1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Implement cfg80211 ("iw") support.
4  *
5  * Copyright (C) 2009 M&N Solutions GmbH, 61191 Rosbach, Germany
6  * Holger Schurig <hs4233@mail.mn-solutions.de>
7  *
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/hardirq.h>
13 #include <linux/sched.h>
14 #include <linux/wait.h>
15 #include <linux/slab.h>
16 #include <linux/ieee80211.h>
17 #include <net/cfg80211.h>
18 #include <asm/unaligned.h>
19 
20 #include "decl.h"
21 #include "cfg.h"
22 #include "cmd.h"
23 #include "mesh.h"
24 
25 
26 #define CHAN2G(_channel, _freq, _flags) {        \
27 	.band             = NL80211_BAND_2GHZ, \
28 	.center_freq      = (_freq),             \
29 	.hw_value         = (_channel),          \
30 	.flags            = (_flags),            \
31 	.max_antenna_gain = 0,                   \
32 	.max_power        = 30,                  \
33 }
34 
35 static struct ieee80211_channel lbs_2ghz_channels[] = {
36 	CHAN2G(1,  2412, 0),
37 	CHAN2G(2,  2417, 0),
38 	CHAN2G(3,  2422, 0),
39 	CHAN2G(4,  2427, 0),
40 	CHAN2G(5,  2432, 0),
41 	CHAN2G(6,  2437, 0),
42 	CHAN2G(7,  2442, 0),
43 	CHAN2G(8,  2447, 0),
44 	CHAN2G(9,  2452, 0),
45 	CHAN2G(10, 2457, 0),
46 	CHAN2G(11, 2462, 0),
47 	CHAN2G(12, 2467, 0),
48 	CHAN2G(13, 2472, 0),
49 	CHAN2G(14, 2484, 0),
50 };
51 
52 #define RATETAB_ENT(_rate, _hw_value, _flags) { \
53 	.bitrate  = (_rate),                    \
54 	.hw_value = (_hw_value),                \
55 	.flags    = (_flags),                   \
56 }
57 
58 
59 /* Table 6 in section 3.2.1.1 */
60 static struct ieee80211_rate lbs_rates[] = {
61 	RATETAB_ENT(10,  0,  0),
62 	RATETAB_ENT(20,  1,  0),
63 	RATETAB_ENT(55,  2,  0),
64 	RATETAB_ENT(110, 3,  0),
65 	RATETAB_ENT(60,  9,  0),
66 	RATETAB_ENT(90,  6,  0),
67 	RATETAB_ENT(120, 7,  0),
68 	RATETAB_ENT(180, 8,  0),
69 	RATETAB_ENT(240, 9,  0),
70 	RATETAB_ENT(360, 10, 0),
71 	RATETAB_ENT(480, 11, 0),
72 	RATETAB_ENT(540, 12, 0),
73 };
74 
75 static struct ieee80211_supported_band lbs_band_2ghz = {
76 	.channels = lbs_2ghz_channels,
77 	.n_channels = ARRAY_SIZE(lbs_2ghz_channels),
78 	.bitrates = lbs_rates,
79 	.n_bitrates = ARRAY_SIZE(lbs_rates),
80 };
81 
82 
83 static const u32 cipher_suites[] = {
84 	WLAN_CIPHER_SUITE_WEP40,
85 	WLAN_CIPHER_SUITE_WEP104,
86 	WLAN_CIPHER_SUITE_TKIP,
87 	WLAN_CIPHER_SUITE_CCMP,
88 };
89 
90 /* Time to stay on the channel */
91 #define LBS_DWELL_PASSIVE 100
92 #define LBS_DWELL_ACTIVE  40
93 
94 
95 /***************************************************************************
96  * Misc utility functions
97  *
98  * TLVs are Marvell specific. They are very similar to IEs, they have the
99  * same structure: type, length, data*. The only difference: for IEs, the
100  * type and length are u8, but for TLVs they're __le16.
101  */
102 
103 /*
104  * Convert NL80211's auth_type to the one from Libertas, see chapter 5.9.1
105  * in the firmware spec
106  */
107 static int lbs_auth_to_authtype(enum nl80211_auth_type auth_type)
108 {
109 	int ret = -ENOTSUPP;
110 
111 	switch (auth_type) {
112 	case NL80211_AUTHTYPE_OPEN_SYSTEM:
113 	case NL80211_AUTHTYPE_SHARED_KEY:
114 		ret = auth_type;
115 		break;
116 	case NL80211_AUTHTYPE_AUTOMATIC:
117 		ret = NL80211_AUTHTYPE_OPEN_SYSTEM;
118 		break;
119 	case NL80211_AUTHTYPE_NETWORK_EAP:
120 		ret = 0x80;
121 		break;
122 	default:
123 		/* silence compiler */
124 		break;
125 	}
126 	return ret;
127 }
128 
129 
130 /*
131  * Various firmware commands need the list of supported rates, but with
132  * the hight-bit set for basic rates
133  */
134 static int lbs_add_rates(u8 *rates)
135 {
136 	size_t i;
137 
138 	for (i = 0; i < ARRAY_SIZE(lbs_rates); i++) {
139 		u8 rate = lbs_rates[i].bitrate / 5;
140 		if (rate == 0x02 || rate == 0x04 ||
141 		    rate == 0x0b || rate == 0x16)
142 			rate |= 0x80;
143 		rates[i] = rate;
144 	}
145 	return ARRAY_SIZE(lbs_rates);
146 }
147 
148 
149 /***************************************************************************
150  * TLV utility functions
151  *
152  * TLVs are Marvell specific. They are very similar to IEs, they have the
153  * same structure: type, length, data*. The only difference: for IEs, the
154  * type and length are u8, but for TLVs they're __le16.
155  */
156 
157 
158 /*
159  * Add ssid TLV
160  */
161 #define LBS_MAX_SSID_TLV_SIZE			\
162 	(sizeof(struct mrvl_ie_header)		\
163 	 + IEEE80211_MAX_SSID_LEN)
164 
165 static int lbs_add_ssid_tlv(u8 *tlv, const u8 *ssid, int ssid_len)
166 {
167 	struct mrvl_ie_ssid_param_set *ssid_tlv = (void *)tlv;
168 
169 	/*
170 	 * TLV-ID SSID  00 00
171 	 * length       06 00
172 	 * ssid         4d 4e 54 45 53 54
173 	 */
174 	ssid_tlv->header.type = cpu_to_le16(TLV_TYPE_SSID);
175 	ssid_tlv->header.len = cpu_to_le16(ssid_len);
176 	memcpy(ssid_tlv->ssid, ssid, ssid_len);
177 	return sizeof(ssid_tlv->header) + ssid_len;
178 }
179 
180 
181 /*
182  * Add channel list TLV (section 8.4.2)
183  *
184  * Actual channel data comes from priv->wdev->wiphy->channels.
185  */
186 #define LBS_MAX_CHANNEL_LIST_TLV_SIZE					\
187 	(sizeof(struct mrvl_ie_header)					\
188 	 + (LBS_SCAN_BEFORE_NAP * sizeof(struct chanscanparamset)))
189 
190 static int lbs_add_channel_list_tlv(struct lbs_private *priv, u8 *tlv,
191 				    int last_channel, int active_scan)
192 {
193 	int chanscanparamsize = sizeof(struct chanscanparamset) *
194 		(last_channel - priv->scan_channel);
195 
196 	struct mrvl_ie_header *header = (void *) tlv;
197 
198 	/*
199 	 * TLV-ID CHANLIST  01 01
200 	 * length           0e 00
201 	 * channel          00 01 00 00 00 64 00
202 	 *   radio type     00
203 	 *   channel           01
204 	 *   scan type            00
205 	 *   min scan time           00 00
206 	 *   max scan time                 64 00
207 	 * channel 2        00 02 00 00 00 64 00
208 	 *
209 	 */
210 
211 	header->type = cpu_to_le16(TLV_TYPE_CHANLIST);
212 	header->len  = cpu_to_le16(chanscanparamsize);
213 	tlv += sizeof(struct mrvl_ie_header);
214 
215 	/* lbs_deb_scan("scan: channels %d to %d\n", priv->scan_channel,
216 		     last_channel); */
217 	memset(tlv, 0, chanscanparamsize);
218 
219 	while (priv->scan_channel < last_channel) {
220 		struct chanscanparamset *param = (void *) tlv;
221 
222 		param->radiotype = CMD_SCAN_RADIO_TYPE_BG;
223 		param->channumber =
224 			priv->scan_req->channels[priv->scan_channel]->hw_value;
225 		if (active_scan) {
226 			param->maxscantime = cpu_to_le16(LBS_DWELL_ACTIVE);
227 		} else {
228 			param->chanscanmode.passivescan = 1;
229 			param->maxscantime = cpu_to_le16(LBS_DWELL_PASSIVE);
230 		}
231 		tlv += sizeof(struct chanscanparamset);
232 		priv->scan_channel++;
233 	}
234 	return sizeof(struct mrvl_ie_header) + chanscanparamsize;
235 }
236 
237 
238 /*
239  * Add rates TLV
240  *
241  * The rates are in lbs_bg_rates[], but for the 802.11b
242  * rates the high bit is set. We add this TLV only because
243  * there's a firmware which otherwise doesn't report all
244  * APs in range.
245  */
246 #define LBS_MAX_RATES_TLV_SIZE			\
247 	(sizeof(struct mrvl_ie_header)		\
248 	 + (ARRAY_SIZE(lbs_rates)))
249 
250 /* Adds a TLV with all rates the hardware supports */
251 static int lbs_add_supported_rates_tlv(u8 *tlv)
252 {
253 	size_t i;
254 	struct mrvl_ie_rates_param_set *rate_tlv = (void *)tlv;
255 
256 	/*
257 	 * TLV-ID RATES  01 00
258 	 * length        0e 00
259 	 * rates         82 84 8b 96 0c 12 18 24 30 48 60 6c
260 	 */
261 	rate_tlv->header.type = cpu_to_le16(TLV_TYPE_RATES);
262 	tlv += sizeof(rate_tlv->header);
263 	i = lbs_add_rates(tlv);
264 	tlv += i;
265 	rate_tlv->header.len = cpu_to_le16(i);
266 	return sizeof(rate_tlv->header) + i;
267 }
268 
269 /* Add common rates from a TLV and return the new end of the TLV */
270 static u8 *
271 add_ie_rates(u8 *tlv, const u8 *ie, int *nrates)
272 {
273 	int hw, ap, ap_max = ie[1];
274 	u8 hw_rate;
275 
276 	/* Advance past IE header */
277 	ie += 2;
278 
279 	lbs_deb_hex(LBS_DEB_ASSOC, "AP IE Rates", (u8 *) ie, ap_max);
280 
281 	for (hw = 0; hw < ARRAY_SIZE(lbs_rates); hw++) {
282 		hw_rate = lbs_rates[hw].bitrate / 5;
283 		for (ap = 0; ap < ap_max; ap++) {
284 			if (hw_rate == (ie[ap] & 0x7f)) {
285 				*tlv++ = ie[ap];
286 				*nrates = *nrates + 1;
287 			}
288 		}
289 	}
290 	return tlv;
291 }
292 
293 /*
294  * Adds a TLV with all rates the hardware *and* BSS supports.
