1 /******************************************************************************
2  *
3  * This file is provided under a dual BSD/GPLv2 license.  When using or
4  * redistributing this file, you may do so under either license.
5  *
6  * GPL LICENSE SUMMARY
7  *
8  * Copyright(c) 2007 - 2015 Intel Corporation. All rights reserved.
9  * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
10  * Copyright(c) 2016 - 2017 Intel Deutschland GmbH
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of version 2 of the GNU General Public License as
14  * published by the Free Software Foundation.
15  *
16  * This program is distributed in the hope that it will be useful, but
17  * WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19  * General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; if not, write to the Free Software
23  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
24  * USA
25  *
26  * The full GNU General Public License is included in this distribution
27  * in the file called COPYING.
28  *
29  * Contact Information:
30  *  Intel Linux Wireless <linuxwifi@intel.com>
31  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
32  *
33  * BSD LICENSE
34  *
35  * Copyright(c) 2005 - 2015 Intel Corporation. All rights reserved.
36  * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
37  * Copyright(c) 2016 - 2017 Intel Deutschland GmbH
38  * All rights reserved.
39  *
40  * Redistribution and use in source and binary forms, with or without
41  * modification, are permitted provided that the following conditions
42  * are met:
43  *
44  *  * Redistributions of source code must retain the above copyright
45  *    notice, this list of conditions and the following disclaimer.
46  *  * Redistributions in binary form must reproduce the above copyright
47  *    notice, this list of conditions and the following disclaimer in
48  *    the documentation and/or other materials provided with the
49  *    distribution.
50  *  * Neither the name Intel Corporation nor the names of its
51  *    contributors may be used to endorse or promote products derived
52  *    from this software without specific prior written permission.
53  *
54  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
55  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
56  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
57  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
58  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
59  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
60  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
61  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
62  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
63  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
64  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65  *
66  *****************************************************************************/
67 #include <linux/pci.h>
68 #include <linux/pci-aspm.h>
69 #include <linux/interrupt.h>
70 #include <linux/debugfs.h>
71 #include <linux/sched.h>
72 #include <linux/bitops.h>
73 #include <linux/gfp.h>
74 #include <linux/vmalloc.h>
75 #include <linux/pm_runtime.h>
76 
77 #include "iwl-drv.h"
78 #include "iwl-trans.h"
79 #include "iwl-csr.h"
80 #include "iwl-prph.h"
81 #include "iwl-scd.h"
82 #include "iwl-agn-hw.h"
83 #include "iwl-context-info.h"
84 #include "iwl-fw-error-dump.h"
85 #include "internal.h"
86 #include "iwl-fh.h"
87 
88 /* extended range in FW SRAM */
89 #define IWL_FW_MEM_EXTENDED_START	0x40000
90 #define IWL_FW_MEM_EXTENDED_END		0x57FFF
91 
92 static void iwl_pcie_free_fw_monitor(struct iwl_trans *trans)
93 {
94 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
95 
96 	if (!trans_pcie->fw_mon_page)
97 		return;
98 
99 	dma_unmap_page(trans->dev, trans_pcie->fw_mon_phys,
100 		       trans_pcie->fw_mon_size, DMA_FROM_DEVICE);
101 	__free_pages(trans_pcie->fw_mon_page,
102 		     get_order(trans_pcie->fw_mon_size));
103 	trans_pcie->fw_mon_page = NULL;
104 	trans_pcie->fw_mon_phys = 0;
105 	trans_pcie->fw_mon_size = 0;
106 }
107 
108 static void iwl_pcie_alloc_fw_monitor(struct iwl_trans *trans, u8 max_power)
109 {
110 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
111 	struct page *page = NULL;
112 	dma_addr_t phys;
113 	u32 size = 0;
114 	u8 power;
115 
116 	if (!max_power) {
117 		/* default max_power is maximum */
118 		max_power = 26;
119 	} else {
120 		max_power += 11;
121 	}
122 
123 	if (WARN(max_power > 26,
124 		 "External buffer size for monitor is too big %d, check the FW TLV\n",
125 		 max_power))
126 		return;
127 
128 	if (trans_pcie->fw_mon_page) {
129 		dma_sync_single_for_device(trans->dev, trans_pcie->fw_mon_phys,
130 					   trans_pcie->fw_mon_size,
131 					   DMA_FROM_DEVICE);
132 		return;
133 	}
134 
135 	phys = 0;
136 	for (power = max_power; power >= 11; power--) {
137 		int order;
138 
139 		size = BIT(power);
140 		order = get_order(size);
141 		page = alloc_pages(__GFP_COMP | __GFP_NOWARN | __GFP_ZERO,
142 				   order);
143 		if (!page)
144 			continue;
145 
146 		phys = dma_map_page(trans->dev, page, 0, PAGE_SIZE << order,
147 				    DMA_FROM_DEVICE);
148 		if (dma_mapping_error(trans->dev, phys)) {
149 			__free_pages(page, order);
150 			page = NULL;
151 			continue;
152 		}
153 		IWL_INFO(trans,
154 			 "Allocated 0x%08x bytes (order %d) for firmware monitor.\n",
155 			 size, order);
156 		break;
157 	}
158 
159 	if (WARN_ON_ONCE(!page))
160 		return;
161 
162 	if (power != max_power)
163 		IWL_ERR(trans,
164 			"Sorry - debug buffer is only %luK while you requested %luK\n",
165 			(unsigned long)BIT(power - 10),
166 			(unsigned long)BIT(max_power - 10));
167 
168 	trans_pcie->fw_mon_page = page;
169 	trans_pcie->fw_mon_phys = phys;
170 	trans_pcie->fw_mon_size = size;
171 }
172 
173 static u32 iwl_trans_pcie_read_shr(struct iwl_trans *trans, u32 reg)
174 {
175 	iwl_write32(trans, HEEP_CTRL_WRD_PCIEX_CTRL_REG,
176 		    ((reg & 0x0000ffff) | (2 << 28)));
177 	return iwl_read32(trans, HEEP_CTRL_WRD_PCIEX_DATA_REG);
178 }
179 
180 static void iwl_trans_pcie_write_shr(struct iwl_trans *trans, u32 reg, u32 val)
181 {
182 	iwl_write32(trans, HEEP_CTRL_WRD_PCIEX_DATA_REG, val);
183 	iwl_write32(trans, HEEP_CTRL_WRD_PCIEX_CTRL_REG,
184 		    ((reg & 0x0000ffff) | (3 << 28)));
185 }
186 
187 static void iwl_pcie_set_pwr(struct iwl_trans *trans, bool vaux)
188 {
189 	if (trans->cfg->apmg_not_supported)
190 		return;
191 
192 	if (vaux && pci_pme_capable(to_pci_dev(trans->dev), PCI_D3cold))
193 		iwl_set_bits_mask_prph(trans, APMG_PS_CTRL_REG,
194 				       APMG_PS_CTRL_VAL_PWR_SRC_VAUX,
195 				       ~APMG_PS_CTRL_MSK_PWR_SRC);
196 	else
197 		iwl_set_bits_mask_prph(trans, APMG_PS_CTRL_REG,
198 				       APMG_PS_CTRL_VAL_PWR_SRC_VMAIN,
199 				       ~APMG_PS_CTRL_MSK_PWR_SRC);
200 }
201 
202 /* PCI registers */
203 #define PCI_CFG_RETRY_TIMEOUT	0x041
204 
205 void iwl_pcie_apm_config(struct iwl_trans *trans)
206 {
207 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
208 	u16 lctl;
209 	u16 cap;
210 
211 	/*
212 	 * HW bug W/A for instability in PCIe bus L0S->L1 transition.
213 	 * Check if BIOS (or OS) enabled L1-ASPM on this device.
214 	 * If so (likely), disable L0S, so device moves directly L0->L1;
215 	 *    costs negligible amount of power savings.
216 	 * If not (unlikely), enable L0S, so there is at least some
217 	 *    power savings, even without L1.
218 	 */
219 	pcie_capability_read_word(trans_pcie->pci_dev, PCI_EXP_LNKCTL, &lctl);
220 	if (lctl & PCI_EXP_LNKCTL_ASPM_L1)
221 		iwl_set_bit(trans, CSR_GIO_REG, CSR_GIO_REG_VAL_L0S_ENABLED);
222 	else
223 		iwl_clear_bit(trans, CSR_GIO_REG, CSR_GIO_REG_VAL_L0S_ENABLED);
224 	trans->pm_support = !(lctl & PCI_EXP_LNKCTL_ASPM_L0S);
225 
226 	pcie_capability_read_word(trans_pcie->pci_dev, PCI_EXP_DEVCTL2, &cap);
227 	trans->ltr_enabled = cap & PCI_EXP_DEVCTL2_LTR_EN;
228 	dev_info(trans->dev, "L1 %sabled - LTR %sabled\n",
229 		 (lctl & PCI_EXP_LNKCTL_ASPM_L1) ? "En" : "Dis",
230 		 trans->ltr_enabled ? "En" : "Dis");
231 }
232 
233 /*
234  * Start up NIC's basic functionality after it has been reset
235  * (e.g. after platform boot, or shutdown via iwl_pcie_apm_stop())
236  * NOTE:  This does not load uCode nor start the embedded processor
237  */
238 static int iwl_pcie_apm_init(struct iwl_trans *trans)
239 {
240 	int ret = 0;
241 	IWL_DEBUG_INFO(trans, "Init card's basic functions\n");
242 
243 	/*
244 	 * Use "set_bit" below rather than "write", to preserve any hardware
245 	 * bits already set by default after reset.
246 	 */
247 
248 	/* Disable L0S exit timer (platform NMI Work/Around) */
249 	if (trans->cfg->device_family != IWL_DEVICE_FAMILY_8000)
250 		iwl_set_bit(trans, CSR_GIO_CHICKEN_BITS,
251 			    CSR_GIO_CHICKEN_BITS_REG_BIT_DIS_L0S_EXIT_TIMER);
252 
253 	/*
254 	 * Disable L0s without affecting L1;
255 	 *  don't wait for ICH L0s (ICH bug W/A)
256 	 */
257 	iwl_set_bit(trans, CSR_GIO_CHICKEN_BITS,
258 		    CSR_GIO_CHICKEN_BITS_REG_BIT_L1A_NO_L0S_RX);
259 
260 	/* Set FH wait threshold to maximum (HW error during stress W/A) */
261 	iwl_set_bit(trans, CSR_DBG_HPET_MEM_REG, CSR_DBG_HPET_MEM_REG_VAL);
262 
263 	/*
264 	 * Enable HAP INTA (interrupt from management bus) to
265 	 * wake device's PCI Express link L1a -> L0s
266 	 */
267 	iwl_set_bit(trans, CSR_HW_IF_CONFIG_REG,
268 		    CSR_HW_IF_CONFIG_REG_BIT_HAP_WAKE_L1A);
269 
270 	iwl_pcie_apm_config(trans);
271 
272 	/* Configure analog phase-lock-loop before activating to D0A */
273 	if (trans->cfg->base_params->pll_cfg)
274 		iwl_set_bit(trans, CSR_ANA_PLL_CFG, CSR50_ANA_PLL_CFG_VAL);
275 
276 	/*
277 	 * Set "initialization complete" bit to move adapter from
278 	 * D0U* --> D0A* (powered-up active) state.
279 	 */
280 	iwl_set_bit(trans, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_INIT_DONE);
281 
282 	/*
283 	 * Wait for clock stabilization; once stabilized, access to
284 	 * device-internal resources is supported, e.g. iwl_write_prph()
285 	 * and accesses to uCode SRAM.
286 	 */
287 	ret = iwl_poll_bit(trans, CSR_GP_CNTRL,
288 			   CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY,
289 			   CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY, 25000);
290 	if (ret < 0) {
291 		IWL_DEBUG_INFO(trans, "Failed to init the card\n");
292 		goto out;
293 	}
294 
295 	if (trans->cfg->host_interrupt_operation_mode) {
296 		/*
297 		 * This is a bit of an abuse - This is needed for 7260 / 3160
298 		 * only check host_interrupt_operation_mode even if this is
299 		 * not related to host_interrupt_operation_mode.
300 		 *
301 		 * Enable the oscillator to count wake up time for L1 exit. This
302 		 * consumes slightly more power (100uA) - but allows to be sure
303 		 * that we wake up from L1 on time.
304 		 *
305 		 * This looks weird: read twice the same register, discard the
306 		 * value, set a bit, and yet again, read that same register
307 		 * just to discard the value. But that's the way the hardware
308 		 * seems to like it.
309 		 */
310 		iwl_read_prph(trans, OSC_CLK);
311 		iwl_read_prph(trans, OSC_CLK);
312 		iwl_set_bits_prph(trans, OSC_CLK, OSC_CLK_FORCE_CONTROL);
313 		iwl_read_prph(trans, OSC_CLK);
314 		iwl_read_prph(trans, OSC_CLK);
315 	}
316 
317 	/*
318 	 * Enable DMA clock and wait for it to stabilize.
319 	 *
320 	 * Write to "CLK_EN_REG"; "1" bits enable clocks, while "0"
321 	 * bits do not disable clocks.  This preserves any hardware
322 	 * bits already set by default in "CLK_CTRL_REG" after reset.
323 	 */
324 	if (!trans->cfg->apmg_not_supported) {
325 		iwl_write_prph(trans, APMG_CLK_EN_REG,
326 			       APMG_CLK_VAL_DMA_CLK_RQT);
327 		udelay(20);
328 
329 		/* Disable L1-Active */
330 		iwl_set_bits_prph(trans, APMG_PCIDEV_STT_REG,
331 				  APMG_PCIDEV_STT_VAL_L1_ACT_DIS);
332 
333 		/* Clear the interrupt in APMG if the NIC is in RFKILL */
334 		iwl_write_prph(trans, APMG_RTC_INT_STT_REG,
335 			       APMG_RTC_INT_STT_RFKILL);
336 	}
337 
338 	set_bit(STATUS_DEVICE_ENABLED, &trans->status);
339 
340 out:
341 	return ret;
342 }
343 
344 /*
345  * Enable LP XTAL to avoid HW bug where device may consume much power if
346  * FW is not loaded after device reset. LP XTAL is disabled by default
347  * after device HW reset. Do it only if XTAL is fed by internal source.
348  * Configure device's "persistence" mode to avoid resetting XTAL again when
349  * SHRD_HW_RST occurs in S3.
350  */
351 static void iwl_pcie_apm_lp_xtal_enable(struct iwl_trans *trans)
352 {
353 	int ret;
354 	u32 apmg_gp1_reg;
355 	u32 apmg_xtal_cfg_reg;
356 	u32 dl_cfg_reg;
357 
358 	/* Force XTAL ON */
359 	__iwl_trans_pcie_set_bit(trans, CSR_GP_CNTRL,
360 				 CSR_GP_CNTRL_REG_FLAG_XTAL_ON);
361 
362 	/* Reset entire device - do controller reset (results in SHRD_HW_RST) */
363 	iwl_set_bit(trans, CSR_RESET, CSR_RESET_REG_FLAG_SW_RESET);
364 	usleep_range(1000, 2000);
365 
366 	/*
367 	 * Set "initialization complete" bit to move adapter from
368 	 * D0U* --> D0A* (powered-up active) state.
369 	 */
370 	iwl_set_bit(trans, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_INIT_DONE);
371 
372 	/*
373 	 * Wait for clock stabilization; once stabilized, access to
374 	 * device-internal resources is possible.
375 	 */
376 	ret = iwl_poll_bit(trans, CSR_GP_CNTRL,
377 			   CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY,
378 			   CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY,
379 			   25000);
380 	if (WARN_ON(ret < 0)) {
381 		IWL_ERR(trans, "Access time out - failed to enable LP XTAL\n");
382 		/* Release XTAL ON request */
383 		__iwl_trans_pcie_clear_bit(trans, CSR_GP_CNTRL,
384 					   CSR_GP_CNTRL_REG_FLAG_XTAL_ON);
385 		return;
386 	}
387 
388 	/*
389 	 * Clear "disable persistence" to avoid LP XTAL resetting when
390 	 * SHRD_HW_RST is applied in S3.
391 	 */
392 	iwl_clear_bits_prph(trans, APMG_PCIDEV_STT_REG,
393 				    APMG_PCIDEV_STT_VAL_PERSIST_DIS);
394 
395 	/*
396 	 * Force APMG XTAL to be active to prevent its disabling by HW
397 	 * caused by APMG idle state.
398 	 */
399 	apmg_xtal_cfg_reg = iwl_trans_pcie_read_shr(trans,
400 						    SHR_APMG_XTAL_CFG_REG);
401 	iwl_trans_pcie_write_shr(trans, SHR_APMG_XTAL_CFG_REG,
402 				 apmg_xtal_cfg_reg |
403 				 SHR_APMG_XTAL_CFG_XTAL_ON_REQ);
404 
405 	/*
406 	 * Reset entire device again - do controller reset (results in
407 	 * SHRD_HW_RST). Turn MAC off before proceeding.
