xref: /openbmc/linux/drivers/net/wireless/intel/iwlwifi/pcie/rx.c (revision f79e4d5f92a129a1159c973735007d4ddc8541f3)
1 /******************************************************************************
2  *
3  * Copyright(c) 2003 - 2014 Intel Corporation. All rights reserved.
4  * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
5  * Copyright(c) 2016 - 2017 Intel Deutschland GmbH
6  * Copyright(c) 2018 Intel Corporation
7  *
8  * Portions of this file are derived from the ipw3945 project, as well
9  * as portions of the ieee80211 subsystem header files.
10  *
11  * This program is free software; you can redistribute it and/or modify it
12  * under the terms of version 2 of the GNU General Public License as
13  * published by the Free Software Foundation.
14  *
15  * This program is distributed in the hope that it will be useful, but WITHOUT
16  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
18  * more details.
19  *
20  * You should have received a copy of the GNU General Public License along with
21  * this program; if not, write to the Free Software Foundation, Inc.,
22  * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
23  *
24  * The full GNU General Public License is included in this distribution in the
25  * file called LICENSE.
26  *
27  * Contact Information:
28  *  Intel Linux Wireless <linuxwifi@intel.com>
29  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30  *
31  *****************************************************************************/
32 #include <linux/sched.h>
33 #include <linux/wait.h>
34 #include <linux/gfp.h>
35 
36 #include "iwl-prph.h"
37 #include "iwl-io.h"
38 #include "internal.h"
39 #include "iwl-op-mode.h"
40 
41 /******************************************************************************
42  *
43  * RX path functions
44  *
45  ******************************************************************************/
46 
47 /*
48  * Rx theory of operation
49  *
50  * Driver allocates a circular buffer of Receive Buffer Descriptors (RBDs),
51  * each of which point to Receive Buffers to be filled by the NIC.  These get
52  * used not only for Rx frames, but for any command response or notification
53  * from the NIC.  The driver and NIC manage the Rx buffers by means
54  * of indexes into the circular buffer.
55  *
56  * Rx Queue Indexes
57  * The host/firmware share two index registers for managing the Rx buffers.
58  *
59  * The READ index maps to the first position that the firmware may be writing
60  * to -- the driver can read up to (but not including) this position and get
61  * good data.
62  * The READ index is managed by the firmware once the card is enabled.
63  *
64  * The WRITE index maps to the last position the driver has read from -- the
65  * position preceding WRITE is the last slot the firmware can place a packet.
66  *
67  * The queue is empty (no good data) if WRITE = READ - 1, and is full if
68  * WRITE = READ.
69  *
70  * During initialization, the host sets up the READ queue position to the first
71  * INDEX position, and WRITE to the last (READ - 1 wrapped)
72  *
73  * When the firmware places a packet in a buffer, it will advance the READ index
74  * and fire the RX interrupt.  The driver can then query the READ index and
75  * process as many packets as possible, moving the WRITE index forward as it
76  * resets the Rx queue buffers with new memory.
77  *
78  * The management in the driver is as follows:
79  * + A list of pre-allocated RBDs is stored in iwl->rxq->rx_free.
80  *   When the interrupt handler is called, the request is processed.
81  *   The page is either stolen - transferred to the upper layer
82  *   or reused - added immediately to the iwl->rxq->rx_free list.
83  * + When the page is stolen - the driver updates the matching queue's used
84  *   count, detaches the RBD and transfers it to the queue used list.
85  *   When there are two used RBDs - they are transferred to the allocator empty
86  *   list. Work is then scheduled for the allocator to start allocating
87  *   eight buffers.
88  *   When there are another 6 used RBDs - they are transferred to the allocator
89  *   empty list and the driver tries to claim the pre-allocated buffers and
90  *   add them to iwl->rxq->rx_free. If it fails - it continues to claim them
91  *   until ready.
92  *   When there are 8+ buffers in the free list - either from allocation or from
93  *   8 reused unstolen pages - restock is called to update the FW and indexes.
94  * + In order to make sure the allocator always has RBDs to use for allocation
95  *   the allocator has initial pool in the size of num_queues*(8-2) - the
96  *   maximum missing RBDs per allocation request (request posted with 2
97  *    empty RBDs, there is no guarantee when the other 6 RBDs are supplied).
98  *   The queues supplies the recycle of the rest of the RBDs.
99  * + A received packet is processed and handed to the kernel network stack,
100  *   detached from the iwl->rxq.  The driver 'processed' index is updated.
