xref: /openbmc/linux/drivers/net/wireless/intel/iwlwifi/pcie/trans.c (revision 2e7c04aec86758e0adfcad4a24c86593b45807a3)
1 /******************************************************************************
2  *
3  * This file is provided under a dual BSD/GPLv2 license.  When using or
4  * redistributing this file, you may do so under either license.
5  *
6  * GPL LICENSE SUMMARY
7  *
8  * Copyright(c) 2007 - 2015 Intel Corporation. All rights reserved.
9  * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
10  * Copyright(c) 2016 - 2017 Intel Deutschland GmbH
11  * Copyright(c) 2018 Intel Corporation
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of version 2 of the GNU General Public License as
15  * published by the Free Software Foundation.
16  *
17  * This program is distributed in the hope that it will be useful, but
18  * WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
20  * General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; if not, write to the Free Software
24  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
25  * USA
26  *
27  * The full GNU General Public License is included in this distribution
28  * in the file called COPYING.
29  *
30  * Contact Information:
31  *  Intel Linux Wireless <linuxwifi@intel.com>
32  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
33  *
34  * BSD LICENSE
35  *
36  * Copyright(c) 2005 - 2015 Intel Corporation. All rights reserved.
37  * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
38  * Copyright(c) 2016 - 2017 Intel Deutschland GmbH
39  * Copyright(c) 2018 Intel Corporation
40  * All rights reserved.
41  *
42  * Redistribution and use in source and binary forms, with or without
43  * modification, are permitted provided that the following conditions
44  * are met:
45  *
46  *  * Redistributions of source code must retain the above copyright
47  *    notice, this list of conditions and the following disclaimer.
48  *  * Redistributions in binary form must reproduce the above copyright
49  *    notice, this list of conditions and the following disclaimer in
50  *    the documentation and/or other materials provided with the
51  *    distribution.
52  *  * Neither the name Intel Corporation nor the names of its
53  *    contributors may be used to endorse or promote products derived
54  *    from this software without specific prior written permission.
55  *
56  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
57  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
58  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
59  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
60  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
61  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
62  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
63  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
64  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
65  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
66  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
67  *
68  *****************************************************************************/
69 #include <linux/pci.h>
70 #include <linux/pci-aspm.h>
71 #include <linux/interrupt.h>
72 #include <linux/debugfs.h>
73 #include <linux/sched.h>
74 #include <linux/bitops.h>
75 #include <linux/gfp.h>
76 #include <linux/vmalloc.h>
77 #include <linux/pm_runtime.h>
78 #include <linux/module.h>
79 
80 #include "iwl-drv.h"
81 #include "iwl-trans.h"
82 #include "iwl-csr.h"
83 #include "iwl-prph.h"
84 #include "iwl-scd.h"
85 #include "iwl-agn-hw.h"
86 #include "fw/error-dump.h"
87 #include "fw/dbg.h"
88 #include "internal.h"
89 #include "iwl-fh.h"
90 
91 /* extended range in FW SRAM */
92 #define IWL_FW_MEM_EXTENDED_START	0x40000
93 #define IWL_FW_MEM_EXTENDED_END		0x57FFF
94 
95 static void iwl_trans_pcie_dump_regs(struct iwl_trans *trans)
96 {
97 #define PCI_DUMP_SIZE	64
98 #define PREFIX_LEN	32
99 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
100 	struct pci_dev *pdev = trans_pcie->pci_dev;
101 	u32 i, pos, alloc_size, *ptr, *buf;
102 	char *prefix;
103 
104 	if (trans_pcie->pcie_dbg_dumped_once)
105 		return;
106 
107 	/* Should be a multiple of 4 */
108 	BUILD_BUG_ON(PCI_DUMP_SIZE > 4096 || PCI_DUMP_SIZE & 0x3);
109 	/* Alloc a max size buffer */
110 	if (PCI_ERR_ROOT_ERR_SRC +  4 > PCI_DUMP_SIZE)
111 		alloc_size = PCI_ERR_ROOT_ERR_SRC +  4 + PREFIX_LEN;
112 	else
113 		alloc_size = PCI_DUMP_SIZE + PREFIX_LEN;
114 	buf = kmalloc(alloc_size, GFP_ATOMIC);
115 	if (!buf)
116 		return;
117 	prefix = (char *)buf + alloc_size - PREFIX_LEN;
118 
119 	IWL_ERR(trans, "iwlwifi transaction failed, dumping registers\n");
120 
121 	/* Print wifi device registers */
122 	sprintf(prefix, "iwlwifi %s: ", pci_name(pdev));
123 	IWL_ERR(trans, "iwlwifi device config registers:\n");
124 	for (i = 0, ptr = buf; i < PCI_DUMP_SIZE; i += 4, ptr++)
125 		if (pci_read_config_dword(pdev, i, ptr))
126 			goto err_read;
127 	print_hex_dump(KERN_ERR, prefix, DUMP_PREFIX_OFFSET, 32, 4, buf, i, 0);
128 
129 	IWL_ERR(trans, "iwlwifi device memory mapped registers:\n");
130 	for (i = 0, ptr = buf; i < PCI_DUMP_SIZE; i += 4, ptr++)
131 		*ptr = iwl_read32(trans, i);
132 	print_hex_dump(KERN_ERR, prefix, DUMP_PREFIX_OFFSET, 32, 4, buf, i, 0);
133 
134 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ERR);
135 	if (pos) {
136 		IWL_ERR(trans, "iwlwifi device AER capability structure:\n");
137 		for (i = 0, ptr = buf; i < PCI_ERR_ROOT_COMMAND; i += 4, ptr++)
138 			if (pci_read_config_dword(pdev, pos + i, ptr))
139 				goto err_read;
140 		print_hex_dump(KERN_ERR, prefix, DUMP_PREFIX_OFFSET,
141 			       32, 4, buf, i, 0);
142 	}
143 
144 	/* Print parent device registers next */
145 	if (!pdev->bus->self)
146 		goto out;
147 
148 	pdev = pdev->bus->self;
149 	sprintf(prefix, "iwlwifi %s: ", pci_name(pdev));
150 
151 	IWL_ERR(trans, "iwlwifi parent port (%s) config registers:\n",
152 		pci_name(pdev));
153 	for (i = 0, ptr = buf; i < PCI_DUMP_SIZE; i += 4, ptr++)
154 		if (pci_read_config_dword(pdev, i, ptr))
155 			goto err_read;
156 	print_hex_dump(KERN_ERR, prefix, DUMP_PREFIX_OFFSET, 32, 4, buf, i, 0);
157 
158 	/* Print root port AER registers */
159 	pos = 0;
160 	pdev = pcie_find_root_port(pdev);
161 	if (pdev)
162 		pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ERR);
163 	if (pos) {
164 		IWL_ERR(trans, "iwlwifi root port (%s) AER cap structure:\n",
165 			pci_name(pdev));
166 		sprintf(prefix, "iwlwifi %s: ", pci_name(pdev));
167 		for (i = 0, ptr = buf; i <= PCI_ERR_ROOT_ERR_SRC; i += 4, ptr++)
168 			if (pci_read_config_dword(pdev, pos + i, ptr))
169 				goto err_read;
170 		print_hex_dump(KERN_ERR, prefix, DUMP_PREFIX_OFFSET, 32,
171 			       4, buf, i, 0);
172 	}
173 	goto out;
174 
175 err_read:
176 	print_hex_dump(KERN_ERR, prefix, DUMP_PREFIX_OFFSET, 32, 4, buf, i, 0);
177 	IWL_ERR(trans, "Read failed at 0x%X\n", i);
178 out:
179 	trans_pcie->pcie_dbg_dumped_once = 1;
180 	kfree(buf);
181 }
182 
183 static void iwl_trans_pcie_sw_reset(struct iwl_trans *trans)
184 {
185 	/* Reset entire device - do controller reset (results in SHRD_HW_RST) */
186 	iwl_set_bit(trans, trans->cfg->csr->addr_sw_reset,
187 		    BIT(trans->cfg->csr->flag_sw_reset));
188 	usleep_range(5000, 6000);
189 }
190 
191 static void iwl_pcie_free_fw_monitor(struct iwl_trans *trans)
192 {
193 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
194 
195 	if (!trans_pcie->fw_mon_page)
196 		return;
197 
198 	dma_unmap_page(trans->dev, trans_pcie->fw_mon_phys,
199 		       trans_pcie->fw_mon_size, DMA_FROM_DEVICE);
200 	__free_pages(trans_pcie->fw_mon_page,
201 		     get_order(trans_pcie->fw_mon_size));
202 	trans_pcie->fw_mon_page = NULL;
203 	trans_pcie->fw_mon_phys = 0;
204 	trans_pcie->fw_mon_size = 0;
205 }
206 
207 void iwl_pcie_alloc_fw_monitor(struct iwl_trans *trans, u8 max_power)
208 {
209 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
210 	struct page *page = NULL;
211 	dma_addr_t phys;
212 	u32 size = 0;
213 	u8 power;
214 
215 	if (!max_power) {
216 		/* default max_power is maximum */
217 		max_power = 26;
218 	} else {
219 		max_power += 11;
220 	}
221 
222 	if (WARN(max_power > 26,
223 		 "External buffer size for monitor is too big %d, check the FW TLV\n",
224 		 max_power))
225 		return;
226 
227 	if (trans_pcie->fw_mon_page) {
228 		dma_sync_single_for_device(trans->dev, trans_pcie->fw_mon_phys,
229 					   trans_pcie->fw_mon_size,
230 					   DMA_FROM_DEVICE);
231 		return;
232 	}
233 
234 	phys = 0;
235 	for (power = max_power; power >= 11; power--) {
236 		int order;
237 
238 		size = BIT(power);
239 		order = get_order(size);
240 		page = alloc_pages(__GFP_COMP | __GFP_NOWARN | __GFP_ZERO,
241 				   order);
242 		if (!page)
243 			continue;
244 
245 		phys = dma_map_page(trans->dev, page, 0, PAGE_SIZE << order,
246 				    DMA_FROM_DEVICE);
247 		if (dma_mapping_error(trans->dev, phys)) {
248 			__free_pages(page, order);
249 			page = NULL;
250 			continue;
251 		}
252 		IWL_INFO(trans,
253 			 "Allocated 0x%08x bytes (order %d) for firmware monitor.\n",
254 			 size, order);
255 		break;
256 	}
257 
258 	if (WARN_ON_ONCE(!page))
259 		return;
260 
261 	if (power != max_power)
262 		IWL_ERR(trans,
263 			"Sorry - debug buffer is only %luK while you requested %luK\n",
264 			(unsigned long)BIT(power - 10),
265 			(unsigned long)BIT(max_power - 10));
266 
267 	trans_pcie->fw_mon_page = page;
268 	trans_pcie->fw_mon_phys = phys;
269 	trans_pcie->fw_mon_size = size;
270 }
271 
272 static u32 iwl_trans_pcie_read_shr(struct iwl_trans *trans, u32 reg)
273 {
274 	iwl_write32(trans, HEEP_CTRL_WRD_PCIEX_CTRL_REG,
275 		    ((reg & 0x0000ffff) | (2 << 28)));
276 	return iwl_read32(trans, HEEP_CTRL_WRD_PCIEX_DATA_REG);
277 }
278 
279 static void iwl_trans_pcie_write_shr(struct iwl_trans *trans, u32 reg, u32 val)
280 {
281 	iwl_write32(trans, HEEP_CTRL_WRD_PCIEX_DATA_REG, val);
282 	iwl_write32(trans, HEEP_CTRL_WRD_PCIEX_CTRL_REG,
283 		    ((reg & 0x0000ffff) | (3 << 28)));
284 }
285 
286 static void iwl_pcie_set_pwr(struct iwl_trans *trans, bool vaux)
287 {
288 	if (trans->cfg->apmg_not_supported)
289 		return;
290 
291 	if (vaux && pci_pme_capable(to_pci_dev(trans->dev), PCI_D3cold))
292 		iwl_set_bits_mask_prph(trans, APMG_PS_CTRL_REG,
293 				       APMG_PS_CTRL_VAL_PWR_SRC_VAUX,
294 				       ~APMG_PS_CTRL_MSK_PWR_SRC);
295 	else
296 		iwl_set_bits_mask_prph(trans, APMG_PS_CTRL_REG,
297 				       APMG_PS_CTRL_VAL_PWR_SRC_VMAIN,
298 				       ~APMG_PS_CTRL_MSK_PWR_SRC);
299 }
300 
301 /* PCI registers */
302 #define PCI_CFG_RETRY_TIMEOUT	0x041
303 
304 void iwl_pcie_apm_config(struct iwl_trans *trans)
305 {
306 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
307 	u16 lctl;
308 	u16 cap;
309 
310 	/*
311 	 * HW bug W/A for instability in PCIe bus L0S->L1 transition.
312 	 * Check if BIOS (or OS) enabled L1-ASPM on this device.
313 	 * If so (likely), disable L0S, so device moves directly L0->L1;
314 	 *    costs negligible amount of power savings.
315 	 * If not (unlikely), enable L0S, so there is at least some
316 	 *    power savings, even without L1.
317 	 */
318 	pcie_capability_read_word(trans_pcie->pci_dev, PCI_EXP_LNKCTL, &lctl);
319 	if (lctl & PCI_EXP_LNKCTL_ASPM_L1)
320 		iwl_set_bit(trans, CSR_GIO_REG, CSR_GIO_REG_VAL_L0S_ENABLED);
321 	else
322 		iwl_clear_bit(trans, CSR_GIO_REG, CSR_GIO_REG_VAL_L0S_ENABLED);
323 	trans->pm_support = !(lctl & PCI_EXP_LNKCTL_ASPM_L0S);
324 
325 	pcie_capability_read_word(trans_pcie->pci_dev, PCI_EXP_DEVCTL2, &cap);
326 	trans->ltr_enabled = cap & PCI_EXP_DEVCTL2_LTR_EN;
327 	IWL_DEBUG_POWER(trans, "L1 %sabled - LTR %sabled\n",
328 			(lctl & PCI_EXP_LNKCTL_ASPM_L1) ? "En" : "Dis",
329 			trans->ltr_enabled ? "En" : "Dis");
330 }
331 
332 /*
333  * Start up NIC's basic functionality after it has been reset
334  * (e.g. after platform boot, or shutdown via iwl_pcie_apm_stop())
335  * NOTE:  This does not load uCode nor start the embedded processor
336  */
337 static int iwl_pcie_apm_init(struct iwl_trans *trans)
338 {
339 	int ret;
340 
341 	IWL_DEBUG_INFO(trans, "Init card's basic functions\n");
342 
343 	/*
344 	 * Use "set_bit" below rather than "write", to preserve any hardware
345 	 * bits already set by default after reset.
346 	 */
347 
348 	/* Disable L0S exit timer (platform NMI Work/Around) */
349 	if (trans->cfg->device_family < IWL_DEVICE_FAMILY_8000)
350 		iwl_set_bit(trans, CSR_GIO_CHICKEN_BITS,
351 			    CSR_GIO_CHICKEN_BITS_REG_BIT_DIS_L0S_EXIT_TIMER);
352 
353 	/*
354 	 * Disable L0s without affecting L1;
355 	 *  don't wait for ICH L0s (ICH bug W/A)
356 	 */
357 	iwl_set_bit(trans, CSR_GIO_CHICKEN_BITS,
358 		    CSR_GIO_CHICKEN_BITS_REG_BIT_L1A_NO_L0S_RX);
359 
360 	/* Set FH wait threshold to maximum (HW error during stress W/A) */
361 	iwl_set_bit(trans, CSR_DBG_HPET_MEM_REG, CSR_DBG_HPET_MEM_REG_VAL);
362 
363 	/*
364 	 * Enable HAP INTA (interrupt from management bus) to
365 	 * wake device's PCI Express link L1a -> L0s
366 	 */
367 	iwl_set_bit(trans, CSR_HW_IF_CONFIG_REG,
368 		    CSR_HW_IF_CONFIG_REG_BIT_HAP_WAKE_L1A);
369 
370 	iwl_pcie_apm_config(trans);
371 
372 	/* Configure analog phase-lock-loop before activating to D0A */
373 	if (trans->cfg->base_params->pll_cfg)
374 		iwl_set_bit(trans, CSR_ANA_PLL_CFG, CSR50_ANA_PLL_CFG_VAL);
375 
376 	/*
377 	 * Set "initialization complete" bit to move adapter from
378 	 * D0U* --> D0A* (powered-up active) state.
379 	 */
380 	iwl_set_bit(trans, CSR_GP_CNTRL,
381 		    BIT(trans->cfg->csr->flag_init_done));
382 
383 	/*
384 	 * Wait for clock stabilization; once stabilized, access to
385 	 * device-internal resources is supported, e.g. iwl_write_prph()
386 	 * and accesses to uCode SRAM.
387 	 */
388 	ret = iwl_poll_bit(trans, CSR_GP_CNTRL,
389 			   BIT(trans->cfg->csr->flag_mac_clock_ready),
390 			   BIT(trans->cfg->csr->flag_mac_clock_ready),
391 			   25000);
392 	if (ret < 0) {
393 		IWL_ERR(trans, "Failed to init the card\n");
394 		return ret;
395 	}
396 
397 	if (trans->cfg->host_interrupt_operation_mode) {
398 		/*
399 		 * This is a bit of an abuse - This is needed for 7260 / 3160
400 		 * only check host_interrupt_operation_mode even if this is
401 		 * not related to host_interrupt_operation_mode.
402 		 *
403 		 * Enable the oscillator to count wake up time for L1 exit. This
404 		 * consumes slightly more power (100uA) - but allows to be sure
405 		 * that we wake up from L1 on time.
406 		 *
407 		 * This looks weird: read twice the same register, discard the
408 		 * value, set a bit, and yet again, read that same register
409 		 * just to discard the value. But that's the way the hardware
410 		 * seems to like it.
411 		 */
412 		iwl_read_prph(trans, OSC_CLK);
413 		iwl_read_prph(trans, OSC_CLK);
414 		iwl_set_bits_prph(trans, OSC_CLK, OSC_CLK_FORCE_CONTROL);
415 		iwl_read_prph(trans, OSC_CLK);
416 		iwl_read_prph(trans, OSC_CLK);
417 	}
418 
419 	/*
420 	 * Enable DMA clock and wait for it to stabilize.
421 	 *
422 	 * Write to "CLK_EN_REG"; "1" bits enable clocks, while "0"
423 	 * bits do not disable clocks.  This preserves any hardware
424 	 * bits already set by default in "CLK_CTRL_REG" after reset.
425 	 */
426 	if (!trans->cfg->apmg_not_supported) {
427 		iwl_write_prph(trans, APMG_CLK_EN_REG,
428 			       APMG_CLK_VAL_DMA_CLK_RQT);
429 		udelay(20);
430 
431 		/* Disable L1-Active */
432 		iwl_set_bits_prph(trans, APMG_PCIDEV_STT_REG,
433 				  APMG_PCIDEV_STT_VAL_L1_ACT_DIS);
434 
435 		/* Clear the interrupt in APMG if the NIC is in RFKILL */
436 		iwl_write_prph(trans, APMG_RTC_INT_STT_REG,
437 			       APMG_RTC_INT_STT_RFKILL);
438 	}
439 
440 	set_bit(STATUS_DEVICE_ENABLED, &trans->status);
441 
442 	return 0;
443 }
444 
445 /*
446  * Enable LP XTAL to avoid HW bug where device may consume much power if
447  * FW is not loaded after device reset. LP XTAL is disabled by default
448  * after device HW reset. Do it only if XTAL is fed by internal source.
449  * Configure device's "persistence" mode to avoid resetting XTAL again when
450  * SHRD_HW_RST occurs in S3.