408 	 */
409 	iwl_set_bit(trans, CSR_RESET, CSR_RESET_REG_FLAG_SW_RESET);
410 	usleep_range(1000, 2000);
411 
412 	/* Enable LP XTAL by indirect access through CSR */
413 	apmg_gp1_reg = iwl_trans_pcie_read_shr(trans, SHR_APMG_GP1_REG);
414 	iwl_trans_pcie_write_shr(trans, SHR_APMG_GP1_REG, apmg_gp1_reg |
415 				 SHR_APMG_GP1_WF_XTAL_LP_EN |
416 				 SHR_APMG_GP1_CHICKEN_BIT_SELECT);
417 
418 	/* Clear delay line clock power up */
419 	dl_cfg_reg = iwl_trans_pcie_read_shr(trans, SHR_APMG_DL_CFG_REG);
420 	iwl_trans_pcie_write_shr(trans, SHR_APMG_DL_CFG_REG, dl_cfg_reg &
421 				 ~SHR_APMG_DL_CFG_DL_CLOCK_POWER_UP);
422 
423 	/*
424 	 * Enable persistence mode to avoid LP XTAL resetting when
425 	 * SHRD_HW_RST is applied in S3.
426 	 */
427 	iwl_set_bit(trans, CSR_HW_IF_CONFIG_REG,
428 		    CSR_HW_IF_CONFIG_REG_PERSIST_MODE);
429 
430 	/*
431 	 * Clear "initialization complete" bit to move adapter from
432 	 * D0A* (powered-up Active) --> D0U* (Uninitialized) state.
433 	 */
434 	iwl_clear_bit(trans, CSR_GP_CNTRL,
435 		      CSR_GP_CNTRL_REG_FLAG_INIT_DONE);
436 
437 	/* Activates XTAL resources monitor */
438 	__iwl_trans_pcie_set_bit(trans, CSR_MONITOR_CFG_REG,
439 				 CSR_MONITOR_XTAL_RESOURCES);
440 
441 	/* Release XTAL ON request */
442 	__iwl_trans_pcie_clear_bit(trans, CSR_GP_CNTRL,
443 				   CSR_GP_CNTRL_REG_FLAG_XTAL_ON);
444 	udelay(10);
445 
446 	/* Release APMG XTAL */
447 	iwl_trans_pcie_write_shr(trans, SHR_APMG_XTAL_CFG_REG,
448 				 apmg_xtal_cfg_reg &
449 				 ~SHR_APMG_XTAL_CFG_XTAL_ON_REQ);
450 }
451 
452 static int iwl_pcie_apm_stop_master(struct iwl_trans *trans)
453 {
454 	int ret = 0;
455 
456 	/* stop device's busmaster DMA activity */
457 	iwl_set_bit(trans, CSR_RESET, CSR_RESET_REG_FLAG_STOP_MASTER);
458 
459 	ret = iwl_poll_bit(trans, CSR_RESET,
460 			   CSR_RESET_REG_FLAG_MASTER_DISABLED,
461 			   CSR_RESET_REG_FLAG_MASTER_DISABLED, 100);
462 	if (ret < 0)
463 		IWL_WARN(trans, "Master Disable Timed Out, 100 usec\n");
464 
465 	IWL_DEBUG_INFO(trans, "stop master\n");
466 
467 	return ret;
468 }
469 
470 static void iwl_pcie_apm_stop(struct iwl_trans *trans, bool op_mode_leave)
471 {
472 	IWL_DEBUG_INFO(trans, "Stop card, put in low power state\n");
473 
474 	if (op_mode_leave) {
475 		if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
476 			iwl_pcie_apm_init(trans);
477 
478 		/* inform ME that we are leaving */
479 		if (trans->cfg->device_family == IWL_DEVICE_FAMILY_7000)
480 			iwl_set_bits_prph(trans, APMG_PCIDEV_STT_REG,
481 					  APMG_PCIDEV_STT_VAL_WAKE_ME);
482 		else if (trans->cfg->device_family == IWL_DEVICE_FAMILY_8000) {
483 			iwl_set_bit(trans, CSR_DBG_LINK_PWR_MGMT_REG,
484 				    CSR_RESET_LINK_PWR_MGMT_DISABLED);
485 			iwl_set_bit(trans, CSR_HW_IF_CONFIG_REG,
486 				    CSR_HW_IF_CONFIG_REG_PREPARE |
487 				    CSR_HW_IF_CONFIG_REG_ENABLE_PME);
488 			mdelay(1);
489 			iwl_clear_bit(trans, CSR_DBG_LINK_PWR_MGMT_REG,
490 				      CSR_RESET_LINK_PWR_MGMT_DISABLED);
491 		}
492 		mdelay(5);
493 	}
494 
495 	clear_bit(STATUS_DEVICE_ENABLED, &trans->status);
496 
497 	/* Stop device's DMA activity */
498 	iwl_pcie_apm_stop_master(trans);
499 
500 	if (trans->cfg->lp_xtal_workaround) {
501 		iwl_pcie_apm_lp_xtal_enable(trans);
502 		return;
503 	}
504 
505 	/* Reset the entire device */
506 	iwl_set_bit(trans, CSR_RESET, CSR_RESET_REG_FLAG_SW_RESET);
507 	usleep_range(1000, 2000);
508 
509 	/*
510 	 * Clear "initialization complete" bit to move adapter from
511 	 * D0A* (powered-up Active) --> D0U* (Uninitialized) state.
512 	 */
513 	iwl_clear_bit(trans, CSR_GP_CNTRL,
514 		      CSR_GP_CNTRL_REG_FLAG_INIT_DONE);
515 }
516 
517 static int iwl_pcie_nic_init(struct iwl_trans *trans)
518 {
519 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
520 
521 	/* nic_init */
522 	spin_lock(&trans_pcie->irq_lock);
523 	iwl_pcie_apm_init(trans);
524 
525 	spin_unlock(&trans_pcie->irq_lock);
526 
527 	iwl_pcie_set_pwr(trans, false);
528 
529 	iwl_op_mode_nic_config(trans->op_mode);
530 
531 	/* Allocate the RX queue, or reset if it is already allocated */
532 	iwl_pcie_rx_init(trans);
533 
534 	/* Allocate or reset and init all Tx and Command queues */
535 	if (iwl_pcie_tx_init(trans))
536 		return -ENOMEM;
537 
538 	if (trans->cfg->base_params->shadow_reg_enable) {
539 		/* enable shadow regs in HW */
540 		iwl_set_bit(trans, CSR_MAC_SHADOW_REG_CTRL, 0x800FFFFF);
541 		IWL_DEBUG_INFO(trans, "Enabling shadow registers in device\n");
542 	}
543 
544 	return 0;
545 }
546 
547 #define HW_READY_TIMEOUT (50)
548 
549 /* Note: returns poll_bit return value, which is >= 0 if success */
550 static int iwl_pcie_set_hw_ready(struct iwl_trans *trans)
551 {
552 	int ret;
553 
554 	iwl_set_bit(trans, CSR_HW_IF_CONFIG_REG,
555 		    CSR_HW_IF_CONFIG_REG_BIT_NIC_READY);
556 
557 	/* See if we got it */
558 	ret = iwl_poll_bit(trans, CSR_HW_IF_CONFIG_REG,
559 			   CSR_HW_IF_CONFIG_REG_BIT_NIC_READY,
560 			   CSR_HW_IF_CONFIG_REG_BIT_NIC_READY,
561 			   HW_READY_TIMEOUT);
562 
563 	if (ret >= 0)
564 		iwl_set_bit(trans, CSR_MBOX_SET_REG, CSR_MBOX_SET_REG_OS_ALIVE);
565 
566 	IWL_DEBUG_INFO(trans, "hardware%s ready\n", ret < 0 ? " not" : "");
567 	return ret;
568 }
569 
570 /* Note: returns standard 0/-ERROR code */
571 int iwl_pcie_prepare_card_hw(struct iwl_trans *trans)
572 {
573 	int ret;
574 	int t = 0;
575 	int iter;
576 
577 	IWL_DEBUG_INFO(trans, "iwl_trans_prepare_card_hw enter\n");
578 
579 	ret = iwl_pcie_set_hw_ready(trans);
580 	/* If the card is ready, exit 0 */
581 	if (ret >= 0)
582 		return 0;
583 
584 	iwl_set_bit(trans, CSR_DBG_LINK_PWR_MGMT_REG,
585 		    CSR_RESET_LINK_PWR_MGMT_DISABLED);
586 	usleep_range(1000, 2000);
587 
588 	for (iter = 0; iter < 10; iter++) {
589 		/* If HW is not ready, prepare the conditions to check again */
590 		iwl_set_bit(trans, CSR_HW_IF_CONFIG_REG,
591 			    CSR_HW_IF_CONFIG_REG_PREPARE);
592 
593 		do {
594 			ret = iwl_pcie_set_hw_ready(trans);
595 			if (ret >= 0)
596 				return 0;
597 
598 			usleep_range(200, 1000);
599 			t += 200;
600 		} while (t < 150000);
601 		msleep(25);
602 	}
603 
604 	IWL_ERR(trans, "Couldn't prepare the card\n");
605 
606 	return ret;
607 }
608 
609 /*
610  * ucode
611  */
612 static void iwl_pcie_load_firmware_chunk_fh(struct iwl_trans *trans,
613 					    u32 dst_addr, dma_addr_t phy_addr,
614 					    u32 byte_cnt)
615 {
616 	iwl_write32(trans, FH_TCSR_CHNL_TX_CONFIG_REG(FH_SRVC_CHNL),
617 		    FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_PAUSE);
618 
619 	iwl_write32(trans, FH_SRVC_CHNL_SRAM_ADDR_REG(FH_SRVC_CHNL),
620 		    dst_addr);
621 
622 	iwl_write32(trans, FH_TFDIB_CTRL0_REG(FH_SRVC_CHNL),
623 		    phy_addr & FH_MEM_TFDIB_DRAM_ADDR_LSB_MSK);
624 
625 	iwl_write32(trans, FH_TFDIB_CTRL1_REG(FH_SRVC_CHNL),
626 		    (iwl_get_dma_hi_addr(phy_addr)
627 			<< FH_MEM_TFDIB_REG1_ADDR_BITSHIFT) | byte_cnt);
628 
629 	iwl_write32(trans, FH_TCSR_CHNL_TX_BUF_STS_REG(FH_SRVC_CHNL),
630 		    BIT(FH_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_NUM) |
631 		    BIT(FH_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_IDX) |
632 		    FH_TCSR_CHNL_TX_BUF_STS_REG_VAL_TFDB_VALID);
633 
634 	iwl_write32(trans, FH_TCSR_CHNL_TX_CONFIG_REG(FH_SRVC_CHNL),
635 		    FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE |
636 		    FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_DISABLE |
637 		    FH_TCSR_TX_CONFIG_REG_VAL_CIRQ_HOST_ENDTFD);
638 }
639 
640 static int iwl_pcie_load_firmware_chunk(struct iwl_trans *trans,
641 					u32 dst_addr, dma_addr_t phy_addr,
642 					u32 byte_cnt)
643 {
644 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
645 	unsigned long flags;
646 	int ret;
647 
648 	trans_pcie->ucode_write_complete = false;
649 
650 	if (!iwl_trans_grab_nic_access(trans, &flags))
651 		return -EIO;
652 
653 	iwl_pcie_load_firmware_chunk_fh(trans, dst_addr, phy_addr,
654 					byte_cnt);
655 	iwl_trans_release_nic_access(trans, &flags);
656 
657 	ret = wait_event_timeout(trans_pcie->ucode_write_waitq,
658 				 trans_pcie->ucode_write_complete, 5 * HZ);
659 	if (!ret) {
660 		IWL_ERR(trans, "Failed to load firmware chunk!\n");
661 		return -ETIMEDOUT;
662 	}
663 
664 	return 0;
665 }
666 
667 static int iwl_pcie_load_section(struct iwl_trans *trans, u8 section_num,
668 			    const struct fw_desc *section)
669 {
670 	u8 *v_addr;
671 	dma_addr_t p_addr;
672 	u32 offset, chunk_sz = min_t(u32, FH_MEM_TB_MAX_LENGTH, section->len);
673 	int ret = 0;
674 
675 	IWL_DEBUG_FW(trans, "[%d] uCode section being loaded...\n",
676 		     section_num);
677 
678 	v_addr = dma_alloc_coherent(trans->dev, chunk_sz, &p_addr,
679 				    GFP_KERNEL | __GFP_NOWARN);
680 	if (!v_addr) {
681 		IWL_DEBUG_INFO(trans, "Falling back to small chunks of DMA\n");
682 		chunk_sz = PAGE_SIZE;
683 		v_addr = dma_alloc_coherent(trans->dev, chunk_sz,
684 					    &p_addr, GFP_KERNEL);
685 		if (!v_addr)
686 			return -ENOMEM;
687 	}
688 
689 	for (offset = 0; offset < section->len; offset += chunk_sz) {
690 		u32 copy_size, dst_addr;
691 		bool extended_addr = false;
692 
693 		copy_size = min_t(u32, chunk_sz, section->len - offset);
694 		dst_addr = section->offset + offset;
695 
696 		if (dst_addr >= IWL_FW_MEM_EXTENDED_START &&
697 		    dst_addr <= IWL_FW_MEM_EXTENDED_END)
698 			extended_addr = true;
699 
700 		if (extended_addr)
701 			iwl_set_bits_prph(trans, LMPM_CHICK,
702 					  LMPM_CHICK_EXTENDED_ADDR_SPACE);
703 
704 		memcpy(v_addr, (u8 *)section->data + offset, copy_size);
705 		ret = iwl_pcie_load_firmware_chunk(trans, dst_addr, p_addr,
706 						   copy_size);
707 
708 		if (extended_addr)
709 			iwl_clear_bits_prph(trans, LMPM_CHICK,
710 					    LMPM_CHICK_EXTENDED_ADDR_SPACE);
711 
712 		if (ret) {
713 			IWL_ERR(trans,
714 				"Could not load the [%d] uCode section\n",
715 				section_num);
716 			break;
717 		}
718 	}
719 
720 	dma_free_coherent(trans->dev, chunk_sz, v_addr, p_addr);
721 	return ret;
722 }
723 
724 /*
725  * Driver Takes the ownership on secure machine before FW load
726  * and prevent race with the BT load.
727  * W/A for ROM bug. (should be remove in the next Si step)
728  */
729 static int iwl_pcie_rsa_race_bug_wa(struct iwl_trans *trans)
730 {
731 	u32 val, loop = 1000;
732 
733 	/*
734 	 * Check the RSA semaphore is accessible.
735 	 * If the HW isn't locked and the rsa semaphore isn't accessible,
736 	 * we are in trouble.
737 	 */
738 	val = iwl_read_prph(trans, PREG_AUX_BUS_WPROT_0);
739 	if (val & (BIT(1) | BIT(17))) {
740 		IWL_DEBUG_INFO(trans,
741 			       "can't access the RSA semaphore it is write protected\n");
742 		return 0;
743 	}
744 
745 	/* take ownership on the AUX IF */
746 	iwl_write_prph(trans, WFPM_CTRL_REG, WFPM_AUX_CTL_AUX_IF_MAC_OWNER_MSK);
747 	iwl_write_prph(trans, AUX_MISC_MASTER1_EN, AUX_MISC_MASTER1_EN_SBE_MSK);
748 
749 	do {
750 		iwl_write_prph(trans, AUX_MISC_MASTER1_SMPHR_STATUS, 0x1);
751 		val = iwl_read_prph(trans, AUX_MISC_MASTER1_SMPHR_STATUS);
752 		if (val == 0x1) {
753 			iwl_write_prph(trans, RSA_ENABLE, 0);
754 			return 0;
755 		}
756 
757 		udelay(10);
758 		loop--;
759 	} while (loop > 0);
760 
761 	IWL_ERR(trans, "Failed to take ownership on secure machine\n");
762 	return -EIO;
763 }
764 
765 static int iwl_pcie_load_cpu_sections_8000(struct iwl_trans *trans,
766 					   const struct fw_img *image,
767 					   int cpu,
768 					   int *first_ucode_section)
769 {
770 	int shift_param;
771 	int i, ret = 0, sec_num = 0x1;
772 	u32 val, last_read_idx = 0;
773 
774 	if (cpu == 1) {
775 		shift_param = 0;
776 		*first_ucode_section = 0;
777 	} else {
778 		shift_param = 16;
779 		(*first_ucode_section)++;
780 	}
781 
782 	for (i = *first_ucode_section; i < image->num_sec; i++) {
783 		last_read_idx = i;
784 
785 		/*
786 		 * CPU1_CPU2_SEPARATOR_SECTION delimiter - separate between
787 		 * CPU1 to CPU2.
788 		 * PAGING_SEPARATOR_SECTION delimiter - separate between
789 		 * CPU2 non paged to CPU2 paging sec.