295  */
296 static int lbs_add_common_rates_tlv(u8 *tlv, struct cfg80211_bss *bss)
297 {
298 	struct mrvl_ie_rates_param_set *rate_tlv = (void *)tlv;
299 	const u8 *rates_eid, *ext_rates_eid;
300 	int n = 0;
301 
302 	rcu_read_lock();
303 	rates_eid = ieee80211_bss_get_ie(bss, WLAN_EID_SUPP_RATES);
304 	ext_rates_eid = ieee80211_bss_get_ie(bss, WLAN_EID_EXT_SUPP_RATES);
305 
306 	/*
307 	 * 01 00                   TLV_TYPE_RATES
308 	 * 04 00                   len
309 	 * 82 84 8b 96             rates
310 	 */
311 	rate_tlv->header.type = cpu_to_le16(TLV_TYPE_RATES);
312 	tlv += sizeof(rate_tlv->header);
313 
314 	/* Add basic rates */
315 	if (rates_eid) {
316 		tlv = add_ie_rates(tlv, rates_eid, &n);
317 
318 		/* Add extended rates, if any */
319 		if (ext_rates_eid)
320 			tlv = add_ie_rates(tlv, ext_rates_eid, &n);
321 	} else {
322 		lbs_deb_assoc("assoc: bss had no basic rate IE\n");
323 		/* Fallback: add basic 802.11b rates */
324 		*tlv++ = 0x82;
325 		*tlv++ = 0x84;
326 		*tlv++ = 0x8b;
327 		*tlv++ = 0x96;
328 		n = 4;
329 	}
330 	rcu_read_unlock();
331 
332 	rate_tlv->header.len = cpu_to_le16(n);
333 	return sizeof(rate_tlv->header) + n;
334 }
335 
336 
337 /*
338  * Add auth type TLV.
339  *
340  * This is only needed for newer firmware (V9 and up).
341  */
342 #define LBS_MAX_AUTH_TYPE_TLV_SIZE \
343 	sizeof(struct mrvl_ie_auth_type)
344 
345 static int lbs_add_auth_type_tlv(u8 *tlv, enum nl80211_auth_type auth_type)
346 {
347 	struct mrvl_ie_auth_type *auth = (void *) tlv;
348 
349 	/*
350 	 * 1f 01  TLV_TYPE_AUTH_TYPE
351 	 * 01 00  len
352 	 * 01     auth type
353 	 */
354 	auth->header.type = cpu_to_le16(TLV_TYPE_AUTH_TYPE);
355 	auth->header.len = cpu_to_le16(sizeof(*auth)-sizeof(auth->header));
356 	auth->auth = cpu_to_le16(lbs_auth_to_authtype(auth_type));
357 	return sizeof(*auth);
358 }
359 
360 
361 /*
362  * Add channel (phy ds) TLV
363  */
364 #define LBS_MAX_CHANNEL_TLV_SIZE \
365 	sizeof(struct mrvl_ie_header)
366 
367 static int lbs_add_channel_tlv(u8 *tlv, u8 channel)
368 {
369 	struct mrvl_ie_ds_param_set *ds = (void *) tlv;
370 
371 	/*
372 	 * 03 00  TLV_TYPE_PHY_DS
373 	 * 01 00  len
374 	 * 06     channel
375 	 */
376 	ds->header.type = cpu_to_le16(TLV_TYPE_PHY_DS);
377 	ds->header.len = cpu_to_le16(sizeof(*ds)-sizeof(ds->header));
378 	ds->channel = channel;
379 	return sizeof(*ds);
380 }
381 
382 
383 /*
384  * Add (empty) CF param TLV of the form:
385  */
386 #define LBS_MAX_CF_PARAM_TLV_SIZE		\
387 	sizeof(struct mrvl_ie_header)
388 
389 static int lbs_add_cf_param_tlv(u8 *tlv)
390 {
391 	struct mrvl_ie_cf_param_set *cf = (void *)tlv;
392 
393 	/*
394 	 * 04 00  TLV_TYPE_CF
395 	 * 06 00  len
396 	 * 00     cfpcnt
397 	 * 00     cfpperiod
398 	 * 00 00  cfpmaxduration
399 	 * 00 00  cfpdurationremaining
400 	 */
401 	cf->header.type = cpu_to_le16(TLV_TYPE_CF);
402 	cf->header.len = cpu_to_le16(sizeof(*cf)-sizeof(cf->header));
403 	return sizeof(*cf);
404 }
405 
406 /*
407  * Add WPA TLV
408  */
409 #define LBS_MAX_WPA_TLV_SIZE			\
410 	(sizeof(struct mrvl_ie_header)		\
411 	 + 128 /* TODO: I guessed the size */)
412 
413 static int lbs_add_wpa_tlv(u8 *tlv, const u8 *ie, u8 ie_len)
414 {
415 	size_t tlv_len;
416 
417 	/*
418 	 * We need just convert an IE to an TLV. IEs use u8 for the header,
419 	 *   u8      type
420 	 *   u8      len
421 	 *   u8[]    data
422 	 * but TLVs use __le16 instead:
423 	 *   __le16  type
424 	 *   __le16  len
425 	 *   u8[]    data
426 	 */
427 	*tlv++ = *ie++;
428 	*tlv++ = 0;
429 	tlv_len = *tlv++ = *ie++;
430 	*tlv++ = 0;
431 	while (tlv_len--)
432 		*tlv++ = *ie++;
433 	/* the TLV is two bytes larger than the IE */
434 	return ie_len + 2;
435 }
436 
437 /*
438  * Set Channel
439  */
440 
441 static int lbs_cfg_set_monitor_channel(struct wiphy *wiphy,
442 				       struct cfg80211_chan_def *chandef)
443 {
444 	struct lbs_private *priv = wiphy_priv(wiphy);
445 	int ret = -ENOTSUPP;
446 
447 	if (cfg80211_get_chandef_type(chandef) != NL80211_CHAN_NO_HT)
448 		goto out;
449 
450 	ret = lbs_set_channel(priv, chandef->chan->hw_value);
451 
452  out:
453 	return ret;
454 }
455 
456 static int lbs_cfg_set_mesh_channel(struct wiphy *wiphy,
457 				    struct net_device *netdev,
458 				    struct ieee80211_channel *channel)
459 {
460 	struct lbs_private *priv = wiphy_priv(wiphy);
461 	int ret = -ENOTSUPP;
462 
463 	if (netdev != priv->mesh_dev)
464 		goto out;
465 
466 	ret = lbs_mesh_set_channel(priv, channel->hw_value);
467 
468  out:
469 	return ret;
470 }
471 
472 
473 
474 /*
475  * Scanning
476  */
477 
478 /*
479  * When scanning, the firmware doesn't send a nul packet with the power-safe
480  * bit to the AP. So we cannot stay away from our current channel too long,
481  * otherwise we loose data. So take a "nap" while scanning every other
482  * while.
483  */
484 #define LBS_SCAN_BEFORE_NAP 4
485 
486 
487 /*
488  * When the firmware reports back a scan-result, it gives us an "u8 rssi",
489  * which isn't really an RSSI, as it becomes larger when moving away from
490  * the AP. Anyway, we need to convert that into mBm.
491  */
492 #define LBS_SCAN_RSSI_TO_MBM(rssi) \
493 	((-(int)rssi + 3)*100)
494 
495 static int lbs_ret_scan(struct lbs_private *priv, unsigned long dummy,
496 	struct cmd_header *resp)
497 {
498 	struct cfg80211_bss *bss;
499 	struct cmd_ds_802_11_scan_rsp *scanresp = (void *)resp;
500 	int bsssize;
501 	const u8 *pos;
502 	const u8 *tsfdesc;
503 	int tsfsize;
504 	int i;
505 	int ret = -EILSEQ;
506 
507 	bsssize = get_unaligned_le16(&scanresp->bssdescriptsize);
508 
509 	lbs_deb_scan("scan response: %d BSSs (%d bytes); resp size %d bytes\n",
510 			scanresp->nr_sets, bsssize, le16_to_cpu(resp->size));
511 
512 	if (scanresp->nr_sets == 0) {
513 		ret = 0;
514 		goto done;
515 	}
516 
517 	/*
518 	 * The general layout of the scan response is described in chapter
519 	 * 5.7.1. Basically we have a common part, then any number of BSS
520 	 * descriptor sections. Finally we have section with the same number
521 	 * of TSFs.