451  */
452 static void iwl_pcie_apm_lp_xtal_enable(struct iwl_trans *trans)
453 {
454 	int ret;
455 	u32 apmg_gp1_reg;
456 	u32 apmg_xtal_cfg_reg;
457 	u32 dl_cfg_reg;
458 
459 	/* Force XTAL ON */
460 	__iwl_trans_pcie_set_bit(trans, CSR_GP_CNTRL,
461 				 CSR_GP_CNTRL_REG_FLAG_XTAL_ON);
462 
463 	iwl_trans_pcie_sw_reset(trans);
464 
465 	/*
466 	 * Set "initialization complete" bit to move adapter from
467 	 * D0U* --> D0A* (powered-up active) state.
468 	 */
469 	iwl_set_bit(trans, CSR_GP_CNTRL,
470 		    BIT(trans->cfg->csr->flag_init_done));
471 
472 	/*
473 	 * Wait for clock stabilization; once stabilized, access to
474 	 * device-internal resources is possible.
475 	 */
476 	ret = iwl_poll_bit(trans, CSR_GP_CNTRL,
477 			   BIT(trans->cfg->csr->flag_mac_clock_ready),
478 			   BIT(trans->cfg->csr->flag_mac_clock_ready),
479 			   25000);
480 	if (WARN_ON(ret < 0)) {
481 		IWL_ERR(trans, "Access time out - failed to enable LP XTAL\n");
482 		/* Release XTAL ON request */
483 		__iwl_trans_pcie_clear_bit(trans, CSR_GP_CNTRL,
484 					   CSR_GP_CNTRL_REG_FLAG_XTAL_ON);
485 		return;
486 	}
487 
488 	/*
489 	 * Clear "disable persistence" to avoid LP XTAL resetting when
490 	 * SHRD_HW_RST is applied in S3.
491 	 */
492 	iwl_clear_bits_prph(trans, APMG_PCIDEV_STT_REG,
493 				    APMG_PCIDEV_STT_VAL_PERSIST_DIS);
494 
495 	/*
496 	 * Force APMG XTAL to be active to prevent its disabling by HW
497 	 * caused by APMG idle state.
498 	 */
499 	apmg_xtal_cfg_reg = iwl_trans_pcie_read_shr(trans,
500 						    SHR_APMG_XTAL_CFG_REG);
501 	iwl_trans_pcie_write_shr(trans, SHR_APMG_XTAL_CFG_REG,
502 				 apmg_xtal_cfg_reg |
503 				 SHR_APMG_XTAL_CFG_XTAL_ON_REQ);
504 
505 	iwl_trans_pcie_sw_reset(trans);
506 
507 	/* Enable LP XTAL by indirect access through CSR */
508 	apmg_gp1_reg = iwl_trans_pcie_read_shr(trans, SHR_APMG_GP1_REG);
509 	iwl_trans_pcie_write_shr(trans, SHR_APMG_GP1_REG, apmg_gp1_reg |
510 				 SHR_APMG_GP1_WF_XTAL_LP_EN |
511 				 SHR_APMG_GP1_CHICKEN_BIT_SELECT);
512 
513 	/* Clear delay line clock power up */
514 	dl_cfg_reg = iwl_trans_pcie_read_shr(trans, SHR_APMG_DL_CFG_REG);
515 	iwl_trans_pcie_write_shr(trans, SHR_APMG_DL_CFG_REG, dl_cfg_reg &
516 				 ~SHR_APMG_DL_CFG_DL_CLOCK_POWER_UP);
517 
518 	/*
519 	 * Enable persistence mode to avoid LP XTAL resetting when
520 	 * SHRD_HW_RST is applied in S3.
521 	 */
522 	iwl_set_bit(trans, CSR_HW_IF_CONFIG_REG,
523 		    CSR_HW_IF_CONFIG_REG_PERSIST_MODE);
524 
525 	/*
526 	 * Clear "initialization complete" bit to move adapter from
527 	 * D0A* (powered-up Active) --> D0U* (Uninitialized) state.
528 	 */
529 	iwl_clear_bit(trans, CSR_GP_CNTRL,
530 		      BIT(trans->cfg->csr->flag_init_done));
531 
532 	/* Activates XTAL resources monitor */
533 	__iwl_trans_pcie_set_bit(trans, CSR_MONITOR_CFG_REG,
534 				 CSR_MONITOR_XTAL_RESOURCES);
535 
536 	/* Release XTAL ON request */
537 	__iwl_trans_pcie_clear_bit(trans, CSR_GP_CNTRL,
538 				   CSR_GP_CNTRL_REG_FLAG_XTAL_ON);
539 	udelay(10);
540 
541 	/* Release APMG XTAL */
542 	iwl_trans_pcie_write_shr(trans, SHR_APMG_XTAL_CFG_REG,
543 				 apmg_xtal_cfg_reg &
544 				 ~SHR_APMG_XTAL_CFG_XTAL_ON_REQ);
545 }
546 
547 void iwl_pcie_apm_stop_master(struct iwl_trans *trans)
548 {
549 	int ret;
550 
551 	/* stop device's busmaster DMA activity */
552 	iwl_set_bit(trans, trans->cfg->csr->addr_sw_reset,
553 		    BIT(trans->cfg->csr->flag_stop_master));
554 
555 	ret = iwl_poll_bit(trans, trans->cfg->csr->addr_sw_reset,
556 			   BIT(trans->cfg->csr->flag_master_dis),
557 			   BIT(trans->cfg->csr->flag_master_dis), 100);
558 	if (ret < 0)
559 		IWL_WARN(trans, "Master Disable Timed Out, 100 usec\n");
560 
561 	IWL_DEBUG_INFO(trans, "stop master\n");
562 }
563 
564 static void iwl_pcie_apm_stop(struct iwl_trans *trans, bool op_mode_leave)
565 {
566 	IWL_DEBUG_INFO(trans, "Stop card, put in low power state\n");
567 
568 	if (op_mode_leave) {
569 		if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
570 			iwl_pcie_apm_init(trans);
571 
572 		/* inform ME that we are leaving */
573 		if (trans->cfg->device_family == IWL_DEVICE_FAMILY_7000)
574 			iwl_set_bits_prph(trans, APMG_PCIDEV_STT_REG,
575 					  APMG_PCIDEV_STT_VAL_WAKE_ME);
576 		else if (trans->cfg->device_family >= IWL_DEVICE_FAMILY_8000) {
577 			iwl_set_bit(trans, CSR_DBG_LINK_PWR_MGMT_REG,
578 				    CSR_RESET_LINK_PWR_MGMT_DISABLED);
579 			iwl_set_bit(trans, CSR_HW_IF_CONFIG_REG,
580 				    CSR_HW_IF_CONFIG_REG_PREPARE |
581 				    CSR_HW_IF_CONFIG_REG_ENABLE_PME);
582 			mdelay(1);
583 			iwl_clear_bit(trans, CSR_DBG_LINK_PWR_MGMT_REG,
584 				      CSR_RESET_LINK_PWR_MGMT_DISABLED);
585 		}
586 		mdelay(5);
587 	}
588 
589 	clear_bit(STATUS_DEVICE_ENABLED, &trans->status);
590 
591 	/* Stop device's DMA activity */
592 	iwl_pcie_apm_stop_master(trans);
593 
594 	if (trans->cfg->lp_xtal_workaround) {
595 		iwl_pcie_apm_lp_xtal_enable(trans);
596 		return;
597 	}
598 
599 	iwl_trans_pcie_sw_reset(trans);
600 
601 	/*
602 	 * Clear "initialization complete" bit to move adapter from
603 	 * D0A* (powered-up Active) --> D0U* (Uninitialized) state.
604 	 */
605 	iwl_clear_bit(trans, CSR_GP_CNTRL,
606 		      BIT(trans->cfg->csr->flag_init_done));
607 }
608 
609 static int iwl_pcie_nic_init(struct iwl_trans *trans)
610 {
611 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
612 	int ret;
613 
614 	/* nic_init */
615 	spin_lock(&trans_pcie->irq_lock);
616 	ret = iwl_pcie_apm_init(trans);
617 	spin_unlock(&trans_pcie->irq_lock);
618 
619 	if (ret)
620 		return ret;
621 
622 	iwl_pcie_set_pwr(trans, false);
623 
624 	iwl_op_mode_nic_config(trans->op_mode);
625 
626 	/* Allocate the RX queue, or reset if it is already allocated */
627 	iwl_pcie_rx_init(trans);
628 
629 	/* Allocate or reset and init all Tx and Command queues */
630 	if (iwl_pcie_tx_init(trans))
631 		return -ENOMEM;
632 
633 	if (trans->cfg->base_params->shadow_reg_enable) {
634 		/* enable shadow regs in HW */
635 		iwl_set_bit(trans, CSR_MAC_SHADOW_REG_CTRL, 0x800FFFFF);
636 		IWL_DEBUG_INFO(trans, "Enabling shadow registers in device\n");
637 	}
638 
639 	return 0;
640 }
641 
642 #define HW_READY_TIMEOUT (50)
643 
644 /* Note: returns poll_bit return value, which is >= 0 if success */
645 static int iwl_pcie_set_hw_ready(struct iwl_trans *trans)
646 {
647 	int ret;
648 
649 	iwl_set_bit(trans, CSR_HW_IF_CONFIG_REG,
650 		    CSR_HW_IF_CONFIG_REG_BIT_NIC_READY);
651 
652 	/* See if we got it */
653 	ret = iwl_poll_bit(trans, CSR_HW_IF_CONFIG_REG,
654 			   CSR_HW_IF_CONFIG_REG_BIT_NIC_READY,
655 			   CSR_HW_IF_CONFIG_REG_BIT_NIC_READY,
656 			   HW_READY_TIMEOUT);
657 
658 	if (ret >= 0)
659 		iwl_set_bit(trans, CSR_MBOX_SET_REG, CSR_MBOX_SET_REG_OS_ALIVE);
660 
661 	IWL_DEBUG_INFO(trans, "hardware%s ready\n", ret < 0 ? " not" : "");
662 	return ret;
663 }
664 
665 /* Note: returns standard 0/-ERROR code */
666 int iwl_pcie_prepare_card_hw(struct iwl_trans *trans)
667 {
668 	int ret;
669 	int t = 0;
670 	int iter;
671 
672 	IWL_DEBUG_INFO(trans, "iwl_trans_prepare_card_hw enter\n");
673 
674 	ret = iwl_pcie_set_hw_ready(trans);
675 	/* If the card is ready, exit 0 */
676 	if (ret >= 0)
677 		return 0;
678 
679 	iwl_set_bit(trans, CSR_DBG_LINK_PWR_MGMT_REG,
680 		    CSR_RESET_LINK_PWR_MGMT_DISABLED);
681 	usleep_range(1000, 2000);
682 
683 	for (iter = 0; iter < 10; iter++) {
684 		/* If HW is not ready, prepare the conditions to check again */
685 		iwl_set_bit(trans, CSR_HW_IF_CONFIG_REG,
686 			    CSR_HW_IF_CONFIG_REG_PREPARE);
687 
688 		do {
689 			ret = iwl_pcie_set_hw_ready(trans);
690 			if (ret >= 0)
691 				return 0;
692 
693 			usleep_range(200, 1000);
694 			t += 200;
695 		} while (t < 150000);
696 		msleep(25);
697 	}
698 
699 	IWL_ERR(trans, "Couldn't prepare the card\n");
700 
701 	return ret;
702 }
703 
704 /*
705  * ucode
706  */
707 static void iwl_pcie_load_firmware_chunk_fh(struct iwl_trans *trans,
708 					    u32 dst_addr, dma_addr_t phy_addr,
709 					    u32 byte_cnt)
710 {
711 	iwl_write32(trans, FH_TCSR_CHNL_TX_CONFIG_REG(FH_SRVC_CHNL),
712 		    FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_PAUSE);
713 
714 	iwl_write32(trans, FH_SRVC_CHNL_SRAM_ADDR_REG(FH_SRVC_CHNL),
715 		    dst_addr);
716 
717 	iwl_write32(trans, FH_TFDIB_CTRL0_REG(FH_SRVC_CHNL),
718 		    phy_addr & FH_MEM_TFDIB_DRAM_ADDR_LSB_MSK);
719 
720 	iwl_write32(trans, FH_TFDIB_CTRL1_REG(FH_SRVC_CHNL),
721 		    (iwl_get_dma_hi_addr(phy_addr)
722 			<< FH_MEM_TFDIB_REG1_ADDR_BITSHIFT) | byte_cnt);
723 
724 	iwl_write32(trans, FH_TCSR_CHNL_TX_BUF_STS_REG(FH_SRVC_CHNL),
725 		    BIT(FH_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_NUM) |
726 		    BIT(FH_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_IDX) |
727 		    FH_TCSR_CHNL_TX_BUF_STS_REG_VAL_TFDB_VALID);
728 
729 	iwl_write32(trans, FH_TCSR_CHNL_TX_CONFIG_REG(FH_SRVC_CHNL),
730 		    FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE |
731 		    FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_DISABLE |
732 		    FH_TCSR_TX_CONFIG_REG_VAL_CIRQ_HOST_ENDTFD);
733 }
734 
735 static int iwl_pcie_load_firmware_chunk(struct iwl_trans *trans,
736 					u32 dst_addr, dma_addr_t phy_addr,
737 					u32 byte_cnt)
738 {
739 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
740 	unsigned long flags;
741 	int ret;
742 
743 	trans_pcie->ucode_write_complete = false;
744 
745 	if (!iwl_trans_grab_nic_access(trans, &flags))
746 		return -EIO;
747 
748 	iwl_pcie_load_firmware_chunk_fh(trans, dst_addr, phy_addr,
749 					byte_cnt);
750 	iwl_trans_release_nic_access(trans, &flags);
751 
752 	ret = wait_event_timeout(trans_pcie->ucode_write_waitq,
753 				 trans_pcie->ucode_write_complete, 5 * HZ);
754 	if (!ret) {
755 		IWL_ERR(trans, "Failed to load firmware chunk!\n");
756 		iwl_trans_pcie_dump_regs(trans);
757 		return -ETIMEDOUT;
758 	}
759 
760 	return 0;
761 }
762 
763 static int iwl_pcie_load_section(struct iwl_trans *trans, u8 section_num,
764 			    const struct fw_desc *section)
765 {
766 	u8 *v_addr;
767 	dma_addr_t p_addr;
768 	u32 offset, chunk_sz = min_t(u32, FH_MEM_TB_MAX_LENGTH, section->len);
769 	int ret = 0;
770 
771 	IWL_DEBUG_FW(trans, "[%d] uCode section being loaded...\n",
772 		     section_num);
773 
774 	v_addr = dma_alloc_coherent(trans->dev, chunk_sz, &p_addr,
775 				    GFP_KERNEL | __GFP_NOWARN);
776 	if (!v_addr) {
777 		IWL_DEBUG_INFO(trans, "Falling back to small chunks of DMA\n");
778 		chunk_sz = PAGE_SIZE;
779 		v_addr = dma_alloc_coherent(trans->dev, chunk_sz,
780 					    &p_addr, GFP_KERNEL);
781 		if (!v_addr)
782 			return -ENOMEM;
783 	}
784 
785 	for (offset = 0; offset < section->len; offset += chunk_sz) {
786 		u32 copy_size, dst_addr;
787 		bool extended_addr = false;
788 
789 		copy_size = min_t(u32, chunk_sz, section->len - offset);
790 		dst_addr = section->offset + offset;
791 
792 		if (dst_addr >= IWL_FW_MEM_EXTENDED_START &&
793 		    dst_addr <= IWL_FW_MEM_EXTENDED_END)
794 			extended_addr = true;
795 
796 		if (extended_addr)
797 			iwl_set_bits_prph(trans, LMPM_CHICK,
798 					  LMPM_CHICK_EXTENDED_ADDR_SPACE);
799 
800 		memcpy(v_addr, (u8 *)section->data + offset, copy_size);
801 		ret = iwl_pcie_load_firmware_chunk(trans, dst_addr, p_addr,
802 						   copy_size);
803 
804 		if (extended_addr)
805 			iwl_clear_bits_prph(trans, LMPM_CHICK,
806 					    LMPM_CHICK_EXTENDED_ADDR_SPACE);
807 
808 		if (ret) {
809 			IWL_ERR(trans,
810 				"Could not load the [%d] uCode section\n",
811 				section_num);
812 			break;
813 		}
814 	}
815 
816 	dma_free_coherent(trans->dev, chunk_sz, v_addr, p_addr);
817 	return ret;
818 }
819 
820 static int iwl_pcie_load_cpu_sections_8000(struct iwl_trans *trans,
821 					   const struct fw_img *image,
822 					   int cpu,
823 					   int *first_ucode_section)
824 {
825 	int shift_param;
826 	int i, ret = 0, sec_num = 0x1;
827 	u32 val, last_read_idx = 0;
828 
829 	if (cpu == 1) {
830 		shift_param = 0;
831 		*first_ucode_section = 0;
832 	} else {
833 		shift_param = 16;
834 		(*first_ucode_section)++;
835 	}
836 
837 	for (i = *first_ucode_section; i < image->num_sec; i++) {
838 		last_read_idx = i;
839 
840 		/*
841 		 * CPU1_CPU2_SEPARATOR_SECTION delimiter - separate between
842 		 * CPU1 to CPU2.
843 		 * PAGING_SEPARATOR_SECTION delimiter - separate between
844 		 * CPU2 non paged to CPU2 paging sec.
845 		 */
846 		if (!image->sec[i].data ||
847 		    image->sec[i].offset == CPU1_CPU2_SEPARATOR_SECTION ||
848 		    image->sec[i].offset == PAGING_SEPARATOR_SECTION) {
849 			IWL_DEBUG_FW(trans,
850 				     "Break since Data not valid or Empty section, sec = %d\n",
851 				     i);
852 			break;
853 		}
854 
855 		ret = iwl_pcie_load_section(trans, i, &image->sec[i]);
856 		if (ret)
857 			return ret;
858 
859 		/* Notify ucode of loaded section number and status */
860 		val = iwl_read_direct32(trans, FH_UCODE_LOAD_STATUS);
861 		val = val | (sec_num << shift_param);
862 		iwl_write_direct32(trans, FH_UCODE_LOAD_STATUS, val);
863 
864 		sec_num = (sec_num << 1) | 0x1;
865 	}
866 
867 	*first_ucode_section = last_read_idx;
868 
869 	iwl_enable_interrupts(trans);
870 
871 	if (trans->cfg->use_tfh) {
872 		if (cpu == 1)
873 			iwl_write_prph(trans, UREG_UCODE_LOAD_STATUS,
874 				       0xFFFF);
875 		else
876 			iwl_write_prph(trans, UREG_UCODE_LOAD_STATUS,
877 				       0xFFFFFFFF);
878 	} else {
879 		if (cpu == 1)
880 			iwl_write_direct32(trans, FH_UCODE_LOAD_STATUS,
881 					   0xFFFF);
882 		else
883 			iwl_write_direct32(trans, FH_UCODE_LOAD_STATUS,
884 					   0xFFFFFFFF);
885 	}
886 
887 	return 0;
888 }
889 
890 static int iwl_pcie_load_cpu_sections(struct iwl_trans *trans,
891 				      const struct fw_img *image,
892 				      int cpu,
893 				      int *first_ucode_section)
894 {
895 	int i, ret = 0;
896 	u32 last_read_idx = 0;
897 
898 	if (cpu == 1)
899 		*first_ucode_section = 0;
900 	else
901 		(*first_ucode_section)++;
902 
903 	for (i = *first_ucode_section; i < image->num_sec; i++) {
904 		last_read_idx = i;
905 
906 		/*
907 		 * CPU1_CPU2_SEPARATOR_SECTION delimiter - separate between
908 		 * CPU1 to CPU2.