790 		 */
791 		if (!image->sec[i].data ||
792 		    image->sec[i].offset == CPU1_CPU2_SEPARATOR_SECTION ||
793 		    image->sec[i].offset == PAGING_SEPARATOR_SECTION) {
794 			IWL_DEBUG_FW(trans,
795 				     "Break since Data not valid or Empty section, sec = %d\n",
796 				     i);
797 			break;
798 		}
799 
800 		ret = iwl_pcie_load_section(trans, i, &image->sec[i]);
801 		if (ret)
802 			return ret;
803 
804 		/* Notify ucode of loaded section number and status */
805 		val = iwl_read_direct32(trans, FH_UCODE_LOAD_STATUS);
806 		val = val | (sec_num << shift_param);
807 		iwl_write_direct32(trans, FH_UCODE_LOAD_STATUS, val);
808 
809 		sec_num = (sec_num << 1) | 0x1;
810 	}
811 
812 	*first_ucode_section = last_read_idx;
813 
814 	iwl_enable_interrupts(trans);
815 
816 	if (trans->cfg->use_tfh) {
817 		if (cpu == 1)
818 			iwl_write_prph(trans, UREG_UCODE_LOAD_STATUS,
819 				       0xFFFF);
820 		else
821 			iwl_write_prph(trans, UREG_UCODE_LOAD_STATUS,
822 				       0xFFFFFFFF);
823 	} else {
824 		if (cpu == 1)
825 			iwl_write_direct32(trans, FH_UCODE_LOAD_STATUS,
826 					   0xFFFF);
827 		else
828 			iwl_write_direct32(trans, FH_UCODE_LOAD_STATUS,
829 					   0xFFFFFFFF);
830 	}
831 
832 	return 0;
833 }
834 
835 static int iwl_pcie_load_cpu_sections(struct iwl_trans *trans,
836 				      const struct fw_img *image,
837 				      int cpu,
838 				      int *first_ucode_section)
839 {
840 	int i, ret = 0;
841 	u32 last_read_idx = 0;
842 
843 	if (cpu == 1)
844 		*first_ucode_section = 0;
845 	else
846 		(*first_ucode_section)++;
847 
848 	for (i = *first_ucode_section; i < image->num_sec; i++) {
849 		last_read_idx = i;
850 
851 		/*
852 		 * CPU1_CPU2_SEPARATOR_SECTION delimiter - separate between
853 		 * CPU1 to CPU2.
854 		 * PAGING_SEPARATOR_SECTION delimiter - separate between
855 		 * CPU2 non paged to CPU2 paging sec.
856 		 */
857 		if (!image->sec[i].data ||
858 		    image->sec[i].offset == CPU1_CPU2_SEPARATOR_SECTION ||
859 		    image->sec[i].offset == PAGING_SEPARATOR_SECTION) {
860 			IWL_DEBUG_FW(trans,
861 				     "Break since Data not valid or Empty section, sec = %d\n",
862 				     i);
863 			break;
864 		}
865 
866 		ret = iwl_pcie_load_section(trans, i, &image->sec[i]);
867 		if (ret)
868 			return ret;
869 	}
870 
871 	*first_ucode_section = last_read_idx;
872 
873 	return 0;
874 }
875 
876 static void iwl_pcie_apply_destination(struct iwl_trans *trans)
877 {
878 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
879 	const struct iwl_fw_dbg_dest_tlv *dest = trans->dbg_dest_tlv;
880 	int i;
881 
882 	if (dest->version)
883 		IWL_ERR(trans,
884 			"DBG DEST version is %d - expect issues\n",
885 			dest->version);
886 
887 	IWL_INFO(trans, "Applying debug destination %s\n",
888 		 get_fw_dbg_mode_string(dest->monitor_mode));
889 
890 	if (dest->monitor_mode == EXTERNAL_MODE)
891 		iwl_pcie_alloc_fw_monitor(trans, dest->size_power);
892 	else
893 		IWL_WARN(trans, "PCI should have external buffer debug\n");
894 
895 	for (i = 0; i < trans->dbg_dest_reg_num; i++) {
896 		u32 addr = le32_to_cpu(dest->reg_ops[i].addr);
897 		u32 val = le32_to_cpu(dest->reg_ops[i].val);
898 
899 		switch (dest->reg_ops[i].op) {
900 		case CSR_ASSIGN:
901 			iwl_write32(trans, addr, val);
902 			break;
903 		case CSR_SETBIT:
904 			iwl_set_bit(trans, addr, BIT(val));
905 			break;
906 		case CSR_CLEARBIT:
907 			iwl_clear_bit(trans, addr, BIT(val));
908 			break;
909 		case PRPH_ASSIGN:
910 			iwl_write_prph(trans, addr, val);
911 			break;
912 		case PRPH_SETBIT:
913 			iwl_set_bits_prph(trans, addr, BIT(val));
914 			break;
915 		case PRPH_CLEARBIT:
916 			iwl_clear_bits_prph(trans, addr, BIT(val));
917 			break;
918 		case PRPH_BLOCKBIT:
919 			if (iwl_read_prph(trans, addr) & BIT(val)) {
920 				IWL_ERR(trans,
921 					"BIT(%u) in address 0x%x is 1, stopping FW configuration\n",
922 					val, addr);
923 				goto monitor;
924 			}
925 			break;
926 		default:
927 			IWL_ERR(trans, "FW debug - unknown OP %d\n",
928 				dest->reg_ops[i].op);
929 			break;
930 		}
931 	}
932 
933 monitor:
934 	if (dest->monitor_mode == EXTERNAL_MODE && trans_pcie->fw_mon_size) {
935 		iwl_write_prph(trans, le32_to_cpu(dest->base_reg),
936 			       trans_pcie->fw_mon_phys >> dest->base_shift);
937 		if (trans->cfg->device_family == IWL_DEVICE_FAMILY_8000)
938 			iwl_write_prph(trans, le32_to_cpu(dest->end_reg),
939 				       (trans_pcie->fw_mon_phys +
940 					trans_pcie->fw_mon_size - 256) >>
941 						dest->end_shift);
942 		else
943 			iwl_write_prph(trans, le32_to_cpu(dest->end_reg),
944 				       (trans_pcie->fw_mon_phys +
945 					trans_pcie->fw_mon_size) >>
946 						dest->end_shift);
947 	}
948 }
949 
950 static int iwl_pcie_load_given_ucode(struct iwl_trans *trans,
951 				const struct fw_img *image)
952 {
953 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
954 	int ret = 0;
955 	int first_ucode_section;
956 
957 	IWL_DEBUG_FW(trans, "working with %s CPU\n",
958 		     image->is_dual_cpus ? "Dual" : "Single");
959 
960 	/* load to FW the binary non secured sections of CPU1 */
961 	ret = iwl_pcie_load_cpu_sections(trans, image, 1, &first_ucode_section);
962 	if (ret)
963 		return ret;
964 
965 	if (image->is_dual_cpus) {
966 		/* set CPU2 header address */
967 		iwl_write_prph(trans,
968 			       LMPM_SECURE_UCODE_LOAD_CPU2_HDR_ADDR,
969 			       LMPM_SECURE_CPU2_HDR_MEM_SPACE);
970 
971 		/* load to FW the binary sections of CPU2 */
972 		ret = iwl_pcie_load_cpu_sections(trans, image, 2,
973 						 &first_ucode_section);
974 		if (ret)
975 			return ret;
976 	}
977 
978 	/* supported for 7000 only for the moment */
979 	if (iwlwifi_mod_params.fw_monitor &&
980 	    trans->cfg->device_family == IWL_DEVICE_FAMILY_7000) {
981 		iwl_pcie_alloc_fw_monitor(trans, 0);
982 
983 		if (trans_pcie->fw_mon_size) {
984 			iwl_write_prph(trans, MON_BUFF_BASE_ADDR,
985 				       trans_pcie->fw_mon_phys >> 4);
986 			iwl_write_prph(trans, MON_BUFF_END_ADDR,
987 				       (trans_pcie->fw_mon_phys +
988 					trans_pcie->fw_mon_size) >> 4);
989 		}
990 	} else if (trans->dbg_dest_tlv) {
991 		iwl_pcie_apply_destination(trans);
992 	}
993 
994 	iwl_enable_interrupts(trans);
995 
996 	/* release CPU reset */
997 	iwl_write32(trans, CSR_RESET, 0);
998 
999 	return 0;
1000 }
1001 
1002 static int iwl_pcie_load_given_ucode_8000(struct iwl_trans *trans,
1003 					  const struct fw_img *image)
1004 {
1005 	int ret = 0;
1006 	int first_ucode_section;
1007 
1008 	IWL_DEBUG_FW(trans, "working with %s CPU\n",
1009 		     image->is_dual_cpus ? "Dual" : "Single");
1010 
1011 	if (trans->dbg_dest_tlv)
1012 		iwl_pcie_apply_destination(trans);
1013 
1014 	/* TODO: remove in the next Si step */
1015 	ret = iwl_pcie_rsa_race_bug_wa(trans);
1016 	if (ret)
1017 		return ret;
1018 
1019 	IWL_DEBUG_POWER(trans, "Original WFPM value = 0x%08X\n",
1020 			iwl_read_prph(trans, WFPM_GP2));
1021 
1022 	/*
1023 	 * Set default value. On resume reading the values that were
1024 	 * zeored can provide debug data on the resume flow.
1025 	 * This is for debugging only and has no functional impact.
1026 	 */
1027 	iwl_write_prph(trans, WFPM_GP2, 0x01010101);
1028 
1029 	/* configure the ucode to be ready to get the secured image */
1030 	/* release CPU reset */
1031 	iwl_write_prph(trans, RELEASE_CPU_RESET, RELEASE_CPU_RESET_BIT);
1032 
1033 	/* load to FW the binary Secured sections of CPU1 */
1034 	ret = iwl_pcie_load_cpu_sections_8000(trans, image, 1,
1035 					      &first_ucode_section);
1036 	if (ret)
1037 		return ret;
1038 
1039 	/* load to FW the binary sections of CPU2 */
1040 	return iwl_pcie_load_cpu_sections_8000(trans, image, 2,
1041 					       &first_ucode_section);
1042 }
1043 
1044 bool iwl_trans_check_hw_rf_kill(struct iwl_trans *trans)
1045 {
1046 	bool hw_rfkill = iwl_is_rfkill_set(trans);
1047 
1048 	if (hw_rfkill)
1049 		set_bit(STATUS_RFKILL, &trans->status);
1050 	else
1051 		clear_bit(STATUS_RFKILL, &trans->status);
1052 
1053 	iwl_trans_pcie_rf_kill(trans, hw_rfkill);
1054 
1055 	return hw_rfkill;
1056 }
1057 
1058 struct iwl_causes_list {
1059 	u32 cause_num;
1060 	u32 mask_reg;
1061 	u8 addr;
1062 };
1063 
1064 static struct iwl_causes_list causes_list[] = {
1065 	{MSIX_FH_INT_CAUSES_D2S_CH0_NUM,	CSR_MSIX_FH_INT_MASK_AD, 0},
1066 	{MSIX_FH_INT_CAUSES_D2S_CH1_NUM,	CSR_MSIX_FH_INT_MASK_AD, 0x1},
1067 	{MSIX_FH_INT_CAUSES_S2D,		CSR_MSIX_FH_INT_MASK_AD, 0x3},
1068 	{MSIX_FH_INT_CAUSES_FH_ERR,		CSR_MSIX_FH_INT_MASK_AD, 0x5},
1069 	{MSIX_HW_INT_CAUSES_REG_ALIVE,		CSR_MSIX_HW_INT_MASK_AD, 0x10},
1070 	{MSIX_HW_INT_CAUSES_REG_WAKEUP,		CSR_MSIX_HW_INT_MASK_AD, 0x11},
1071 	{MSIX_HW_INT_CAUSES_REG_CT_KILL,	CSR_MSIX_HW_INT_MASK_AD, 0x16},
1072 	{MSIX_HW_INT_CAUSES_REG_RF_KILL,	CSR_MSIX_HW_INT_MASK_AD, 0x17},
1073 	{MSIX_HW_INT_CAUSES_REG_PERIODIC,	CSR_MSIX_HW_INT_MASK_AD, 0x18},
1074 	{MSIX_HW_INT_CAUSES_REG_SW_ERR,		CSR_MSIX_HW_INT_MASK_AD, 0x29},
1075 	{MSIX_HW_INT_CAUSES_REG_SCD,		CSR_MSIX_HW_INT_MASK_AD, 0x2A},
1076 	{MSIX_HW_INT_CAUSES_REG_FH_TX,		CSR_MSIX_HW_INT_MASK_AD, 0x2B},
1077 	{MSIX_HW_INT_CAUSES_REG_HW_ERR,		CSR_MSIX_HW_INT_MASK_AD, 0x2D},
1078 	{MSIX_HW_INT_CAUSES_REG_HAP,		CSR_MSIX_HW_INT_MASK_AD, 0x2E},
1079 };
1080 
1081 static void iwl_pcie_map_non_rx_causes(struct iwl_trans *trans)
1082 {
1083 	struct iwl_trans_pcie *trans_pcie =  IWL_TRANS_GET_PCIE_TRANS(trans);
1084 	int val = trans_pcie->def_irq | MSIX_NON_AUTO_CLEAR_CAUSE;
1085 	int i;
1086 
1087 	/*
1088 	 * Access all non RX causes and map them to the default irq.
1089 	 * In case we are missing at least one interrupt vector,
1090 	 * the first interrupt vector will serve non-RX and FBQ causes.
1091 	 */
1092 	for (i = 0; i < ARRAY_SIZE(causes_list); i++) {
1093 		iwl_write8(trans, CSR_MSIX_IVAR(causes_list[i].addr), val);
1094 		iwl_clear_bit(trans, causes_list[i].mask_reg,
1095 			      causes_list[i].cause_num);
1096 	}
1097 }
1098 
1099 static void iwl_pcie_map_rx_causes(struct iwl_trans *trans)
1100 {
1101 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1102 	u32 offset =
1103 		trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS ? 1 : 0;
1104 	u32 val, idx;
1105 
1106 	/*
1107 	 * The first RX queue - fallback queue, which is designated for
1108 	 * management frame, command responses etc, is always mapped to the
1109 	 * first interrupt vector. The other RX queues are mapped to
1110 	 * the other (N - 2) interrupt vectors.
1111 	 */
1112 	val = BIT(MSIX_FH_INT_CAUSES_Q(0));
1113 	for (idx = 1; idx < trans->num_rx_queues; idx++) {
1114 		iwl_write8(trans, CSR_MSIX_RX_IVAR(idx),
1115 			   MSIX_FH_INT_CAUSES_Q(idx - offset));
1116 		val |= BIT(MSIX_FH_INT_CAUSES_Q(idx));
1117 	}
1118 	iwl_write32(trans, CSR_MSIX_FH_INT_MASK_AD, ~val);
1119 
1120 	val = MSIX_FH_INT_CAUSES_Q(0);
1121 	if (trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_NON_RX)
1122 		val |= MSIX_NON_AUTO_CLEAR_CAUSE;
1123 	iwl_write8(trans, CSR_MSIX_RX_IVAR(0), val);
1124 
1125 	if (trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS)
1126 		iwl_write8(trans, CSR_MSIX_RX_IVAR(1), val);
1127 }
1128 
1129 static void iwl_pcie_conf_msix_hw(struct iwl_trans_pcie *trans_pcie)
1130 {
1131 	struct iwl_trans *trans = trans_pcie->trans;
1132 
1133 	if (!trans_pcie->msix_enabled) {
1134 		if (trans->cfg->mq_rx_supported &&
1135 		    test_bit(STATUS_DEVICE_ENABLED, &trans->status))
1136 			iwl_write_prph(trans, UREG_CHICK,
1137 				       UREG_CHICK_MSI_ENABLE);
1138 		return;
1139 	}
1140 	/*
1141 	 * The IVAR table needs to be configured again after reset,
1142 	 * but if the device is disabled, we can't write to
1143 	 * prph.
1144 	 */
1145 	if (test_bit(STATUS_DEVICE_ENABLED, &trans->status))
1146 		iwl_write_prph(trans, UREG_CHICK, UREG_CHICK_MSIX_ENABLE);
1147 
1148 	/*
1149 	 * Each cause from the causes list above and the RX causes is
1150 	 * represented as a byte in the IVAR table. The first nibble
1151 	 * represents the bound interrupt vector of the cause, the second
1152 	 * represents no auto clear for this cause. This will be set if its
1153 	 * interrupt vector is bound to serve other causes.
1154 	 */
1155 	iwl_pcie_map_rx_causes(trans);
1156 
1157 	iwl_pcie_map_non_rx_causes(trans);
1158 }
1159 
1160 static void iwl_pcie_init_msix(struct iwl_trans_pcie *trans_pcie)
1161 {
1162 	struct iwl_trans *trans = trans_pcie->trans;
1163 
1164 	iwl_pcie_conf_msix_hw(trans_pcie);
1165 
1166 	if (!trans_pcie->msix_enabled)
1167 		return;
1168 
1169 	trans_pcie->fh_init_mask = ~iwl_read32(trans, CSR_MSIX_FH_INT_MASK_AD);
1170 	trans_pcie->fh_mask = trans_pcie->fh_init_mask;
1171 	trans_pcie->hw_init_mask = ~iwl_read32(trans, CSR_MSIX_HW_INT_MASK_AD);
1172 	trans_pcie->hw_mask = trans_pcie->hw_init_mask;
1173 }
1174 
1175 static void _iwl_trans_pcie_stop_device(struct iwl_trans *trans, bool low_power)
1176 {
1177 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1178 	bool hw_rfkill, was_hw_rfkill;
1179 
1180 	lockdep_assert_held(&trans_pcie->mutex);
1181 
1182 	if (trans_pcie->is_down)
1183 		return;
1184 
1185 	trans_pcie->is_down = true;
1186 
1187 	was_hw_rfkill = iwl_is_rfkill_set(trans);
1188 
1189 	/* tell the device to stop sending interrupts */
1190 	iwl_disable_interrupts(trans);
1191 
1192 	/* device going down, Stop using ICT table */
1193 	iwl_pcie_disable_ict(trans);
1194 
1195 	/*
1196 	 * If a HW restart happens during firmware loading,
1197 	 * then the firmware loading might call this function
1198 	 * and later it might be called again due to the
1199 	 * restart. So don't process again if the device is
1200 	 * already dead.