522 	 *
523 	 * cmd_ds_802_11_scan_rsp
524 	 *   cmd_header
525 	 *   pos_size
526 	 *   nr_sets
527 	 *   bssdesc 1
528 	 *     bssid
529 	 *     rssi
530 	 *     timestamp
531 	 *     intvl
532 	 *     capa
533 	 *     IEs
534 	 *   bssdesc 2
535 	 *   bssdesc n
536 	 *   MrvlIEtypes_TsfFimestamp_t
537 	 *     TSF for BSS 1
538 	 *     TSF for BSS 2
539 	 *     TSF for BSS n
540 	 */
541 
542 	pos = scanresp->bssdesc_and_tlvbuffer;
543 
544 	lbs_deb_hex(LBS_DEB_SCAN, "SCAN_RSP", scanresp->bssdesc_and_tlvbuffer,
545 			scanresp->bssdescriptsize);
546 
547 	tsfdesc = pos + bsssize;
548 	tsfsize = 4 + 8 * scanresp->nr_sets;
549 	lbs_deb_hex(LBS_DEB_SCAN, "SCAN_TSF", (u8 *) tsfdesc, tsfsize);
550 
551 	/* Validity check: we expect a Marvell-Local TLV */
552 	i = get_unaligned_le16(tsfdesc);
553 	tsfdesc += 2;
554 	if (i != TLV_TYPE_TSFTIMESTAMP) {
555 		lbs_deb_scan("scan response: invalid TSF Timestamp %d\n", i);
556 		goto done;
557 	}
558 
559 	/*
560 	 * Validity check: the TLV holds TSF values with 8 bytes each, so
561 	 * the size in the TLV must match the nr_sets value
562 	 */
563 	i = get_unaligned_le16(tsfdesc);
564 	tsfdesc += 2;
565 	if (i / 8 != scanresp->nr_sets) {
566 		lbs_deb_scan("scan response: invalid number of TSF timestamp "
567 			     "sets (expected %d got %d)\n", scanresp->nr_sets,
568 			     i / 8);
569 		goto done;
570 	}
571 
572 	for (i = 0; i < scanresp->nr_sets; i++) {
573 		const u8 *bssid;
574 		const u8 *ie;
575 		int left;
576 		int ielen;
577 		int rssi;
578 		u16 intvl;
579 		u16 capa;
580 		int chan_no = -1;
581 		const u8 *ssid = NULL;
582 		u8 ssid_len = 0;
583 
584 		int len = get_unaligned_le16(pos);
585 		pos += 2;
586 
587 		/* BSSID */
588 		bssid = pos;
589 		pos += ETH_ALEN;
590 		/* RSSI */
591 		rssi = *pos++;
592 		/* Packet time stamp */
593 		pos += 8;
594 		/* Beacon interval */
595 		intvl = get_unaligned_le16(pos);
596 		pos += 2;
597 		/* Capabilities */
598 		capa = get_unaligned_le16(pos);
599 		pos += 2;
600 
601 		/* To find out the channel, we must parse the IEs */
602 		ie = pos;
603 		/*
604 		 * 6+1+8+2+2: size of BSSID, RSSI, time stamp, beacon
605 		 * interval, capabilities
606 		 */
607 		ielen = left = len - (6 + 1 + 8 + 2 + 2);
608 		while (left >= 2) {
609 			u8 id, elen;
610 			id = *pos++;
611 			elen = *pos++;
612 			left -= 2;
613 			if (elen > left) {
614 				lbs_deb_scan("scan response: invalid IE fmt\n");
615 				goto done;
616 			}
617 
618 			if (id == WLAN_EID_DS_PARAMS)
619 				chan_no = *pos;
620 			if (id == WLAN_EID_SSID) {
621 				ssid = pos;
622 				ssid_len = elen;
623 			}
624 			left -= elen;
625 			pos += elen;
626 		}
627 
628 		/* No channel, no luck */
629 		if (chan_no != -1) {
630 			struct wiphy *wiphy = priv->wdev->wiphy;
631 			int freq = ieee80211_channel_to_frequency(chan_no,
632 							NL80211_BAND_2GHZ);
633 			struct ieee80211_channel *channel =
634 				ieee80211_get_channel(wiphy, freq);
635 
636 			lbs_deb_scan("scan: %pM, capa %04x, chan %2d, %*pE, %d dBm\n",
637 				     bssid, capa, chan_no, ssid_len, ssid,
638 				     LBS_SCAN_RSSI_TO_MBM(rssi)/100);
639 
640 			if (channel &&
641 			    !(channel->flags & IEEE80211_CHAN_DISABLED)) {
642 				bss = cfg80211_inform_bss(wiphy, channel,
643 					CFG80211_BSS_FTYPE_UNKNOWN,
644 					bssid, get_unaligned_le64(tsfdesc),
645 					capa, intvl, ie, ielen,
646 					LBS_SCAN_RSSI_TO_MBM(rssi),
647 					GFP_KERNEL);
648 				cfg80211_put_bss(wiphy, bss);
649 			}
650 		} else
651 			lbs_deb_scan("scan response: missing BSS channel IE\n");
652 
653 		tsfdesc += 8;
654 	}
655 	ret = 0;
656 
657  done:
658 	return ret;
659 }
660 
661 
662 /*
663  * Our scan command contains a TLV, consting of a SSID TLV, a channel list
664  * TLV and a rates TLV. Determine the maximum size of them:
665  */
666 #define LBS_SCAN_MAX_CMD_SIZE			\
667 	(sizeof(struct cmd_ds_802_11_scan)	\
668 	 + LBS_MAX_SSID_TLV_SIZE		\
669 	 + LBS_MAX_CHANNEL_LIST_TLV_SIZE	\
670 	 + LBS_MAX_RATES_TLV_SIZE)
671 
672 /*
673  * Assumes priv->scan_req is initialized and valid
674  * Assumes priv->scan_channel is initialized
675  */
676 static void lbs_scan_worker(struct work_struct *work)
677 {
678 	struct lbs_private *priv =
679 		container_of(work, struct lbs_private, scan_work.work);
680 	struct cmd_ds_802_11_scan *scan_cmd;
681 	u8 *tlv; /* pointer into our current, growing TLV storage area */
682 	int last_channel;
683 	int running, carrier;
684 
685 	scan_cmd = kzalloc(LBS_SCAN_MAX_CMD_SIZE, GFP_KERNEL);
686 	if (scan_cmd == NULL)
687 		return;
688 
689 	/* prepare fixed part of scan command */
690 	scan_cmd->bsstype = CMD_BSS_TYPE_ANY;
691 
692 	/* stop network while we're away from our main channel */
693 	running = !netif_queue_stopped(priv->dev);
694 	carrier = netif_carrier_ok(priv->dev);
695 	if (running)
696 		netif_stop_queue(priv->dev);
697 	if (carrier)
698 		netif_carrier_off(priv->dev);
699 
700 	/* prepare fixed part of scan command */
701 	tlv = scan_cmd->tlvbuffer;
702 
703 	/* add SSID TLV */
704 	if (priv->scan_req->n_ssids && priv->scan_req->ssids[0].ssid_len > 0)
705 		tlv += lbs_add_ssid_tlv(tlv,
706 					priv->scan_req->ssids[0].ssid,
707 					priv->scan_req->ssids[0].ssid_len);
708 
709 	/* add channel TLVs */
710 	last_channel = priv->scan_channel + LBS_SCAN_BEFORE_NAP;
711 	if (last_channel > priv->scan_req->n_channels)
712 		last_channel = priv->scan_req->n_channels;
713 	tlv += lbs_add_channel_list_tlv(priv, tlv, last_channel,
714 		priv->scan_req->n_ssids);
715 
716 	/* add rates TLV */
717 	tlv += lbs_add_supported_rates_tlv(tlv);
718 
719 	if (priv->scan_channel < priv->scan_req->n_channels) {
720 		cancel_delayed_work(&priv->scan_work);
721 		if (netif_running(priv->dev))
722 			queue_delayed_work(priv->work_thread, &priv->scan_work,
723 				msecs_to_jiffies(300));
724 	}
725 
726 	/* This is the final data we are about to send */
727 	scan_cmd->hdr.size = cpu_to_le16(tlv - (u8 *)scan_cmd);
728 	lbs_deb_hex(LBS_DEB_SCAN, "SCAN_CMD", (void *)scan_cmd,
729 		    sizeof(*scan_cmd));
730 	lbs_deb_hex(LBS_DEB_SCAN, "SCAN_TLV", scan_cmd->tlvbuffer,
731 		    tlv - scan_cmd->tlvbuffer);
732 
733 	__lbs_cmd(priv, CMD_802_11_SCAN, &scan_cmd->hdr,
734 		le16_to_cpu(scan_cmd->hdr.size),
735 		lbs_ret_scan, 0);
736 
737 	if (priv->scan_channel >= priv->scan_req->n_channels) {
738 		/* Mark scan done */
739 		cancel_delayed_work(&priv->scan_work);
740 		lbs_scan_done(priv);
741 	}
742 
743 	/* Restart network */
744 	if (carrier)
745 		netif_carrier_on(priv->dev);
746 	if (running && !priv->tx_pending_len)
747 		netif_wake_queue(priv->dev);
748 
749 	kfree(scan_cmd);
750 
751 	/* Wake up anything waiting on scan completion */
752 	if (priv->scan_req == NULL) {
753 		lbs_deb_scan("scan: waking up waiters\n");
754 		wake_up_all(&priv->scan_q);
755 	}
756 }
757 
758 static void _internal_start_scan(struct lbs_private *priv, bool internal,
759 	struct cfg80211_scan_request *request)
760 {
761 	lbs_deb_scan("scan: ssids %d, channels %d, ie_len %zd\n",
762 		request->n_ssids, request->n_channels, request->ie_len);
763 
764 	priv->scan_channel = 0;
765 	priv->scan_req = request;
766 	priv->internal_scan = internal;
767 
768 	queue_delayed_work(priv->work_thread, &priv->scan_work,
769 		msecs_to_jiffies(50));
770 }
771 
772 /*
773  * Clean up priv->scan_req.  Should be used to handle the allocation details.
774  */
775 void lbs_scan_done(struct lbs_private *priv)
776 {
777 	WARN_ON(!priv->scan_req);
778 
779 	if (priv->internal_scan) {
780 		kfree(priv->scan_req);
781 	} else {
782 		struct cfg80211_scan_info info = {
783 			.aborted = false,
784 		};
785 
786 		cfg80211_scan_done(priv->scan_req, &info);
787 	}
788 
789 	priv->scan_req = NULL;
790 }
791 
792 static int lbs_cfg_scan(struct wiphy *wiphy,
793 	struct cfg80211_scan_request *request)
794 {
795 	struct lbs_private *priv = wiphy_priv(wiphy);
796 	int ret = 0;
797 
798 	if (priv->scan_req || delayed_work_pending(&priv->scan_work)) {
799 		/* old scan request not yet processed */
800 		ret = -EAGAIN;
801 		goto out;
802 	}
803 
804 	_internal_start_scan(priv, false, request);
805 
806 	if (priv->surpriseremoved)
807 		ret = -EIO;
808 
809  out:
810 	return ret;
811 }
812 
813 
814 
815 
816 /*
817  * Events
818  */
819 
820 void lbs_send_disconnect_notification(struct lbs_private *priv,
821 				      bool locally_generated)
822 {
823 	cfg80211_disconnected(priv->dev, 0, NULL, 0, locally_generated,
824 			      GFP_KERNEL);
825 }
826 
827 void lbs_send_mic_failureevent(struct lbs_private *priv, u32 event)
828 {
829 	cfg80211_michael_mic_failure(priv->dev,
830 		priv->assoc_bss,
831 		event == MACREG_INT_CODE_MIC_ERR_MULTICAST ?