909 		 * PAGING_SEPARATOR_SECTION delimiter - separate between
910 		 * CPU2 non paged to CPU2 paging sec.
911 		 */
912 		if (!image->sec[i].data ||
913 		    image->sec[i].offset == CPU1_CPU2_SEPARATOR_SECTION ||
914 		    image->sec[i].offset == PAGING_SEPARATOR_SECTION) {
915 			IWL_DEBUG_FW(trans,
916 				     "Break since Data not valid or Empty section, sec = %d\n",
917 				     i);
918 			break;
919 		}
920 
921 		ret = iwl_pcie_load_section(trans, i, &image->sec[i]);
922 		if (ret)
923 			return ret;
924 	}
925 
926 	*first_ucode_section = last_read_idx;
927 
928 	return 0;
929 }
930 
931 void iwl_pcie_apply_destination(struct iwl_trans *trans)
932 {
933 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
934 	const struct iwl_fw_dbg_dest_tlv_v1 *dest = trans->dbg_dest_tlv;
935 	int i;
936 
937 	IWL_INFO(trans, "Applying debug destination %s\n",
938 		 get_fw_dbg_mode_string(dest->monitor_mode));
939 
940 	if (dest->monitor_mode == EXTERNAL_MODE)
941 		iwl_pcie_alloc_fw_monitor(trans, dest->size_power);
942 	else
943 		IWL_WARN(trans, "PCI should have external buffer debug\n");
944 
945 	for (i = 0; i < trans->dbg_dest_reg_num; i++) {
946 		u32 addr = le32_to_cpu(dest->reg_ops[i].addr);
947 		u32 val = le32_to_cpu(dest->reg_ops[i].val);
948 
949 		switch (dest->reg_ops[i].op) {
950 		case CSR_ASSIGN:
951 			iwl_write32(trans, addr, val);
952 			break;
953 		case CSR_SETBIT:
954 			iwl_set_bit(trans, addr, BIT(val));
955 			break;
956 		case CSR_CLEARBIT:
957 			iwl_clear_bit(trans, addr, BIT(val));
958 			break;
959 		case PRPH_ASSIGN:
960 			iwl_write_prph(trans, addr, val);
961 			break;
962 		case PRPH_SETBIT:
963 			iwl_set_bits_prph(trans, addr, BIT(val));
964 			break;
965 		case PRPH_CLEARBIT:
966 			iwl_clear_bits_prph(trans, addr, BIT(val));
967 			break;
968 		case PRPH_BLOCKBIT:
969 			if (iwl_read_prph(trans, addr) & BIT(val)) {
970 				IWL_ERR(trans,
971 					"BIT(%u) in address 0x%x is 1, stopping FW configuration\n",
972 					val, addr);
973 				goto monitor;
974 			}
975 			break;
976 		default:
977 			IWL_ERR(trans, "FW debug - unknown OP %d\n",
978 				dest->reg_ops[i].op);
979 			break;
980 		}
981 	}
982 
983 monitor:
984 	if (dest->monitor_mode == EXTERNAL_MODE && trans_pcie->fw_mon_size) {
985 		iwl_write_prph(trans, le32_to_cpu(dest->base_reg),
986 			       trans_pcie->fw_mon_phys >> dest->base_shift);
987 		if (trans->cfg->device_family >= IWL_DEVICE_FAMILY_8000)
988 			iwl_write_prph(trans, le32_to_cpu(dest->end_reg),
989 				       (trans_pcie->fw_mon_phys +
990 					trans_pcie->fw_mon_size - 256) >>
991 						dest->end_shift);
992 		else
993 			iwl_write_prph(trans, le32_to_cpu(dest->end_reg),
994 				       (trans_pcie->fw_mon_phys +
995 					trans_pcie->fw_mon_size) >>
996 						dest->end_shift);
997 	}
998 }
999 
1000 static int iwl_pcie_load_given_ucode(struct iwl_trans *trans,
1001 				const struct fw_img *image)
1002 {
1003 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1004 	int ret = 0;
1005 	int first_ucode_section;
1006 
1007 	IWL_DEBUG_FW(trans, "working with %s CPU\n",
1008 		     image->is_dual_cpus ? "Dual" : "Single");
1009 
1010 	/* load to FW the binary non secured sections of CPU1 */
1011 	ret = iwl_pcie_load_cpu_sections(trans, image, 1, &first_ucode_section);
1012 	if (ret)
1013 		return ret;
1014 
1015 	if (image->is_dual_cpus) {
1016 		/* set CPU2 header address */
1017 		iwl_write_prph(trans,
1018 			       LMPM_SECURE_UCODE_LOAD_CPU2_HDR_ADDR,
1019 			       LMPM_SECURE_CPU2_HDR_MEM_SPACE);
1020 
1021 		/* load to FW the binary sections of CPU2 */
1022 		ret = iwl_pcie_load_cpu_sections(trans, image, 2,
1023 						 &first_ucode_section);
1024 		if (ret)
1025 			return ret;
1026 	}
1027 
1028 	/* supported for 7000 only for the moment */
1029 	if (iwlwifi_mod_params.fw_monitor &&
1030 	    trans->cfg->device_family == IWL_DEVICE_FAMILY_7000) {
1031 		iwl_pcie_alloc_fw_monitor(trans, 0);
1032 
1033 		if (trans_pcie->fw_mon_size) {
1034 			iwl_write_prph(trans, MON_BUFF_BASE_ADDR,
1035 				       trans_pcie->fw_mon_phys >> 4);
1036 			iwl_write_prph(trans, MON_BUFF_END_ADDR,
1037 				       (trans_pcie->fw_mon_phys +
1038 					trans_pcie->fw_mon_size) >> 4);
1039 		}
1040 	} else if (trans->dbg_dest_tlv) {
1041 		iwl_pcie_apply_destination(trans);
1042 	}
1043 
1044 	iwl_enable_interrupts(trans);
1045 
1046 	/* release CPU reset */
1047 	iwl_write32(trans, CSR_RESET, 0);
1048 
1049 	return 0;
1050 }
1051 
1052 static int iwl_pcie_load_given_ucode_8000(struct iwl_trans *trans,
1053 					  const struct fw_img *image)
1054 {
1055 	int ret = 0;
1056 	int first_ucode_section;
1057 
1058 	IWL_DEBUG_FW(trans, "working with %s CPU\n",
1059 		     image->is_dual_cpus ? "Dual" : "Single");
1060 
1061 	if (trans->dbg_dest_tlv)
1062 		iwl_pcie_apply_destination(trans);
1063 
1064 	IWL_DEBUG_POWER(trans, "Original WFPM value = 0x%08X\n",
1065 			iwl_read_prph(trans, WFPM_GP2));
1066 
1067 	/*
1068 	 * Set default value. On resume reading the values that were
1069 	 * zeored can provide debug data on the resume flow.
1070 	 * This is for debugging only and has no functional impact.
1071 	 */
1072 	iwl_write_prph(trans, WFPM_GP2, 0x01010101);
1073 
1074 	/* configure the ucode to be ready to get the secured image */
1075 	/* release CPU reset */
1076 	iwl_write_prph(trans, RELEASE_CPU_RESET, RELEASE_CPU_RESET_BIT);
1077 
1078 	/* load to FW the binary Secured sections of CPU1 */
1079 	ret = iwl_pcie_load_cpu_sections_8000(trans, image, 1,
1080 					      &first_ucode_section);
1081 	if (ret)
1082 		return ret;
1083 
1084 	/* load to FW the binary sections of CPU2 */
1085 	return iwl_pcie_load_cpu_sections_8000(trans, image, 2,
1086 					       &first_ucode_section);
1087 }
1088 
1089 bool iwl_pcie_check_hw_rf_kill(struct iwl_trans *trans)
1090 {
1091 	struct iwl_trans_pcie *trans_pcie =  IWL_TRANS_GET_PCIE_TRANS(trans);
1092 	bool hw_rfkill = iwl_is_rfkill_set(trans);
1093 	bool prev = test_bit(STATUS_RFKILL_OPMODE, &trans->status);
1094 	bool report;
1095 
1096 	if (hw_rfkill) {
1097 		set_bit(STATUS_RFKILL_HW, &trans->status);
1098 		set_bit(STATUS_RFKILL_OPMODE, &trans->status);
1099 	} else {
1100 		clear_bit(STATUS_RFKILL_HW, &trans->status);
1101 		if (trans_pcie->opmode_down)
1102 			clear_bit(STATUS_RFKILL_OPMODE, &trans->status);
1103 	}
1104 
1105 	report = test_bit(STATUS_RFKILL_OPMODE, &trans->status);
1106 
1107 	if (prev != report)
1108 		iwl_trans_pcie_rf_kill(trans, report);
1109 
1110 	return hw_rfkill;
1111 }
1112 
1113 struct iwl_causes_list {
1114 	u32 cause_num;
1115 	u32 mask_reg;
1116 	u8 addr;
1117 };
1118 
1119 static struct iwl_causes_list causes_list[] = {
1120 	{MSIX_FH_INT_CAUSES_D2S_CH0_NUM,	CSR_MSIX_FH_INT_MASK_AD, 0},
1121 	{MSIX_FH_INT_CAUSES_D2S_CH1_NUM,	CSR_MSIX_FH_INT_MASK_AD, 0x1},
1122 	{MSIX_FH_INT_CAUSES_S2D,		CSR_MSIX_FH_INT_MASK_AD, 0x3},
1123 	{MSIX_FH_INT_CAUSES_FH_ERR,		CSR_MSIX_FH_INT_MASK_AD, 0x5},
1124 	{MSIX_HW_INT_CAUSES_REG_ALIVE,		CSR_MSIX_HW_INT_MASK_AD, 0x10},
1125 	{MSIX_HW_INT_CAUSES_REG_WAKEUP,		CSR_MSIX_HW_INT_MASK_AD, 0x11},
1126 	{MSIX_HW_INT_CAUSES_REG_CT_KILL,	CSR_MSIX_HW_INT_MASK_AD, 0x16},
1127 	{MSIX_HW_INT_CAUSES_REG_RF_KILL,	CSR_MSIX_HW_INT_MASK_AD, 0x17},
1128 	{MSIX_HW_INT_CAUSES_REG_PERIODIC,	CSR_MSIX_HW_INT_MASK_AD, 0x18},
1129 	{MSIX_HW_INT_CAUSES_REG_SW_ERR,		CSR_MSIX_HW_INT_MASK_AD, 0x29},
1130 	{MSIX_HW_INT_CAUSES_REG_SCD,		CSR_MSIX_HW_INT_MASK_AD, 0x2A},
1131 	{MSIX_HW_INT_CAUSES_REG_FH_TX,		CSR_MSIX_HW_INT_MASK_AD, 0x2B},
1132 	{MSIX_HW_INT_CAUSES_REG_HW_ERR,		CSR_MSIX_HW_INT_MASK_AD, 0x2D},
1133 	{MSIX_HW_INT_CAUSES_REG_HAP,		CSR_MSIX_HW_INT_MASK_AD, 0x2E},
1134 };
1135 
1136 static struct iwl_causes_list causes_list_v2[] = {
1137 	{MSIX_FH_INT_CAUSES_D2S_CH0_NUM,	CSR_MSIX_FH_INT_MASK_AD, 0},
1138 	{MSIX_FH_INT_CAUSES_D2S_CH1_NUM,	CSR_MSIX_FH_INT_MASK_AD, 0x1},
1139 	{MSIX_FH_INT_CAUSES_S2D,		CSR_MSIX_FH_INT_MASK_AD, 0x3},
1140 	{MSIX_FH_INT_CAUSES_FH_ERR,		CSR_MSIX_FH_INT_MASK_AD, 0x5},
1141 	{MSIX_HW_INT_CAUSES_REG_ALIVE,		CSR_MSIX_HW_INT_MASK_AD, 0x10},
1142 	{MSIX_HW_INT_CAUSES_REG_IPC,		CSR_MSIX_HW_INT_MASK_AD, 0x11},
1143 	{MSIX_HW_INT_CAUSES_REG_SW_ERR_V2,	CSR_MSIX_HW_INT_MASK_AD, 0x15},
1144 	{MSIX_HW_INT_CAUSES_REG_CT_KILL,	CSR_MSIX_HW_INT_MASK_AD, 0x16},
1145 	{MSIX_HW_INT_CAUSES_REG_RF_KILL,	CSR_MSIX_HW_INT_MASK_AD, 0x17},
1146 	{MSIX_HW_INT_CAUSES_REG_PERIODIC,	CSR_MSIX_HW_INT_MASK_AD, 0x18},
1147 	{MSIX_HW_INT_CAUSES_REG_SCD,		CSR_MSIX_HW_INT_MASK_AD, 0x2A},
1148 	{MSIX_HW_INT_CAUSES_REG_FH_TX,		CSR_MSIX_HW_INT_MASK_AD, 0x2B},
1149 	{MSIX_HW_INT_CAUSES_REG_HW_ERR,		CSR_MSIX_HW_INT_MASK_AD, 0x2D},
1150 	{MSIX_HW_INT_CAUSES_REG_HAP,		CSR_MSIX_HW_INT_MASK_AD, 0x2E},
1151 };
1152 
1153 static void iwl_pcie_map_non_rx_causes(struct iwl_trans *trans)
1154 {
1155 	struct iwl_trans_pcie *trans_pcie =  IWL_TRANS_GET_PCIE_TRANS(trans);
1156 	int val = trans_pcie->def_irq | MSIX_NON_AUTO_CLEAR_CAUSE;
1157 	int i, arr_size =
1158 		(trans->cfg->device_family < IWL_DEVICE_FAMILY_22560) ?
1159 		ARRAY_SIZE(causes_list) : ARRAY_SIZE(causes_list_v2);
1160 
1161 	/*
1162 	 * Access all non RX causes and map them to the default irq.
1163 	 * In case we are missing at least one interrupt vector,
1164 	 * the first interrupt vector will serve non-RX and FBQ causes.
1165 	 */
1166 	for (i = 0; i < arr_size; i++) {
1167 		struct iwl_causes_list *causes =
1168 			(trans->cfg->device_family < IWL_DEVICE_FAMILY_22560) ?
1169 			causes_list : causes_list_v2;
1170 
1171 		iwl_write8(trans, CSR_MSIX_IVAR(causes[i].addr), val);
1172 		iwl_clear_bit(trans, causes[i].mask_reg,
1173 			      causes[i].cause_num);
1174 	}
1175 }
1176 
1177 static void iwl_pcie_map_rx_causes(struct iwl_trans *trans)
1178 {
1179 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1180 	u32 offset =
1181 		trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS ? 1 : 0;
1182 	u32 val, idx;
1183 
1184 	/*
1185 	 * The first RX queue - fallback queue, which is designated for
1186 	 * management frame, command responses etc, is always mapped to the
1187 	 * first interrupt vector. The other RX queues are mapped to
1188 	 * the other (N - 2) interrupt vectors.
1189 	 */
1190 	val = BIT(MSIX_FH_INT_CAUSES_Q(0));
1191 	for (idx = 1; idx < trans->num_rx_queues; idx++) {
1192 		iwl_write8(trans, CSR_MSIX_RX_IVAR(idx),
1193 			   MSIX_FH_INT_CAUSES_Q(idx - offset));
1194 		val |= BIT(MSIX_FH_INT_CAUSES_Q(idx));
1195 	}
1196 	iwl_write32(trans, CSR_MSIX_FH_INT_MASK_AD, ~val);
1197 
1198 	val = MSIX_FH_INT_CAUSES_Q(0);
1199 	if (trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_NON_RX)
1200 		val |= MSIX_NON_AUTO_CLEAR_CAUSE;
1201 	iwl_write8(trans, CSR_MSIX_RX_IVAR(0), val);
1202 
1203 	if (trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS)
1204 		iwl_write8(trans, CSR_MSIX_RX_IVAR(1), val);
1205 }
1206 
1207 void iwl_pcie_conf_msix_hw(struct iwl_trans_pcie *trans_pcie)
1208 {
1209 	struct iwl_trans *trans = trans_pcie->trans;
1210 
1211 	if (!trans_pcie->msix_enabled) {
1212 		if (trans->cfg->mq_rx_supported &&
1213 		    test_bit(STATUS_DEVICE_ENABLED, &trans->status))
1214 			iwl_write_prph(trans, UREG_CHICK,
1215 				       UREG_CHICK_MSI_ENABLE);
1216 		return;
1217 	}
1218 	/*
1219 	 * The IVAR table needs to be configured again after reset,
1220 	 * but if the device is disabled, we can't write to
1221 	 * prph.
1222 	 */
1223 	if (test_bit(STATUS_DEVICE_ENABLED, &trans->status))
1224 		iwl_write_prph(trans, UREG_CHICK, UREG_CHICK_MSIX_ENABLE);
1225 
1226 	/*
1227 	 * Each cause from the causes list above and the RX causes is
1228 	 * represented as a byte in the IVAR table. The first nibble
1229 	 * represents the bound interrupt vector of the cause, the second
1230 	 * represents no auto clear for this cause. This will be set if its
1231 	 * interrupt vector is bound to serve other causes.
1232 	 */
1233 	iwl_pcie_map_rx_causes(trans);
1234 
1235 	iwl_pcie_map_non_rx_causes(trans);
1236 }
1237 
1238 static void iwl_pcie_init_msix(struct iwl_trans_pcie *trans_pcie)
1239 {
1240 	struct iwl_trans *trans = trans_pcie->trans;
1241 
1242 	iwl_pcie_conf_msix_hw(trans_pcie);
1243 
1244 	if (!trans_pcie->msix_enabled)
1245 		return;
1246 
1247 	trans_pcie->fh_init_mask = ~iwl_read32(trans, CSR_MSIX_FH_INT_MASK_AD);
1248 	trans_pcie->fh_mask = trans_pcie->fh_init_mask;
1249 	trans_pcie->hw_init_mask = ~iwl_read32(trans, CSR_MSIX_HW_INT_MASK_AD);
1250 	trans_pcie->hw_mask = trans_pcie->hw_init_mask;
1251 }
1252 
1253 static void _iwl_trans_pcie_stop_device(struct iwl_trans *trans, bool low_power)
1254 {
1255 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1256 
1257 	lockdep_assert_held(&trans_pcie->mutex);
1258 
1259 	if (trans_pcie->is_down)
1260 		return;
1261 
1262 	trans_pcie->is_down = true;
1263 
1264 	/* Stop dbgc before stopping device */
1265 	if (trans->cfg->device_family == IWL_DEVICE_FAMILY_7000) {
1266 		iwl_set_bits_prph(trans, MON_BUFF_SAMPLE_CTL, 0x100);
1267 	} else {
1268 		iwl_write_prph(trans, DBGC_IN_SAMPLE, 0);
1269 		udelay(100);
1270 		iwl_write_prph(trans, DBGC_OUT_CTRL, 0);
1271 	}
1272 
1273 	/* tell the device to stop sending interrupts */
1274 	iwl_disable_interrupts(trans);
1275 
1276 	/* device going down, Stop using ICT table */
1277 	iwl_pcie_disable_ict(trans);
1278 
1279 	/*
1280 	 * If a HW restart happens during firmware loading,
1281 	 * then the firmware loading might call this function
1282 	 * and later it might be called again due to the
1283 	 * restart. So don't process again if the device is
1284 	 * already dead.