1201 	 */
1202 	if (test_and_clear_bit(STATUS_DEVICE_ENABLED, &trans->status)) {
1203 		IWL_DEBUG_INFO(trans,
1204 			       "DEVICE_ENABLED bit was set and is now cleared\n");
1205 		iwl_pcie_tx_stop(trans);
1206 		iwl_pcie_rx_stop(trans);
1207 
1208 		/* Power-down device's busmaster DMA clocks */
1209 		if (!trans->cfg->apmg_not_supported) {
1210 			iwl_write_prph(trans, APMG_CLK_DIS_REG,
1211 				       APMG_CLK_VAL_DMA_CLK_RQT);
1212 			udelay(5);
1213 		}
1214 	}
1215 
1216 	iwl_pcie_ctxt_info_free_paging(trans);
1217 	iwl_pcie_ctxt_info_free(trans);
1218 
1219 	/* Make sure (redundant) we've released our request to stay awake */
1220 	iwl_clear_bit(trans, CSR_GP_CNTRL,
1221 		      CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
1222 
1223 	/* Stop the device, and put it in low power state */
1224 	iwl_pcie_apm_stop(trans, false);
1225 
1226 	/* stop and reset the on-board processor */
1227 	iwl_write32(trans, CSR_RESET, CSR_RESET_REG_FLAG_SW_RESET);
1228 	usleep_range(1000, 2000);
1229 
1230 	/*
1231 	 * Upon stop, the IVAR table gets erased, so msi-x won't
1232 	 * work. This causes a bug in RF-KILL flows, since the interrupt
1233 	 * that enables radio won't fire on the correct irq, and the
1234 	 * driver won't be able to handle the interrupt.
1235 	 * Configure the IVAR table again after reset.
1236 	 */
1237 	iwl_pcie_conf_msix_hw(trans_pcie);
1238 
1239 	/*
1240 	 * Upon stop, the APM issues an interrupt if HW RF kill is set.
1241 	 * This is a bug in certain verions of the hardware.
1242 	 * Certain devices also keep sending HW RF kill interrupt all
1243 	 * the time, unless the interrupt is ACKed even if the interrupt
1244 	 * should be masked. Re-ACK all the interrupts here.
1245 	 */
1246 	iwl_disable_interrupts(trans);
1247 
1248 	/* clear all status bits */
1249 	clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
1250 	clear_bit(STATUS_INT_ENABLED, &trans->status);
1251 	clear_bit(STATUS_TPOWER_PMI, &trans->status);
1252 	clear_bit(STATUS_RFKILL, &trans->status);
1253 
1254 	/*
1255 	 * Even if we stop the HW, we still want the RF kill
1256 	 * interrupt
1257 	 */
1258 	iwl_enable_rfkill_int(trans);
1259 
1260 	/*
1261 	 * Check again since the RF kill state may have changed while
1262 	 * all the interrupts were disabled, in this case we couldn't
1263 	 * receive the RF kill interrupt and update the state in the
1264 	 * op_mode.
1265 	 * Don't call the op_mode if the rkfill state hasn't changed.
1266 	 * This allows the op_mode to call stop_device from the rfkill
1267 	 * notification without endless recursion. Under very rare
1268 	 * circumstances, we might have a small recursion if the rfkill
1269 	 * state changed exactly now while we were called from stop_device.
1270 	 * This is very unlikely but can happen and is supported.
1271 	 */
1272 	hw_rfkill = iwl_is_rfkill_set(trans);
1273 	if (hw_rfkill)
1274 		set_bit(STATUS_RFKILL, &trans->status);
1275 	else
1276 		clear_bit(STATUS_RFKILL, &trans->status);
1277 	if (hw_rfkill != was_hw_rfkill)
1278 		iwl_trans_pcie_rf_kill(trans, hw_rfkill);
1279 
1280 	/* re-take ownership to prevent other users from stealing the device */
1281 	iwl_pcie_prepare_card_hw(trans);
1282 }
1283 
1284 void iwl_pcie_synchronize_irqs(struct iwl_trans *trans)
1285 {
1286 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1287 
1288 	if (trans_pcie->msix_enabled) {
1289 		int i;
1290 
1291 		for (i = 0; i < trans_pcie->alloc_vecs; i++)
1292 			synchronize_irq(trans_pcie->msix_entries[i].vector);
1293 	} else {
1294 		synchronize_irq(trans_pcie->pci_dev->irq);
1295 	}
1296 }
1297 
1298 static int iwl_trans_pcie_start_fw(struct iwl_trans *trans,
1299 				   const struct fw_img *fw, bool run_in_rfkill)
1300 {
1301 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1302 	bool hw_rfkill;
1303 	int ret;
1304 
1305 	/* This may fail if AMT took ownership of the device */
1306 	if (iwl_pcie_prepare_card_hw(trans)) {
1307 		IWL_WARN(trans, "Exit HW not ready\n");
1308 		ret = -EIO;
1309 		goto out;
1310 	}
1311 
1312 	iwl_enable_rfkill_int(trans);
1313 
1314 	iwl_write32(trans, CSR_INT, 0xFFFFFFFF);
1315 
1316 	/*
1317 	 * We enabled the RF-Kill interrupt and the handler may very
1318 	 * well be running. Disable the interrupts to make sure no other
1319 	 * interrupt can be fired.
1320 	 */
1321 	iwl_disable_interrupts(trans);
1322 
1323 	/* Make sure it finished running */
1324 	iwl_pcie_synchronize_irqs(trans);
1325 
1326 	mutex_lock(&trans_pcie->mutex);
1327 
1328 	/* If platform's RF_KILL switch is NOT set to KILL */
1329 	hw_rfkill = iwl_trans_check_hw_rf_kill(trans);
1330 	if (hw_rfkill && !run_in_rfkill) {
1331 		ret = -ERFKILL;
1332 		goto out;
1333 	}
1334 
1335 	/* Someone called stop_device, don't try to start_fw */
1336 	if (trans_pcie->is_down) {
1337 		IWL_WARN(trans,
1338 			 "Can't start_fw since the HW hasn't been started\n");
1339 		ret = -EIO;
1340 		goto out;
1341 	}
1342 
1343 	/* make sure rfkill handshake bits are cleared */
1344 	iwl_write32(trans, CSR_UCODE_DRV_GP1_CLR, CSR_UCODE_SW_BIT_RFKILL);
1345 	iwl_write32(trans, CSR_UCODE_DRV_GP1_CLR,
1346 		    CSR_UCODE_DRV_GP1_BIT_CMD_BLOCKED);
1347 
1348 	/* clear (again), then enable host interrupts */
1349 	iwl_write32(trans, CSR_INT, 0xFFFFFFFF);
1350 
1351 	ret = iwl_pcie_nic_init(trans);
1352 	if (ret) {
1353 		IWL_ERR(trans, "Unable to init nic\n");
1354 		goto out;
1355 	}
1356 
1357 	/*
1358 	 * Now, we load the firmware and don't want to be interrupted, even
1359 	 * by the RF-Kill interrupt (hence mask all the interrupt besides the
1360 	 * FH_TX interrupt which is needed to load the firmware). If the
1361 	 * RF-Kill switch is toggled, we will find out after having loaded
1362 	 * the firmware and return the proper value to the caller.
1363 	 */
1364 	iwl_enable_fw_load_int(trans);
1365 
1366 	/* really make sure rfkill handshake bits are cleared */
1367 	iwl_write32(trans, CSR_UCODE_DRV_GP1_CLR, CSR_UCODE_SW_BIT_RFKILL);
1368 	iwl_write32(trans, CSR_UCODE_DRV_GP1_CLR, CSR_UCODE_SW_BIT_RFKILL);
1369 
1370 	/* Load the given image to the HW */
1371 	if (trans->cfg->device_family == IWL_DEVICE_FAMILY_8000)
1372 		ret = iwl_pcie_load_given_ucode_8000(trans, fw);
1373 	else
1374 		ret = iwl_pcie_load_given_ucode(trans, fw);
1375 
1376 	/* re-check RF-Kill state since we may have missed the interrupt */
1377 	hw_rfkill = iwl_trans_check_hw_rf_kill(trans);
1378 	if (hw_rfkill && !run_in_rfkill)
1379 		ret = -ERFKILL;
1380 
1381 out:
1382 	mutex_unlock(&trans_pcie->mutex);
1383 	return ret;
1384 }
1385 
1386 static void iwl_trans_pcie_fw_alive(struct iwl_trans *trans, u32 scd_addr)
1387 {
1388 	iwl_pcie_reset_ict(trans);
1389 	iwl_pcie_tx_start(trans, scd_addr);
1390 }
1391 
1392 static void iwl_trans_pcie_stop_device(struct iwl_trans *trans, bool low_power)
1393 {
1394 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1395 
1396 	mutex_lock(&trans_pcie->mutex);
1397 	_iwl_trans_pcie_stop_device(trans, low_power);
1398 	mutex_unlock(&trans_pcie->mutex);
1399 }
1400 
1401 void iwl_trans_pcie_rf_kill(struct iwl_trans *trans, bool state)
1402 {
1403 	struct iwl_trans_pcie __maybe_unused *trans_pcie =
1404 		IWL_TRANS_GET_PCIE_TRANS(trans);
1405 
1406 	lockdep_assert_held(&trans_pcie->mutex);
1407 
1408 	if (iwl_op_mode_hw_rf_kill(trans->op_mode, state))
1409 		_iwl_trans_pcie_stop_device(trans, true);
1410 }
1411 
1412 static void iwl_trans_pcie_d3_suspend(struct iwl_trans *trans, bool test,
1413 				      bool reset)
1414 {
1415 	if (!reset) {
1416 		/* Enable persistence mode to avoid reset */
1417 		iwl_set_bit(trans, CSR_HW_IF_CONFIG_REG,
1418 			    CSR_HW_IF_CONFIG_REG_PERSIST_MODE);
1419 	}
1420 
1421 	iwl_disable_interrupts(trans);
1422 
1423 	/*
1424 	 * in testing mode, the host stays awake and the
1425 	 * hardware won't be reset (not even partially)
1426 	 */
1427 	if (test)
1428 		return;
1429 
1430 	iwl_pcie_disable_ict(trans);
1431 
1432 	iwl_pcie_synchronize_irqs(trans);
1433 
1434 	iwl_clear_bit(trans, CSR_GP_CNTRL,
1435 		      CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
1436 	iwl_clear_bit(trans, CSR_GP_CNTRL,
1437 		      CSR_GP_CNTRL_REG_FLAG_INIT_DONE);
1438 
1439 	iwl_pcie_enable_rx_wake(trans, false);
1440 
1441 	if (reset) {
1442 		/*
1443 		 * reset TX queues -- some of their registers reset during S3
1444 		 * so if we don't reset everything here the D3 image would try
1445 		 * to execute some invalid memory upon resume
1446 		 */
1447 		iwl_trans_pcie_tx_reset(trans);
1448 	}
1449 
1450 	iwl_pcie_set_pwr(trans, true);
1451 }
1452 
1453 static int iwl_trans_pcie_d3_resume(struct iwl_trans *trans,
1454 				    enum iwl_d3_status *status,
1455 				    bool test,  bool reset)
1456 {
1457 	struct iwl_trans_pcie *trans_pcie =  IWL_TRANS_GET_PCIE_TRANS(trans);
1458 	u32 val;
1459 	int ret;
1460 
1461 	if (test) {
1462 		iwl_enable_interrupts(trans);
1463 		*status = IWL_D3_STATUS_ALIVE;
1464 		return 0;
1465 	}
1466 
1467 	iwl_pcie_enable_rx_wake(trans, true);
1468 
1469 	/*
1470 	 * Reconfigure IVAR table in case of MSIX or reset ict table in
1471 	 * MSI mode since HW reset erased it.
1472 	 * Also enables interrupts - none will happen as
1473 	 * the device doesn't know we're waking it up, only when
1474 	 * the opmode actually tells it after this call.
1475 	 */
1476 	iwl_pcie_conf_msix_hw(trans_pcie);
1477 	if (!trans_pcie->msix_enabled)
1478 		iwl_pcie_reset_ict(trans);
1479 	iwl_enable_interrupts(trans);
1480 
1481 	iwl_set_bit(trans, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
1482 	iwl_set_bit(trans, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_INIT_DONE);
1483 
1484 	if (trans->cfg->device_family == IWL_DEVICE_FAMILY_8000)
1485 		udelay(2);
1486 
1487 	ret = iwl_poll_bit(trans, CSR_GP_CNTRL,
1488 			   CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY,
1489 			   CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY,
1490 			   25000);
1491 	if (ret < 0) {
1492 		IWL_ERR(trans, "Failed to resume the device (mac ready)\n");
1493 		return ret;
1494 	}
1495 
1496 	iwl_pcie_set_pwr(trans, false);
1497 
1498 	if (!reset) {
1499 		iwl_clear_bit(trans, CSR_GP_CNTRL,
1500 			      CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
1501 	} else {
1502 		iwl_trans_pcie_tx_reset(trans);
1503 
1504 		ret = iwl_pcie_rx_init(trans);
1505 		if (ret) {
1506 			IWL_ERR(trans,
1507 				"Failed to resume the device (RX reset)\n");
1508 			return ret;
1509 		}
1510 	}
1511 
1512 	IWL_DEBUG_POWER(trans, "WFPM value upon resume = 0x%08X\n",
1513 			iwl_read_prph(trans, WFPM_GP2));
1514 
1515 	val = iwl_read32(trans, CSR_RESET);
1516 	if (val & CSR_RESET_REG_FLAG_NEVO_RESET)
1517 		*status = IWL_D3_STATUS_RESET;
1518 	else
1519 		*status = IWL_D3_STATUS_ALIVE;
1520 
1521 	return 0;
1522 }
1523 
1524 static void iwl_pcie_set_interrupt_capa(struct pci_dev *pdev,
1525 					struct iwl_trans *trans)
1526 {
1527 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1528 	int max_irqs, num_irqs, i, ret, nr_online_cpus;
1529 	u16 pci_cmd;
1530 
1531 	if (!trans->cfg->mq_rx_supported)
1532 		goto enable_msi;
1533 
1534 	nr_online_cpus = num_online_cpus();
1535 	max_irqs = min_t(u32, nr_online_cpus + 2, IWL_MAX_RX_HW_QUEUES);
1536 	for (i = 0; i < max_irqs; i++)
1537 		trans_pcie->msix_entries[i].entry = i;
1538 
1539 	num_irqs = pci_enable_msix_range(pdev, trans_pcie->msix_entries,
1540 					 MSIX_MIN_INTERRUPT_VECTORS,
1541 					 max_irqs);
1542 	if (num_irqs < 0) {
1543 		IWL_DEBUG_INFO(trans,
1544 			       "Failed to enable msi-x mode (ret %d). Moving to msi mode.\n",
1545 			       num_irqs);
1546 		goto enable_msi;
1547 	}
1548 	trans_pcie->def_irq = (num_irqs == max_irqs) ? num_irqs - 1 : 0;
1549 
1550 	IWL_DEBUG_INFO(trans,
1551 		       "MSI-X enabled. %d interrupt vectors were allocated\n",
1552 		       num_irqs);
1553 
1554 	/*
1555 	 * In case the OS provides fewer interrupts than requested, different
1556 	 * causes will share the same interrupt vector as follows:
1557 	 * One interrupt less: non rx causes shared with FBQ.
1558 	 * Two interrupts less: non rx causes shared with FBQ and RSS.
1559 	 * More than two interrupts: we will use fewer RSS queues.
1560 	 */
1561 	if (num_irqs <= nr_online_cpus) {
1562 		trans_pcie->trans->num_rx_queues = num_irqs + 1;
1563 		trans_pcie->shared_vec_mask = IWL_SHARED_IRQ_NON_RX |
1564 			IWL_SHARED_IRQ_FIRST_RSS;
1565 	} else if (num_irqs == nr_online_cpus + 1) {
1566 		trans_pcie->trans->num_rx_queues = num_irqs;
1567 		trans_pcie->shared_vec_mask = IWL_SHARED_IRQ_NON_RX;
1568 	} else {
1569 		trans_pcie->trans->num_rx_queues = num_irqs - 1;
1570 	}
1571 
1572 	trans_pcie->alloc_vecs = num_irqs;
1573 	trans_pcie->msix_enabled = true;
1574 	return;
1575 
1576 enable_msi:
1577 	ret = pci_enable_msi(pdev);
1578 	if (ret) {
1579 		dev_err(&pdev->dev, "pci_enable_msi failed - %d\n", ret);
1580 		/* enable rfkill interrupt: hw bug w/a */
1581 		pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
1582 		if (pci_cmd & PCI_COMMAND_INTX_DISABLE) {
1583 			pci_cmd &= ~PCI_COMMAND_INTX_DISABLE;
1584 			pci_write_config_word(pdev, PCI_COMMAND, pci_cmd);
1585 		}
1586 	}
1587 }
1588 
1589 static void iwl_pcie_irq_set_affinity(struct iwl_trans *trans)
1590 {
1591 	int iter_rx_q, i, ret, cpu, offset;
1592 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1593 
1594 	i = trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS ? 0 : 1;
1595 	iter_rx_q = trans_pcie->trans->num_rx_queues - 1 + i;
1596 	offset = 1 + i;
1597 	for (; i < iter_rx_q ; i++) {
1598 		/*
1599 		 * Get the cpu prior to the place to search
1600 		 * (i.e. return will be > i - 1).