832 			NL80211_KEYTYPE_GROUP :
833 			NL80211_KEYTYPE_PAIRWISE,
834 		-1,
835 		NULL,
836 		GFP_KERNEL);
837 }
838 
839 
840 
841 
842 /*
843  * Connect/disconnect
844  */
845 
846 
847 /*
848  * This removes all WEP keys
849  */
850 static int lbs_remove_wep_keys(struct lbs_private *priv)
851 {
852 	struct cmd_ds_802_11_set_wep cmd;
853 	int ret;
854 
855 	memset(&cmd, 0, sizeof(cmd));
856 	cmd.hdr.size = cpu_to_le16(sizeof(cmd));
857 	cmd.keyindex = cpu_to_le16(priv->wep_tx_key);
858 	cmd.action = cpu_to_le16(CMD_ACT_REMOVE);
859 
860 	ret = lbs_cmd_with_response(priv, CMD_802_11_SET_WEP, &cmd);
861 
862 	return ret;
863 }
864 
865 /*
866  * Set WEP keys
867  */
868 static int lbs_set_wep_keys(struct lbs_private *priv)
869 {
870 	struct cmd_ds_802_11_set_wep cmd;
871 	int i;
872 	int ret;
873 
874 	/*
875 	 * command         13 00
876 	 * size            50 00
877 	 * sequence        xx xx
878 	 * result          00 00
879 	 * action          02 00     ACT_ADD
880 	 * transmit key    00 00
881 	 * type for key 1  01        WEP40
882 	 * type for key 2  00
883 	 * type for key 3  00
884 	 * type for key 4  00
885 	 * key 1           39 39 39 39 39 00 00 00
886 	 *                 00 00 00 00 00 00 00 00
887 	 * key 2           00 00 00 00 00 00 00 00
888 	 *                 00 00 00 00 00 00 00 00
889 	 * key 3           00 00 00 00 00 00 00 00
890 	 *                 00 00 00 00 00 00 00 00
891 	 * key 4           00 00 00 00 00 00 00 00
892 	 */
893 	if (priv->wep_key_len[0] || priv->wep_key_len[1] ||
894 	    priv->wep_key_len[2] || priv->wep_key_len[3]) {
895 		/* Only set wep keys if we have at least one of them */
896 		memset(&cmd, 0, sizeof(cmd));
897 		cmd.hdr.size = cpu_to_le16(sizeof(cmd));
898 		cmd.keyindex = cpu_to_le16(priv->wep_tx_key);
899 		cmd.action = cpu_to_le16(CMD_ACT_ADD);
900 
901 		for (i = 0; i < 4; i++) {
902 			switch (priv->wep_key_len[i]) {
903 			case WLAN_KEY_LEN_WEP40:
904 				cmd.keytype[i] = CMD_TYPE_WEP_40_BIT;
905 				break;
906 			case WLAN_KEY_LEN_WEP104:
907 				cmd.keytype[i] = CMD_TYPE_WEP_104_BIT;
908 				break;
909 			default:
910 				cmd.keytype[i] = 0;
911 				break;
912 			}
913 			memcpy(cmd.keymaterial[i], priv->wep_key[i],
914 			       priv->wep_key_len[i]);
915 		}
916 
917 		ret = lbs_cmd_with_response(priv, CMD_802_11_SET_WEP, &cmd);
918 	} else {
919 		/* Otherwise remove all wep keys */
920 		ret = lbs_remove_wep_keys(priv);
921 	}
922 
923 	return ret;
924 }
925 
926 
927 /*
928  * Enable/Disable RSN status
929  */
930 static int lbs_enable_rsn(struct lbs_private *priv, int enable)
931 {
932 	struct cmd_ds_802_11_enable_rsn cmd;
933 	int ret;
934 
935 	/*
936 	 * cmd       2f 00
937 	 * size      0c 00
938 	 * sequence  xx xx
939 	 * result    00 00
940 	 * action    01 00    ACT_SET
941 	 * enable    01 00
942 	 */
943 	memset(&cmd, 0, sizeof(cmd));
944 	cmd.hdr.size = cpu_to_le16(sizeof(cmd));
945 	cmd.action = cpu_to_le16(CMD_ACT_SET);
946 	cmd.enable = cpu_to_le16(enable);
947 
948 	ret = lbs_cmd_with_response(priv, CMD_802_11_ENABLE_RSN, &cmd);
949 
950 	return ret;
951 }
952 
953 
954 /*
955  * Set WPA/WPA key material
956  */
957 
958 /*
959  * like "struct cmd_ds_802_11_key_material", but with cmd_header. Once we
960  * get rid of WEXT, this should go into host.h
961  */
962 
963 struct cmd_key_material {
964 	struct cmd_header hdr;
965 
966 	__le16 action;
967 	struct MrvlIEtype_keyParamSet param;
968 } __packed;
969 
970 static int lbs_set_key_material(struct lbs_private *priv,
971 				int key_type, int key_info,
972 				const u8 *key, u16 key_len)
973 {
974 	struct cmd_key_material cmd;
975 	int ret;
976 
977 	/*
978 	 * Example for WPA (TKIP):
979 	 *
980 	 * cmd       5e 00
981 	 * size      34 00
982 	 * sequence  xx xx
983 	 * result    00 00
984 	 * action    01 00
985 	 * TLV type  00 01    key param
986 	 * length    00 26
987 	 * key type  01 00    TKIP
988 	 * key info  06 00    UNICAST | ENABLED
989 	 * key len   20 00
990 	 * key       32 bytes
991 	 */
992 	memset(&cmd, 0, sizeof(cmd));
993 	cmd.hdr.size = cpu_to_le16(sizeof(cmd));
994 	cmd.action = cpu_to_le16(CMD_ACT_SET);
995 	cmd.param.type = cpu_to_le16(TLV_TYPE_KEY_MATERIAL);
996 	cmd.param.length = cpu_to_le16(sizeof(cmd.param) - 4);
997 	cmd.param.keytypeid = cpu_to_le16(key_type);
998 	cmd.param.keyinfo = cpu_to_le16(key_info);
999 	cmd.param.keylen = cpu_to_le16(key_len);
1000 	if (key && key_len)
1001 		memcpy(cmd.param.key, key, key_len);
1002 
1003 	ret = lbs_cmd_with_response(priv, CMD_802_11_KEY_MATERIAL, &cmd);
1004 
1005 	return ret;
1006 }
1007 
1008 
1009 /*
1010  * Sets the auth type (open, shared, etc) in the firmware. That
1011  * we use CMD_802_11_AUTHENTICATE is misleading, this firmware
1012  * command doesn't send an authentication frame at all, it just
1013  * stores the auth_type.
1014  */
1015 static int lbs_set_authtype(struct lbs_private *priv,
1016 			    struct cfg80211_connect_params *sme)
1017 {
1018 	struct cmd_ds_802_11_authenticate cmd;
1019 	int ret;
1020 
1021 	/*
1022 	 * cmd        11 00
1023 	 * size       19 00
1024 	 * sequence   xx xx
1025 	 * result     00 00
1026 	 * BSS id     00 13 19 80 da 30
1027 	 * auth type  00
1028 	 * reserved   00 00 00 00 00 00 00 00 00 00
1029 	 */
1030 	memset(&cmd, 0, sizeof(cmd));
1031 	cmd.hdr.size = cpu_to_le16(sizeof(cmd));
1032 	if (sme->bssid)
1033 		memcpy(cmd.bssid, sme->bssid, ETH_ALEN);
1034 	/* convert auth_type */
1035 	ret = lbs_auth_to_authtype(sme->auth_type);
1036 	if (ret < 0)
1037 		goto done;
1038 
1039 	cmd.authtype = ret;
1040 	ret = lbs_cmd_with_response(priv, CMD_802_11_AUTHENTICATE, &cmd);
1041 
1042  done:
1043 	return ret;
1044 }
1045 
1046 
1047 /*
1048  * Create association request
1049  */
1050 #define LBS_ASSOC_MAX_CMD_SIZE                     \
1051 	(sizeof(struct cmd_ds_802_11_associate)    \
1052 	 - 512 /* cmd_ds_802_11_associate.iebuf */ \
1053 	 + LBS_MAX_SSID_TLV_SIZE                   \
1054 	 + LBS_MAX_CHANNEL_TLV_SIZE                \
1055 	 + LBS_MAX_CF_PARAM_TLV_SIZE               \
1056 	 + LBS_MAX_AUTH_TYPE_TLV_SIZE              \
1057 	 + LBS_MAX_WPA_TLV_SIZE)
1058 
1059 static int lbs_associate(struct lbs_private *priv,
1060 		struct cfg80211_bss *bss,
1061 		struct cfg80211_connect_params *sme)
1062 {
1063 	struct cmd_ds_802_11_associate_response *resp;
1064 	struct cmd_ds_802_11_associate *cmd = kzalloc(LBS_ASSOC_MAX_CMD_SIZE,
1065 						      GFP_KERNEL);
1066 	const u8 *ssid_eid;
1067 	size_t len, resp_ie_len;
1068 	int status;
1069 	int ret;
1070 	u8 *pos;
1071 	u8 *tmp;
1072 
1073 	if (!cmd) {
1074 		ret = -ENOMEM;
1075 		goto done;
1076 	}
1077 	pos = &cmd->iebuf[0];
1078 
1079 	/*
1080 	 * cmd              50 00
1081 	 * length           34 00
1082 	 * sequence         xx xx
1083 	 * result           00 00
1084 	 * BSS id           00 13 19 80 da 30
1085 	 * capabilities     11 00
1086 	 * listen interval  0a 00
1087 	 * beacon interval  00 00
1088 	 * DTIM period      00
1089 	 * TLVs             xx   (up to 512 bytes)
1090 	 */
1091 	cmd->hdr.command = cpu_to_le16(CMD_802_11_ASSOCIATE);
1092 
1093 	/* Fill in static fields */
1094 	memcpy(cmd->bssid, bss->bssid, ETH_ALEN);
1095 	cmd->listeninterval = cpu_to_le16(MRVDRV_DEFAULT_LISTEN_INTERVAL);
1096 	cmd->capability = cpu_to_le16(bss->capability);
1097 
1098 	/* add SSID TLV */
1099 	rcu_read_lock();
1100 	ssid_eid = ieee80211_bss_get_ie(bss, WLAN_EID_SSID);
1101 	if (ssid_eid)
1102 		pos += lbs_add_ssid_tlv(pos, ssid_eid + 2, ssid_eid[1]);
1103 	else
1104 		lbs_deb_assoc("no SSID\n");
1105 	rcu_read_unlock();
1106 
1107 	/* add DS param TLV */
1108 	if (bss->channel)
1109 		pos += lbs_add_channel_tlv(pos, bss->channel->hw_value);
1110 	else
1111 		lbs_deb_assoc("no channel\n");
1112 
1113 	/* add (empty) CF param TLV */
1114 	pos += lbs_add_cf_param_tlv(pos);
1115 
1116 	/* add rates TLV */
1117 	tmp = pos + 4; /* skip Marvell IE header */
1118 	pos += lbs_add_common_rates_tlv(pos, bss);
1119 	lbs_deb_hex(LBS_DEB_ASSOC, "Common Rates", tmp, pos - tmp);
1120 
1121 	/* add auth type TLV */
1122 	if (MRVL_FW_MAJOR_REV(priv->fwrelease) >= 9)
1123 		pos += lbs_add_auth_type_tlv(pos, sme->auth_type);
1124 
1125 	/* add WPA/WPA2 TLV */
1126 	if (sme->ie && sme->ie_len)
1127 		pos += lbs_add_wpa_tlv(pos, sme->ie, sme->ie_len);
1128 
1129 	len = (sizeof(*cmd) - sizeof(cmd->iebuf)) +
1130 		(u16)(pos - (u8 *) &cmd->iebuf);
1131 	cmd->hdr.size = cpu_to_le16(len);
1132 
1133 	lbs_deb_hex(LBS_DEB_ASSOC, "ASSOC_CMD", (u8 *) cmd,
1134 			le16_to_cpu(cmd->hdr.size));
1135 
1136 	/* store for later use */
1137 	memcpy(priv->assoc_bss, bss->bssid, ETH_ALEN);
1138 
1139 	ret = lbs_cmd_with_response(priv, CMD_802_11_ASSOCIATE, cmd);
1140 	if (ret)
1141 		goto done;
1142 
1143 	/* generate connect message to cfg80211 */
1144 
1145 	resp = (void *) cmd; /* recast for easier field access */
1146 	status = le16_to_cpu(resp->statuscode);
1147 
1148 	/* Older FW versions map the IEEE 802.11 Status Code in the association
1149 	 * response to the following values returned in resp->statuscode:
1150 	 *
1151 	 *    IEEE Status Code                Marvell Status Code
1152 	 *    0                       ->      0x0000 ASSOC_RESULT_SUCCESS
1153 	 *    13                      ->      0x0004 ASSOC_RESULT_AUTH_REFUSED
1154 	 *    14                      ->      0x0004 ASSOC_RESULT_AUTH_REFUSED
1155 	 *    15                      ->      0x0004 ASSOC_RESULT_AUTH_REFUSED
1156 	 *    16                      ->      0x0004 ASSOC_RESULT_AUTH_REFUSED
1157 	 *    others                  ->      0x0003 ASSOC_RESULT_REFUSED
1158 	 *
1159 	 * Other response codes:
1160 	 *    0x0001 -> ASSOC_RESULT_INVALID_PARAMETERS (unused)
1161 	 *    0x0002 -> ASSOC_RESULT_TIMEOUT (internal timer expired waiting for
1162 	 *                                    association response from the AP)
1163 	 */
1164 	if (MRVL_FW_MAJOR_REV(priv->fwrelease) <= 8) {
1165 		switch (status) {
1166 		case 0:
1167 			break;
1168 		case 1:
1169 			lbs_deb_assoc("invalid association parameters\n");
1170 			status = WLAN_STATUS_CAPS_UNSUPPORTED;
1171 			break;
1172 		case 2:
1173 			lbs_deb_assoc("timer expired while waiting for AP\n");
1174 			status = WLAN_STATUS_AUTH_TIMEOUT;
1175 			break;
1176 		case 3:
1177 			lbs_deb_assoc("association refused by AP\n");
1178 			status = WLAN_STATUS_ASSOC_DENIED_UNSPEC;
1179 			break;
1180 		case 4:
1181 			lbs_deb_assoc("authentication refused by AP\n");
1182 			status = WLAN_STATUS_UNKNOWN_AUTH_TRANSACTION;
1183 			break;
1184 		default:
1185 			lbs_deb_assoc("association failure %d\n", status);
1186 			/* v5 OLPC firmware does return the AP status code if
1187 			 * it's not one of the values above.  Let that through.