1285 	 */
1286 	if (test_and_clear_bit(STATUS_DEVICE_ENABLED, &trans->status)) {
1287 		IWL_DEBUG_INFO(trans,
1288 			       "DEVICE_ENABLED bit was set and is now cleared\n");
1289 		iwl_pcie_tx_stop(trans);
1290 		iwl_pcie_rx_stop(trans);
1291 
1292 		/* Power-down device's busmaster DMA clocks */
1293 		if (!trans->cfg->apmg_not_supported) {
1294 			iwl_write_prph(trans, APMG_CLK_DIS_REG,
1295 				       APMG_CLK_VAL_DMA_CLK_RQT);
1296 			udelay(5);
1297 		}
1298 	}
1299 
1300 	/* Make sure (redundant) we've released our request to stay awake */
1301 	iwl_clear_bit(trans, CSR_GP_CNTRL,
1302 		      BIT(trans->cfg->csr->flag_mac_access_req));
1303 
1304 	/* Stop the device, and put it in low power state */
1305 	iwl_pcie_apm_stop(trans, false);
1306 
1307 	iwl_trans_pcie_sw_reset(trans);
1308 
1309 	/*
1310 	 * Upon stop, the IVAR table gets erased, so msi-x won't
1311 	 * work. This causes a bug in RF-KILL flows, since the interrupt
1312 	 * that enables radio won't fire on the correct irq, and the
1313 	 * driver won't be able to handle the interrupt.
1314 	 * Configure the IVAR table again after reset.
1315 	 */
1316 	iwl_pcie_conf_msix_hw(trans_pcie);
1317 
1318 	/*
1319 	 * Upon stop, the APM issues an interrupt if HW RF kill is set.
1320 	 * This is a bug in certain verions of the hardware.
1321 	 * Certain devices also keep sending HW RF kill interrupt all
1322 	 * the time, unless the interrupt is ACKed even if the interrupt
1323 	 * should be masked. Re-ACK all the interrupts here.
1324 	 */
1325 	iwl_disable_interrupts(trans);
1326 
1327 	/* clear all status bits */
1328 	clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
1329 	clear_bit(STATUS_INT_ENABLED, &trans->status);
1330 	clear_bit(STATUS_TPOWER_PMI, &trans->status);
1331 
1332 	/*
1333 	 * Even if we stop the HW, we still want the RF kill
1334 	 * interrupt
1335 	 */
1336 	iwl_enable_rfkill_int(trans);
1337 
1338 	/* re-take ownership to prevent other users from stealing the device */
1339 	iwl_pcie_prepare_card_hw(trans);
1340 }
1341 
1342 void iwl_pcie_synchronize_irqs(struct iwl_trans *trans)
1343 {
1344 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1345 
1346 	if (trans_pcie->msix_enabled) {
1347 		int i;
1348 
1349 		for (i = 0; i < trans_pcie->alloc_vecs; i++)
1350 			synchronize_irq(trans_pcie->msix_entries[i].vector);
1351 	} else {
1352 		synchronize_irq(trans_pcie->pci_dev->irq);
1353 	}
1354 }
1355 
1356 static int iwl_trans_pcie_start_fw(struct iwl_trans *trans,
1357 				   const struct fw_img *fw, bool run_in_rfkill)
1358 {
1359 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1360 	bool hw_rfkill;
1361 	int ret;
1362 
1363 	/* This may fail if AMT took ownership of the device */
1364 	if (iwl_pcie_prepare_card_hw(trans)) {
1365 		IWL_WARN(trans, "Exit HW not ready\n");
1366 		ret = -EIO;
1367 		goto out;
1368 	}
1369 
1370 	iwl_enable_rfkill_int(trans);
1371 
1372 	iwl_write32(trans, CSR_INT, 0xFFFFFFFF);
1373 
1374 	/*
1375 	 * We enabled the RF-Kill interrupt and the handler may very
1376 	 * well be running. Disable the interrupts to make sure no other
1377 	 * interrupt can be fired.
1378 	 */
1379 	iwl_disable_interrupts(trans);
1380 
1381 	/* Make sure it finished running */
1382 	iwl_pcie_synchronize_irqs(trans);
1383 
1384 	mutex_lock(&trans_pcie->mutex);
1385 
1386 	/* If platform's RF_KILL switch is NOT set to KILL */
1387 	hw_rfkill = iwl_pcie_check_hw_rf_kill(trans);
1388 	if (hw_rfkill && !run_in_rfkill) {
1389 		ret = -ERFKILL;
1390 		goto out;
1391 	}
1392 
1393 	/* Someone called stop_device, don't try to start_fw */
1394 	if (trans_pcie->is_down) {
1395 		IWL_WARN(trans,
1396 			 "Can't start_fw since the HW hasn't been started\n");
1397 		ret = -EIO;
1398 		goto out;
1399 	}
1400 
1401 	/* make sure rfkill handshake bits are cleared */
1402 	iwl_write32(trans, CSR_UCODE_DRV_GP1_CLR, CSR_UCODE_SW_BIT_RFKILL);
1403 	iwl_write32(trans, CSR_UCODE_DRV_GP1_CLR,
1404 		    CSR_UCODE_DRV_GP1_BIT_CMD_BLOCKED);
1405 
1406 	/* clear (again), then enable host interrupts */
1407 	iwl_write32(trans, CSR_INT, 0xFFFFFFFF);
1408 
1409 	ret = iwl_pcie_nic_init(trans);
1410 	if (ret) {
1411 		IWL_ERR(trans, "Unable to init nic\n");
1412 		goto out;
1413 	}
1414 
1415 	/*
1416 	 * Now, we load the firmware and don't want to be interrupted, even
1417 	 * by the RF-Kill interrupt (hence mask all the interrupt besides the
1418 	 * FH_TX interrupt which is needed to load the firmware). If the
1419 	 * RF-Kill switch is toggled, we will find out after having loaded
1420 	 * the firmware and return the proper value to the caller.
1421 	 */
1422 	iwl_enable_fw_load_int(trans);
1423 
1424 	/* really make sure rfkill handshake bits are cleared */
1425 	iwl_write32(trans, CSR_UCODE_DRV_GP1_CLR, CSR_UCODE_SW_BIT_RFKILL);
1426 	iwl_write32(trans, CSR_UCODE_DRV_GP1_CLR, CSR_UCODE_SW_BIT_RFKILL);
1427 
1428 	/* Load the given image to the HW */
1429 	if (trans->cfg->device_family >= IWL_DEVICE_FAMILY_8000)
1430 		ret = iwl_pcie_load_given_ucode_8000(trans, fw);
1431 	else
1432 		ret = iwl_pcie_load_given_ucode(trans, fw);
1433 
1434 	/* re-check RF-Kill state since we may have missed the interrupt */
1435 	hw_rfkill = iwl_pcie_check_hw_rf_kill(trans);
1436 	if (hw_rfkill && !run_in_rfkill)
1437 		ret = -ERFKILL;
1438 
1439 out:
1440 	mutex_unlock(&trans_pcie->mutex);
1441 	return ret;
1442 }
1443 
1444 static void iwl_trans_pcie_fw_alive(struct iwl_trans *trans, u32 scd_addr)
1445 {
1446 	iwl_pcie_reset_ict(trans);
1447 	iwl_pcie_tx_start(trans, scd_addr);
1448 }
1449 
1450 void iwl_trans_pcie_handle_stop_rfkill(struct iwl_trans *trans,
1451 				       bool was_in_rfkill)
1452 {
1453 	bool hw_rfkill;
1454 
1455 	/*
1456 	 * Check again since the RF kill state may have changed while
1457 	 * all the interrupts were disabled, in this case we couldn't
1458 	 * receive the RF kill interrupt and update the state in the
1459 	 * op_mode.
1460 	 * Don't call the op_mode if the rkfill state hasn't changed.
1461 	 * This allows the op_mode to call stop_device from the rfkill
1462 	 * notification without endless recursion. Under very rare
1463 	 * circumstances, we might have a small recursion if the rfkill
1464 	 * state changed exactly now while we were called from stop_device.
1465 	 * This is very unlikely but can happen and is supported.
1466 	 */
1467 	hw_rfkill = iwl_is_rfkill_set(trans);
1468 	if (hw_rfkill) {
1469 		set_bit(STATUS_RFKILL_HW, &trans->status);
1470 		set_bit(STATUS_RFKILL_OPMODE, &trans->status);
1471 	} else {
1472 		clear_bit(STATUS_RFKILL_HW, &trans->status);
1473 		clear_bit(STATUS_RFKILL_OPMODE, &trans->status);
1474 	}
1475 	if (hw_rfkill != was_in_rfkill)
1476 		iwl_trans_pcie_rf_kill(trans, hw_rfkill);
1477 }
1478 
1479 static void iwl_trans_pcie_stop_device(struct iwl_trans *trans, bool low_power)
1480 {
1481 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1482 	bool was_in_rfkill;
1483 
1484 	mutex_lock(&trans_pcie->mutex);
1485 	trans_pcie->opmode_down = true;
1486 	was_in_rfkill = test_bit(STATUS_RFKILL_OPMODE, &trans->status);
1487 	_iwl_trans_pcie_stop_device(trans, low_power);
1488 	iwl_trans_pcie_handle_stop_rfkill(trans, was_in_rfkill);
1489 	mutex_unlock(&trans_pcie->mutex);
1490 }
1491 
1492 void iwl_trans_pcie_rf_kill(struct iwl_trans *trans, bool state)
1493 {
1494 	struct iwl_trans_pcie __maybe_unused *trans_pcie =
1495 		IWL_TRANS_GET_PCIE_TRANS(trans);
1496 
1497 	lockdep_assert_held(&trans_pcie->mutex);
1498 
1499 	IWL_WARN(trans, "reporting RF_KILL (radio %s)\n",
1500 		 state ? "disabled" : "enabled");
1501 	if (iwl_op_mode_hw_rf_kill(trans->op_mode, state)) {
1502 		if (trans->cfg->gen2)
1503 			_iwl_trans_pcie_gen2_stop_device(trans, true);
1504 		else
1505 			_iwl_trans_pcie_stop_device(trans, true);
1506 	}
1507 }
1508 
1509 static void iwl_trans_pcie_d3_suspend(struct iwl_trans *trans, bool test,
1510 				      bool reset)
1511 {
1512 	if (!reset) {
1513 		/* Enable persistence mode to avoid reset */
1514 		iwl_set_bit(trans, CSR_HW_IF_CONFIG_REG,
1515 			    CSR_HW_IF_CONFIG_REG_PERSIST_MODE);
1516 	}
1517 
1518 	iwl_disable_interrupts(trans);
1519 
1520 	/*
1521 	 * in testing mode, the host stays awake and the
1522 	 * hardware won't be reset (not even partially)
1523 	 */
1524 	if (test)
1525 		return;
1526 
1527 	iwl_pcie_disable_ict(trans);
1528 
1529 	iwl_pcie_synchronize_irqs(trans);
1530 
1531 	iwl_clear_bit(trans, CSR_GP_CNTRL,
1532 		      BIT(trans->cfg->csr->flag_mac_access_req));
1533 	iwl_clear_bit(trans, CSR_GP_CNTRL,
1534 		      BIT(trans->cfg->csr->flag_init_done));
1535 
1536 	iwl_pcie_enable_rx_wake(trans, false);
1537 
1538 	if (reset) {
1539 		/*
1540 		 * reset TX queues -- some of their registers reset during S3
1541 		 * so if we don't reset everything here the D3 image would try
1542 		 * to execute some invalid memory upon resume
1543 		 */
1544 		iwl_trans_pcie_tx_reset(trans);
1545 	}
1546 
1547 	iwl_pcie_set_pwr(trans, true);
1548 }
1549 
1550 static int iwl_trans_pcie_d3_resume(struct iwl_trans *trans,
1551 				    enum iwl_d3_status *status,
1552 				    bool test,  bool reset)
1553 {
1554 	struct iwl_trans_pcie *trans_pcie =  IWL_TRANS_GET_PCIE_TRANS(trans);
1555 	u32 val;
1556 	int ret;
1557 
1558 	if (test) {
1559 		iwl_enable_interrupts(trans);
1560 		*status = IWL_D3_STATUS_ALIVE;
1561 		return 0;
1562 	}
1563 
1564 	iwl_pcie_enable_rx_wake(trans, true);
1565 
1566 	iwl_set_bit(trans, CSR_GP_CNTRL,
1567 		    BIT(trans->cfg->csr->flag_mac_access_req));
1568 	iwl_set_bit(trans, CSR_GP_CNTRL,
1569 		    BIT(trans->cfg->csr->flag_init_done));
1570 
1571 	if (trans->cfg->device_family >= IWL_DEVICE_FAMILY_8000)
1572 		udelay(2);
1573 
1574 	ret = iwl_poll_bit(trans, CSR_GP_CNTRL,
1575 			   BIT(trans->cfg->csr->flag_mac_clock_ready),
1576 			   BIT(trans->cfg->csr->flag_mac_clock_ready),
1577 			   25000);
1578 	if (ret < 0) {
1579 		IWL_ERR(trans, "Failed to resume the device (mac ready)\n");
1580 		return ret;
1581 	}
1582 
1583 	/*
1584 	 * Reconfigure IVAR table in case of MSIX or reset ict table in
1585 	 * MSI mode since HW reset erased it.
1586 	 * Also enables interrupts - none will happen as
1587 	 * the device doesn't know we're waking it up, only when
1588 	 * the opmode actually tells it after this call.
1589 	 */
1590 	iwl_pcie_conf_msix_hw(trans_pcie);
1591 	if (!trans_pcie->msix_enabled)
1592 		iwl_pcie_reset_ict(trans);
1593 	iwl_enable_interrupts(trans);
1594 
1595 	iwl_pcie_set_pwr(trans, false);
1596 
1597 	if (!reset) {
1598 		iwl_clear_bit(trans, CSR_GP_CNTRL,
1599 			      BIT(trans->cfg->csr->flag_mac_access_req));
1600 	} else {
1601 		iwl_trans_pcie_tx_reset(trans);
1602 
1603 		ret = iwl_pcie_rx_init(trans);
1604 		if (ret) {
1605 			IWL_ERR(trans,
1606 				"Failed to resume the device (RX reset)\n");
1607 			return ret;
1608 		}
1609 	}
1610 
1611 	IWL_DEBUG_POWER(trans, "WFPM value upon resume = 0x%08X\n",
1612 			iwl_read_prph(trans, WFPM_GP2));
1613 
1614 	val = iwl_read32(trans, CSR_RESET);
1615 	if (val & CSR_RESET_REG_FLAG_NEVO_RESET)
1616 		*status = IWL_D3_STATUS_RESET;
1617 	else
1618 		*status = IWL_D3_STATUS_ALIVE;
1619 
1620 	return 0;
1621 }
1622 
1623 static void iwl_pcie_set_interrupt_capa(struct pci_dev *pdev,
1624 					struct iwl_trans *trans)
1625 {
1626 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1627 	int max_irqs, num_irqs, i, ret;
1628 	u16 pci_cmd;
1629 
1630 	if (!trans->cfg->mq_rx_supported)
1631 		goto enable_msi;
1632 
1633 	max_irqs = min_t(u32, num_online_cpus() + 2, IWL_MAX_RX_HW_QUEUES);
1634 	for (i = 0; i < max_irqs; i++)
1635 		trans_pcie->msix_entries[i].entry = i;
1636 
1637 	num_irqs = pci_enable_msix_range(pdev, trans_pcie->msix_entries,
1638 					 MSIX_MIN_INTERRUPT_VECTORS,
1639 					 max_irqs);
1640 	if (num_irqs < 0) {
1641 		IWL_DEBUG_INFO(trans,
1642 			       "Failed to enable msi-x mode (ret %d). Moving to msi mode.\n",
1643 			       num_irqs);
1644 		goto enable_msi;
1645 	}
1646 	trans_pcie->def_irq = (num_irqs == max_irqs) ? num_irqs - 1 : 0;
1647 
1648 	IWL_DEBUG_INFO(trans,
1649 		       "MSI-X enabled. %d interrupt vectors were allocated\n",
1650 		       num_irqs);
1651 
1652 	/*
1653 	 * In case the OS provides fewer interrupts than requested, different
1654 	 * causes will share the same interrupt vector as follows:
1655 	 * One interrupt less: non rx causes shared with FBQ.
1656 	 * Two interrupts less: non rx causes shared with FBQ and RSS.
1657 	 * More than two interrupts: we will use fewer RSS queues.
1658 	 */
1659 	if (num_irqs <= max_irqs - 2) {
1660 		trans_pcie->trans->num_rx_queues = num_irqs + 1;
1661 		trans_pcie->shared_vec_mask = IWL_SHARED_IRQ_NON_RX |
1662 			IWL_SHARED_IRQ_FIRST_RSS;
1663 	} else if (num_irqs == max_irqs - 1) {
1664 		trans_pcie->trans->num_rx_queues = num_irqs;
1665 		trans_pcie->shared_vec_mask = IWL_SHARED_IRQ_NON_RX;
1666 	} else {
1667 		trans_pcie->trans->num_rx_queues = num_irqs - 1;
1668 	}
1669 	WARN_ON(trans_pcie->trans->num_rx_queues > IWL_MAX_RX_HW_QUEUES);
1670 
1671 	trans_pcie->alloc_vecs = num_irqs;
1672 	trans_pcie->msix_enabled = true;
1673 	return;
1674 
1675 enable_msi:
1676 	ret = pci_enable_msi(pdev);
1677 	if (ret) {
1678 		dev_err(&pdev->dev, "pci_enable_msi failed - %d\n", ret);
1679 		/* enable rfkill interrupt: hw bug w/a */
1680 		pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
1681 		if (pci_cmd & PCI_COMMAND_INTX_DISABLE) {
1682 			pci_cmd &= ~PCI_COMMAND_INTX_DISABLE;
1683 			pci_write_config_word(pdev, PCI_COMMAND, pci_cmd);
1684 		}
1685 	}
1686 }
1687 
1688 static void iwl_pcie_irq_set_affinity(struct iwl_trans *trans)
1689 {
1690 	int iter_rx_q, i, ret, cpu, offset;
1691 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1692 
1693 	i = trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS ? 0 : 1;
1694 	iter_rx_q = trans_pcie->trans->num_rx_queues - 1 + i;
1695 	offset = 1 + i;
1696 	for (; i < iter_rx_q ; i++) {
1697 		/*
1698 		 * Get the cpu prior to the place to search
1699 		 * (i.e. return will be > i - 1).
1700 		 */
1701 		cpu = cpumask_next(i - offset, cpu_online_mask);
1702 		cpumask_set_cpu(cpu, &trans_pcie->affinity_mask[i]);
1703 		ret = irq_set_affinity_hint(trans_pcie->msix_entries[i].vector,
1704 					    &trans_pcie->affinity_mask[i]);
1705 		if (ret)
1706 			IWL_ERR(trans_pcie->trans,
1707 				"Failed to set affinity mask for IRQ %d\n",
1708 				i);
1709 	}
1710 }
1711 
1712 static int iwl_pcie_init_msix_handler(struct pci_dev *pdev,
1713 				      struct iwl_trans_pcie *trans_pcie)
1714 {
1715 	int i;
1716 
1717 	for (i = 0; i < trans_pcie->alloc_vecs; i++) {
1718 		int ret;
1719 		struct msix_entry *msix_entry;
1720 		const char *qname = queue_name(&pdev->dev, trans_pcie, i);
1721 
1722 		if (!qname)
1723 			return -ENOMEM;
1724 
1725 		msix_entry = &trans_pcie->msix_entries[i];
1726 		ret = devm_request_threaded_irq(&pdev->dev,
1727 						msix_entry->vector,
1728 						iwl_pcie_msix_isr,
1729 						(i == trans_pcie->def_irq) ?