1601 		 */
1602 		cpu = cpumask_next(i - offset, cpu_online_mask);
1603 		cpumask_set_cpu(cpu, &trans_pcie->affinity_mask[i]);
1604 		ret = irq_set_affinity_hint(trans_pcie->msix_entries[i].vector,
1605 					    &trans_pcie->affinity_mask[i]);
1606 		if (ret)
1607 			IWL_ERR(trans_pcie->trans,
1608 				"Failed to set affinity mask for IRQ %d\n",
1609 				i);
1610 	}
1611 }
1612 
1613 static const char *queue_name(struct device *dev,
1614 			      struct iwl_trans_pcie *trans_p, int i)
1615 {
1616 	if (trans_p->shared_vec_mask) {
1617 		int vec = trans_p->shared_vec_mask &
1618 			  IWL_SHARED_IRQ_FIRST_RSS ? 1 : 0;
1619 
1620 		if (i == 0)
1621 			return DRV_NAME ": shared IRQ";
1622 
1623 		return devm_kasprintf(dev, GFP_KERNEL,
1624 				      DRV_NAME ": queue %d", i + vec);
1625 	}
1626 	if (i == 0)
1627 		return DRV_NAME ": default queue";
1628 
1629 	if (i == trans_p->alloc_vecs - 1)
1630 		return DRV_NAME ": exception";
1631 
1632 	return devm_kasprintf(dev, GFP_KERNEL,
1633 			      DRV_NAME  ": queue %d", i);
1634 }
1635 
1636 static int iwl_pcie_init_msix_handler(struct pci_dev *pdev,
1637 				      struct iwl_trans_pcie *trans_pcie)
1638 {
1639 	int i;
1640 
1641 	for (i = 0; i < trans_pcie->alloc_vecs; i++) {
1642 		int ret;
1643 		struct msix_entry *msix_entry;
1644 		const char *qname = queue_name(&pdev->dev, trans_pcie, i);
1645 
1646 		if (!qname)
1647 			return -ENOMEM;
1648 
1649 		msix_entry = &trans_pcie->msix_entries[i];
1650 		ret = devm_request_threaded_irq(&pdev->dev,
1651 						msix_entry->vector,
1652 						iwl_pcie_msix_isr,
1653 						(i == trans_pcie->def_irq) ?
1654 						iwl_pcie_irq_msix_handler :
1655 						iwl_pcie_irq_rx_msix_handler,
1656 						IRQF_SHARED,
1657 						qname,
1658 						msix_entry);
1659 		if (ret) {
1660 			IWL_ERR(trans_pcie->trans,
1661 				"Error allocating IRQ %d\n", i);
1662 
1663 			return ret;
1664 		}
1665 	}
1666 	iwl_pcie_irq_set_affinity(trans_pcie->trans);
1667 
1668 	return 0;
1669 }
1670 
1671 static int _iwl_trans_pcie_start_hw(struct iwl_trans *trans, bool low_power)
1672 {
1673 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1674 	int err;
1675 
1676 	lockdep_assert_held(&trans_pcie->mutex);
1677 
1678 	err = iwl_pcie_prepare_card_hw(trans);
1679 	if (err) {
1680 		IWL_ERR(trans, "Error while preparing HW: %d\n", err);
1681 		return err;
1682 	}
1683 
1684 	/* Reset the entire device */
1685 	iwl_write32(trans, CSR_RESET, CSR_RESET_REG_FLAG_SW_RESET);
1686 	usleep_range(1000, 2000);
1687 
1688 	iwl_pcie_apm_init(trans);
1689 
1690 	iwl_pcie_init_msix(trans_pcie);
1691 
1692 	/* From now on, the op_mode will be kept updated about RF kill state */
1693 	iwl_enable_rfkill_int(trans);
1694 
1695 	/* Set is_down to false here so that...*/
1696 	trans_pcie->is_down = false;
1697 
1698 	/* ...rfkill can call stop_device and set it false if needed */
1699 	iwl_trans_check_hw_rf_kill(trans);
1700 
1701 	/* Make sure we sync here, because we'll need full access later */
1702 	if (low_power)
1703 		pm_runtime_resume(trans->dev);
1704 
1705 	return 0;
1706 }
1707 
1708 static int iwl_trans_pcie_start_hw(struct iwl_trans *trans, bool low_power)
1709 {
1710 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1711 	int ret;
1712 
1713 	mutex_lock(&trans_pcie->mutex);
1714 	ret = _iwl_trans_pcie_start_hw(trans, low_power);
1715 	mutex_unlock(&trans_pcie->mutex);
1716 
1717 	return ret;
1718 }
1719 
1720 static void iwl_trans_pcie_op_mode_leave(struct iwl_trans *trans)
1721 {
1722 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1723 
1724 	mutex_lock(&trans_pcie->mutex);
1725 
1726 	/* disable interrupts - don't enable HW RF kill interrupt */
1727 	iwl_disable_interrupts(trans);
1728 
1729 	iwl_pcie_apm_stop(trans, true);
1730 
1731 	iwl_disable_interrupts(trans);
1732 
1733 	iwl_pcie_disable_ict(trans);
1734 
1735 	mutex_unlock(&trans_pcie->mutex);
1736 
1737 	iwl_pcie_synchronize_irqs(trans);
1738 }
1739 
1740 static void iwl_trans_pcie_write8(struct iwl_trans *trans, u32 ofs, u8 val)
1741 {
1742 	writeb(val, IWL_TRANS_GET_PCIE_TRANS(trans)->hw_base + ofs);
1743 }
1744 
1745 static void iwl_trans_pcie_write32(struct iwl_trans *trans, u32 ofs, u32 val)
1746 {
1747 	writel(val, IWL_TRANS_GET_PCIE_TRANS(trans)->hw_base + ofs);
1748 }
1749 
1750 static u32 iwl_trans_pcie_read32(struct iwl_trans *trans, u32 ofs)
1751 {
1752 	return readl(IWL_TRANS_GET_PCIE_TRANS(trans)->hw_base + ofs);
1753 }
1754 
1755 static u32 iwl_trans_pcie_read_prph(struct iwl_trans *trans, u32 reg)
1756 {
1757 	iwl_trans_pcie_write32(trans, HBUS_TARG_PRPH_RADDR,
1758 			       ((reg & 0x000FFFFF) | (3 << 24)));
1759 	return iwl_trans_pcie_read32(trans, HBUS_TARG_PRPH_RDAT);
1760 }
1761 
1762 static void iwl_trans_pcie_write_prph(struct iwl_trans *trans, u32 addr,
1763 				      u32 val)
1764 {
1765 	iwl_trans_pcie_write32(trans, HBUS_TARG_PRPH_WADDR,
1766 			       ((addr & 0x000FFFFF) | (3 << 24)));
1767 	iwl_trans_pcie_write32(trans, HBUS_TARG_PRPH_WDAT, val);
1768 }
1769 
1770 static void iwl_trans_pcie_configure(struct iwl_trans *trans,
1771 				     const struct iwl_trans_config *trans_cfg)
1772 {
1773 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1774 
1775 	trans_pcie->cmd_queue = trans_cfg->cmd_queue;
1776 	trans_pcie->cmd_fifo = trans_cfg->cmd_fifo;
1777 	trans_pcie->cmd_q_wdg_timeout = trans_cfg->cmd_q_wdg_timeout;
1778 	if (WARN_ON(trans_cfg->n_no_reclaim_cmds > MAX_NO_RECLAIM_CMDS))
1779 		trans_pcie->n_no_reclaim_cmds = 0;
1780 	else
1781 		trans_pcie->n_no_reclaim_cmds = trans_cfg->n_no_reclaim_cmds;
1782 	if (trans_pcie->n_no_reclaim_cmds)
1783 		memcpy(trans_pcie->no_reclaim_cmds, trans_cfg->no_reclaim_cmds,
1784 		       trans_pcie->n_no_reclaim_cmds * sizeof(u8));
1785 
1786 	trans_pcie->rx_buf_size = trans_cfg->rx_buf_size;
1787 	trans_pcie->rx_page_order =
1788 		iwl_trans_get_rb_size_order(trans_pcie->rx_buf_size);
1789 
1790 	trans_pcie->bc_table_dword = trans_cfg->bc_table_dword;
1791 	trans_pcie->scd_set_active = trans_cfg->scd_set_active;
1792 	trans_pcie->sw_csum_tx = trans_cfg->sw_csum_tx;
1793 
1794 	trans_pcie->page_offs = trans_cfg->cb_data_offs;
1795 	trans_pcie->dev_cmd_offs = trans_cfg->cb_data_offs + sizeof(void *);
1796 
1797 	trans->command_groups = trans_cfg->command_groups;
1798 	trans->command_groups_size = trans_cfg->command_groups_size;
1799 
1800 	/* Initialize NAPI here - it should be before registering to mac80211
1801 	 * in the opmode but after the HW struct is allocated.
1802 	 * As this function may be called again in some corner cases don't
1803 	 * do anything if NAPI was already initialized.
1804 	 */
1805 	if (trans_pcie->napi_dev.reg_state != NETREG_DUMMY)
1806 		init_dummy_netdev(&trans_pcie->napi_dev);
1807 }
1808 
1809 void iwl_trans_pcie_free(struct iwl_trans *trans)
1810 {
1811 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1812 	int i;
1813 
1814 	iwl_pcie_synchronize_irqs(trans);
1815 
1816 	iwl_pcie_tx_free(trans);
1817 	iwl_pcie_rx_free(trans);
1818 
1819 	if (trans_pcie->msix_enabled) {
1820 		for (i = 0; i < trans_pcie->alloc_vecs; i++) {
1821 			irq_set_affinity_hint(
1822 				trans_pcie->msix_entries[i].vector,
1823 				NULL);
1824 		}
1825 
1826 		trans_pcie->msix_enabled = false;
1827 	} else {
1828 		iwl_pcie_free_ict(trans);
1829 	}
1830 
1831 	iwl_pcie_free_fw_monitor(trans);
1832 
1833 	for_each_possible_cpu(i) {
1834 		struct iwl_tso_hdr_page *p =
1835 			per_cpu_ptr(trans_pcie->tso_hdr_page, i);
1836 
1837 		if (p->page)
1838 			__free_page(p->page);
1839 	}
1840 
1841 	free_percpu(trans_pcie->tso_hdr_page);
1842 	mutex_destroy(&trans_pcie->mutex);
1843 	iwl_trans_free(trans);
1844 }
1845 
1846 static void iwl_trans_pcie_set_pmi(struct iwl_trans *trans, bool state)
1847 {
1848 	if (state)
1849 		set_bit(STATUS_TPOWER_PMI, &trans->status);
1850 	else
1851 		clear_bit(STATUS_TPOWER_PMI, &trans->status);
1852 }
1853 
1854 static bool iwl_trans_pcie_grab_nic_access(struct iwl_trans *trans,
1855 					   unsigned long *flags)
1856 {
1857 	int ret;
1858 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1859 
1860 	spin_lock_irqsave(&trans_pcie->reg_lock, *flags);
1861 
1862 	if (trans_pcie->cmd_hold_nic_awake)
1863 		goto out;
1864 
1865 	/* this bit wakes up the NIC */
1866 	__iwl_trans_pcie_set_bit(trans, CSR_GP_CNTRL,
1867 				 CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
1868 	if (trans->cfg->device_family == IWL_DEVICE_FAMILY_8000)
1869 		udelay(2);
1870 
1871 	/*
1872 	 * These bits say the device is running, and should keep running for
1873 	 * at least a short while (at least as long as MAC_ACCESS_REQ stays 1),
1874 	 * but they do not indicate that embedded SRAM is restored yet;
1875 	 * 3945 and 4965 have volatile SRAM, and must save/restore contents
1876 	 * to/from host DRAM when sleeping/waking for power-saving.
1877 	 * Each direction takes approximately 1/4 millisecond; with this
1878 	 * overhead, it's a good idea to grab and hold MAC_ACCESS_REQUEST if a
1879 	 * series of register accesses are expected (e.g. reading Event Log),
1880 	 * to keep device from sleeping.
1881 	 *
1882 	 * CSR_UCODE_DRV_GP1 register bit MAC_SLEEP == 0 indicates that
1883 	 * SRAM is okay/restored.  We don't check that here because this call
1884 	 * is just for hardware register access; but GP1 MAC_SLEEP check is a
1885 	 * good idea before accessing 3945/4965 SRAM (e.g. reading Event Log).
1886 	 *
1887 	 * 5000 series and later (including 1000 series) have non-volatile SRAM,
1888 	 * and do not save/restore SRAM when power cycling.
1889 	 */
1890 	ret = iwl_poll_bit(trans, CSR_GP_CNTRL,
1891 			   CSR_GP_CNTRL_REG_VAL_MAC_ACCESS_EN,
1892 			   (CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY |
1893 			    CSR_GP_CNTRL_REG_FLAG_GOING_TO_SLEEP), 15000);
1894 	if (unlikely(ret < 0)) {
1895 		iwl_write32(trans, CSR_RESET, CSR_RESET_REG_FLAG_FORCE_NMI);
1896 		WARN_ONCE(1,
1897 			  "Timeout waiting for hardware access (CSR_GP_CNTRL 0x%08x)\n",
1898 			  iwl_read32(trans, CSR_GP_CNTRL));
1899 		spin_unlock_irqrestore(&trans_pcie->reg_lock, *flags);
1900 		return false;
1901 	}
1902 
1903 out:
1904 	/*
1905 	 * Fool sparse by faking we release the lock - sparse will
1906 	 * track nic_access anyway.
1907 	 */
1908 	__release(&trans_pcie->reg_lock);
1909 	return true;
1910 }
1911 
1912 static void iwl_trans_pcie_release_nic_access(struct iwl_trans *trans,
1913 					      unsigned long *flags)
1914 {
1915 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1916 
1917 	lockdep_assert_held(&trans_pcie->reg_lock);
1918 
1919 	/*
1920 	 * Fool sparse by faking we acquiring the lock - sparse will
1921 	 * track nic_access anyway.
1922 	 */
1923 	__acquire(&trans_pcie->reg_lock);
1924 
1925 	if (trans_pcie->cmd_hold_nic_awake)
1926 		goto out;
1927 
1928 	__iwl_trans_pcie_clear_bit(trans, CSR_GP_CNTRL,
1929 				   CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
1930 	/*
1931 	 * Above we read the CSR_GP_CNTRL register, which will flush
1932 	 * any previous writes, but we need the write that clears the
1933 	 * MAC_ACCESS_REQ bit to be performed before any other writes
1934 	 * scheduled on different CPUs (after we drop reg_lock).
1935 	 */
1936 	mmiowb();
1937 out:
1938 	spin_unlock_irqrestore(&trans_pcie->reg_lock, *flags);
1939 }
1940 
1941 static int iwl_trans_pcie_read_mem(struct iwl_trans *trans, u32 addr,
1942 				   void *buf, int dwords)
1943 {
1944 	unsigned long flags;
1945 	int offs, ret = 0;
1946 	u32 *vals = buf;
1947 
1948 	if (iwl_trans_grab_nic_access(trans, &flags)) {
1949 		iwl_write32(trans, HBUS_TARG_MEM_RADDR, addr);
1950 		for (offs = 0; offs < dwords; offs++)
1951 			vals[offs] = iwl_read32(trans, HBUS_TARG_MEM_RDAT);
1952 		iwl_trans_release_nic_access(trans, &flags);
1953 	} else {
1954 		ret = -EBUSY;
1955 	}
1956 	return ret;
1957 }
1958 
1959 static int iwl_trans_pcie_write_mem(struct iwl_trans *trans, u32 addr,
1960 				    const void *buf, int dwords)
1961 {
1962 	unsigned long flags;
1963 	int offs, ret = 0;
1964 	const u32 *vals = buf;
1965 
1966 	if (iwl_trans_grab_nic_access(trans, &flags)) {
1967 		iwl_write32(trans, HBUS_TARG_MEM_WADDR, addr);
1968 		for (offs = 0; offs < dwords; offs++)
1969 			iwl_write32(trans, HBUS_TARG_MEM_WDAT,
1970 				    vals ? vals[offs] : 0);
1971 		iwl_trans_release_nic_access(trans, &flags);
1972 	} else {
1973 		ret = -EBUSY;
1974 	}
1975 	return ret;
1976 }
1977 
1978 static void iwl_trans_pcie_freeze_txq_timer(struct iwl_trans *trans,
1979 					    unsigned long txqs,
1980 					    bool freeze)
1981 {
1982 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1983 	int queue;
1984 
1985 	for_each_set_bit(queue, &txqs, BITS_PER_LONG) {
1986 		struct iwl_txq *txq = &trans_pcie->txq[queue];
1987 		unsigned long now;
1988 
1989 		spin_lock_bh(&txq->lock);
1990 
1991 		now = jiffies;
1992 
1993 		if (txq->frozen == freeze)
1994 			goto next_queue;
1995 
1996 		IWL_DEBUG_TX_QUEUES(trans, "%s TXQ %d\n",
1997 				    freeze ? "Freezing" : "Waking", queue);
1998 
1999 		txq->frozen = freeze;
2000 
2001 		if (txq->read_ptr == txq->write_ptr)
2002 			goto next_queue;
2003 
2004 		if (freeze) {
2005 			if (unlikely(time_after(now,
2006 						txq->stuck_timer.expires))) {
2007 				/*
2008 				 * The timer should have fired, maybe it is
2009 				 * spinning right now on the lock.