1188 			 */
1189 			break;
1190 		}
1191 	}
1192 
1193 	lbs_deb_assoc("status %d, statuscode 0x%04x, capability 0x%04x, "
1194 		      "aid 0x%04x\n", status, le16_to_cpu(resp->statuscode),
1195 		      le16_to_cpu(resp->capability), le16_to_cpu(resp->aid));
1196 
1197 	resp_ie_len = le16_to_cpu(resp->hdr.size)
1198 		- sizeof(resp->hdr)
1199 		- 6;
1200 	cfg80211_connect_result(priv->dev,
1201 				priv->assoc_bss,
1202 				sme->ie, sme->ie_len,
1203 				resp->iebuf, resp_ie_len,
1204 				status,
1205 				GFP_KERNEL);
1206 
1207 	if (status == 0) {
1208 		/* TODO: get rid of priv->connect_status */
1209 		priv->connect_status = LBS_CONNECTED;
1210 		netif_carrier_on(priv->dev);
1211 		if (!priv->tx_pending_len)
1212 			netif_tx_wake_all_queues(priv->dev);
1213 	}
1214 
1215 	kfree(cmd);
1216 done:
1217 	return ret;
1218 }
1219 
1220 static struct cfg80211_scan_request *
1221 _new_connect_scan_req(struct wiphy *wiphy, struct cfg80211_connect_params *sme)
1222 {
1223 	struct cfg80211_scan_request *creq = NULL;
1224 	int i, n_channels = ieee80211_get_num_supported_channels(wiphy);
1225 	enum nl80211_band band;
1226 
1227 	creq = kzalloc(sizeof(*creq) + sizeof(struct cfg80211_ssid) +
1228 		       n_channels * sizeof(void *),
1229 		       GFP_ATOMIC);
1230 	if (!creq)
1231 		return NULL;
1232 
1233 	/* SSIDs come after channels */
1234 	creq->ssids = (void *)&creq->channels[n_channels];
1235 	creq->n_channels = n_channels;
1236 	creq->n_ssids = 1;
1237 
1238 	/* Scan all available channels */
1239 	i = 0;
1240 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
1241 		int j;
1242 
1243 		if (!wiphy->bands[band])
1244 			continue;
1245 
1246 		for (j = 0; j < wiphy->bands[band]->n_channels; j++) {
1247 			/* ignore disabled channels */
1248 			if (wiphy->bands[band]->channels[j].flags &
1249 						IEEE80211_CHAN_DISABLED)
1250 				continue;
1251 
1252 			creq->channels[i] = &wiphy->bands[band]->channels[j];
1253 			i++;
1254 		}
1255 	}
1256 	if (i) {
1257 		/* Set real number of channels specified in creq->channels[] */
1258 		creq->n_channels = i;
1259 
1260 		/* Scan for the SSID we're going to connect to */
1261 		memcpy(creq->ssids[0].ssid, sme->ssid, sme->ssid_len);
1262 		creq->ssids[0].ssid_len = sme->ssid_len;
1263 	} else {
1264 		/* No channels found... */
1265 		kfree(creq);
1266 		creq = NULL;
1267 	}
1268 
1269 	return creq;
1270 }
1271 
1272 static int lbs_cfg_connect(struct wiphy *wiphy, struct net_device *dev,
1273 			   struct cfg80211_connect_params *sme)
1274 {
1275 	struct lbs_private *priv = wiphy_priv(wiphy);
1276 	struct cfg80211_bss *bss = NULL;
1277 	int ret = 0;
1278 	u8 preamble = RADIO_PREAMBLE_SHORT;
1279 
1280 	if (dev == priv->mesh_dev)
1281 		return -EOPNOTSUPP;
1282 
1283 	if (!sme->bssid) {
1284 		struct cfg80211_scan_request *creq;
1285 
1286 		/*
1287 		 * Scan for the requested network after waiting for existing
1288 		 * scans to finish.
1289 		 */
1290 		lbs_deb_assoc("assoc: waiting for existing scans\n");
1291 		wait_event_interruptible_timeout(priv->scan_q,
1292 						 (priv->scan_req == NULL),
1293 						 (15 * HZ));
1294 
1295 		creq = _new_connect_scan_req(wiphy, sme);
1296 		if (!creq) {
1297 			ret = -EINVAL;
1298 			goto done;
1299 		}
1300 
1301 		lbs_deb_assoc("assoc: scanning for compatible AP\n");
1302 		_internal_start_scan(priv, true, creq);
1303 
1304 		lbs_deb_assoc("assoc: waiting for scan to complete\n");
1305 		wait_event_interruptible_timeout(priv->scan_q,
1306 						 (priv->scan_req == NULL),
1307 						 (15 * HZ));
1308 		lbs_deb_assoc("assoc: scanning completed\n");
1309 	}
1310 
1311 	/* Find the BSS we want using available scan results */
1312 	bss = cfg80211_get_bss(wiphy, sme->channel, sme->bssid,
1313 		sme->ssid, sme->ssid_len, IEEE80211_BSS_TYPE_ESS,
1314 		IEEE80211_PRIVACY_ANY);
1315 	if (!bss) {
1316 		wiphy_err(wiphy, "assoc: bss %pM not in scan results\n",
1317 			  sme->bssid);
1318 		ret = -ENOENT;
1319 		goto done;
1320 	}
1321 	lbs_deb_assoc("trying %pM\n", bss->bssid);
1322 	lbs_deb_assoc("cipher 0x%x, key index %d, key len %d\n",
1323 		      sme->crypto.cipher_group,
1324 		      sme->key_idx, sme->key_len);
1325 
1326 	/* As this is a new connection, clear locally stored WEP keys */
1327 	priv->wep_tx_key = 0;
1328 	memset(priv->wep_key, 0, sizeof(priv->wep_key));
1329 	memset(priv->wep_key_len, 0, sizeof(priv->wep_key_len));
1330 
1331 	/* set/remove WEP keys */
1332 	switch (sme->crypto.cipher_group) {
1333 	case WLAN_CIPHER_SUITE_WEP40:
1334 	case WLAN_CIPHER_SUITE_WEP104:
1335 		/* Store provided WEP keys in priv-> */
1336 		priv->wep_tx_key = sme->key_idx;
1337 		priv->wep_key_len[sme->key_idx] = sme->key_len;
1338 		memcpy(priv->wep_key[sme->key_idx], sme->key, sme->key_len);
1339 		/* Set WEP keys and WEP mode */
1340 		lbs_set_wep_keys(priv);
1341 		priv->mac_control |= CMD_ACT_MAC_WEP_ENABLE;
1342 		lbs_set_mac_control(priv);
1343 		/* No RSN mode for WEP */
1344 		lbs_enable_rsn(priv, 0);
1345 		break;
1346 	case 0: /* there's no WLAN_CIPHER_SUITE_NONE definition */
1347 		/*
1348 		 * If we don't have no WEP, no WPA and no WPA2,
1349 		 * we remove all keys like in the WPA/WPA2 setup,
1350 		 * we just don't set RSN.