1730 						iwl_pcie_irq_msix_handler :
1731 						iwl_pcie_irq_rx_msix_handler,
1732 						IRQF_SHARED,
1733 						qname,
1734 						msix_entry);
1735 		if (ret) {
1736 			IWL_ERR(trans_pcie->trans,
1737 				"Error allocating IRQ %d\n", i);
1738 
1739 			return ret;
1740 		}
1741 	}
1742 	iwl_pcie_irq_set_affinity(trans_pcie->trans);
1743 
1744 	return 0;
1745 }
1746 
1747 static int _iwl_trans_pcie_start_hw(struct iwl_trans *trans, bool low_power)
1748 {
1749 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1750 	int err;
1751 
1752 	lockdep_assert_held(&trans_pcie->mutex);
1753 
1754 	err = iwl_pcie_prepare_card_hw(trans);
1755 	if (err) {
1756 		IWL_ERR(trans, "Error while preparing HW: %d\n", err);
1757 		return err;
1758 	}
1759 
1760 	iwl_trans_pcie_sw_reset(trans);
1761 
1762 	err = iwl_pcie_apm_init(trans);
1763 	if (err)
1764 		return err;
1765 
1766 	iwl_pcie_init_msix(trans_pcie);
1767 
1768 	/* From now on, the op_mode will be kept updated about RF kill state */
1769 	iwl_enable_rfkill_int(trans);
1770 
1771 	trans_pcie->opmode_down = false;
1772 
1773 	/* Set is_down to false here so that...*/
1774 	trans_pcie->is_down = false;
1775 
1776 	/* ...rfkill can call stop_device and set it false if needed */
1777 	iwl_pcie_check_hw_rf_kill(trans);
1778 
1779 	/* Make sure we sync here, because we'll need full access later */
1780 	if (low_power)
1781 		pm_runtime_resume(trans->dev);
1782 
1783 	return 0;
1784 }
1785 
1786 static int iwl_trans_pcie_start_hw(struct iwl_trans *trans, bool low_power)
1787 {
1788 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1789 	int ret;
1790 
1791 	mutex_lock(&trans_pcie->mutex);
1792 	ret = _iwl_trans_pcie_start_hw(trans, low_power);
1793 	mutex_unlock(&trans_pcie->mutex);
1794 
1795 	return ret;
1796 }
1797 
1798 static void iwl_trans_pcie_op_mode_leave(struct iwl_trans *trans)
1799 {
1800 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1801 
1802 	mutex_lock(&trans_pcie->mutex);
1803 
1804 	/* disable interrupts - don't enable HW RF kill interrupt */
1805 	iwl_disable_interrupts(trans);
1806 
1807 	iwl_pcie_apm_stop(trans, true);
1808 
1809 	iwl_disable_interrupts(trans);
1810 
1811 	iwl_pcie_disable_ict(trans);
1812 
1813 	mutex_unlock(&trans_pcie->mutex);
1814 
1815 	iwl_pcie_synchronize_irqs(trans);
1816 }
1817 
1818 static void iwl_trans_pcie_write8(struct iwl_trans *trans, u32 ofs, u8 val)
1819 {
1820 	writeb(val, IWL_TRANS_GET_PCIE_TRANS(trans)->hw_base + ofs);
1821 }
1822 
1823 static void iwl_trans_pcie_write32(struct iwl_trans *trans, u32 ofs, u32 val)
1824 {
1825 	writel(val, IWL_TRANS_GET_PCIE_TRANS(trans)->hw_base + ofs);
1826 }
1827 
1828 static u32 iwl_trans_pcie_read32(struct iwl_trans *trans, u32 ofs)
1829 {
1830 	return readl(IWL_TRANS_GET_PCIE_TRANS(trans)->hw_base + ofs);
1831 }
1832 
1833 static u32 iwl_trans_pcie_read_prph(struct iwl_trans *trans, u32 reg)
1834 {
1835 	iwl_trans_pcie_write32(trans, HBUS_TARG_PRPH_RADDR,
1836 			       ((reg & 0x000FFFFF) | (3 << 24)));
1837 	return iwl_trans_pcie_read32(trans, HBUS_TARG_PRPH_RDAT);
1838 }
1839 
1840 static void iwl_trans_pcie_write_prph(struct iwl_trans *trans, u32 addr,
1841 				      u32 val)
1842 {
1843 	iwl_trans_pcie_write32(trans, HBUS_TARG_PRPH_WADDR,
1844 			       ((addr & 0x000FFFFF) | (3 << 24)));
1845 	iwl_trans_pcie_write32(trans, HBUS_TARG_PRPH_WDAT, val);
1846 }
1847 
1848 static void iwl_trans_pcie_configure(struct iwl_trans *trans,
1849 				     const struct iwl_trans_config *trans_cfg)
1850 {
1851 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1852 
1853 	trans_pcie->cmd_queue = trans_cfg->cmd_queue;
1854 	trans_pcie->cmd_fifo = trans_cfg->cmd_fifo;
1855 	trans_pcie->cmd_q_wdg_timeout = trans_cfg->cmd_q_wdg_timeout;
1856 	if (WARN_ON(trans_cfg->n_no_reclaim_cmds > MAX_NO_RECLAIM_CMDS))
1857 		trans_pcie->n_no_reclaim_cmds = 0;
1858 	else
1859 		trans_pcie->n_no_reclaim_cmds = trans_cfg->n_no_reclaim_cmds;
1860 	if (trans_pcie->n_no_reclaim_cmds)
1861 		memcpy(trans_pcie->no_reclaim_cmds, trans_cfg->no_reclaim_cmds,
1862 		       trans_pcie->n_no_reclaim_cmds * sizeof(u8));
1863 
1864 	trans_pcie->rx_buf_size = trans_cfg->rx_buf_size;
1865 	trans_pcie->rx_page_order =
1866 		iwl_trans_get_rb_size_order(trans_pcie->rx_buf_size);
1867 
1868 	trans_pcie->bc_table_dword = trans_cfg->bc_table_dword;
1869 	trans_pcie->scd_set_active = trans_cfg->scd_set_active;
1870 	trans_pcie->sw_csum_tx = trans_cfg->sw_csum_tx;
1871 
1872 	trans_pcie->page_offs = trans_cfg->cb_data_offs;
1873 	trans_pcie->dev_cmd_offs = trans_cfg->cb_data_offs + sizeof(void *);
1874 
1875 	trans->command_groups = trans_cfg->command_groups;
1876 	trans->command_groups_size = trans_cfg->command_groups_size;
1877 
1878 	/* Initialize NAPI here - it should be before registering to mac80211
1879 	 * in the opmode but after the HW struct is allocated.
1880 	 * As this function may be called again in some corner cases don't
1881 	 * do anything if NAPI was already initialized.
1882 	 */
1883 	if (trans_pcie->napi_dev.reg_state != NETREG_DUMMY)
1884 		init_dummy_netdev(&trans_pcie->napi_dev);
1885 }
1886 
1887 void iwl_trans_pcie_free(struct iwl_trans *trans)
1888 {
1889 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1890 	int i;
1891 
1892 	iwl_pcie_synchronize_irqs(trans);
1893 
1894 	if (trans->cfg->gen2)
1895 		iwl_pcie_gen2_tx_free(trans);
1896 	else
1897 		iwl_pcie_tx_free(trans);
1898 	iwl_pcie_rx_free(trans);
1899 
1900 	if (trans_pcie->rba.alloc_wq) {
1901 		destroy_workqueue(trans_pcie->rba.alloc_wq);
1902 		trans_pcie->rba.alloc_wq = NULL;
1903 	}
1904 
1905 	if (trans_pcie->msix_enabled) {
1906 		for (i = 0; i < trans_pcie->alloc_vecs; i++) {
1907 			irq_set_affinity_hint(
1908 				trans_pcie->msix_entries[i].vector,
1909 				NULL);
1910 		}
1911 
1912 		trans_pcie->msix_enabled = false;
1913 	} else {
1914 		iwl_pcie_free_ict(trans);
1915 	}
1916 
1917 	iwl_pcie_free_fw_monitor(trans);
1918 
1919 	for_each_possible_cpu(i) {
1920 		struct iwl_tso_hdr_page *p =
1921 			per_cpu_ptr(trans_pcie->tso_hdr_page, i);
1922 
1923 		if (p->page)
1924 			__free_page(p->page);
1925 	}
1926 
1927 	free_percpu(trans_pcie->tso_hdr_page);
1928 	mutex_destroy(&trans_pcie->mutex);
1929 	iwl_trans_free(trans);
1930 }
1931 
1932 static void iwl_trans_pcie_set_pmi(struct iwl_trans *trans, bool state)
1933 {
1934 	if (state)
1935 		set_bit(STATUS_TPOWER_PMI, &trans->status);
1936 	else
1937 		clear_bit(STATUS_TPOWER_PMI, &trans->status);
1938 }
1939 
1940 struct iwl_trans_pcie_removal {
1941 	struct pci_dev *pdev;
1942 	struct work_struct work;
1943 };
1944 
1945 static void iwl_trans_pcie_removal_wk(struct work_struct *wk)
1946 {
1947 	struct iwl_trans_pcie_removal *removal =
1948 		container_of(wk, struct iwl_trans_pcie_removal, work);
1949 	struct pci_dev *pdev = removal->pdev;
1950 	char *prop[] = {"EVENT=INACCESSIBLE", NULL};
1951 
1952 	dev_err(&pdev->dev, "Device gone - attempting removal\n");
1953 	kobject_uevent_env(&pdev->dev.kobj, KOBJ_CHANGE, prop);
1954 	pci_lock_rescan_remove();
1955 	pci_dev_put(pdev);
1956 	pci_stop_and_remove_bus_device(pdev);
1957 	pci_unlock_rescan_remove();
1958 
1959 	kfree(removal);
1960 	module_put(THIS_MODULE);
1961 }
1962 
1963 static bool iwl_trans_pcie_grab_nic_access(struct iwl_trans *trans,
1964 					   unsigned long *flags)
1965 {
1966 	int ret;
1967 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1968 
1969 	spin_lock_irqsave(&trans_pcie->reg_lock, *flags);
1970 
1971 	if (trans_pcie->cmd_hold_nic_awake)
1972 		goto out;
1973 
1974 	/* this bit wakes up the NIC */
1975 	__iwl_trans_pcie_set_bit(trans, CSR_GP_CNTRL,
1976 				 BIT(trans->cfg->csr->flag_mac_access_req));
1977 	if (trans->cfg->device_family >= IWL_DEVICE_FAMILY_8000)
1978 		udelay(2);
1979 
1980 	/*
1981 	 * These bits say the device is running, and should keep running for
1982 	 * at least a short while (at least as long as MAC_ACCESS_REQ stays 1),
1983 	 * but they do not indicate that embedded SRAM is restored yet;
1984 	 * HW with volatile SRAM must save/restore contents to/from
1985 	 * host DRAM when sleeping/waking for power-saving.
1986 	 * Each direction takes approximately 1/4 millisecond; with this
1987 	 * overhead, it's a good idea to grab and hold MAC_ACCESS_REQUEST if a
1988 	 * series of register accesses are expected (e.g. reading Event Log),
1989 	 * to keep device from sleeping.
1990 	 *
1991 	 * CSR_UCODE_DRV_GP1 register bit MAC_SLEEP == 0 indicates that
1992 	 * SRAM is okay/restored.  We don't check that here because this call
1993 	 * is just for hardware register access; but GP1 MAC_SLEEP
1994 	 * check is a good idea before accessing the SRAM of HW with
1995 	 * volatile SRAM (e.g. reading Event Log).
1996 	 *
1997 	 * 5000 series and later (including 1000 series) have non-volatile SRAM,
1998 	 * and do not save/restore SRAM when power cycling.
1999 	 */
2000 	ret = iwl_poll_bit(trans, CSR_GP_CNTRL,
2001 			   BIT(trans->cfg->csr->flag_val_mac_access_en),
2002 			   (BIT(trans->cfg->csr->flag_mac_clock_ready) |
2003 			    CSR_GP_CNTRL_REG_FLAG_GOING_TO_SLEEP), 15000);
2004 	if (unlikely(ret < 0)) {
2005 		u32 cntrl = iwl_read32(trans, CSR_GP_CNTRL);
2006 
2007 		WARN_ONCE(1,
2008 			  "Timeout waiting for hardware access (CSR_GP_CNTRL 0x%08x)\n",
2009 			  cntrl);
2010 
2011 		iwl_trans_pcie_dump_regs(trans);
2012 
2013 		if (iwlwifi_mod_params.remove_when_gone && cntrl == ~0U) {
2014 			struct iwl_trans_pcie_removal *removal;
2015 
2016 			if (trans_pcie->scheduled_for_removal)
2017 				goto err;
2018 
2019 			IWL_ERR(trans, "Device gone - scheduling removal!\n");
2020 
2021 			/*
2022 			 * get a module reference to avoid doing this
2023 			 * while unloading anyway and to avoid
2024 			 * scheduling a work with code that's being
2025 			 * removed.
2026 			 */
2027 			if (!try_module_get(THIS_MODULE)) {
2028 				IWL_ERR(trans,
2029 					"Module is being unloaded - abort\n");
2030 				goto err;
2031 			}
2032 
2033 			removal = kzalloc(sizeof(*removal), GFP_ATOMIC);
2034 			if (!removal) {
2035 				module_put(THIS_MODULE);
2036 				goto err;
2037 			}
2038 			/*
2039 			 * we don't need to clear this flag, because
2040 			 * the trans will be freed and reallocated.
2041 			*/
2042 			trans_pcie->scheduled_for_removal = true;
2043 
2044 			removal->pdev = to_pci_dev(trans->dev);
2045 			INIT_WORK(&removal->work, iwl_trans_pcie_removal_wk);
2046 			pci_dev_get(removal->pdev);
2047 			schedule_work(&removal->work);
2048 		} else {
2049 			iwl_write32(trans, CSR_RESET,
2050 				    CSR_RESET_REG_FLAG_FORCE_NMI);
2051 		}
2052 
2053 err:
2054 		spin_unlock_irqrestore(&trans_pcie->reg_lock, *flags);
2055 		return false;
2056 	}
2057 
2058 out:
2059 	/*
2060 	 * Fool sparse by faking we release the lock - sparse will
2061 	 * track nic_access anyway.
2062 	 */
2063 	__release(&trans_pcie->reg_lock);
2064 	return true;
2065 }
2066 
2067 static void iwl_trans_pcie_release_nic_access(struct iwl_trans *trans,
2068 					      unsigned long *flags)
2069 {
2070 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2071 
2072 	lockdep_assert_held(&trans_pcie->reg_lock);
2073 
2074 	/*
2075 	 * Fool sparse by faking we acquiring the lock - sparse will
2076 	 * track nic_access anyway.
2077 	 */
2078 	__acquire(&trans_pcie->reg_lock);
2079 
2080 	if (trans_pcie->cmd_hold_nic_awake)
2081 		goto out;
2082 
2083 	__iwl_trans_pcie_clear_bit(trans, CSR_GP_CNTRL,
2084 				   BIT(trans->cfg->csr->flag_mac_access_req));
2085 	/*
2086 	 * Above we read the CSR_GP_CNTRL register, which will flush
2087 	 * any previous writes, but we need the write that clears the
2088 	 * MAC_ACCESS_REQ bit to be performed before any other writes
2089 	 * scheduled on different CPUs (after we drop reg_lock).
2090 	 */
2091 	mmiowb();
2092 out:
2093 	spin_unlock_irqrestore(&trans_pcie->reg_lock, *flags);
2094 }
2095 
2096 static int iwl_trans_pcie_read_mem(struct iwl_trans *trans, u32 addr,
2097 				   void *buf, int dwords)
2098 {
2099 	unsigned long flags;
2100 	int offs, ret = 0;
2101 	u32 *vals = buf;
2102 
2103 	if (iwl_trans_grab_nic_access(trans, &flags)) {
2104 		iwl_write32(trans, HBUS_TARG_MEM_RADDR, addr);
2105 		for (offs = 0; offs < dwords; offs++)
2106 			vals[offs] = iwl_read32(trans, HBUS_TARG_MEM_RDAT);
2107 		iwl_trans_release_nic_access(trans, &flags);
2108 	} else {
2109 		ret = -EBUSY;
2110 	}
2111 	return ret;
2112 }
2113 
2114 static int iwl_trans_pcie_write_mem(struct iwl_trans *trans, u32 addr,
2115 				    const void *buf, int dwords)
2116 {
2117 	unsigned long flags;
2118 	int offs, ret = 0;
2119 	const u32 *vals = buf;
2120 
2121 	if (iwl_trans_grab_nic_access(trans, &flags)) {
2122 		iwl_write32(trans, HBUS_TARG_MEM_WADDR, addr);
2123 		for (offs = 0; offs < dwords; offs++)
2124 			iwl_write32(trans, HBUS_TARG_MEM_WDAT,
2125 				    vals ? vals[offs] : 0);
2126 		iwl_trans_release_nic_access(trans, &flags);
2127 	} else {
2128 		ret = -EBUSY;
2129 	}
2130 	return ret;
2131 }
2132 
2133 static void iwl_trans_pcie_freeze_txq_timer(struct iwl_trans *trans,
2134 					    unsigned long txqs,
2135 					    bool freeze)
2136 {
2137 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2138 	int queue;
2139 
2140 	for_each_set_bit(queue, &txqs, BITS_PER_LONG) {
2141 		struct iwl_txq *txq = trans_pcie->txq[queue];
2142 		unsigned long now;
2143 
2144 		spin_lock_bh(&txq->lock);
2145 
2146 		now = jiffies;
2147 
2148 		if (txq->frozen == freeze)
2149 			goto next_queue;
2150 
2151 		IWL_DEBUG_TX_QUEUES(trans, "%s TXQ %d\n",
2152 				    freeze ? "Freezing" : "Waking", queue);
2153 
2154 		txq->frozen = freeze;
2155 
2156 		if (txq->read_ptr == txq->write_ptr)
2157 			goto next_queue;
2158 
2159 		if (freeze) {
2160 			if (unlikely(time_after(now,
2161 						txq->stuck_timer.expires))) {
2162 				/*
2163 				 * The timer should have fired, maybe it is
2164 				 * spinning right now on the lock.
