registered = true; 2123 2124 ret = register_netdev(priv->dev); 2125 if (ret) 2126 pr_err("cannot register network device\n"); 2127 2128 INIT_DELAYED_WORK(&priv->scan_work, lbs_scan_worker); 2129 2130 lbs_cfg_set_regulatory_hint(priv); 2131 2132 return ret; 2133 } 2134 2135 void lbs_scan_deinit(struct lbs_private *priv) 2136 { 2137 cancel_delayed_work_sync(&priv->scan_work); 2138 } 2139 2140 2141 void lbs_cfg_free(struct lbs_private *priv) 2142 { 2143 struct wireless_dev *wdev = priv->wdev; 2144 2145 if (!wdev) 2146 return; 2147 2148 if (priv->wiphy_registered) 2149 wiphy_unregister(wdev->wiphy); 2150 2151 if (wdev->wiphy) 2152 wiphy_free(wdev->wiphy); 2153 2154 kfree(wdev); 2155 } 2156