1351 		 *
1352 		 * Therefore: fall-through
1353 		 */
1354 	case WLAN_CIPHER_SUITE_TKIP:
1355 	case WLAN_CIPHER_SUITE_CCMP:
1356 		/* Remove WEP keys and WEP mode */
1357 		lbs_remove_wep_keys(priv);
1358 		priv->mac_control &= ~CMD_ACT_MAC_WEP_ENABLE;
1359 		lbs_set_mac_control(priv);
1360 
1361 		/* clear the WPA/WPA2 keys */
1362 		lbs_set_key_material(priv,
1363 			KEY_TYPE_ID_WEP, /* doesn't matter */
1364 			KEY_INFO_WPA_UNICAST,
1365 			NULL, 0);
1366 		lbs_set_key_material(priv,
1367 			KEY_TYPE_ID_WEP, /* doesn't matter */
1368 			KEY_INFO_WPA_MCAST,
1369 			NULL, 0);
1370 		/* RSN mode for WPA/WPA2 */
1371 		lbs_enable_rsn(priv, sme->crypto.cipher_group != 0);
1372 		break;
1373 	default:
1374 		wiphy_err(wiphy, "unsupported cipher group 0x%x\n",
1375 			  sme->crypto.cipher_group);
1376 		ret = -ENOTSUPP;
1377 		goto done;
1378 	}
1379 
1380 	ret = lbs_set_authtype(priv, sme);
1381 	if (ret == -ENOTSUPP) {
1382 		wiphy_err(wiphy, "unsupported authtype 0x%x\n", sme->auth_type);
1383 		goto done;
1384 	}
1385 
1386 	lbs_set_radio(priv, preamble, 1);
1387 
1388 	/* Do the actual association */
1389 	ret = lbs_associate(priv, bss, sme);
1390 
1391  done:
1392 	if (bss)
1393 		cfg80211_put_bss(wiphy, bss);
1394 	return ret;
1395 }
1396 
1397 int lbs_disconnect(struct lbs_private *priv, u16 reason)
1398 {
1399 	struct cmd_ds_802_11_deauthenticate cmd;
1400 	int ret;
1401 
1402 	memset(&cmd, 0, sizeof(cmd));
1403 	cmd.hdr.size = cpu_to_le16(sizeof(cmd));
1404 	/* Mildly ugly to use a locally store my own BSSID ... */
1405 	memcpy(cmd.macaddr, &priv->assoc_bss, ETH_ALEN);
1406 	cmd.reasoncode = cpu_to_le16(reason);
1407 
1408 	ret = lbs_cmd_with_response(priv, CMD_802_11_DEAUTHENTICATE, &cmd);
1409 	if (ret)
1410 		return ret;
1411 
1412 	cfg80211_disconnected(priv->dev,
1413 			reason,
1414 			NULL, 0, true,
1415 			GFP_KERNEL);
1416 	priv->connect_status = LBS_DISCONNECTED;
1417 
1418 	return 0;
1419 }
1420 
1421 static int lbs_cfg_disconnect(struct wiphy *wiphy, struct net_device *dev,
1422 	u16 reason_code)
1423 {
1424 	struct lbs_private *priv = wiphy_priv(wiphy);
1425 
1426 	if (dev == priv->mesh_dev)
1427 		return -EOPNOTSUPP;
1428 
1429 	/* store for lbs_cfg_ret_disconnect() */
1430 	priv->disassoc_reason = reason_code;
1431 
1432 	return lbs_disconnect(priv, reason_code);
1433 }
1434 
1435 static int lbs_cfg_set_default_key(struct wiphy *wiphy,
1436 				   struct net_device *netdev,
1437 				   u8 key_index, bool unicast,
1438 				   bool multicast)
1439 {
1440 	struct lbs_private *priv = wiphy_priv(wiphy);
1441 
1442 	if (netdev == priv->mesh_dev)
1443 		return -EOPNOTSUPP;
1444 
1445 	if (key_index != priv->wep_tx_key) {
1446 		lbs_deb_assoc("set_default_key: to %d\n", key_index);
1447 		priv->wep_tx_key = key_index;
1448 		lbs_set_wep_keys(priv);
1449 	}
1450 
1451 	return 0;
1452 }
1453 
1454 
1455 static int lbs_cfg_add_key(struct wiphy *wiphy, struct net_device *netdev,
1456 			   u8 idx, bool pairwise, const u8 *mac_addr,
1457 			   struct key_params *params)
1458 {
1459 	struct lbs_private *priv = wiphy_priv(wiphy);
1460 	u16 key_info;
1461 	u16 key_type;
1462 	int ret = 0;
1463 
1464 	if (netdev == priv->mesh_dev)
1465 		return -EOPNOTSUPP;
1466 
1467 	lbs_deb_assoc("add_key: cipher 0x%x, mac_addr %pM\n",
1468 		      params->cipher, mac_addr);
1469 	lbs_deb_assoc("add_key: key index %d, key len %d\n",
1470 		      idx, params->key_len);
1471 	if (params->key_len)
1472 		lbs_deb_hex(LBS_DEB_CFG80211, "KEY",
1473 			    params->key, params->key_len);
1474 
1475 	lbs_deb_assoc("add_key: seq len %d\n", params->seq_len);
1476 	if (params->seq_len)
1477 		lbs_deb_hex(LBS_DEB_CFG80211, "SEQ",
1478 			    params->seq, params->seq_len);
1479 
1480 	switch (params->cipher) {
1481 	case WLAN_CIPHER_SUITE_WEP40:
1482 	case WLAN_CIPHER_SUITE_WEP104:
1483 		/* actually compare if something has changed ... */
1484 		if ((priv->wep_key_len[idx] != params->key_len) ||
1485 			memcmp(priv->wep_key[idx],
1486 			       params->key, params->key_len) != 0) {
1487 			priv->wep_key_len[idx] = params->key_len;
1488 			memcpy(priv->wep_key[idx],
1489 			       params->key, params->key_len);
1490 			lbs_set_wep_keys(priv);
1491 		}
1492 		break;
1493 	case WLAN_CIPHER_SUITE_TKIP:
1494 	case WLAN_CIPHER_SUITE_CCMP:
1495 		key_info = KEY_INFO_WPA_ENABLED | ((idx == 0)
1496 						   ? KEY_INFO_WPA_UNICAST
1497 						   : KEY_INFO_WPA_MCAST);
1498 		key_type = (params->cipher == WLAN_CIPHER_SUITE_TKIP)
1499 			? KEY_TYPE_ID_TKIP
1500 			: KEY_TYPE_ID_AES;
1501 		lbs_set_key_material(priv,
1502 				     key_type,
1503 				     key_info,
1504 				     params->key, params->key_len);
1505 		break;
1506 	default:
1507 		wiphy_err(wiphy, "unhandled cipher 0x%x\n", params->cipher);
1508 		ret = -ENOTSUPP;
1509 		break;
1510 	}
1511 
1512 	return ret;
1513 }
1514 
1515 
1516 static int lbs_cfg_del_key(struct wiphy *wiphy, struct net_device *netdev,
1517 			   u8 key_index, bool pairwise, const u8 *mac_addr)
1518 {
1519 
1520 	lbs_deb_assoc("del_key: key_idx %d, mac_addr %pM\n",
1521 		      key_index, mac_addr);
1522 
1523 #ifdef TODO
1524 	struct lbs_private *priv = wiphy_priv(wiphy);
1525 	/*
1526 	 * I think can keep this a NO-OP, because:
1527 
1528 	 * - we clear all keys whenever we do lbs_cfg_connect() anyway
1529 	 * - neither "iw" nor "wpa_supplicant" won't call this during
1530 	 *   an ongoing connection
1531 	 * - TODO: but I have to check if this is still true when
1532 	 *   I set the AP to periodic re-keying
1533 	 * - we've not kzallec() something when we've added a key at
1534 	 *   lbs_cfg_connect() or lbs_cfg_add_key().
1535 	 *
1536 	 * This causes lbs_cfg_del_key() only called at disconnect time,
1537 	 * where we'd just waste time deleting a key that is not going
1538 	 * to be used anyway.
1539 	 */
1540 	if (key_index < 3 && priv->wep_key_len[key_index]) {
1541 		priv->wep_key_len[key_index] = 0;
1542 		lbs_set_wep_keys(priv);
1543 	}
1544 #endif
1545 
1546 	return 0;
1547 }
1548 
1549 
1550 /*
1551  * Get station
1552  */
1553 
1554 static int lbs_cfg_get_station(struct wiphy *wiphy, struct net_device *dev,
1555 			       const u8 *mac, struct station_info *sinfo)
1556 {
1557 	struct lbs_private *priv = wiphy_priv(wiphy);
1558 	s8 signal, noise;
1559 	int ret;
1560 	size_t i;
1561 
1562 	sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_BYTES) |
1563 			 BIT_ULL(NL80211_STA_INFO_TX_PACKETS) |
1564 			 BIT_ULL(NL80211_STA_INFO_RX_BYTES) |
1565 			 BIT_ULL(NL80211_STA_INFO_RX_PACKETS);
1566 	sinfo->tx_bytes = priv->dev->stats.tx_bytes;
1567 	sinfo->tx_packets = priv->dev->stats.tx_packets;
1568 	sinfo->rx_bytes = priv->dev->stats.rx_bytes;
1569 	sinfo->rx_packets = priv->dev->stats.rx_packets;
1570 
1571 	/* Get current RSSI */
1572 	ret = lbs_get_rssi(priv, &signal, &noise);
1573 	if (ret == 0) {
1574 		sinfo->signal = signal;
1575 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_SIGNAL);
1576 	}
1577 
1578 	/* Convert priv->cur_rate from hw_value to NL80211 value */
1579 	for (i = 0; i < ARRAY_SIZE(lbs_rates); i++) {
1580 		if (priv->cur_rate == lbs_rates[i].hw_value) {
1581 			sinfo->txrate.legacy = lbs_rates[i].bitrate;
1582 			sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_BITRATE);
1583 			break;
1584 		}
1585 	}
1586 
1587 	return 0;
1588 }
1589 
1590 
1591 
1592 
1593 /*
1594  * Change interface
1595  */
1596 
1597 static int lbs_change_intf(struct wiphy *wiphy, struct net_device *dev,
1598 	enum nl80211_iftype type,
1599 	       struct vif_params *params)
1600 {
1601 	struct lbs_private *priv = wiphy_priv(wiphy);
1602 	int ret = 0;
1603 
1604 	if (dev == priv->mesh_dev)
1605 		return -EOPNOTSUPP;
1606 
1607 	switch (type) {
1608 	case NL80211_IFTYPE_MONITOR:
1609 	case NL80211_IFTYPE_STATION:
1610 	case NL80211_IFTYPE_ADHOC:
1611 		break;
1612 	default:
1613 		return -EOPNOTSUPP;
1614 	}
1615 
1616 	if (priv->iface_running)
1617 		ret = lbs_set_iface_type(priv, type);
1618 
1619 	if (!ret)
1620 		priv->wdev->iftype = type;
1621 
1622 	return ret;
1623 }
1624 
1625 
1626 
1627 /*
1628  * IBSS (Ad-Hoc)
1629  */
1630 
1631 /*
1632  * The firmware needs the following bits masked out of the beacon-derived
1633  * capability field when associating/joining to a BSS:
1634  *  9 (QoS), 11 (APSD), 12 (unused), 14 (unused), 15 (unused)
1635  */
1636 #define CAPINFO_MASK (~(0xda00))
1637 
1638 
1639 static void lbs_join_post(struct lbs_private *priv,
1640 			  struct cfg80211_ibss_params *params,
1641 			  u8 *bssid, u16 capability)
1642 {
1643 	u8 fake_ie[2 + IEEE80211_MAX_SSID_LEN + /* ssid */
1644 		   2 + 4 +                      /* basic rates */
1645 		   2 + 1 +                      /* DS parameter */
1646 		   2 + 2 +                      /* atim */
1647 		   2 + 8];                      /* extended rates */
1648 	u8 *fake = fake_ie;
1649 	struct cfg80211_bss *bss;
1650 
1651 	/*
1652 	 * For cfg80211_inform_bss, we'll need a fake IE, as we can't get
1653 	 * the real IE from the firmware. So we fabricate a fake IE based on
1654 	 * what the firmware actually sends (sniffed with wireshark).