2165 				 */
2166 				goto next_queue;
2167 			}
2168 			/* remember how long until the timer fires */
2169 			txq->frozen_expiry_remainder =
2170 				txq->stuck_timer.expires - now;
2171 			del_timer(&txq->stuck_timer);
2172 			goto next_queue;
2173 		}
2174 
2175 		/*
2176 		 * Wake a non-empty queue -> arm timer with the
2177 		 * remainder before it froze
2178 		 */
2179 		mod_timer(&txq->stuck_timer,
2180 			  now + txq->frozen_expiry_remainder);
2181 
2182 next_queue:
2183 		spin_unlock_bh(&txq->lock);
2184 	}
2185 }
2186 
2187 static void iwl_trans_pcie_block_txq_ptrs(struct iwl_trans *trans, bool block)
2188 {
2189 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2190 	int i;
2191 
2192 	for (i = 0; i < trans->cfg->base_params->num_of_queues; i++) {
2193 		struct iwl_txq *txq = trans_pcie->txq[i];
2194 
2195 		if (i == trans_pcie->cmd_queue)
2196 			continue;
2197 
2198 		spin_lock_bh(&txq->lock);
2199 
2200 		if (!block && !(WARN_ON_ONCE(!txq->block))) {
2201 			txq->block--;
2202 			if (!txq->block) {
2203 				iwl_write32(trans, HBUS_TARG_WRPTR,
2204 					    txq->write_ptr | (i << 8));
2205 			}
2206 		} else if (block) {
2207 			txq->block++;
2208 		}
2209 
2210 		spin_unlock_bh(&txq->lock);
2211 	}
2212 }
2213 
2214 #define IWL_FLUSH_WAIT_MS	2000
2215 
2216 void iwl_trans_pcie_log_scd_error(struct iwl_trans *trans, struct iwl_txq *txq)
2217 {
2218 	u32 txq_id = txq->id;
2219 	u32 status;
2220 	bool active;
2221 	u8 fifo;
2222 
2223 	if (trans->cfg->use_tfh) {
2224 		IWL_ERR(trans, "Queue %d is stuck %d %d\n", txq_id,
2225 			txq->read_ptr, txq->write_ptr);
2226 		/* TODO: access new SCD registers and dump them */
2227 		return;
2228 	}
2229 
2230 	status = iwl_read_prph(trans, SCD_QUEUE_STATUS_BITS(txq_id));
2231 	fifo = (status >> SCD_QUEUE_STTS_REG_POS_TXF) & 0x7;
2232 	active = !!(status & BIT(SCD_QUEUE_STTS_REG_POS_ACTIVE));
2233 
2234 	IWL_ERR(trans,
2235 		"Queue %d is %sactive on fifo %d and stuck for %u ms. SW [%d, %d] HW [%d, %d] FH TRB=0x0%x\n",
2236 		txq_id, active ? "" : "in", fifo,
2237 		jiffies_to_msecs(txq->wd_timeout),
2238 		txq->read_ptr, txq->write_ptr,
2239 		iwl_read_prph(trans, SCD_QUEUE_RDPTR(txq_id)) &
2240 			(trans->cfg->base_params->max_tfd_queue_size - 1),
2241 		iwl_read_prph(trans, SCD_QUEUE_WRPTR(txq_id)) &
2242 			(trans->cfg->base_params->max_tfd_queue_size - 1),
2243 		iwl_read_direct32(trans, FH_TX_TRB_REG(fifo)));
2244 }
2245 
2246 static int iwl_trans_pcie_rxq_dma_data(struct iwl_trans *trans, int queue,
2247 				       struct iwl_trans_rxq_dma_data *data)
2248 {
2249 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2250 
2251 	if (queue >= trans->num_rx_queues || !trans_pcie->rxq)
2252 		return -EINVAL;
2253 
2254 	data->fr_bd_cb = trans_pcie->rxq[queue].bd_dma;
2255 	data->urbd_stts_wrptr = trans_pcie->rxq[queue].rb_stts_dma;
2256 	data->ur_bd_cb = trans_pcie->rxq[queue].used_bd_dma;
2257 	data->fr_bd_wid = 0;
2258 
2259 	return 0;
2260 }
2261 
2262 static int iwl_trans_pcie_wait_txq_empty(struct iwl_trans *trans, int txq_idx)
2263 {
2264 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2265 	struct iwl_txq *txq;
2266 	unsigned long now = jiffies;
2267 	u8 wr_ptr;
2268 
2269 	if (!test_bit(txq_idx, trans_pcie->queue_used))
2270 		return -EINVAL;
2271 
2272 	IWL_DEBUG_TX_QUEUES(trans, "Emptying queue %d...\n", txq_idx);
2273 	txq = trans_pcie->txq[txq_idx];
2274 	wr_ptr = READ_ONCE(txq->write_ptr);
2275 
2276 	while (txq->read_ptr != READ_ONCE(txq->write_ptr) &&
2277 	       !time_after(jiffies,
2278 			   now + msecs_to_jiffies(IWL_FLUSH_WAIT_MS))) {
2279 		u8 write_ptr = READ_ONCE(txq->write_ptr);
2280 
2281 		if (WARN_ONCE(wr_ptr != write_ptr,
2282 			      "WR pointer moved while flushing %d -> %d\n",
2283 			      wr_ptr, write_ptr))
2284 			return -ETIMEDOUT;
2285 		usleep_range(1000, 2000);
2286 	}
2287 
2288 	if (txq->read_ptr != txq->write_ptr) {
2289 		IWL_ERR(trans,
2290 			"fail to flush all tx fifo queues Q %d\n", txq_idx);
2291 		iwl_trans_pcie_log_scd_error(trans, txq);
2292 		return -ETIMEDOUT;
2293 	}
2294 
2295 	IWL_DEBUG_TX_QUEUES(trans, "Queue %d is now empty.\n", txq_idx);
2296 
2297 	return 0;
2298 }
2299 
2300 static int iwl_trans_pcie_wait_txqs_empty(struct iwl_trans *trans, u32 txq_bm)
2301 {
2302 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2303 	int cnt;
2304 	int ret = 0;
2305 
2306 	/* waiting for all the tx frames complete might take a while */
2307 	for (cnt = 0; cnt < trans->cfg->base_params->num_of_queues; cnt++) {
2308 
2309 		if (cnt == trans_pcie->cmd_queue)
2310 			continue;
2311 		if (!test_bit(cnt, trans_pcie->queue_used))
2312 			continue;
2313 		if (!(BIT(cnt) & txq_bm))
2314 			continue;
2315 
2316 		ret = iwl_trans_pcie_wait_txq_empty(trans, cnt);
2317 		if (ret)
2318 			break;
2319 	}
2320 
2321 	return ret;
2322 }
2323 
2324 static void iwl_trans_pcie_set_bits_mask(struct iwl_trans *trans, u32 reg,
2325 					 u32 mask, u32 value)
2326 {
2327 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2328 	unsigned long flags;
2329 
2330 	spin_lock_irqsave(&trans_pcie->reg_lock, flags);
2331 	__iwl_trans_pcie_set_bits_mask(trans, reg, mask, value);
2332 	spin_unlock_irqrestore(&trans_pcie->reg_lock, flags);
2333 }
2334 
2335 static void iwl_trans_pcie_ref(struct iwl_trans *trans)
2336 {
2337 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2338 
2339 	if (iwlwifi_mod_params.d0i3_disable)
2340 		return;
2341 
2342 	pm_runtime_get(&trans_pcie->pci_dev->dev);
2343 
2344 #ifdef CONFIG_PM
2345 	IWL_DEBUG_RPM(trans, "runtime usage count: %d\n",
2346 		      atomic_read(&trans_pcie->pci_dev->dev.power.usage_count));
2347 #endif /* CONFIG_PM */
2348 }
2349 
2350 static void iwl_trans_pcie_unref(struct iwl_trans *trans)
2351 {
2352 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2353 
2354 	if (iwlwifi_mod_params.d0i3_disable)
2355 		return;
2356 
2357 	pm_runtime_mark_last_busy(&trans_pcie->pci_dev->dev);
2358 	pm_runtime_put_autosuspend(&trans_pcie->pci_dev->dev);
2359 
2360 #ifdef CONFIG_PM
2361 	IWL_DEBUG_RPM(trans, "runtime usage count: %d\n",
2362 		      atomic_read(&trans_pcie->pci_dev->dev.power.usage_count));
2363 #endif /* CONFIG_PM */
2364 }
2365 
2366 static const char *get_csr_string(int cmd)
2367 {
2368 #define IWL_CMD(x) case x: return #x
2369 	switch (cmd) {
2370 	IWL_CMD(CSR_HW_IF_CONFIG_REG);
2371 	IWL_CMD(CSR_INT_COALESCING);
2372 	IWL_CMD(CSR_INT);
2373 	IWL_CMD(CSR_INT_MASK);
2374 	IWL_CMD(CSR_FH_INT_STATUS);
2375 	IWL_CMD(CSR_GPIO_IN);
2376 	IWL_CMD(CSR_RESET);
2377 	IWL_CMD(CSR_GP_CNTRL);
2378 	IWL_CMD(CSR_HW_REV);
2379 	IWL_CMD(CSR_EEPROM_REG);
2380 	IWL_CMD(CSR_EEPROM_GP);
2381 	IWL_CMD(CSR_OTP_GP_REG);
2382 	IWL_CMD(CSR_GIO_REG);
2383 	IWL_CMD(CSR_GP_UCODE_REG);
2384 	IWL_CMD(CSR_GP_DRIVER_REG);
2385 	IWL_CMD(CSR_UCODE_DRV_GP1);
2386 	IWL_CMD(CSR_UCODE_DRV_GP2);
2387 	IWL_CMD(CSR_LED_REG);
2388 	IWL_CMD(CSR_DRAM_INT_TBL_REG);
2389 	IWL_CMD(CSR_GIO_CHICKEN_BITS);
2390 	IWL_CMD(CSR_ANA_PLL_CFG);
2391 	IWL_CMD(CSR_HW_REV_WA_REG);
2392 	IWL_CMD(CSR_MONITOR_STATUS_REG);
2393 	IWL_CMD(CSR_DBG_HPET_MEM_REG);
2394 	default:
2395 		return "UNKNOWN";
2396 	}
2397 #undef IWL_CMD
2398 }
2399 
2400 void iwl_pcie_dump_csr(struct iwl_trans *trans)
2401 {
2402 	int i;
2403 	static const u32 csr_tbl[] = {
2404 		CSR_HW_IF_CONFIG_REG,
2405 		CSR_INT_COALESCING,
2406 		CSR_INT,
2407 		CSR_INT_MASK,
2408 		CSR_FH_INT_STATUS,
2409 		CSR_GPIO_IN,
2410 		CSR_RESET,
2411 		CSR_GP_CNTRL,
2412 		CSR_HW_REV,
2413 		CSR_EEPROM_REG,
2414 		CSR_EEPROM_GP,
2415 		CSR_OTP_GP_REG,
2416 		CSR_GIO_REG,
2417 		CSR_GP_UCODE_REG,
2418 		CSR_GP_DRIVER_REG,
2419 		CSR_UCODE_DRV_GP1,
2420 		CSR_UCODE_DRV_GP2,
2421 		CSR_LED_REG,
2422 		CSR_DRAM_INT_TBL_REG,
2423 		CSR_GIO_CHICKEN_BITS,
2424 		CSR_ANA_PLL_CFG,
2425 		CSR_MONITOR_STATUS_REG,
2426 		CSR_HW_REV_WA_REG,
2427 		CSR_DBG_HPET_MEM_REG
2428 	};
2429 	IWL_ERR(trans, "CSR values:\n");
2430 	IWL_ERR(trans, "(2nd byte of CSR_INT_COALESCING is "
2431 		"CSR_INT_PERIODIC_REG)\n");
2432 	for (i = 0; i <  ARRAY_SIZE(csr_tbl); i++) {
2433 		IWL_ERR(trans, "  %25s: 0X%08x\n",
2434 			get_csr_string(csr_tbl[i]),
2435 			iwl_read32(trans, csr_tbl[i]));
2436 	}
2437 }
2438 
2439 #ifdef CONFIG_IWLWIFI_DEBUGFS
2440 /* create and remove of files */
2441 #define DEBUGFS_ADD_FILE(name, parent, mode) do {			\
2442 	if (!debugfs_create_file(#name, mode, parent, trans,		\
2443 				 &iwl_dbgfs_##name##_ops))		\
2444 		goto err;						\
2445 } while (0)
2446 
2447 /* file operation */
2448 #define DEBUGFS_READ_FILE_OPS(name)					\
2449 static const struct file_operations iwl_dbgfs_##name##_ops = {		\
2450 	.read = iwl_dbgfs_##name##_read,				\
2451 	.open = simple_open,						\
2452 	.llseek = generic_file_llseek,					\
2453 };
2454 
2455 #define DEBUGFS_WRITE_FILE_OPS(name)                                    \
2456 static const struct file_operations iwl_dbgfs_##name##_ops = {          \
2457 	.write = iwl_dbgfs_##name##_write,                              \
2458 	.open = simple_open,						\
2459 	.llseek = generic_file_llseek,					\
2460 };
2461 
2462 #define DEBUGFS_READ_WRITE_FILE_OPS(name)				\
2463 static const struct file_operations iwl_dbgfs_##name##_ops = {		\
2464 	.write = iwl_dbgfs_##name##_write,				\
2465 	.read = iwl_dbgfs_##name##_read,				\
2466 	.open = simple_open,						\
2467 	.llseek = generic_file_llseek,					\
2468 };
2469 
2470 static ssize_t iwl_dbgfs_tx_queue_read(struct file *file,
2471 				       char __user *user_buf,
2472 				       size_t count, loff_t *ppos)
2473 {
2474 	struct iwl_trans *trans = file->private_data;
2475 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2476 	struct iwl_txq *txq;
2477 	char *buf;
2478 	int pos = 0;
2479 	int cnt;
2480 	int ret;
2481 	size_t bufsz;
2482 
2483 	bufsz = sizeof(char) * 75 * trans->cfg->base_params->num_of_queues;
2484 
2485 	if (!trans_pcie->txq_memory)
2486 		return -EAGAIN;
2487 
2488 	buf = kzalloc(bufsz, GFP_KERNEL);
2489 	if (!buf)
2490 		return -ENOMEM;
2491 
2492 	for (cnt = 0; cnt < trans->cfg->base_params->num_of_queues; cnt++) {
2493 		txq = trans_pcie->txq[cnt];
2494 		pos += scnprintf(buf + pos, bufsz - pos,
2495 				"hwq %.2d: read=%u write=%u use=%d stop=%d need_update=%d frozen=%d%s\n",
2496 				cnt, txq->read_ptr, txq->write_ptr,
2497 				!!test_bit(cnt, trans_pcie->queue_used),
2498 				 !!test_bit(cnt, trans_pcie->queue_stopped),
2499 				 txq->need_update, txq->frozen,
2500 				 (cnt == trans_pcie->cmd_queue ? " HCMD" : ""));
2501 	}
2502 	ret = simple_read_from_buffer(user_buf, count, ppos, buf, pos);
2503 	kfree(buf);
2504 	return ret;
2505 }
2506 
2507 static ssize_t iwl_dbgfs_rx_queue_read(struct file *file,
2508 				       char __user *user_buf,
2509 				       size_t count, loff_t *ppos)
2510 {
2511 	struct iwl_trans *trans = file->private_data;
2512 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2513 	char *buf;
2514 	int pos = 0, i, ret;
2515 	size_t bufsz = sizeof(buf);
2516 
2517 	bufsz = sizeof(char) * 121 * trans->num_rx_queues;
2518 
2519 	if (!trans_pcie->rxq)
2520 		return -EAGAIN;
2521 
2522 	buf = kzalloc(bufsz, GFP_KERNEL);
2523 	if (!buf)
2524 		return -ENOMEM;
2525 
2526 	for (i = 0; i < trans->num_rx_queues && pos < bufsz; i++) {
2527 		struct iwl_rxq *rxq = &trans_pcie->rxq[i];
2528 
2529 		pos += scnprintf(buf + pos, bufsz - pos, "queue#: %2d\n",
2530 				 i);
2531 		pos += scnprintf(buf + pos, bufsz - pos, "\tread: %u\n",
2532 				 rxq->read);
2533 		pos += scnprintf(buf + pos, bufsz - pos, "\twrite: %u\n",
2534 				 rxq->write);
2535 		pos += scnprintf(buf + pos, bufsz - pos, "\twrite_actual: %u\n",
2536 				 rxq->write_actual);
2537 		pos += scnprintf(buf + pos, bufsz - pos, "\tneed_update: %2d\n",
2538 				 rxq->need_update);
2539 		pos += scnprintf(buf + pos, bufsz - pos, "\tfree_count: %u\n",
2540 				 rxq->free_count);
2541 		if (rxq->rb_stts) {
2542 			u32 r =	__le16_to_cpu(iwl_get_closed_rb_stts(trans,
2543 								     rxq));
2544 			pos += scnprintf(buf + pos, bufsz - pos,
2545 					 "\tclosed_rb_num: %u\n",
2546 					 r & 0x0FFF);
2547 		} else {
2548 			pos += scnprintf(buf + pos, bufsz - pos,
2549 					 "\tclosed_rb_num: Not Allocated\n");
2550 		}
2551 	}
2552 	ret = simple_read_from_buffer(user_buf, count, ppos, buf, pos);
2553 	kfree(buf);
2554 
2555 	return ret;
2556 }
2557 
2558 static ssize_t iwl_dbgfs_interrupt_read(struct file *file,
2559 					char __user *user_buf,
2560 					size_t count, loff_t *ppos)
2561 {
2562 	struct iwl_trans *trans = file->private_data;
2563 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2564 	struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
2565 
2566 	int pos = 0;
2567 	char *buf;
2568 	int bufsz = 24 * 64; /* 24 items * 64 char per item */
2569 	ssize_t ret;
2570 
2571 	buf = kzalloc(bufsz, GFP_KERNEL);
2572 	if (!buf)
2573 		return -ENOMEM;
2574 
2575 	pos += scnprintf(buf + pos, bufsz - pos,
2576 			"Interrupt Statistics Report:\n");
2577 
2578 	pos += scnprintf(buf + pos, bufsz - pos, "HW Error:\t\t\t %u\n",
2579 		isr_stats->hw);
2580 	pos += scnprintf(buf + pos, bufsz - pos, "SW Error:\t\t\t %u\n",
2581 		isr_stats->sw);
2582 	if (isr_stats->sw || isr_stats->hw) {
2583 		pos += scnprintf(buf + pos, bufsz - pos,
2584 			"\tLast Restarting Code:  0x%X\n",
2585 			isr_stats->err_code);
2586 	}
2587 #ifdef CONFIG_IWLWIFI_DEBUG
2588 	pos += scnprintf(buf + pos, bufsz - pos, "Frame transmitted:\t\t %u\n",
2589 		isr_stats->sch);
2590 	pos += scnprintf(buf + pos, bufsz - pos, "Alive interrupt:\t\t %u\n",
2591 		isr_stats->alive);
2592 #endif
2593 	pos += scnprintf(buf + pos, bufsz - pos,
2594 		"HW RF KILL switch toggled:\t %u\n", isr_stats->rfkill);
2595 
2596 	pos += scnprintf(buf + pos, bufsz - pos, "CT KILL:\t\t\t %u\n",
2597 		isr_stats->ctkill);
2598 
2599 	pos += scnprintf(buf + pos, bufsz - pos, "Wakeup Interrupt:\t\t %u\n",
2600 		isr_stats->wakeup);
2601 
2602 	pos += scnprintf(buf + pos, bufsz - pos,
2603 		"Rx command responses:\t\t %u\n", isr_stats->rx);
2604 
2605 	pos += scnprintf(buf + pos, bufsz - pos, "Tx/FH interrupt:\t\t %u\n",
2606 		isr_stats->tx);
2607 
2608 	pos += scnprintf(buf + pos, bufsz - pos, "Unexpected INTA:\t\t %u\n",
2609 		isr_stats->unhandled);
2610 
2611 	ret = simple_read_from_buffer(user_buf, count, ppos, buf, pos);
2612 	kfree(buf);
2613 	return ret;
2614 }
2615 
2616 static ssize_t iwl_dbgfs_interrupt_write(struct file *file,