2010 				 */
2011 				goto next_queue;
2012 			}
2013 			/* remember how long until the timer fires */
2014 			txq->frozen_expiry_remainder =
2015 				txq->stuck_timer.expires - now;
2016 			del_timer(&txq->stuck_timer);
2017 			goto next_queue;
2018 		}
2019 
2020 		/*
2021 		 * Wake a non-empty queue -> arm timer with the
2022 		 * remainder before it froze
2023 		 */
2024 		mod_timer(&txq->stuck_timer,
2025 			  now + txq->frozen_expiry_remainder);
2026 
2027 next_queue:
2028 		spin_unlock_bh(&txq->lock);
2029 	}
2030 }
2031 
2032 static void iwl_trans_pcie_block_txq_ptrs(struct iwl_trans *trans, bool block)
2033 {
2034 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2035 	int i;
2036 
2037 	for (i = 0; i < trans->cfg->base_params->num_of_queues; i++) {
2038 		struct iwl_txq *txq = &trans_pcie->txq[i];
2039 
2040 		if (i == trans_pcie->cmd_queue)
2041 			continue;
2042 
2043 		spin_lock_bh(&txq->lock);
2044 
2045 		if (!block && !(WARN_ON_ONCE(!txq->block))) {
2046 			txq->block--;
2047 			if (!txq->block) {
2048 				iwl_write32(trans, HBUS_TARG_WRPTR,
2049 					    txq->write_ptr | (i << 8));
2050 			}
2051 		} else if (block) {
2052 			txq->block++;
2053 		}
2054 
2055 		spin_unlock_bh(&txq->lock);
2056 	}
2057 }
2058 
2059 #define IWL_FLUSH_WAIT_MS	2000
2060 
2061 void iwl_trans_pcie_log_scd_error(struct iwl_trans *trans, struct iwl_txq *txq)
2062 {
2063 	u32 txq_id = txq->id;
2064 	u32 status;
2065 	bool active;
2066 	u8 fifo;
2067 
2068 	if (trans->cfg->use_tfh) {
2069 		IWL_ERR(trans, "Queue %d is stuck %d %d\n", txq_id,
2070 			txq->read_ptr, txq->write_ptr);
2071 		/* TODO: access new SCD registers and dump them */
2072 		return;
2073 	}
2074 
2075 	status = iwl_read_prph(trans, SCD_QUEUE_STATUS_BITS(txq_id));
2076 	fifo = (status >> SCD_QUEUE_STTS_REG_POS_TXF) & 0x7;
2077 	active = !!(status & BIT(SCD_QUEUE_STTS_REG_POS_ACTIVE));
2078 
2079 	IWL_ERR(trans,
2080 		"Queue %d is %sactive on fifo %d and stuck for %u ms. SW [%d, %d] HW [%d, %d] FH TRB=0x0%x\n",
2081 		txq_id, active ? "" : "in", fifo,
2082 		jiffies_to_msecs(txq->wd_timeout),
2083 		txq->read_ptr, txq->write_ptr,
2084 		iwl_read_prph(trans, SCD_QUEUE_RDPTR(txq_id)) &
2085 			(TFD_QUEUE_SIZE_MAX - 1),
2086 		iwl_read_prph(trans, SCD_QUEUE_WRPTR(txq_id)) &
2087 			(TFD_QUEUE_SIZE_MAX - 1),
2088 		iwl_read_direct32(trans, FH_TX_TRB_REG(fifo)));
2089 }
2090 
2091 static int iwl_trans_pcie_wait_txq_empty(struct iwl_trans *trans, u32 txq_bm)
2092 {
2093 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2094 	struct iwl_txq *txq;
2095 	int cnt;
2096 	unsigned long now = jiffies;
2097 	int ret = 0;
2098 
2099 	/* waiting for all the tx frames complete might take a while */
2100 	for (cnt = 0; cnt < trans->cfg->base_params->num_of_queues; cnt++) {
2101 		u8 wr_ptr;
2102 
2103 		if (cnt == trans_pcie->cmd_queue)
2104 			continue;
2105 		if (!test_bit(cnt, trans_pcie->queue_used))
2106 			continue;
2107 		if (!(BIT(cnt) & txq_bm))
2108 			continue;
2109 
2110 		IWL_DEBUG_TX_QUEUES(trans, "Emptying queue %d...\n", cnt);
2111 		txq = &trans_pcie->txq[cnt];
2112 		wr_ptr = ACCESS_ONCE(txq->write_ptr);
2113 
2114 		while (txq->read_ptr != ACCESS_ONCE(txq->write_ptr) &&
2115 		       !time_after(jiffies,
2116 				   now + msecs_to_jiffies(IWL_FLUSH_WAIT_MS))) {
2117 			u8 write_ptr = ACCESS_ONCE(txq->write_ptr);
2118 
2119 			if (WARN_ONCE(wr_ptr != write_ptr,
2120 				      "WR pointer moved while flushing %d -> %d\n",
2121 				      wr_ptr, write_ptr))
2122 				return -ETIMEDOUT;
2123 			usleep_range(1000, 2000);
2124 		}
2125 
2126 		if (txq->read_ptr != txq->write_ptr) {
2127 			IWL_ERR(trans,
2128 				"fail to flush all tx fifo queues Q %d\n", cnt);
2129 			ret = -ETIMEDOUT;
2130 			break;
2131 		}
2132 		IWL_DEBUG_TX_QUEUES(trans, "Queue %d is now empty.\n", cnt);
2133 	}
2134 
2135 	if (ret)
2136 		iwl_trans_pcie_log_scd_error(trans, txq);
2137 
2138 	return ret;
2139 }
2140 
2141 static void iwl_trans_pcie_set_bits_mask(struct iwl_trans *trans, u32 reg,
2142 					 u32 mask, u32 value)
2143 {
2144 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2145 	unsigned long flags;
2146 
2147 	spin_lock_irqsave(&trans_pcie->reg_lock, flags);
2148 	__iwl_trans_pcie_set_bits_mask(trans, reg, mask, value);
2149 	spin_unlock_irqrestore(&trans_pcie->reg_lock, flags);
2150 }
2151 
2152 static void iwl_trans_pcie_ref(struct iwl_trans *trans)
2153 {
2154 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2155 
2156 	if (iwlwifi_mod_params.d0i3_disable)
2157 		return;
2158 
2159 	pm_runtime_get(&trans_pcie->pci_dev->dev);
2160 
2161 #ifdef CONFIG_PM
2162 	IWL_DEBUG_RPM(trans, "runtime usage count: %d\n",
2163 		      atomic_read(&trans_pcie->pci_dev->dev.power.usage_count));
2164 #endif /* CONFIG_PM */
2165 }
2166 
2167 static void iwl_trans_pcie_unref(struct iwl_trans *trans)
2168 {
2169 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2170 
2171 	if (iwlwifi_mod_params.d0i3_disable)
2172 		return;
2173 
2174 	pm_runtime_mark_last_busy(&trans_pcie->pci_dev->dev);
2175 	pm_runtime_put_autosuspend(&trans_pcie->pci_dev->dev);
2176 
2177 #ifdef CONFIG_PM
2178 	IWL_DEBUG_RPM(trans, "runtime usage count: %d\n",
2179 		      atomic_read(&trans_pcie->pci_dev->dev.power.usage_count));
2180 #endif /* CONFIG_PM */
2181 }
2182 
2183 static const char *get_csr_string(int cmd)
2184 {
2185 #define IWL_CMD(x) case x: return #x
2186 	switch (cmd) {
2187 	IWL_CMD(CSR_HW_IF_CONFIG_REG);
2188 	IWL_CMD(CSR_INT_COALESCING);
2189 	IWL_CMD(CSR_INT);
2190 	IWL_CMD(CSR_INT_MASK);
2191 	IWL_CMD(CSR_FH_INT_STATUS);
2192 	IWL_CMD(CSR_GPIO_IN);
2193 	IWL_CMD(CSR_RESET);
2194 	IWL_CMD(CSR_GP_CNTRL);
2195 	IWL_CMD(CSR_HW_REV);
2196 	IWL_CMD(CSR_EEPROM_REG);
2197 	IWL_CMD(CSR_EEPROM_GP);
2198 	IWL_CMD(CSR_OTP_GP_REG);
2199 	IWL_CMD(CSR_GIO_REG);
2200 	IWL_CMD(CSR_GP_UCODE_REG);
2201 	IWL_CMD(CSR_GP_DRIVER_REG);
2202 	IWL_CMD(CSR_UCODE_DRV_GP1);
2203 	IWL_CMD(CSR_UCODE_DRV_GP2);
2204 	IWL_CMD(CSR_LED_REG);
2205 	IWL_CMD(CSR_DRAM_INT_TBL_REG);
2206 	IWL_CMD(CSR_GIO_CHICKEN_BITS);
2207 	IWL_CMD(CSR_ANA_PLL_CFG);
2208 	IWL_CMD(CSR_HW_REV_WA_REG);
2209 	IWL_CMD(CSR_MONITOR_STATUS_REG);
2210 	IWL_CMD(CSR_DBG_HPET_MEM_REG);
2211 	default:
2212 		return "UNKNOWN";
2213 	}
2214 #undef IWL_CMD
2215 }
2216 
2217 void iwl_pcie_dump_csr(struct iwl_trans *trans)
2218 {
2219 	int i;
2220 	static const u32 csr_tbl[] = {
2221 		CSR_HW_IF_CONFIG_REG,
2222 		CSR_INT_COALESCING,
2223 		CSR_INT,
2224 		CSR_INT_MASK,
2225 		CSR_FH_INT_STATUS,
2226 		CSR_GPIO_IN,
2227 		CSR_RESET,
2228 		CSR_GP_CNTRL,
2229 		CSR_HW_REV,
2230 		CSR_EEPROM_REG,
2231 		CSR_EEPROM_GP,
2232 		CSR_OTP_GP_REG,
2233 		CSR_GIO_REG,
2234 		CSR_GP_UCODE_REG,
2235 		CSR_GP_DRIVER_REG,
2236 		CSR_UCODE_DRV_GP1,
2237 		CSR_UCODE_DRV_GP2,
2238 		CSR_LED_REG,
2239 		CSR_DRAM_INT_TBL_REG,
2240 		CSR_GIO_CHICKEN_BITS,
2241 		CSR_ANA_PLL_CFG,
2242 		CSR_MONITOR_STATUS_REG,
2243 		CSR_HW_REV_WA_REG,
2244 		CSR_DBG_HPET_MEM_REG
2245 	};
2246 	IWL_ERR(trans, "CSR values:\n");
2247 	IWL_ERR(trans, "(2nd byte of CSR_INT_COALESCING is "
2248 		"CSR_INT_PERIODIC_REG)\n");
2249 	for (i = 0; i <  ARRAY_SIZE(csr_tbl); i++) {
2250 		IWL_ERR(trans, "  %25s: 0X%08x\n",
2251 			get_csr_string(csr_tbl[i]),
2252 			iwl_read32(trans, csr_tbl[i]));
2253 	}
2254 }
2255 
2256 #ifdef CONFIG_IWLWIFI_DEBUGFS
2257 /* create and remove of files */
2258 #define DEBUGFS_ADD_FILE(name, parent, mode) do {			\
2259 	if (!debugfs_create_file(#name, mode, parent, trans,		\
2260 				 &iwl_dbgfs_##name##_ops))		\
2261 		goto err;						\
2262 } while (0)
2263 
2264 /* file operation */
2265 #define DEBUGFS_READ_FILE_OPS(name)					\
2266 static const struct file_operations iwl_dbgfs_##name##_ops = {		\
2267 	.read = iwl_dbgfs_##name##_read,				\
2268 	.open = simple_open,						\
2269 	.llseek = generic_file_llseek,					\
2270 };
2271 
2272 #define DEBUGFS_WRITE_FILE_OPS(name)                                    \
2273 static const struct file_operations iwl_dbgfs_##name##_ops = {          \
2274 	.write = iwl_dbgfs_##name##_write,                              \
2275 	.open = simple_open,						\
2276 	.llseek = generic_file_llseek,					\
2277 };
2278 
2279 #define DEBUGFS_READ_WRITE_FILE_OPS(name)				\
2280 static const struct file_operations iwl_dbgfs_##name##_ops = {		\
2281 	.write = iwl_dbgfs_##name##_write,				\
2282 	.read = iwl_dbgfs_##name##_read,				\
2283 	.open = simple_open,						\
2284 	.llseek = generic_file_llseek,					\
2285 };
2286 
2287 static ssize_t iwl_dbgfs_tx_queue_read(struct file *file,
2288 				       char __user *user_buf,
2289 				       size_t count, loff_t *ppos)
2290 {
2291 	struct iwl_trans *trans = file->private_data;
2292 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2293 	struct iwl_txq *txq;
2294 	char *buf;
2295 	int pos = 0;
2296 	int cnt;
2297 	int ret;
2298 	size_t bufsz;
2299 
2300 	bufsz = sizeof(char) * 75 * trans->cfg->base_params->num_of_queues;
2301 
2302 	if (!trans_pcie->txq)
2303 		return -EAGAIN;
2304 
2305 	buf = kzalloc(bufsz, GFP_KERNEL);
2306 	if (!buf)
2307 		return -ENOMEM;
2308 
2309 	for (cnt = 0; cnt < trans->cfg->base_params->num_of_queues; cnt++) {
2310 		txq = &trans_pcie->txq[cnt];
2311 		pos += scnprintf(buf + pos, bufsz - pos,
2312 				"hwq %.2d: read=%u write=%u use=%d stop=%d need_update=%d frozen=%d%s\n",
2313 				cnt, txq->read_ptr, txq->write_ptr,
2314 				!!test_bit(cnt, trans_pcie->queue_used),
2315 				 !!test_bit(cnt, trans_pcie->queue_stopped),
2316 				 txq->need_update, txq->frozen,
2317 				 (cnt == trans_pcie->cmd_queue ? " HCMD" : ""));
2318 	}
2319 	ret = simple_read_from_buffer(user_buf, count, ppos, buf, pos);
2320 	kfree(buf);
2321 	return ret;
2322 }
2323 
2324 static ssize_t iwl_dbgfs_rx_queue_read(struct file *file,
2325 				       char __user *user_buf,
2326 				       size_t count, loff_t *ppos)
2327 {
2328 	struct iwl_trans *trans = file->private_data;
2329 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2330 	char *buf;
2331 	int pos = 0, i, ret;
2332 	size_t bufsz = sizeof(buf);
2333 
2334 	bufsz = sizeof(char) * 121 * trans->num_rx_queues;
2335 
2336 	if (!trans_pcie->rxq)
2337 		return -EAGAIN;
2338 
2339 	buf = kzalloc(bufsz, GFP_KERNEL);
2340 	if (!buf)
2341 		return -ENOMEM;
2342 
2343 	for (i = 0; i < trans->num_rx_queues && pos < bufsz; i++) {
2344 		struct iwl_rxq *rxq = &trans_pcie->rxq[i];
2345 
2346 		pos += scnprintf(buf + pos, bufsz - pos, "queue#: %2d\n",
2347 				 i);
2348 		pos += scnprintf(buf + pos, bufsz - pos, "\tread: %u\n",
2349 				 rxq->read);
2350 		pos += scnprintf(buf + pos, bufsz - pos, "\twrite: %u\n",
2351 				 rxq->write);
2352 		pos += scnprintf(buf + pos, bufsz - pos, "\twrite_actual: %u\n",
2353 				 rxq->write_actual);
2354 		pos += scnprintf(buf + pos, bufsz - pos, "\tneed_update: %2d\n",