1655 	 */
1656 	/* Fake SSID IE */
1657 	*fake++ = WLAN_EID_SSID;
1658 	*fake++ = params->ssid_len;
1659 	memcpy(fake, params->ssid, params->ssid_len);
1660 	fake += params->ssid_len;
1661 	/* Fake supported basic rates IE */
1662 	*fake++ = WLAN_EID_SUPP_RATES;
1663 	*fake++ = 4;
1664 	*fake++ = 0x82;
1665 	*fake++ = 0x84;
1666 	*fake++ = 0x8b;
1667 	*fake++ = 0x96;
1668 	/* Fake DS channel IE */
1669 	*fake++ = WLAN_EID_DS_PARAMS;
1670 	*fake++ = 1;
1671 	*fake++ = params->chandef.chan->hw_value;
1672 	/* Fake IBSS params IE */
1673 	*fake++ = WLAN_EID_IBSS_PARAMS;
1674 	*fake++ = 2;
1675 	*fake++ = 0; /* ATIM=0 */
1676 	*fake++ = 0;
1677 	/* Fake extended rates IE, TODO: don't add this for 802.11b only,
1678 	 * but I don't know how this could be checked */
1679 	*fake++ = WLAN_EID_EXT_SUPP_RATES;
1680 	*fake++ = 8;
1681 	*fake++ = 0x0c;
1682 	*fake++ = 0x12;
1683 	*fake++ = 0x18;
1684 	*fake++ = 0x24;
1685 	*fake++ = 0x30;
1686 	*fake++ = 0x48;
1687 	*fake++ = 0x60;
1688 	*fake++ = 0x6c;
1689 	lbs_deb_hex(LBS_DEB_CFG80211, "IE", fake_ie, fake - fake_ie);
1690 
1691 	bss = cfg80211_inform_bss(priv->wdev->wiphy,
1692 				  params->chandef.chan,
1693 				  CFG80211_BSS_FTYPE_UNKNOWN,
1694 				  bssid,
1695 				  0,
1696 				  capability,
1697 				  params->beacon_interval,
1698 				  fake_ie, fake - fake_ie,
1699 				  0, GFP_KERNEL);
1700 	cfg80211_put_bss(priv->wdev->wiphy, bss);
1701 
1702 	cfg80211_ibss_joined(priv->dev, bssid, params->chandef.chan,
1703 			     GFP_KERNEL);
1704 
1705 	/* TODO: consider doing this at MACREG_INT_CODE_LINK_SENSED time */
1706 	priv->connect_status = LBS_CONNECTED;
1707 	netif_carrier_on(priv->dev);
1708 	if (!priv->tx_pending_len)
1709 		netif_wake_queue(priv->dev);
1710 }
1711 
1712 static int lbs_ibss_join_existing(struct lbs_private *priv,
1713 	struct cfg80211_ibss_params *params,
1714 	struct cfg80211_bss *bss)
1715 {
1716 	const u8 *rates_eid;
1717 	struct cmd_ds_802_11_ad_hoc_join cmd;
1718 	u8 preamble = RADIO_PREAMBLE_SHORT;
1719 	int ret = 0;
1720 
1721 	/* TODO: set preamble based on scan result */
1722 	ret = lbs_set_radio(priv, preamble, 1);
1723 	if (ret)
1724 		goto out;
1725 
1726 	/*
1727 	 * Example CMD_802_11_AD_HOC_JOIN command:
1728 	 *
1729 	 * command         2c 00         CMD_802_11_AD_HOC_JOIN
1730 	 * size            65 00
1731 	 * sequence        xx xx
1732 	 * result          00 00
1733 	 * bssid           02 27 27 97 2f 96
1734 	 * ssid            49 42 53 53 00 00 00 00
1735 	 *                 00 00 00 00 00 00 00 00
1736 	 *                 00 00 00 00 00 00 00 00
1737 	 *                 00 00 00 00 00 00 00 00
1738 	 * type            02            CMD_BSS_TYPE_IBSS
1739 	 * beacon period   64 00
1740 	 * dtim period     00
1741 	 * timestamp       00 00 00 00 00 00 00 00
1742 	 * localtime       00 00 00 00 00 00 00 00
1743 	 * IE DS           03
1744 	 * IE DS len       01
1745 	 * IE DS channel   01
1746 	 * reserveed       00 00 00 00
1747 	 * IE IBSS         06
1748 	 * IE IBSS len     02
1749 	 * IE IBSS atim    00 00
1750 	 * reserved        00 00 00 00
1751 	 * capability      02 00
1752 	 * rates           82 84 8b 96 0c 12 18 24 30 48 60 6c 00
1753 	 * fail timeout    ff 00
1754 	 * probe delay     00 00
1755 	 */
1756 	memset(&cmd, 0, sizeof(cmd));
1757 	cmd.hdr.size = cpu_to_le16(sizeof(cmd));
1758 
1759 	memcpy(cmd.bss.bssid, bss->bssid, ETH_ALEN);
1760 	memcpy(cmd.bss.ssid, params->ssid, params->ssid_len);
1761 	cmd.bss.type = CMD_BSS_TYPE_IBSS;
1762 	cmd.bss.beaconperiod = cpu_to_le16(params->beacon_interval);
1763 	cmd.bss.ds.header.id = WLAN_EID_DS_PARAMS;
1764 	cmd.bss.ds.header.len = 1;
1765 	cmd.bss.ds.channel = params->chandef.chan->hw_value;
1766 	cmd.bss.ibss.header.id = WLAN_EID_IBSS_PARAMS;
1767 	cmd.bss.ibss.header.len = 2;
1768 	cmd.bss.ibss.atimwindow = 0;
1769 	cmd.bss.capability = cpu_to_le16(bss->capability & CAPINFO_MASK);
1770 
1771 	/* set rates to the intersection of our rates and the rates in the
1772 	   bss */
1773 	rcu_read_lock();
1774 	rates_eid = ieee80211_bss_get_ie(bss, WLAN_EID_SUPP_RATES);
1775 	if (!rates_eid) {
1776 		lbs_add_rates(cmd.bss.rates);
1777 	} else {
1778 		int hw, i;
1779 		u8 rates_max = rates_eid[1];
1780 		u8 *rates = cmd.bss.rates;
1781 		for (hw = 0; hw < ARRAY_SIZE(lbs_rates); hw++) {
1782 			u8 hw_rate = lbs_rates[hw].bitrate / 5;
1783 			for (i = 0; i < rates_max; i++) {
1784 				if (hw_rate == (rates_eid[i+2] & 0x7f)) {
1785 					u8 rate = rates_eid[i+2];
1786 					if (rate == 0x02 || rate == 0x04 ||
1787 					    rate == 0x0b || rate == 0x16)
1788 						rate |= 0x80;
1789 					*rates++ = rate;
1790 				}
1791 			}
1792 		}
1793 	}
1794 	rcu_read_unlock();
1795 
1796 	/* Only v8 and below support setting this */
1797 	if (MRVL_FW_MAJOR_REV(priv->fwrelease) <= 8) {
1798 		cmd.failtimeout = cpu_to_le16(MRVDRV_ASSOCIATION_TIME_OUT);
1799 		cmd.probedelay = cpu_to_le16(CMD_SCAN_PROBE_DELAY_TIME);
1800 	}
1801 	ret = lbs_cmd_with_response(priv, CMD_802_11_AD_HOC_JOIN, &cmd);
1802 	if (ret)
1803 		goto out;
1804 
1805 	/*
1806 	 * This is a sample response to CMD_802_11_AD_HOC_JOIN:
1807 	 *
1808 	 * response        2c 80
1809 	 * size            09 00
1810 	 * sequence        xx xx
1811 	 * result          00 00
1812 	 * reserved        00
1813 	 */
1814 	lbs_join_post(priv, params, bss->bssid, bss->capability);
1815 
1816  out:
1817 	return ret;
1818 }
1819 
1820 
1821 
1822 static int lbs_ibss_start_new(struct lbs_private *priv,
1823 	struct cfg80211_ibss_params *params)
1824 {
1825 	struct cmd_ds_802_11_ad_hoc_start cmd;
1826 	struct cmd_ds_802_11_ad_hoc_result *resp =
1827 		(struct cmd_ds_802_11_ad_hoc_result *) &cmd;
1828 	u8 preamble = RADIO_PREAMBLE_SHORT;
1829 	int ret = 0;
1830 	u16 capability;
1831 
1832 	ret = lbs_set_radio(priv, preamble, 1);
1833 	if (ret)
1834 		goto out;
1835 
1836 	/*
1837 	 * Example CMD_802_11_AD_HOC_START command:
1838 	 *
1839 	 * command         2b 00         CMD_802_11_AD_HOC_START
1840 	 * size            b1 00
1841 	 * sequence        xx xx
1842 	 * result          00 00
1843 	 * ssid            54 45 53 54 00 00 00 00
1844 	 *                 00 00 00 00 00 00 00 00
1845 	 *                 00 00 00 00 00 00 00 00
1846 	 *                 00 00 00 00 00 00 00 00
1847 	 * bss type        02
1848 	 * beacon period   64 00
1849 	 * dtim period     00
1850 	 * IE IBSS         06
1851 	 * IE IBSS len     02
1852 	 * IE IBSS atim    00 00
1853 	 * reserved        00 00 00 00
1854 	 * IE DS           03
1855 	 * IE DS len       01
1856 	 * IE DS channel   01
1857 	 * reserved        00 00 00 00
1858 	 * probe delay     00 00
1859 	 * capability      02 00
1860 	 * rates           82 84 8b 96   (basic rates with have bit 7 set)
1861 	 *                 0c 12 18 24 30 48 60 6c
1862 	 * padding         100 bytes
1863 	 */
1864 	memset(&cmd, 0, sizeof(cmd));
1865 	cmd.hdr.size = cpu_to_le16(sizeof(cmd));
1866 	memcpy(cmd.ssid, params->ssid, params->ssid_len);
1867 	cmd.bsstype = CMD_BSS_TYPE_IBSS;
1868 	cmd.beaconperiod = cpu_to_le16(params->beacon_interval);
1869 	cmd.ibss.header.id = WLAN_EID_IBSS_PARAMS;
1870 	cmd.ibss.header.len = 2;
1871 	cmd.ibss.atimwindow = 0;
1872 	cmd.ds.header.id = WLAN_EID_DS_PARAMS;
1873 	cmd.ds.header.len = 1;
1874 	cmd.ds.channel = params->chandef.chan->hw_value;
1875 	/* Only v8 and below support setting probe delay */
1876 	if (MRVL_FW_MAJOR_REV(priv->fwrelease) <= 8)
1877 		cmd.probedelay = cpu_to_le16(CMD_SCAN_PROBE_DELAY_TIME);
1878 	/* TODO: mix in WLAN_CAPABILITY_PRIVACY */
1879 	capability = WLAN_CAPABILITY_IBSS;
1880 	cmd.capability = cpu_to_le16(capability);
1881 	lbs_add_rates(cmd.rates);
1882 
1883 
1884 	ret = lbs_cmd_with_response(priv, CMD_802_11_AD_HOC_START, &cmd);