2617 					 const char __user *user_buf,
2618 					 size_t count, loff_t *ppos)
2619 {
2620 	struct iwl_trans *trans = file->private_data;
2621 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2622 	struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
2623 	u32 reset_flag;
2624 	int ret;
2625 
2626 	ret = kstrtou32_from_user(user_buf, count, 16, &reset_flag);
2627 	if (ret)
2628 		return ret;
2629 	if (reset_flag == 0)
2630 		memset(isr_stats, 0, sizeof(*isr_stats));
2631 
2632 	return count;
2633 }
2634 
2635 static ssize_t iwl_dbgfs_csr_write(struct file *file,
2636 				   const char __user *user_buf,
2637 				   size_t count, loff_t *ppos)
2638 {
2639 	struct iwl_trans *trans = file->private_data;
2640 
2641 	iwl_pcie_dump_csr(trans);
2642 
2643 	return count;
2644 }
2645 
2646 static ssize_t iwl_dbgfs_fh_reg_read(struct file *file,
2647 				     char __user *user_buf,
2648 				     size_t count, loff_t *ppos)
2649 {
2650 	struct iwl_trans *trans = file->private_data;
2651 	char *buf = NULL;
2652 	ssize_t ret;
2653 
2654 	ret = iwl_dump_fh(trans, &buf);
2655 	if (ret < 0)
2656 		return ret;
2657 	if (!buf)
2658 		return -EINVAL;
2659 	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
2660 	kfree(buf);
2661 	return ret;
2662 }
2663 
2664 static ssize_t iwl_dbgfs_rfkill_read(struct file *file,
2665 				     char __user *user_buf,
2666 				     size_t count, loff_t *ppos)
2667 {
2668 	struct iwl_trans *trans = file->private_data;
2669 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2670 	char buf[100];
2671 	int pos;
2672 
2673 	pos = scnprintf(buf, sizeof(buf), "debug: %d\nhw: %d\n",
2674 			trans_pcie->debug_rfkill,
2675 			!(iwl_read32(trans, CSR_GP_CNTRL) &
2676 				CSR_GP_CNTRL_REG_FLAG_HW_RF_KILL_SW));
2677 
2678 	return simple_read_from_buffer(user_buf, count, ppos, buf, pos);
2679 }
2680 
2681 static ssize_t iwl_dbgfs_rfkill_write(struct file *file,
2682 				      const char __user *user_buf,
2683 				      size_t count, loff_t *ppos)
2684 {
2685 	struct iwl_trans *trans = file->private_data;
2686 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2687 	bool old = trans_pcie->debug_rfkill;
2688 	int ret;
2689 
2690 	ret = kstrtobool_from_user(user_buf, count, &trans_pcie->debug_rfkill);
2691 	if (ret)
2692 		return ret;
2693 	if (old == trans_pcie->debug_rfkill)
2694 		return count;
2695 	IWL_WARN(trans, "changing debug rfkill %d->%d\n",
2696 		 old, trans_pcie->debug_rfkill);
2697 	iwl_pcie_handle_rfkill_irq(trans);
2698 
2699 	return count;
2700 }
2701 
2702 DEBUGFS_READ_WRITE_FILE_OPS(interrupt);
2703 DEBUGFS_READ_FILE_OPS(fh_reg);
2704 DEBUGFS_READ_FILE_OPS(rx_queue);
2705 DEBUGFS_READ_FILE_OPS(tx_queue);
2706 DEBUGFS_WRITE_FILE_OPS(csr);
2707 DEBUGFS_READ_WRITE_FILE_OPS(rfkill);
2708 
2709 /* Create the debugfs files and directories */
2710 int iwl_trans_pcie_dbgfs_register(struct iwl_trans *trans)
2711 {
2712 	struct dentry *dir = trans->dbgfs_dir;
2713 
2714 	DEBUGFS_ADD_FILE(rx_queue, dir, 0400);
2715 	DEBUGFS_ADD_FILE(tx_queue, dir, 0400);
2716 	DEBUGFS_ADD_FILE(interrupt, dir, 0600);
2717 	DEBUGFS_ADD_FILE(csr, dir, 0200);
2718 	DEBUGFS_ADD_FILE(fh_reg, dir, 0400);
2719 	DEBUGFS_ADD_FILE(rfkill, dir, 0600);
2720 	return 0;
2721 
2722 err:
2723 	IWL_ERR(trans, "failed to create the trans debugfs entry\n");
2724 	return -ENOMEM;
2725 }
2726 #endif /*CONFIG_IWLWIFI_DEBUGFS */
2727 
2728 static u32 iwl_trans_pcie_get_cmdlen(struct iwl_trans *trans, void *tfd)
2729 {
2730 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2731 	u32 cmdlen = 0;
2732 	int i;
2733 
2734 	for (i = 0; i < trans_pcie->max_tbs; i++)
2735 		cmdlen += iwl_pcie_tfd_tb_get_len(trans, tfd, i);
2736 
2737 	return cmdlen;
2738 }
2739 
2740 static u32 iwl_trans_pcie_dump_rbs(struct iwl_trans *trans,
2741 				   struct iwl_fw_error_dump_data **data,
2742 				   int allocated_rb_nums)
2743 {
2744 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2745 	int max_len = PAGE_SIZE << trans_pcie->rx_page_order;
2746 	/* Dump RBs is supported only for pre-9000 devices (1 queue) */
2747 	struct iwl_rxq *rxq = &trans_pcie->rxq[0];
2748 	u32 i, r, j, rb_len = 0;
2749 
2750 	spin_lock(&rxq->lock);
2751 
2752 	r = le16_to_cpu(iwl_get_closed_rb_stts(trans, rxq)) & 0x0FFF;
2753 
2754 	for (i = rxq->read, j = 0;
2755 	     i != r && j < allocated_rb_nums;
2756 	     i = (i + 1) & RX_QUEUE_MASK, j++) {
2757 		struct iwl_rx_mem_buffer *rxb = rxq->queue[i];
2758 		struct iwl_fw_error_dump_rb *rb;
2759 
2760 		dma_unmap_page(trans->dev, rxb->page_dma, max_len,
2761 			       DMA_FROM_DEVICE);
2762 
2763 		rb_len += sizeof(**data) + sizeof(*rb) + max_len;
2764 
2765 		(*data)->type = cpu_to_le32(IWL_FW_ERROR_DUMP_RB);
2766 		(*data)->len = cpu_to_le32(sizeof(*rb) + max_len);
2767 		rb = (void *)(*data)->data;
2768 		rb->index = cpu_to_le32(i);
2769 		memcpy(rb->data, page_address(rxb->page), max_len);
2770 		/* remap the page for the free benefit */
2771 		rxb->page_dma = dma_map_page(trans->dev, rxb->page, 0,
2772 						     max_len,
2773 						     DMA_FROM_DEVICE);
2774 
2775 		*data = iwl_fw_error_next_data(*data);
2776 	}
2777 
2778 	spin_unlock(&rxq->lock);
2779 
2780 	return rb_len;
2781 }
2782 #define IWL_CSR_TO_DUMP (0x250)
2783 
2784 static u32 iwl_trans_pcie_dump_csr(struct iwl_trans *trans,
2785 				   struct iwl_fw_error_dump_data **data)
2786 {
2787 	u32 csr_len = sizeof(**data) + IWL_CSR_TO_DUMP;
2788 	__le32 *val;
2789 	int i;
2790 
2791 	(*data)->type = cpu_to_le32(IWL_FW_ERROR_DUMP_CSR);
2792 	(*data)->len = cpu_to_le32(IWL_CSR_TO_DUMP);
2793 	val = (void *)(*data)->data;
2794 
2795 	for (i = 0; i < IWL_CSR_TO_DUMP; i += 4)
2796 		*val++ = cpu_to_le32(iwl_trans_pcie_read32(trans, i));
2797 
2798 	*data = iwl_fw_error_next_data(*data);
2799 
2800 	return csr_len;
2801 }
2802 
2803 static u32 iwl_trans_pcie_fh_regs_dump(struct iwl_trans *trans,
2804 				       struct iwl_fw_error_dump_data **data)
2805 {
2806 	u32 fh_regs_len = FH_MEM_UPPER_BOUND - FH_MEM_LOWER_BOUND;
2807 	unsigned long flags;
2808 	__le32 *val;
2809 	int i;
2810 
2811 	if (!iwl_trans_grab_nic_access(trans, &flags))
2812 		return 0;
2813 
2814 	(*data)->type = cpu_to_le32(IWL_FW_ERROR_DUMP_FH_REGS);
2815 	(*data)->len = cpu_to_le32(fh_regs_len);
2816 	val = (void *)(*data)->data;
2817 
2818 	if (!trans->cfg->gen2)
2819 		for (i = FH_MEM_LOWER_BOUND; i < FH_MEM_UPPER_BOUND;
2820 		     i += sizeof(u32))
2821 			*val++ = cpu_to_le32(iwl_trans_pcie_read32(trans, i));
2822 	else
2823 		for (i = FH_MEM_LOWER_BOUND_GEN2; i < FH_MEM_UPPER_BOUND_GEN2;
2824 		     i += sizeof(u32))
2825 			*val++ = cpu_to_le32(iwl_trans_pcie_read_prph(trans,
2826 								      i));
2827 
2828 	iwl_trans_release_nic_access(trans, &flags);
2829 
2830 	*data = iwl_fw_error_next_data(*data);
2831 
2832 	return sizeof(**data) + fh_regs_len;
2833 }
2834 
2835 static u32
2836 iwl_trans_pci_dump_marbh_monitor(struct iwl_trans *trans,
2837 				 struct iwl_fw_error_dump_fw_mon *fw_mon_data,
2838 				 u32 monitor_len)
2839 {
2840 	u32 buf_size_in_dwords = (monitor_len >> 2);
2841 	u32 *buffer = (u32 *)fw_mon_data->data;
2842 	unsigned long flags;
2843 	u32 i;
2844 
2845 	if (!iwl_trans_grab_nic_access(trans, &flags))
2846 		return 0;
2847 
2848 	iwl_write_prph_no_grab(trans, MON_DMARB_RD_CTL_ADDR, 0x1);
2849 	for (i = 0; i < buf_size_in_dwords; i++)
2850 		buffer[i] = iwl_read_prph_no_grab(trans,
2851 				MON_DMARB_RD_DATA_ADDR);
2852 	iwl_write_prph_no_grab(trans, MON_DMARB_RD_CTL_ADDR, 0x0);
2853 
2854 	iwl_trans_release_nic_access(trans, &flags);
2855 
2856 	return monitor_len;
2857 }
2858 
2859 static u32
2860 iwl_trans_pcie_dump_monitor(struct iwl_trans *trans,
2861 			    struct iwl_fw_error_dump_data **data,
2862 			    u32 monitor_len)
2863 {
2864 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2865 	u32 len = 0;
2866 
2867 	if ((trans_pcie->fw_mon_page &&
2868 	     trans->cfg->device_family == IWL_DEVICE_FAMILY_7000) ||
2869 	    trans->dbg_dest_tlv) {
2870 		struct iwl_fw_error_dump_fw_mon *fw_mon_data;
2871 		u32 base, write_ptr, wrap_cnt;
2872 
2873 		/* If there was a dest TLV - use the values from there */
2874 		if (trans->dbg_dest_tlv) {
2875 			write_ptr =
2876 				le32_to_cpu(trans->dbg_dest_tlv->write_ptr_reg);
2877 			wrap_cnt = le32_to_cpu(trans->dbg_dest_tlv->wrap_count);
2878 			base = le32_to_cpu(trans->dbg_dest_tlv->base_reg);
2879 		} else {
2880 			base = MON_BUFF_BASE_ADDR;
2881 			write_ptr = MON_BUFF_WRPTR;
2882 			wrap_cnt = MON_BUFF_CYCLE_CNT;
2883 		}
2884 
2885 		(*data)->type = cpu_to_le32(IWL_FW_ERROR_DUMP_FW_MONITOR);
2886 		fw_mon_data = (void *)(*data)->data;
2887 		fw_mon_data->fw_mon_wr_ptr =
2888 			cpu_to_le32(iwl_read_prph(trans, write_ptr));
2889 		fw_mon_data->fw_mon_cycle_cnt =
2890 			cpu_to_le32(iwl_read_prph(trans, wrap_cnt));
2891 		fw_mon_data->fw_mon_base_ptr =
2892 			cpu_to_le32(iwl_read_prph(trans, base));
2893 
2894 		len += sizeof(**data) + sizeof(*fw_mon_data);
2895 		if (trans_pcie->fw_mon_page) {
2896 			/*
2897 			 * The firmware is now asserted, it won't write anything
2898 			 * to the buffer. CPU can take ownership to fetch the
2899 			 * data. The buffer will be handed back to the device
2900 			 * before the firmware will be restarted.
2901 			 */
2902 			dma_sync_single_for_cpu(trans->dev,
2903 						trans_pcie->fw_mon_phys,
2904 						trans_pcie->fw_mon_size,
2905 						DMA_FROM_DEVICE);
2906 			memcpy(fw_mon_data->data,
2907 			       page_address(trans_pcie->fw_mon_page),
2908 			       trans_pcie->fw_mon_size);
2909 
2910 			monitor_len = trans_pcie->fw_mon_size;
2911 		} else if (trans->dbg_dest_tlv->monitor_mode == SMEM_MODE) {
2912 			/*
2913 			 * Update pointers to reflect actual values after
2914 			 * shifting
2915 			 */
2916 			if (trans->dbg_dest_tlv->version) {
2917 				base = (iwl_read_prph(trans, base) &
2918 					IWL_LDBG_M2S_BUF_BA_MSK) <<
2919 				       trans->dbg_dest_tlv->base_shift;
2920 				base *= IWL_M2S_UNIT_SIZE;
2921 				base += trans->cfg->smem_offset;
2922 			} else {
2923 				base = iwl_read_prph(trans, base) <<
2924 				       trans->dbg_dest_tlv->base_shift;
2925 			}
2926 
2927 			iwl_trans_read_mem(trans, base, fw_mon_data->data,
2928 					   monitor_len / sizeof(u32));
2929 		} else if (trans->dbg_dest_tlv->monitor_mode == MARBH_MODE) {
2930 			monitor_len =
2931 				iwl_trans_pci_dump_marbh_monitor(trans,
2932 								 fw_mon_data,
2933 								 monitor_len);
2934 		} else {
2935 			/* Didn't match anything - output no monitor data */
2936 			monitor_len = 0;
2937 		}
2938 
2939 		len += monitor_len;
2940 		(*data)->len = cpu_to_le32(monitor_len + sizeof(*fw_mon_data));
2941 	}
2942 
2943 	return len;
2944 }
2945 
2946 static struct iwl_trans_dump_data
2947 *iwl_trans_pcie_dump_data(struct iwl_trans *trans,
2948 			  const struct iwl_fw_dbg_trigger_tlv *trigger)
2949 {
2950 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2951 	struct iwl_fw_error_dump_data *data;
2952 	struct iwl_txq *cmdq = trans_pcie->txq[trans_pcie->cmd_queue];
2953 	struct iwl_fw_error_dump_txcmd *txcmd;
2954 	struct iwl_trans_dump_data *dump_data;
2955 	u32 len, num_rbs = 0;
2956 	u32 monitor_len;
2957 	int i, ptr;
2958 	bool dump_rbs = test_bit(STATUS_FW_ERROR, &trans->status) &&
2959 			!trans->cfg->mq_rx_supported &&
2960 			trans->dbg_dump_mask & BIT(IWL_FW_ERROR_DUMP_RB);
2961 
2962 	/* transport dump header */
2963 	len = sizeof(*dump_data);
2964 
2965 	/* host commands */
2966 	len += sizeof(*data) +
2967 		cmdq->n_window * (sizeof(*txcmd) + TFD_MAX_PAYLOAD_SIZE);
2968 
2969 	/* FW monitor */
2970 	if (trans_pcie->fw_mon_page) {
2971 		len += sizeof(*data) + sizeof(struct iwl_fw_error_dump_fw_mon) +
2972 		       trans_pcie->fw_mon_size;
2973 		monitor_len = trans_pcie->fw_mon_size;
2974 	} else if (trans->dbg_dest_tlv) {
2975 		u32 base, end, cfg_reg;
2976 
2977 		if (trans->dbg_dest_tlv->version == 1) {
2978 			cfg_reg = le32_to_cpu(trans->dbg_dest_tlv->base_reg);
2979 			cfg_reg = iwl_read_prph(trans, cfg_reg);
2980 			base = (cfg_reg & IWL_LDBG_M2S_BUF_BA_MSK) <<
2981 				trans->dbg_dest_tlv->base_shift;
2982 			base *= IWL_M2S_UNIT_SIZE;
2983 			base += trans->cfg->smem_offset;
2984 
2985 			monitor_len =
2986 				(cfg_reg & IWL_LDBG_M2S_BUF_SIZE_MSK) >>
2987 				trans->dbg_dest_tlv->end_shift;
2988 			monitor_len *= IWL_M2S_UNIT_SIZE;
2989 		} else {
2990 			base = le32_to_cpu(trans->dbg_dest_tlv->base_reg);
2991 			end = le32_to_cpu(trans->dbg_dest_tlv->end_reg);
2992 
2993 			base = iwl_read_prph(trans, base) <<
2994 			       trans->dbg_dest_tlv->base_shift;
2995 			end = iwl_read_prph(trans, end) <<
2996 			      trans->dbg_dest_tlv->end_shift;
2997 
2998 			/* Make "end" point to the actual end */
2999 			if (trans->cfg->device_family >=
3000 			    IWL_DEVICE_FAMILY_8000 ||
3001 			    trans->dbg_dest_tlv->monitor_mode == MARBH_MODE)
3002 				end += (1 << trans->dbg_dest_tlv->end_shift);
3003 			monitor_len = end - base;
3004 		}
3005 		len += sizeof(*data) + sizeof(struct iwl_fw_error_dump_fw_mon) +
3006 		       monitor_len;
3007 	} else {
3008 		monitor_len = 0;
3009 	}
3010 
3011 	if (trigger && (trigger->mode & IWL_FW_DBG_TRIGGER_MONITOR_ONLY)) {
3012 		if (!(trans->dbg_dump_mask &
3013 		      BIT(IWL_FW_ERROR_DUMP_FW_MONITOR)))
3014 			return NULL;
3015 
3016 		dump_data = vzalloc(len);
3017 		if (!dump_data)
3018 			return NULL;
3019 
3020 		data = (void *)dump_data->data;
3021 		len = iwl_trans_pcie_dump_monitor(trans, &data, monitor_len);
3022 		dump_data->len = len;
3023 
3024 		return dump_data;
3025 	}
3026 
3027 	/* CSR registers */
3028 	if (trans->dbg_dump_mask & BIT(IWL_FW_ERROR_DUMP_CSR))
3029 		len += sizeof(*data) + IWL_CSR_TO_DUMP;
3030 
3031 	/* FH registers */
3032 	if (trans->dbg_dump_mask & BIT(IWL_FW_ERROR_DUMP_FH_REGS)) {
3033 		if (trans->cfg->gen2)
3034 			len += sizeof(*data) +
3035 			       (FH_MEM_UPPER_BOUND_GEN2 -
3036 				FH_MEM_LOWER_BOUND_GEN2);
3037 		else
3038 			len += sizeof(*data) +
3039 			       (FH_MEM_UPPER_BOUND -
3040 				FH_MEM_LOWER_BOUND);
3041 	}
3042 
3043 	if (dump_rbs) {
3044 		/* Dump RBs is supported only for pre-9000 devices (1 queue) */
3045 		struct iwl_rxq *rxq = &trans_pcie->rxq[0];
3046 		/* RBs */
3047 		num_rbs =
3048 			le16_to_cpu(iwl_get_closed_rb_stts(trans, rxq))
3049 			& 0x0FFF;
3050 		num_rbs = (num_rbs - rxq->read) & RX_QUEUE_MASK;