2355 				 rxq->need_update);
2356 		pos += scnprintf(buf + pos, bufsz - pos, "\tfree_count: %u\n",
2357 				 rxq->free_count);
2358 		if (rxq->rb_stts) {
2359 			pos += scnprintf(buf + pos, bufsz - pos,
2360 					 "\tclosed_rb_num: %u\n",
2361 					 le16_to_cpu(rxq->rb_stts->closed_rb_num) &
2362 					 0x0FFF);
2363 		} else {
2364 			pos += scnprintf(buf + pos, bufsz - pos,
2365 					 "\tclosed_rb_num: Not Allocated\n");
2366 		}
2367 	}
2368 	ret = simple_read_from_buffer(user_buf, count, ppos, buf, pos);
2369 	kfree(buf);
2370 
2371 	return ret;
2372 }
2373 
2374 static ssize_t iwl_dbgfs_interrupt_read(struct file *file,
2375 					char __user *user_buf,
2376 					size_t count, loff_t *ppos)
2377 {
2378 	struct iwl_trans *trans = file->private_data;
2379 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2380 	struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
2381 
2382 	int pos = 0;
2383 	char *buf;
2384 	int bufsz = 24 * 64; /* 24 items * 64 char per item */
2385 	ssize_t ret;
2386 
2387 	buf = kzalloc(bufsz, GFP_KERNEL);
2388 	if (!buf)
2389 		return -ENOMEM;
2390 
2391 	pos += scnprintf(buf + pos, bufsz - pos,
2392 			"Interrupt Statistics Report:\n");
2393 
2394 	pos += scnprintf(buf + pos, bufsz - pos, "HW Error:\t\t\t %u\n",
2395 		isr_stats->hw);
2396 	pos += scnprintf(buf + pos, bufsz - pos, "SW Error:\t\t\t %u\n",
2397 		isr_stats->sw);
2398 	if (isr_stats->sw || isr_stats->hw) {
2399 		pos += scnprintf(buf + pos, bufsz - pos,
2400 			"\tLast Restarting Code:  0x%X\n",
2401 			isr_stats->err_code);
2402 	}
2403 #ifdef CONFIG_IWLWIFI_DEBUG
2404 	pos += scnprintf(buf + pos, bufsz - pos, "Frame transmitted:\t\t %u\n",
2405 		isr_stats->sch);
2406 	pos += scnprintf(buf + pos, bufsz - pos, "Alive interrupt:\t\t %u\n",
2407 		isr_stats->alive);
2408 #endif
2409 	pos += scnprintf(buf + pos, bufsz - pos,
2410 		"HW RF KILL switch toggled:\t %u\n", isr_stats->rfkill);
2411 
2412 	pos += scnprintf(buf + pos, bufsz - pos, "CT KILL:\t\t\t %u\n",
2413 		isr_stats->ctkill);
2414 
2415 	pos += scnprintf(buf + pos, bufsz - pos, "Wakeup Interrupt:\t\t %u\n",
2416 		isr_stats->wakeup);
2417 
2418 	pos += scnprintf(buf + pos, bufsz - pos,
2419 		"Rx command responses:\t\t %u\n", isr_stats->rx);
2420 
2421 	pos += scnprintf(buf + pos, bufsz - pos, "Tx/FH interrupt:\t\t %u\n",
2422 		isr_stats->tx);
2423 
2424 	pos += scnprintf(buf + pos, bufsz - pos, "Unexpected INTA:\t\t %u\n",
2425 		isr_stats->unhandled);
2426 
2427 	ret = simple_read_from_buffer(user_buf, count, ppos, buf, pos);
2428 	kfree(buf);
2429 	return ret;
2430 }
2431 
2432 static ssize_t iwl_dbgfs_interrupt_write(struct file *file,
2433 					 const char __user *user_buf,
2434 					 size_t count, loff_t *ppos)
2435 {
2436 	struct iwl_trans *trans = file->private_data;
2437 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2438 	struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
2439 
2440 	char buf[8];
2441 	int buf_size;
2442 	u32 reset_flag;
2443 
2444 	memset(buf, 0, sizeof(buf));
2445 	buf_size = min(count, sizeof(buf) -  1);
2446 	if (copy_from_user(buf, user_buf, buf_size))
2447 		return -EFAULT;
2448 	if (sscanf(buf, "%x", &reset_flag) != 1)
2449 		return -EFAULT;
2450 	if (reset_flag == 0)
2451 		memset(isr_stats, 0, sizeof(*isr_stats));
2452 
2453 	return count;
2454 }
2455 
2456 static ssize_t iwl_dbgfs_csr_write(struct file *file,
2457 				   const char __user *user_buf,
2458 				   size_t count, loff_t *ppos)
2459 {
2460 	struct iwl_trans *trans = file->private_data;
2461 	char buf[8];
2462 	int buf_size;
2463 	int csr;
2464 
2465 	memset(buf, 0, sizeof(buf));
2466 	buf_size = min(count, sizeof(buf) -  1);
2467 	if (copy_from_user(buf, user_buf, buf_size))
2468 		return -EFAULT;
2469 	if (sscanf(buf, "%d", &csr) != 1)
2470 		return -EFAULT;
2471 
2472 	iwl_pcie_dump_csr(trans);
2473 
2474 	return count;
2475 }
2476 
2477 static ssize_t iwl_dbgfs_fh_reg_read(struct file *file,
2478 				     char __user *user_buf,
2479 				     size_t count, loff_t *ppos)
2480 {
2481 	struct iwl_trans *trans = file->private_data;
2482 	char *buf = NULL;
2483 	ssize_t ret;
2484 
2485 	ret = iwl_dump_fh(trans, &buf);
2486 	if (ret < 0)
2487 		return ret;
2488 	if (!buf)
2489 		return -EINVAL;
2490 	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
2491 	kfree(buf);
2492 	return ret;
2493 }
2494 
2495 DEBUGFS_READ_WRITE_FILE_OPS(interrupt);
2496 DEBUGFS_READ_FILE_OPS(fh_reg);
2497 DEBUGFS_READ_FILE_OPS(rx_queue);
2498 DEBUGFS_READ_FILE_OPS(tx_queue);
2499 DEBUGFS_WRITE_FILE_OPS(csr);
2500 
2501 /* Create the debugfs files and directories */
2502 int iwl_trans_pcie_dbgfs_register(struct iwl_trans *trans)
2503 {
2504 	struct dentry *dir = trans->dbgfs_dir;
2505 
2506 	DEBUGFS_ADD_FILE(rx_queue, dir, S_IRUSR);
2507 	DEBUGFS_ADD_FILE(tx_queue, dir, S_IRUSR);
2508 	DEBUGFS_ADD_FILE(interrupt, dir, S_IWUSR | S_IRUSR);
2509 	DEBUGFS_ADD_FILE(csr, dir, S_IWUSR);
2510 	DEBUGFS_ADD_FILE(fh_reg, dir, S_IRUSR);
2511 	return 0;
2512 
2513 err:
2514 	IWL_ERR(trans, "failed to create the trans debugfs entry\n");
2515 	return -ENOMEM;
2516 }
2517 #endif /*CONFIG_IWLWIFI_DEBUGFS */
2518 
2519 static u32 iwl_trans_pcie_get_cmdlen(struct iwl_trans *trans, void *tfd)
2520 {
2521 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2522 	u32 cmdlen = 0;
2523 	int i;
2524 
2525 	for (i = 0; i < trans_pcie->max_tbs; i++)
2526 		cmdlen += iwl_pcie_tfd_tb_get_len(trans, tfd, i);
2527 
2528 	return cmdlen;
2529 }
2530 
2531 static u32 iwl_trans_pcie_dump_rbs(struct iwl_trans *trans,
2532 				   struct iwl_fw_error_dump_data **data,
2533 				   int allocated_rb_nums)
2534 {
2535 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2536 	int max_len = PAGE_SIZE << trans_pcie->rx_page_order;
2537 	/* Dump RBs is supported only for pre-9000 devices (1 queue) */
2538 	struct iwl_rxq *rxq = &trans_pcie->rxq[0];
2539 	u32 i, r, j, rb_len = 0;
2540 
2541 	spin_lock(&rxq->lock);
2542 
2543 	r = le16_to_cpu(ACCESS_ONCE(rxq->rb_stts->closed_rb_num)) & 0x0FFF;
2544 
2545 	for (i = rxq->read, j = 0;
2546 	     i != r && j < allocated_rb_nums;
2547 	     i = (i + 1) & RX_QUEUE_MASK, j++) {
2548 		struct iwl_rx_mem_buffer *rxb = rxq->queue[i];
2549 		struct iwl_fw_error_dump_rb *rb;
2550 
2551 		dma_unmap_page(trans->dev, rxb->page_dma, max_len,
2552 			       DMA_FROM_DEVICE);
2553 
2554 		rb_len += sizeof(**data) + sizeof(*rb) + max_len;
2555 
2556 		(*data)->type = cpu_to_le32(IWL_FW_ERROR_DUMP_RB);
2557 		(*data)->len = cpu_to_le32(sizeof(*rb) + max_len);
2558 		rb = (void *)(*data)->data;
2559 		rb->index = cpu_to_le32(i);
2560 		memcpy(rb->data, page_address(rxb->page), max_len);
2561 		/* remap the page for the free benefit */
2562 		rxb->page_dma = dma_map_page(trans->dev, rxb->page, 0,
2563 						     max_len,
2564 						     DMA_FROM_DEVICE);
2565 
2566 		*data = iwl_fw_error_next_data(*data);
2567 	}
2568 
2569 	spin_unlock(&rxq->lock);
2570 
2571 	return rb_len;
2572 }
2573 #define IWL_CSR_TO_DUMP (0x250)
2574 
2575 static u32 iwl_trans_pcie_dump_csr(struct iwl_trans *trans,
2576 				   struct iwl_fw_error_dump_data **data)
2577 {
2578 	u32 csr_len = sizeof(**data) + IWL_CSR_TO_DUMP;
2579 	__le32 *val;
2580 	int i;
2581 
2582 	(*data)->type = cpu_to_le32(IWL_FW_ERROR_DUMP_CSR);
2583 	(*data)->len = cpu_to_le32(IWL_CSR_TO_DUMP);
2584 	val = (void *)(*data)->data;
2585 
2586 	for (i = 0; i < IWL_CSR_TO_DUMP; i += 4)
2587 		*val++ = cpu_to_le32(iwl_trans_pcie_read32(trans, i));
2588 
2589 	*data = iwl_fw_error_next_data(*data);
2590 
2591 	return csr_len;
2592 }
2593 
2594 static u32 iwl_trans_pcie_fh_regs_dump(struct iwl_trans *trans,
2595 				       struct iwl_fw_error_dump_data **data)
2596 {
2597 	u32 fh_regs_len = FH_MEM_UPPER_BOUND - FH_MEM_LOWER_BOUND;
2598 	unsigned long flags;
2599 	__le32 *val;
2600 	int i;
2601 
2602 	if (!iwl_trans_grab_nic_access(trans, &flags))
2603 		return 0;
2604 
2605 	(*data)->type = cpu_to_le32(IWL_FW_ERROR_DUMP_FH_REGS);
2606 	(*data)->len = cpu_to_le32(fh_regs_len);
2607 	val = (void *)(*data)->data;
2608 
2609 	for (i = FH_MEM_LOWER_BOUND; i < FH_MEM_UPPER_BOUND; i += sizeof(u32))
2610 		*val++ = cpu_to_le32(iwl_trans_pcie_read32(trans, i));
2611 
2612 	iwl_trans_release_nic_access(trans, &flags);
2613 
2614 	*data = iwl_fw_error_next_data(*data);
2615 
2616 	return sizeof(**data) + fh_regs_len;
2617 }
2618 
2619 static u32
2620 iwl_trans_pci_dump_marbh_monitor(struct iwl_trans *trans,
2621 				 struct iwl_fw_error_dump_fw_mon *fw_mon_data,
2622 				 u32 monitor_len)
2623 {
2624 	u32 buf_size_in_dwords = (monitor_len >> 2);
2625 	u32 *buffer = (u32 *)fw_mon_data->data;
2626 	unsigned long flags;
2627 	u32 i;
2628 
2629 	if (!iwl_trans_grab_nic_access(trans, &flags))
2630 		return 0;
2631 
2632 	iwl_write_prph_no_grab(trans, MON_DMARB_RD_CTL_ADDR, 0x1);
2633 	for (i = 0; i < buf_size_in_dwords; i++)
2634 		buffer[i] = iwl_read_prph_no_grab(trans,
2635 				MON_DMARB_RD_DATA_ADDR);
2636 	iwl_write_prph_no_grab(trans, MON_DMARB_RD_CTL_ADDR, 0x0);
2637 
2638 	iwl_trans_release_nic_access(trans, &flags);
2639 
2640 	return monitor_len;
2641 }
2642 
2643 static u32
2644 iwl_trans_pcie_dump_monitor(struct iwl_trans *trans,
2645 			    struct iwl_fw_error_dump_data **data,
2646 			    u32 monitor_len)
2647 {
2648 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2649 	u32 len = 0;
2650 
2651 	if ((trans_pcie->fw_mon_page &&
2652 	     trans->cfg->device_family == IWL_DEVICE_FAMILY_7000) ||
2653 	    trans->dbg_dest_tlv) {
2654 		struct iwl_fw_error_dump_fw_mon *fw_mon_data;
2655 		u32 base, write_ptr, wrap_cnt;
2656 
2657 		/* If there was a dest TLV - use the values from there */
2658 		if (trans->dbg_dest_tlv) {
2659 			write_ptr =
2660 				le32_to_cpu(trans->dbg_dest_tlv->write_ptr_reg);
2661 			wrap_cnt = le32_to_cpu(trans->dbg_dest_tlv->wrap_count);
2662 			base = le32_to_cpu(trans->dbg_dest_tlv->base_reg);
2663 		} else {
2664 			base = MON_BUFF_BASE_ADDR;
2665 			write_ptr = MON_BUFF_WRPTR;
2666 			wrap_cnt = MON_BUFF_CYCLE_CNT;
2667 		}
2668 
2669 		(*data)->type = cpu_to_le32(IWL_FW_ERROR_DUMP_FW_MONITOR);
2670 		fw_mon_data = (void *)(*data)->data;
2671 		fw_mon_data->fw_mon_wr_ptr =
2672 			cpu_to_le32(iwl_read_prph(trans, write_ptr));
2673 		fw_mon_data->fw_mon_cycle_cnt =
2674 			cpu_to_le32(iwl_read_prph(trans, wrap_cnt));
2675 		fw_mon_data->fw_mon_base_ptr =
2676 			cpu_to_le32(iwl_read_prph(trans, base));
2677 
2678 		len += sizeof(**data) + sizeof(*fw_mon_data);
2679 		if (trans_pcie->fw_mon_page) {
2680 			/*
2681 			 * The firmware is now asserted, it won't write anything
2682 			 * to the buffer. CPU can take ownership to fetch the
2683 			 * data. The buffer will be handed back to the device
2684 			 * before the firmware will be restarted.