1885 	if (ret)
1886 		goto out;
1887 
1888 	/*
1889 	 * This is a sample response to CMD_802_11_AD_HOC_JOIN:
1890 	 *
1891 	 * response        2b 80
1892 	 * size            14 00
1893 	 * sequence        xx xx
1894 	 * result          00 00
1895 	 * reserved        00
1896 	 * bssid           02 2b 7b 0f 86 0e
1897 	 */
1898 	lbs_join_post(priv, params, resp->bssid, capability);
1899 
1900  out:
1901 	return ret;
1902 }
1903 
1904 
1905 static int lbs_join_ibss(struct wiphy *wiphy, struct net_device *dev,
1906 		struct cfg80211_ibss_params *params)
1907 {
1908 	struct lbs_private *priv = wiphy_priv(wiphy);
1909 	int ret = 0;
1910 	struct cfg80211_bss *bss;
1911 
1912 	if (dev == priv->mesh_dev)
1913 		return -EOPNOTSUPP;
1914 
1915 	if (!params->chandef.chan) {
1916 		ret = -ENOTSUPP;
1917 		goto out;
1918 	}
1919 
1920 	ret = lbs_set_channel(priv, params->chandef.chan->hw_value);
1921 	if (ret)
1922 		goto out;
1923 
1924 	/* Search if someone is beaconing. This assumes that the
1925 	 * bss list is populated already */
1926 	bss = cfg80211_get_bss(wiphy, params->chandef.chan, params->bssid,
1927 		params->ssid, params->ssid_len,
1928 		IEEE80211_BSS_TYPE_IBSS, IEEE80211_PRIVACY_ANY);
1929 
1930 	if (bss) {
1931 		ret = lbs_ibss_join_existing(priv, params, bss);
1932 		cfg80211_put_bss(wiphy, bss);
1933 	} else
1934 		ret = lbs_ibss_start_new(priv, params);
1935 
1936 
1937  out:
1938 	return ret;
1939 }
1940 
1941 
1942 static int lbs_leave_ibss(struct wiphy *wiphy, struct net_device *dev)
1943 {
1944 	struct lbs_private *priv = wiphy_priv(wiphy);
1945 	struct cmd_ds_802_11_ad_hoc_stop cmd;
1946 	int ret = 0;
1947 
1948 	if (dev == priv->mesh_dev)
1949 		return -EOPNOTSUPP;
1950 
1951 	memset(&cmd, 0, sizeof(cmd));
1952 	cmd.hdr.size = cpu_to_le16(sizeof(cmd));
1953 	ret = lbs_cmd_with_response(priv, CMD_802_11_AD_HOC_STOP, &cmd);
1954 
1955 	/* TODO: consider doing this at MACREG_INT_CODE_ADHOC_BCN_LOST time */
1956 	lbs_mac_event_disconnected(priv, true);
1957 
1958 	return ret;
1959 }
1960 
1961 
1962 
1963 static int lbs_set_power_mgmt(struct wiphy *wiphy, struct net_device *dev,
1964 			      bool enabled, int timeout)
1965 {
1966 	struct lbs_private *priv = wiphy_priv(wiphy);
1967 
1968 	if  (!(priv->fwcapinfo & FW_CAPINFO_PS)) {
1969 		if (!enabled)
1970 			return 0;
1971 		else
1972 			return -EINVAL;
1973 	}
1974 	/* firmware does not work well with too long latency with power saving
1975 	 * enabled, so do not enable it if there is only polling, no
1976 	 * interrupts (like in some sdio hosts which can only
1977 	 * poll for sdio irqs)
1978 	 */
1979 	if  (priv->is_polling) {
1980 		if (!enabled)
1981 			return 0;
1982 		else
1983 			return -EINVAL;
1984 	}
1985 	if (!enabled) {
1986 		priv->psmode = LBS802_11POWERMODECAM;
1987 		if (priv->psstate != PS_STATE_FULL_POWER)
1988 			lbs_set_ps_mode(priv,
1989 					PS_MODE_ACTION_EXIT_PS,
1990 					true);
1991 		return 0;
1992 	}
1993 	if (priv->psmode != LBS802_11POWERMODECAM)
1994 		return 0;
1995 	priv->psmode = LBS802_11POWERMODEMAX_PSP;
1996 	if (priv->connect_status == LBS_CONNECTED)
1997 		lbs_set_ps_mode(priv, PS_MODE_ACTION_ENTER_PS, true);
1998 	return 0;
1999 }
2000 
2001 /*
2002  * Initialization
2003  */
2004 
2005 static const struct cfg80211_ops lbs_cfg80211_ops = {
2006 	.set_monitor_channel = lbs_cfg_set_monitor_channel,
2007 	.libertas_set_mesh_channel = lbs_cfg_set_mesh_channel,
2008 	.scan = lbs_cfg_scan,
2009 	.connect = lbs_cfg_connect,
2010 	.disconnect = lbs_cfg_disconnect,
2011 	.add_key = lbs_cfg_add_key,
2012 	.del_key = lbs_cfg_del_key,
2013 	.set_default_key = lbs_cfg_set_default_key,
2014 	.get_station = lbs_cfg_get_station,
2015 	.change_virtual_intf = lbs_change_intf,
2016 	.join_ibss = lbs_join_ibss,
2017 	.leave_ibss = lbs_leave_ibss,
2018 	.set_power_mgmt = lbs_set_power_mgmt,
2019 };
2020 
2021 
2022 /*
2023  * At this time lbs_private *priv doesn't even exist, so we just allocate
2024  * memory and don't initialize the wiphy further. This is postponed until we
2025  * can talk to the firmware and happens at registration time in
2026  * lbs_cfg_wiphy_register().
2027  */
2028 struct wireless_dev *lbs_cfg_alloc(struct device *dev)
2029 {
2030 	int ret = 0;
2031 	struct wireless_dev *wdev;
2032 
2033 	wdev = kzalloc(sizeof(struct wireless_dev), GFP_KERNEL);
2034 	if (!wdev)
2035 		return ERR_PTR(-ENOMEM);
2036 
2037 	wdev->wiphy = wiphy_new(&lbs_cfg80211_ops, sizeof(struct lbs_private));
2038 	if (!wdev->wiphy) {
2039 		dev_err(dev, "cannot allocate wiphy\n");
2040 		ret = -ENOMEM;
2041 		goto err_wiphy_new;
2042 	}
2043 
2044 	return wdev;
2045 
2046  err_wiphy_new:
2047 	kfree(wdev);
2048 	return ERR_PTR(ret);
2049 }
2050 
2051 
2052 static void lbs_cfg_set_regulatory_hint(struct lbs_private *priv)
2053 {
2054 	struct region_code_mapping {
2055 		const char *cn;
2056 		int code;
2057 	};
2058 
2059 	/* Section 5.17.2 */
2060 	static const struct region_code_mapping regmap[] = {
2061 		{"US ", 0x10}, /* US FCC */
2062 		{"CA ", 0x20}, /* Canada */
2063 		{"EU ", 0x30}, /* ETSI   */
2064 		{"ES ", 0x31}, /* Spain  */
2065 		{"FR ", 0x32}, /* France */
2066 		{"JP ", 0x40}, /* Japan  */
2067 	};
2068 	size_t i;
2069 
2070 	for (i = 0; i < ARRAY_SIZE(regmap); i++)
2071 		if (regmap[i].code == priv->regioncode) {
2072 			regulatory_hint(priv->wdev->wiphy, regmap[i].cn);
2073 			break;
2074 		}
2075 }
2076 
2077 static void lbs_reg_notifier(struct wiphy *wiphy,
2078 			     struct regulatory_request *request)
2079 {
2080 	struct lbs_private *priv = wiphy_priv(wiphy);
2081 
2082 	memcpy(priv->country_code, request->alpha2, sizeof(request->alpha2));
2083 	if (lbs_iface_active(priv))
2084 		lbs_set_11d_domain_info(priv);
2085 }
2086 
2087 /*
2088  * This function get's called after lbs_setup_firmware() determined the
2089  * firmware capabities. So we can setup the wiphy according to our
2090  * hardware/firmware.
2091  */
2092 int lbs_cfg_register(struct lbs_private *priv)
2093 {
2094 	struct wireless_dev *wdev = priv->wdev;
2095 	int ret;
2096 
2097 	wdev->wiphy->max_scan_ssids = 1;
2098 	wdev->wiphy->signal_type = CFG80211_SIGNAL_TYPE_MBM;
2099 
2100 	wdev->wiphy->interface_modes =
2101 			BIT(NL80211_IFTYPE_STATION) |
2102 			BIT(NL80211_IFTYPE_ADHOC);
2103 	if (lbs_rtap_supported(priv))
2104 		wdev->wiphy->interface_modes |= BIT(NL80211_IFTYPE_MONITOR);
2105 	if (lbs_mesh_activated(priv))
2106 		wdev->wiphy->interface_modes |= BIT(NL80211_IFTYPE_MESH_POINT);
2107 
2108 	wdev->wiphy->bands[NL80211_BAND_2GHZ] = &lbs_band_2ghz;
2109 
2110 	/*
2111 	 * We could check priv->fwcapinfo && FW_CAPINFO_WPA, but I have
2112 	 * never seen a firmware without WPA
2113 	 */
2114 	wdev->wiphy->cipher_suites = cipher_suites;
2115 	wdev->wiphy->n_cipher_suites = ARRAY_SIZE(cipher_suites);
2116 	wdev->wiphy->reg_notifier = lbs_reg_notifier;
2117 
2118 	ret = wiphy_register(wdev->wiphy);
2119 	if (ret < 0)
2120 		pr_err("cannot register wiphy device\n");
2121 
2122 	priv->wiphy_registered = true;
2123 
2124 	ret = register_netdev(priv->dev);
2125 	if (ret)
2126 		pr_err("cannot register network device\n");
2127 
2128 	INIT_DELAYED_WORK(&priv->scan_work, lbs_scan_worker);
2129 
2130 	lbs_cfg_set_regulatory_hint(priv);
2131 
2132 	return ret;
2133 }
2134 
2135 void lbs_scan_deinit(struct lbs_private *priv)
2136 {
2137 	cancel_delayed_work_sync(&priv->scan_work);
2138 }
2139 
2140 
2141 void lbs_cfg_free(struct lbs_private *priv)
2142 {
2143 	struct wireless_dev *wdev = priv->wdev;
2144 
2145 	if (!wdev)
2146 		return;
2147 
2148 	if (priv->wiphy_registered)
2149 		wiphy_unregister(wdev->wiphy);
2150 
2151 	if (wdev->wiphy)
2152 		wiphy_free(wdev->wiphy);
2153 
2154 	kfree(wdev);
2155 }
2156