3051 		len += num_rbs * (sizeof(*data) +
3052 				  sizeof(struct iwl_fw_error_dump_rb) +
3053 				  (PAGE_SIZE << trans_pcie->rx_page_order));
3054 	}
3055 
3056 	/* Paged memory for gen2 HW */
3057 	if (trans->cfg->gen2 &&
3058 	    trans->dbg_dump_mask & BIT(IWL_FW_ERROR_DUMP_PAGING))
3059 		for (i = 0; i < trans_pcie->init_dram.paging_cnt; i++)
3060 			len += sizeof(*data) +
3061 			       sizeof(struct iwl_fw_error_dump_paging) +
3062 			       trans_pcie->init_dram.paging[i].size;
3063 
3064 	dump_data = vzalloc(len);
3065 	if (!dump_data)
3066 		return NULL;
3067 
3068 	len = 0;
3069 	data = (void *)dump_data->data;
3070 
3071 	if (trans->dbg_dump_mask & BIT(IWL_FW_ERROR_DUMP_TXCMD)) {
3072 		u16 tfd_size = trans_pcie->tfd_size;
3073 
3074 		data->type = cpu_to_le32(IWL_FW_ERROR_DUMP_TXCMD);
3075 		txcmd = (void *)data->data;
3076 		spin_lock_bh(&cmdq->lock);
3077 		ptr = cmdq->write_ptr;
3078 		for (i = 0; i < cmdq->n_window; i++) {
3079 			u8 idx = iwl_pcie_get_cmd_index(cmdq, ptr);
3080 			u32 caplen, cmdlen;
3081 
3082 			cmdlen = iwl_trans_pcie_get_cmdlen(trans,
3083 							   cmdq->tfds +
3084 							   tfd_size * ptr);
3085 			caplen = min_t(u32, TFD_MAX_PAYLOAD_SIZE, cmdlen);
3086 
3087 			if (cmdlen) {
3088 				len += sizeof(*txcmd) + caplen;
3089 				txcmd->cmdlen = cpu_to_le32(cmdlen);
3090 				txcmd->caplen = cpu_to_le32(caplen);
3091 				memcpy(txcmd->data, cmdq->entries[idx].cmd,
3092 				       caplen);
3093 				txcmd = (void *)((u8 *)txcmd->data + caplen);
3094 			}
3095 
3096 			ptr = iwl_queue_dec_wrap(trans, ptr);
3097 		}
3098 		spin_unlock_bh(&cmdq->lock);
3099 
3100 		data->len = cpu_to_le32(len);
3101 		len += sizeof(*data);
3102 		data = iwl_fw_error_next_data(data);
3103 	}
3104 
3105 	if (trans->dbg_dump_mask & BIT(IWL_FW_ERROR_DUMP_CSR))
3106 		len += iwl_trans_pcie_dump_csr(trans, &data);
3107 	if (trans->dbg_dump_mask & BIT(IWL_FW_ERROR_DUMP_FH_REGS))
3108 		len += iwl_trans_pcie_fh_regs_dump(trans, &data);
3109 	if (dump_rbs)
3110 		len += iwl_trans_pcie_dump_rbs(trans, &data, num_rbs);
3111 
3112 	/* Paged memory for gen2 HW */
3113 	if (trans->cfg->gen2 &&
3114 	    trans->dbg_dump_mask & BIT(IWL_FW_ERROR_DUMP_PAGING)) {
3115 		for (i = 0; i < trans_pcie->init_dram.paging_cnt; i++) {
3116 			struct iwl_fw_error_dump_paging *paging;
3117 			dma_addr_t addr =
3118 				trans_pcie->init_dram.paging[i].physical;
3119 			u32 page_len = trans_pcie->init_dram.paging[i].size;
3120 
3121 			data->type = cpu_to_le32(IWL_FW_ERROR_DUMP_PAGING);
3122 			data->len = cpu_to_le32(sizeof(*paging) + page_len);
3123 			paging = (void *)data->data;
3124 			paging->index = cpu_to_le32(i);
3125 			dma_sync_single_for_cpu(trans->dev, addr, page_len,
3126 						DMA_BIDIRECTIONAL);
3127 			memcpy(paging->data,
3128 			       trans_pcie->init_dram.paging[i].block, page_len);
3129 			data = iwl_fw_error_next_data(data);
3130 
3131 			len += sizeof(*data) + sizeof(*paging) + page_len;
3132 		}
3133 	}
3134 	if (trans->dbg_dump_mask & BIT(IWL_FW_ERROR_DUMP_FW_MONITOR))
3135 		len += iwl_trans_pcie_dump_monitor(trans, &data, monitor_len);
3136 
3137 	dump_data->len = len;
3138 
3139 	return dump_data;
3140 }
3141 
3142 #ifdef CONFIG_PM_SLEEP
3143 static int iwl_trans_pcie_suspend(struct iwl_trans *trans)
3144 {
3145 	if (trans->runtime_pm_mode == IWL_PLAT_PM_MODE_D0I3 &&
3146 	    (trans->system_pm_mode == IWL_PLAT_PM_MODE_D0I3))
3147 		return iwl_pci_fw_enter_d0i3(trans);
3148 
3149 	return 0;
3150 }
3151 
3152 static void iwl_trans_pcie_resume(struct iwl_trans *trans)
3153 {
3154 	if (trans->runtime_pm_mode == IWL_PLAT_PM_MODE_D0I3 &&
3155 	    (trans->system_pm_mode == IWL_PLAT_PM_MODE_D0I3))
3156 		iwl_pci_fw_exit_d0i3(trans);
3157 }
3158 #endif /* CONFIG_PM_SLEEP */
3159 
3160 #define IWL_TRANS_COMMON_OPS						\
3161 	.op_mode_leave = iwl_trans_pcie_op_mode_leave,			\
3162 	.write8 = iwl_trans_pcie_write8,				\
3163 	.write32 = iwl_trans_pcie_write32,				\
3164 	.read32 = iwl_trans_pcie_read32,				\
3165 	.read_prph = iwl_trans_pcie_read_prph,				\
3166 	.write_prph = iwl_trans_pcie_write_prph,			\
3167 	.read_mem = iwl_trans_pcie_read_mem,				\
3168 	.write_mem = iwl_trans_pcie_write_mem,				\
3169 	.configure = iwl_trans_pcie_configure,				\
3170 	.set_pmi = iwl_trans_pcie_set_pmi,				\
3171 	.sw_reset = iwl_trans_pcie_sw_reset,				\
3172 	.grab_nic_access = iwl_trans_pcie_grab_nic_access,		\
3173 	.release_nic_access = iwl_trans_pcie_release_nic_access,	\
3174 	.set_bits_mask = iwl_trans_pcie_set_bits_mask,			\
3175 	.ref = iwl_trans_pcie_ref,					\
3176 	.unref = iwl_trans_pcie_unref,					\
3177 	.dump_data = iwl_trans_pcie_dump_data,				\
3178 	.dump_regs = iwl_trans_pcie_dump_regs,				\
3179 	.d3_suspend = iwl_trans_pcie_d3_suspend,			\
3180 	.d3_resume = iwl_trans_pcie_d3_resume
3181 
3182 #ifdef CONFIG_PM_SLEEP
3183 #define IWL_TRANS_PM_OPS						\
3184 	.suspend = iwl_trans_pcie_suspend,				\
3185 	.resume = iwl_trans_pcie_resume,
3186 #else
3187 #define IWL_TRANS_PM_OPS
3188 #endif /* CONFIG_PM_SLEEP */
3189 
3190 static const struct iwl_trans_ops trans_ops_pcie = {
3191 	IWL_TRANS_COMMON_OPS,
3192 	IWL_TRANS_PM_OPS
3193 	.start_hw = iwl_trans_pcie_start_hw,
3194 	.fw_alive = iwl_trans_pcie_fw_alive,
3195 	.start_fw = iwl_trans_pcie_start_fw,
3196 	.stop_device = iwl_trans_pcie_stop_device,
3197 
3198 	.send_cmd = iwl_trans_pcie_send_hcmd,
3199 
3200 	.tx = iwl_trans_pcie_tx,
3201 	.reclaim = iwl_trans_pcie_reclaim,
3202 
3203 	.txq_disable = iwl_trans_pcie_txq_disable,
3204 	.txq_enable = iwl_trans_pcie_txq_enable,
3205 
3206 	.txq_set_shared_mode = iwl_trans_pcie_txq_set_shared_mode,
3207 
3208 	.wait_tx_queues_empty = iwl_trans_pcie_wait_txqs_empty,
3209 
3210 	.freeze_txq_timer = iwl_trans_pcie_freeze_txq_timer,
3211 	.block_txq_ptrs = iwl_trans_pcie_block_txq_ptrs,
3212 };
3213 
3214 static const struct iwl_trans_ops trans_ops_pcie_gen2 = {
3215 	IWL_TRANS_COMMON_OPS,
3216 	IWL_TRANS_PM_OPS
3217 	.start_hw = iwl_trans_pcie_start_hw,
3218 	.fw_alive = iwl_trans_pcie_gen2_fw_alive,
3219 	.start_fw = iwl_trans_pcie_gen2_start_fw,
3220 	.stop_device = iwl_trans_pcie_gen2_stop_device,
3221 
3222 	.send_cmd = iwl_trans_pcie_gen2_send_hcmd,
3223 
3224 	.tx = iwl_trans_pcie_gen2_tx,
3225 	.reclaim = iwl_trans_pcie_reclaim,
3226 
3227 	.txq_alloc = iwl_trans_pcie_dyn_txq_alloc,
3228 	.txq_free = iwl_trans_pcie_dyn_txq_free,
3229 	.wait_txq_empty = iwl_trans_pcie_wait_txq_empty,
3230 	.rxq_dma_data = iwl_trans_pcie_rxq_dma_data,
3231 };
3232 
3233 struct iwl_trans *iwl_trans_pcie_alloc(struct pci_dev *pdev,
3234 				       const struct pci_device_id *ent,
3235 				       const struct iwl_cfg *cfg)
3236 {
3237 	struct iwl_trans_pcie *trans_pcie;
3238 	struct iwl_trans *trans;
3239 	int ret, addr_size;
3240 
3241 	ret = pcim_enable_device(pdev);
3242 	if (ret)
3243 		return ERR_PTR(ret);
3244 
3245 	if (cfg->gen2)
3246 		trans = iwl_trans_alloc(sizeof(struct iwl_trans_pcie),
3247 					&pdev->dev, cfg, &trans_ops_pcie_gen2);
3248 	else
3249 		trans = iwl_trans_alloc(sizeof(struct iwl_trans_pcie),
3250 					&pdev->dev, cfg, &trans_ops_pcie);
3251 	if (!trans)
3252 		return ERR_PTR(-ENOMEM);
3253 
3254 	trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
3255 
3256 	trans_pcie->trans = trans;
3257 	trans_pcie->opmode_down = true;
3258 	spin_lock_init(&trans_pcie->irq_lock);
3259 	spin_lock_init(&trans_pcie->reg_lock);
3260 	mutex_init(&trans_pcie->mutex);
3261 	init_waitqueue_head(&trans_pcie->ucode_write_waitq);
3262 	trans_pcie->tso_hdr_page = alloc_percpu(struct iwl_tso_hdr_page);
3263 	if (!trans_pcie->tso_hdr_page) {
3264 		ret = -ENOMEM;
3265 		goto out_no_pci;
3266 	}
3267 
3268 
3269 	if (!cfg->base_params->pcie_l1_allowed) {
3270 		/*
3271 		 * W/A - seems to solve weird behavior. We need to remove this
3272 		 * if we don't want to stay in L1 all the time. This wastes a
3273 		 * lot of power.
3274 		 */
3275 		pci_disable_link_state(pdev, PCIE_LINK_STATE_L0S |
3276 				       PCIE_LINK_STATE_L1 |
3277 				       PCIE_LINK_STATE_CLKPM);
3278 	}
3279 
3280 	if (cfg->use_tfh) {
3281 		addr_size = 64;
3282 		trans_pcie->max_tbs = IWL_TFH_NUM_TBS;
3283 		trans_pcie->tfd_size = sizeof(struct iwl_tfh_tfd);
3284 	} else {
3285 		addr_size = 36;
3286 		trans_pcie->max_tbs = IWL_NUM_OF_TBS;
3287 		trans_pcie->tfd_size = sizeof(struct iwl_tfd);
3288 	}
3289 	trans->max_skb_frags = IWL_PCIE_MAX_FRAGS(trans_pcie);
3290 
3291 	pci_set_master(pdev);
3292 
3293 	ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(addr_size));
3294 	if (!ret)
3295 		ret = pci_set_consistent_dma_mask(pdev,
3296 						  DMA_BIT_MASK(addr_size));
3297 	if (ret) {
3298 		ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
3299 		if (!ret)
3300 			ret = pci_set_consistent_dma_mask(pdev,
3301 							  DMA_BIT_MASK(32));
3302 		/* both attempts failed: */
3303 		if (ret) {
3304 			dev_err(&pdev->dev, "No suitable DMA available\n");
3305 			goto out_no_pci;
3306 		}
3307 	}
3308 
3309 	ret = pcim_iomap_regions_request_all(pdev, BIT(0), DRV_NAME);
3310 	if (ret) {
3311 		dev_err(&pdev->dev, "pcim_iomap_regions_request_all failed\n");
3312 		goto out_no_pci;
3313 	}
3314 
3315 	trans_pcie->hw_base = pcim_iomap_table(pdev)[0];
3316 	if (!trans_pcie->hw_base) {
3317 		dev_err(&pdev->dev, "pcim_iomap_table failed\n");
3318 		ret = -ENODEV;
3319 		goto out_no_pci;
3320 	}
3321 
3322 	/* We disable the RETRY_TIMEOUT register (0x41) to keep
3323 	 * PCI Tx retries from interfering with C3 CPU state */
3324 	pci_write_config_byte(pdev, PCI_CFG_RETRY_TIMEOUT, 0x00);
3325 
3326 	trans_pcie->pci_dev = pdev;
3327 	iwl_disable_interrupts(trans);
3328 
3329 	trans->hw_rev = iwl_read32(trans, CSR_HW_REV);
3330 	/*
3331 	 * In the 8000 HW family the format of the 4 bytes of CSR_HW_REV have
3332 	 * changed, and now the revision step also includes bit 0-1 (no more
3333 	 * "dash" value). To keep hw_rev backwards compatible - we'll store it
3334 	 * in the old format.
3335 	 */
3336 	if (trans->cfg->device_family >= IWL_DEVICE_FAMILY_8000) {
3337 		unsigned long flags;
3338 
3339 		trans->hw_rev = (trans->hw_rev & 0xfff0) |
3340 				(CSR_HW_REV_STEP(trans->hw_rev << 2) << 2);
3341 
3342 		ret = iwl_pcie_prepare_card_hw(trans);
3343 		if (ret) {
3344 			IWL_WARN(trans, "Exit HW not ready\n");
3345 			goto out_no_pci;
3346 		}
3347 
3348 		/*
3349 		 * in-order to recognize C step driver should read chip version
3350 		 * id located at the AUX bus MISC address space.
3351 		 */
3352 		iwl_set_bit(trans, CSR_GP_CNTRL,
3353 			    BIT(trans->cfg->csr->flag_init_done));
3354 		udelay(2);
3355 
3356 		ret = iwl_poll_bit(trans, CSR_GP_CNTRL,
3357 				   BIT(trans->cfg->csr->flag_mac_clock_ready),
3358 				   BIT(trans->cfg->csr->flag_mac_clock_ready),
3359 				   25000);
3360 		if (ret < 0) {
3361 			IWL_DEBUG_INFO(trans, "Failed to wake up the nic\n");
3362 			goto out_no_pci;
3363 		}
3364 
3365 		if (iwl_trans_grab_nic_access(trans, &flags)) {
3366 			u32 hw_step;
3367 
3368 			hw_step = iwl_read_prph_no_grab(trans, WFPM_CTRL_REG);
3369 			hw_step |= ENABLE_WFPM;
3370 			iwl_write_prph_no_grab(trans, WFPM_CTRL_REG, hw_step);
3371 			hw_step = iwl_read_prph_no_grab(trans, AUX_MISC_REG);
3372 			hw_step = (hw_step >> HW_STEP_LOCATION_BITS) & 0xF;
3373 			if (hw_step == 0x3)
3374 				trans->hw_rev = (trans->hw_rev & 0xFFFFFFF3) |
3375 						(SILICON_C_STEP << 2);
3376 			iwl_trans_release_nic_access(trans, &flags);
3377 		}
3378 	}
3379 
3380 	/*
3381 	 * 9000-series integrated A-step has a problem with suspend/resume
3382 	 * and sometimes even causes the whole platform to get stuck. This
3383 	 * workaround makes the hardware not go into the problematic state.
3384 	 */
3385 	if (trans->cfg->integrated &&
3386 	    trans->cfg->device_family == IWL_DEVICE_FAMILY_9000 &&
3387 	    CSR_HW_REV_STEP(trans->hw_rev) == SILICON_A_STEP)
3388 		iwl_set_bit(trans, CSR_HOST_CHICKEN,
3389 			    CSR_HOST_CHICKEN_PM_IDLE_SRC_DIS_SB_PME);
3390 
3391 #if IS_ENABLED(CONFIG_IWLMVM)
3392 	trans->hw_rf_id = iwl_read32(trans, CSR_HW_RF_ID);
3393 
3394 	if (CSR_HW_RF_ID_TYPE_CHIP_ID(trans->hw_rf_id) ==
3395 	    CSR_HW_RF_ID_TYPE_CHIP_ID(CSR_HW_RF_ID_TYPE_HR)) {
3396 		u32 hw_status;
3397 
3398 		hw_status = iwl_read_prph(trans, UMAG_GEN_HW_STATUS);
3399 		if (CSR_HW_RF_STEP(trans->hw_rf_id) == SILICON_B_STEP)
3400 			/*
3401 			* b step fw is the same for physical card and fpga
3402 			*/
3403 			trans->cfg = &iwl22000_2ax_cfg_qnj_hr_b0;
3404 		else if ((hw_status & UMAG_GEN_HW_IS_FPGA) &&
3405 			 CSR_HW_RF_STEP(trans->hw_rf_id) == SILICON_A_STEP) {
3406 			trans->cfg = &iwl22000_2ax_cfg_qnj_hr_a0_f0;
3407 		} else {
3408 			/*
3409 			* a step no FPGA
3410 			*/
3411 			trans->cfg = &iwl22000_2ac_cfg_hr;
3412 		}
3413 	}
3414 #endif
3415 
3416 	iwl_pcie_set_interrupt_capa(pdev, trans);
3417 	trans->hw_id = (pdev->device << 16) + pdev->subsystem_device;
3418 	snprintf(trans->hw_id_str, sizeof(trans->hw_id_str),
3419 		 "PCI ID: 0x%04X:0x%04X", pdev->device, pdev->subsystem_device);
3420 
3421 	/* Initialize the wait queue for commands */
3422 	init_waitqueue_head(&trans_pcie->wait_command_queue);
3423 
3424 	init_waitqueue_head(&trans_pcie->d0i3_waitq);
3425 
3426 	if (trans_pcie->msix_enabled) {
3427 		ret = iwl_pcie_init_msix_handler(pdev, trans_pcie);
3428 		if (ret)
3429 			goto out_no_pci;
3430 	 } else {
3431 		ret = iwl_pcie_alloc_ict(trans);
3432 		if (ret)
3433 			goto out_no_pci;
3434 
3435 		ret = devm_request_threaded_irq(&pdev->dev, pdev->irq,
3436 						iwl_pcie_isr,
3437 						iwl_pcie_irq_handler,
3438 						IRQF_SHARED, DRV_NAME, trans);
3439 		if (ret) {
3440 			IWL_ERR(trans, "Error allocating IRQ %d\n", pdev->irq);
3441 			goto out_free_ict;
3442 		}
3443 		trans_pcie->inta_mask = CSR_INI_SET_MASK;
3444 	 }
3445 
3446 	trans_pcie->rba.alloc_wq = alloc_workqueue("rb_allocator",
3447 						   WQ_HIGHPRI | WQ_UNBOUND, 1);
3448 	INIT_WORK(&trans_pcie->rba.rx_alloc, iwl_pcie_rx_allocator_work);
3449 
3450 #ifdef CONFIG_IWLWIFI_PCIE_RTPM
3451 	trans->runtime_pm_mode = IWL_PLAT_PM_MODE_D0I3;
3452 #else
3453 	trans->runtime_pm_mode = IWL_PLAT_PM_MODE_DISABLED;
3454 #endif /* CONFIG_IWLWIFI_PCIE_RTPM */
3455 
3456 	return trans;
3457 
3458 out_free_ict:
3459 	iwl_pcie_free_ict(trans);
3460 out_no_pci:
3461 	free_percpu(trans_pcie->tso_hdr_page);
3462 	iwl_trans_free(trans);
3463 	return ERR_PTR(ret);
3464 }
3465