2685 			 */
2686 			dma_sync_single_for_cpu(trans->dev,
2687 						trans_pcie->fw_mon_phys,
2688 						trans_pcie->fw_mon_size,
2689 						DMA_FROM_DEVICE);
2690 			memcpy(fw_mon_data->data,
2691 			       page_address(trans_pcie->fw_mon_page),
2692 			       trans_pcie->fw_mon_size);
2693 
2694 			monitor_len = trans_pcie->fw_mon_size;
2695 		} else if (trans->dbg_dest_tlv->monitor_mode == SMEM_MODE) {
2696 			/*
2697 			 * Update pointers to reflect actual values after
2698 			 * shifting
2699 			 */
2700 			base = iwl_read_prph(trans, base) <<
2701 			       trans->dbg_dest_tlv->base_shift;
2702 			iwl_trans_read_mem(trans, base, fw_mon_data->data,
2703 					   monitor_len / sizeof(u32));
2704 		} else if (trans->dbg_dest_tlv->monitor_mode == MARBH_MODE) {
2705 			monitor_len =
2706 				iwl_trans_pci_dump_marbh_monitor(trans,
2707 								 fw_mon_data,
2708 								 monitor_len);
2709 		} else {
2710 			/* Didn't match anything - output no monitor data */
2711 			monitor_len = 0;
2712 		}
2713 
2714 		len += monitor_len;
2715 		(*data)->len = cpu_to_le32(monitor_len + sizeof(*fw_mon_data));
2716 	}
2717 
2718 	return len;
2719 }
2720 
2721 static struct iwl_trans_dump_data
2722 *iwl_trans_pcie_dump_data(struct iwl_trans *trans,
2723 			  const struct iwl_fw_dbg_trigger_tlv *trigger)
2724 {
2725 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2726 	struct iwl_fw_error_dump_data *data;
2727 	struct iwl_txq *cmdq = &trans_pcie->txq[trans_pcie->cmd_queue];
2728 	struct iwl_fw_error_dump_txcmd *txcmd;
2729 	struct iwl_trans_dump_data *dump_data;
2730 	u32 len, num_rbs;
2731 	u32 monitor_len;
2732 	int i, ptr;
2733 	bool dump_rbs = test_bit(STATUS_FW_ERROR, &trans->status) &&
2734 			!trans->cfg->mq_rx_supported;
2735 
2736 	/* transport dump header */
2737 	len = sizeof(*dump_data);
2738 
2739 	/* host commands */
2740 	len += sizeof(*data) +
2741 		cmdq->n_window * (sizeof(*txcmd) + TFD_MAX_PAYLOAD_SIZE);
2742 
2743 	/* FW monitor */
2744 	if (trans_pcie->fw_mon_page) {
2745 		len += sizeof(*data) + sizeof(struct iwl_fw_error_dump_fw_mon) +
2746 		       trans_pcie->fw_mon_size;
2747 		monitor_len = trans_pcie->fw_mon_size;
2748 	} else if (trans->dbg_dest_tlv) {
2749 		u32 base, end;
2750 
2751 		base = le32_to_cpu(trans->dbg_dest_tlv->base_reg);
2752 		end = le32_to_cpu(trans->dbg_dest_tlv->end_reg);
2753 
2754 		base = iwl_read_prph(trans, base) <<
2755 		       trans->dbg_dest_tlv->base_shift;
2756 		end = iwl_read_prph(trans, end) <<
2757 		      trans->dbg_dest_tlv->end_shift;
2758 
2759 		/* Make "end" point to the actual end */
2760 		if (trans->cfg->device_family == IWL_DEVICE_FAMILY_8000 ||
2761 		    trans->dbg_dest_tlv->monitor_mode == MARBH_MODE)
2762 			end += (1 << trans->dbg_dest_tlv->end_shift);
2763 		monitor_len = end - base;
2764 		len += sizeof(*data) + sizeof(struct iwl_fw_error_dump_fw_mon) +
2765 		       monitor_len;
2766 	} else {
2767 		monitor_len = 0;
2768 	}
2769 
2770 	if (trigger && (trigger->mode & IWL_FW_DBG_TRIGGER_MONITOR_ONLY)) {
2771 		dump_data = vzalloc(len);
2772 		if (!dump_data)
2773 			return NULL;
2774 
2775 		data = (void *)dump_data->data;
2776 		len = iwl_trans_pcie_dump_monitor(trans, &data, monitor_len);
2777 		dump_data->len = len;
2778 
2779 		return dump_data;
2780 	}
2781 
2782 	/* CSR registers */
2783 	len += sizeof(*data) + IWL_CSR_TO_DUMP;
2784 
2785 	/* FH registers */
2786 	len += sizeof(*data) + (FH_MEM_UPPER_BOUND - FH_MEM_LOWER_BOUND);
2787 
2788 	if (dump_rbs) {
2789 		/* Dump RBs is supported only for pre-9000 devices (1 queue) */
2790 		struct iwl_rxq *rxq = &trans_pcie->rxq[0];
2791 		/* RBs */
2792 		num_rbs = le16_to_cpu(ACCESS_ONCE(rxq->rb_stts->closed_rb_num))
2793 				      & 0x0FFF;
2794 		num_rbs = (num_rbs - rxq->read) & RX_QUEUE_MASK;
2795 		len += num_rbs * (sizeof(*data) +
2796 				  sizeof(struct iwl_fw_error_dump_rb) +
2797 				  (PAGE_SIZE << trans_pcie->rx_page_order));
2798 	}
2799 
2800 	dump_data = vzalloc(len);
2801 	if (!dump_data)
2802 		return NULL;
2803 
2804 	len = 0;
2805 	data = (void *)dump_data->data;
2806 	data->type = cpu_to_le32(IWL_FW_ERROR_DUMP_TXCMD);
2807 	txcmd = (void *)data->data;
2808 	spin_lock_bh(&cmdq->lock);
2809 	ptr = cmdq->write_ptr;
2810 	for (i = 0; i < cmdq->n_window; i++) {
2811 		u8 idx = get_cmd_index(cmdq, ptr);
2812 		u32 caplen, cmdlen;
2813 
2814 		cmdlen = iwl_trans_pcie_get_cmdlen(trans, cmdq->tfds +
2815 						   trans_pcie->tfd_size * ptr);
2816 		caplen = min_t(u32, TFD_MAX_PAYLOAD_SIZE, cmdlen);
2817 
2818 		if (cmdlen) {
2819 			len += sizeof(*txcmd) + caplen;
2820 			txcmd->cmdlen = cpu_to_le32(cmdlen);
2821 			txcmd->caplen = cpu_to_le32(caplen);
2822 			memcpy(txcmd->data, cmdq->entries[idx].cmd, caplen);
2823 			txcmd = (void *)((u8 *)txcmd->data + caplen);
2824 		}
2825 
2826 		ptr = iwl_queue_dec_wrap(ptr);
2827 	}
2828 	spin_unlock_bh(&cmdq->lock);
2829 
2830 	data->len = cpu_to_le32(len);
2831 	len += sizeof(*data);
2832 	data = iwl_fw_error_next_data(data);
2833 
2834 	len += iwl_trans_pcie_dump_csr(trans, &data);
2835 	len += iwl_trans_pcie_fh_regs_dump(trans, &data);
2836 	if (dump_rbs)
2837 		len += iwl_trans_pcie_dump_rbs(trans, &data, num_rbs);
2838 
2839 	len += iwl_trans_pcie_dump_monitor(trans, &data, monitor_len);
2840 
2841 	dump_data->len = len;
2842 
2843 	return dump_data;
2844 }
2845 
2846 #ifdef CONFIG_PM_SLEEP
2847 static int iwl_trans_pcie_suspend(struct iwl_trans *trans)
2848 {
2849 	if (trans->runtime_pm_mode == IWL_PLAT_PM_MODE_D0I3)
2850 		return iwl_pci_fw_enter_d0i3(trans);
2851 
2852 	return 0;
2853 }
2854 
2855 static void iwl_trans_pcie_resume(struct iwl_trans *trans)
2856 {
2857 	if (trans->runtime_pm_mode == IWL_PLAT_PM_MODE_D0I3)
2858 		iwl_pci_fw_exit_d0i3(trans);
2859 }
2860 #endif /* CONFIG_PM_SLEEP */
2861 
2862 #define IWL_TRANS_COMMON_OPS						\
2863 	.op_mode_leave = iwl_trans_pcie_op_mode_leave,			\
2864 	.write8 = iwl_trans_pcie_write8,				\
2865 	.write32 = iwl_trans_pcie_write32,				\
2866 	.read32 = iwl_trans_pcie_read32,				\
2867 	.read_prph = iwl_trans_pcie_read_prph,				\
2868 	.write_prph = iwl_trans_pcie_write_prph,			\
2869 	.read_mem = iwl_trans_pcie_read_mem,				\
2870 	.write_mem = iwl_trans_pcie_write_mem,				\
2871 	.configure = iwl_trans_pcie_configure,				\
2872 	.set_pmi = iwl_trans_pcie_set_pmi,				\
2873 	.grab_nic_access = iwl_trans_pcie_grab_nic_access,		\
2874 	.release_nic_access = iwl_trans_pcie_release_nic_access,	\
2875 	.set_bits_mask = iwl_trans_pcie_set_bits_mask,			\
2876 	.ref = iwl_trans_pcie_ref,					\
2877 	.unref = iwl_trans_pcie_unref,					\
2878 	.dump_data = iwl_trans_pcie_dump_data,				\
2879 	.wait_tx_queue_empty = iwl_trans_pcie_wait_txq_empty,		\
2880 	.d3_suspend = iwl_trans_pcie_d3_suspend,			\
2881 	.d3_resume = iwl_trans_pcie_d3_resume
2882 
2883 #ifdef CONFIG_PM_SLEEP
2884 #define IWL_TRANS_PM_OPS						\
2885 	.suspend = iwl_trans_pcie_suspend,				\
2886 	.resume = iwl_trans_pcie_resume,
2887 #else
2888 #define IWL_TRANS_PM_OPS
2889 #endif /* CONFIG_PM_SLEEP */
2890 
2891 static const struct iwl_trans_ops trans_ops_pcie = {
2892 	IWL_TRANS_COMMON_OPS,
2893 	IWL_TRANS_PM_OPS
2894 	.start_hw = iwl_trans_pcie_start_hw,
2895 	.fw_alive = iwl_trans_pcie_fw_alive,
2896 	.start_fw = iwl_trans_pcie_start_fw,
2897 	.stop_device = iwl_trans_pcie_stop_device,
2898 
2899 	.send_cmd = iwl_trans_pcie_send_hcmd,
2900 
2901 	.tx = iwl_trans_pcie_tx,
2902 	.reclaim = iwl_trans_pcie_reclaim,
2903 
2904 	.txq_disable = iwl_trans_pcie_txq_disable,
2905 	.txq_enable = iwl_trans_pcie_txq_enable,
2906 
2907 	.txq_set_shared_mode = iwl_trans_pcie_txq_set_shared_mode,
2908 
2909 	.freeze_txq_timer = iwl_trans_pcie_freeze_txq_timer,
2910 	.block_txq_ptrs = iwl_trans_pcie_block_txq_ptrs,
2911 };
2912 
2913 static const struct iwl_trans_ops trans_ops_pcie_gen2 = {
2914 	IWL_TRANS_COMMON_OPS,
2915 	IWL_TRANS_PM_OPS
2916 	.start_hw = iwl_trans_pcie_start_hw,
2917 	.fw_alive = iwl_trans_pcie_gen2_fw_alive,
2918 	.start_fw = iwl_trans_pcie_gen2_start_fw,
2919 	.stop_device = iwl_trans_pcie_stop_device,
2920 
2921 	.send_cmd = iwl_trans_pcie_gen2_send_hcmd,
2922 
2923 	.tx = iwl_trans_pcie_gen2_tx,
2924 	.reclaim = iwl_trans_pcie_reclaim,
2925 
2926 	.txq_alloc = iwl_trans_pcie_dyn_txq_alloc,
2927 	.txq_free = iwl_trans_pcie_dyn_txq_free,
2928 
2929 	.freeze_txq_timer = iwl_trans_pcie_freeze_txq_timer,
2930 	.block_txq_ptrs = iwl_trans_pcie_block_txq_ptrs,
2931 };
2932 
2933 struct iwl_trans *iwl_trans_pcie_alloc(struct pci_dev *pdev,
2934 				       const struct pci_device_id *ent,
2935 				       const struct iwl_cfg *cfg)
2936 {
2937 	struct iwl_trans_pcie *trans_pcie;
2938 	struct iwl_trans *trans;
2939 	int ret, addr_size;
2940 
2941 	ret = pcim_enable_device(pdev);
2942 	if (ret)
2943 		return ERR_PTR(ret);
2944 
2945 	if (cfg->gen2)
2946 		trans = iwl_trans_alloc(sizeof(struct iwl_trans_pcie),
2947 					&pdev->dev, cfg, &trans_ops_pcie_gen2);
2948 	else
2949 		trans = iwl_trans_alloc(sizeof(struct iwl_trans_pcie),
2950 					&pdev->dev, cfg, &trans_ops_pcie);
2951 	if (!trans)
2952 		return ERR_PTR(-ENOMEM);
2953 
2954 	trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2955 
2956 	trans_pcie->trans = trans;
2957 	spin_lock_init(&trans_pcie->irq_lock);
2958 	spin_lock_init(&trans_pcie->reg_lock);
2959 	mutex_init(&trans_pcie->mutex);
2960 	init_waitqueue_head(&trans_pcie->ucode_write_waitq);
2961 	trans_pcie->tso_hdr_page = alloc_percpu(struct iwl_tso_hdr_page);
2962 	if (!trans_pcie->tso_hdr_page) {
2963 		ret = -ENOMEM;
2964 		goto out_no_pci;
2965 	}
2966 
2967 
2968 	if (!cfg->base_params->pcie_l1_allowed) {
2969 		/*
2970 		 * W/A - seems to solve weird behavior. We need to remove this
2971 		 * if we don't want to stay in L1 all the time. This wastes a
2972 		 * lot of power.
2973 		 */
2974 		pci_disable_link_state(pdev, PCIE_LINK_STATE_L0S |
2975 				       PCIE_LINK_STATE_L1 |
2976 				       PCIE_LINK_STATE_CLKPM);
2977 	}
2978 
2979 	if (cfg->use_tfh) {
2980 		addr_size = 64;
2981 		trans_pcie->max_tbs = IWL_TFH_NUM_TBS;
2982 		trans_pcie->tfd_size = sizeof(struct iwl_tfh_tfd);
2983 	} else {
2984 		addr_size = 36;
2985 		trans_pcie->max_tbs = IWL_NUM_OF_TBS;
2986 		trans_pcie->tfd_size = sizeof(struct iwl_tfd);
2987 	}
2988 	trans->max_skb_frags = IWL_PCIE_MAX_FRAGS(trans_pcie);
2989 
2990 	pci_set_master(pdev);
2991 
2992 	ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(addr_size));
2993 	if (!ret)
2994 		ret = pci_set_consistent_dma_mask(pdev,
2995 						  DMA_BIT_MASK(addr_size));
2996 	if (ret) {
2997 		ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2998 		if (!ret)
2999 			ret = pci_set_consistent_dma_mask(pdev,
3000 							  DMA_BIT_MASK(32));
3001 		/* both attempts failed: */
3002 		if (ret) {
3003 			dev_err(&pdev->dev, "No suitable DMA available\n");
3004 			goto out_no_pci;
3005 		}
3006 	}
3007 
3008 	ret = pcim_iomap_regions_request_all(pdev, BIT(0), DRV_NAME);
3009 	if (ret) {
3010 		dev_err(&pdev->dev, "pcim_iomap_regions_request_all failed\n");
3011 		goto out_no_pci;
3012 	}
3013 
3014 	trans_pcie->hw_base = pcim_iomap_table(pdev)[0];
3015 	if (!trans_pcie->hw_base) {
3016 		dev_err(&pdev->dev, "pcim_iomap_table failed\n");
3017 		ret = -ENODEV;
3018 		goto out_no_pci;
3019 	}
3020 
3021 	/* We disable the RETRY_TIMEOUT register (0x41) to keep
3022 	 * PCI Tx retries from interfering with C3 CPU state */
3023 	pci_write_config_byte(pdev, PCI_CFG_RETRY_TIMEOUT, 0x00);
3024 
3025 	trans->dev = &pdev->dev;
3026 	trans_pcie->pci_dev = pdev;
3027 	iwl_disable_interrupts(trans);
3028 
3029 	trans->hw_rev = iwl_read32(trans, CSR_HW_REV);
3030 	/*
3031 	 * In the 8000 HW family the format of the 4 bytes of CSR_HW_REV have
3032 	 * changed, and now the revision step also includes bit 0-1 (no more
3033 	 * "dash" value). To keep hw_rev backwards compatible - we'll store it
3034 	 * in the old format.
3035 	 */
3036 	if (trans->cfg->device_family == IWL_DEVICE_FAMILY_8000) {
3037 		unsigned long flags;
3038 
3039 		trans->hw_rev = (trans->hw_rev & 0xfff0) |
3040 				(CSR_HW_REV_STEP(trans->hw_rev << 2) << 2);
3041 
3042 		ret = iwl_pcie_prepare_card_hw(trans);
3043 		if (ret) {
3044 			IWL_WARN(trans, "Exit HW not ready\n");
3045 			goto out_no_pci;
3046 		}
3047 
3048 		/*
3049 		 * in-order to recognize C step driver should read chip version
3050 		 * id located at the AUX bus MISC address space.
3051 		 */
3052 		iwl_set_bit(trans, CSR_GP_CNTRL,
3053 			    CSR_GP_CNTRL_REG_FLAG_INIT_DONE);
3054 		udelay(2);
3055 
3056 		ret = iwl_poll_bit(trans, CSR_GP_CNTRL,
3057 				   CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY,
3058 				   CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY,
3059 				   25000);
3060 		if (ret < 0) {
3061 			IWL_DEBUG_INFO(trans, "Failed to wake up the nic\n");
3062 			goto out_no_pci;
3063 		}
3064 
3065 		if (iwl_trans_grab_nic_access(trans, &flags)) {
3066 			u32 hw_step;
3067 
3068 			hw_step = iwl_read_prph_no_grab(trans, WFPM_CTRL_REG);
3069 			hw_step |= ENABLE_WFPM;
3070 			iwl_write_prph_no_grab(trans, WFPM_CTRL_REG, hw_step);
3071 			hw_step = iwl_read_prph_no_grab(trans, AUX_MISC_REG);
3072 			hw_step = (hw_step >> HW_STEP_LOCATION_BITS) & 0xF;
3073 			if (hw_step == 0x3)
3074 				trans->hw_rev = (trans->hw_rev & 0xFFFFFFF3) |
3075 						(SILICON_C_STEP << 2);
3076 			iwl_trans_release_nic_access(trans, &flags);
3077 		}
3078 	}
3079 
3080 	trans->hw_rf_id = iwl_read32(trans, CSR_HW_RF_ID);
3081 
3082 	iwl_pcie_set_interrupt_capa(pdev, trans);
3083 	trans->hw_id = (pdev->device << 16) + pdev->subsystem_device;
3084 	snprintf(trans->hw_id_str, sizeof(trans->hw_id_str),
3085 		 "PCI ID: 0x%04X:0x%04X", pdev->device, pdev->subsystem_device);
3086 
3087 	/* Initialize the wait queue for commands */
3088 	init_waitqueue_head(&trans_pcie->wait_command_queue);
3089 
3090 	init_waitqueue_head(&trans_pcie->d0i3_waitq);
3091 
3092 	if (trans_pcie->msix_enabled) {
3093 		if (iwl_pcie_init_msix_handler(pdev, trans_pcie))
3094 			goto out_no_pci;
3095 	 } else {
3096 		ret = iwl_pcie_alloc_ict(trans);
3097 		if (ret)
3098 			goto out_no_pci;
3099 
3100 		ret = devm_request_threaded_irq(&pdev->dev, pdev->irq,
3101 						iwl_pcie_isr,
3102 						iwl_pcie_irq_handler,
3103 						IRQF_SHARED, DRV_NAME, trans);
3104 		if (ret) {
3105 			IWL_ERR(trans, "Error allocating IRQ %d\n", pdev->irq);
3106 			goto out_free_ict;
3107 		}
3108 		trans_pcie->inta_mask = CSR_INI_SET_MASK;
3109 	 }
3110 
3111 #ifdef CONFIG_IWLWIFI_PCIE_RTPM
3112 	trans->runtime_pm_mode = IWL_PLAT_PM_MODE_D0I3;
3113 #else
3114 	trans->runtime_pm_mode = IWL_PLAT_PM_MODE_DISABLED;
3115 #endif /* CONFIG_IWLWIFI_PCIE_RTPM */
3116 
3117 	return trans;
3118 
3119 out_free_ict:
3120 	iwl_pcie_free_ict(trans);
3121 out_no_pci:
3122 	free_percpu(trans_pcie->tso_hdr_page);
3123 	iwl_trans_free(trans);
3124 	return ERR_PTR(ret);
3125 }
3126