101  * + If there are no allocated buffers in iwl->rxq->rx_free,
102  *   the READ INDEX is not incremented and iwl->status(RX_STALLED) is set.
103  *   If there were enough free buffers and RX_STALLED is set it is cleared.
104  *
105  *
106  * Driver sequence:
107  *
108  * iwl_rxq_alloc()            Allocates rx_free
109  * iwl_pcie_rx_replenish()    Replenishes rx_free list from rx_used, and calls
110  *                            iwl_pcie_rxq_restock.
111  *                            Used only during initialization.
112  * iwl_pcie_rxq_restock()     Moves available buffers from rx_free into Rx
113  *                            queue, updates firmware pointers, and updates
114  *                            the WRITE index.
115  * iwl_pcie_rx_allocator()     Background work for allocating pages.
116  *
117  * -- enable interrupts --
118  * ISR - iwl_rx()             Detach iwl_rx_mem_buffers from pool up to the
119  *                            READ INDEX, detaching the SKB from the pool.
120  *                            Moves the packet buffer from queue to rx_used.
121  *                            Posts and claims requests to the allocator.
122  *                            Calls iwl_pcie_rxq_restock to refill any empty
123  *                            slots.
124  *
125  * RBD life-cycle:
126  *
127  * Init:
128  * rxq.pool -> rxq.rx_used -> rxq.rx_free -> rxq.queue
129  *
130  * Regular Receive interrupt:
131  * Page Stolen:
132  * rxq.queue -> rxq.rx_used -> allocator.rbd_empty ->
133  * allocator.rbd_allocated -> rxq.rx_free -> rxq.queue
134  * Page not Stolen:
135  * rxq.queue -> rxq.rx_free -> rxq.queue
136  * ...
137  *
138  */
139 
140 /*
141  * iwl_rxq_space - Return number of free slots available in queue.
142  */
143 static int iwl_rxq_space(const struct iwl_rxq *rxq)
144 {
145 	/* Make sure rx queue size is a power of 2 */
146 	WARN_ON(rxq->queue_size & (rxq->queue_size - 1));
147 
148 	/*
149 	 * There can be up to (RX_QUEUE_SIZE - 1) free slots, to avoid ambiguity
150 	 * between empty and completely full queues.
151 	 * The following is equivalent to modulo by RX_QUEUE_SIZE and is well
152 	 * defined for negative dividends.
153 	 */
154 	return (rxq->read - rxq->write - 1) & (rxq->queue_size - 1);
155 }
156 
157 /*
158  * iwl_dma_addr2rbd_ptr - convert a DMA address to a uCode read buffer ptr
159  */
160 static inline __le32 iwl_pcie_dma_addr2rbd_ptr(dma_addr_t dma_addr)
161 {
162 	return cpu_to_le32((u32)(dma_addr >> 8));
163 }
164 
165 /*
166  * iwl_pcie_rx_stop - stops the Rx DMA
167  */
168 int iwl_pcie_rx_stop(struct iwl_trans *trans)
169 {
170 	if (trans->cfg->mq_rx_supported) {
171 		iwl_write_prph(trans, RFH_RXF_DMA_CFG, 0);
172 		return iwl_poll_prph_bit(trans, RFH_GEN_STATUS,
173 					   RXF_DMA_IDLE, RXF_DMA_IDLE, 1000);
174 	} else {
175 		iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
176 		return iwl_poll_direct_bit(trans, FH_MEM_RSSR_RX_STATUS_REG,
177 					   FH_RSSR_CHNL0_RX_STATUS_CHNL_IDLE,
178 					   1000);
179 	}
180 }
181 
182 /*
183  * iwl_pcie_rxq_inc_wr_ptr - Update the write pointer for the RX queue
184  */
185 static void iwl_pcie_rxq_inc_wr_ptr(struct iwl_trans *trans,
186 				    struct iwl_rxq *rxq)
187 {
188 	u32 reg;
189 
190 	lockdep_assert_held(&rxq->lock);
191 
192 	/*
193 	 * explicitly wake up the NIC if:
194 	 * 1. shadow registers aren't enabled
195 	 * 2. there is a chance that the NIC is asleep
196 	 */
197 	if (!trans->cfg->base_params->shadow_reg_enable &&
198 	    test_bit(STATUS_TPOWER_PMI, &trans->status)) {
199 		reg = iwl_read32(trans, CSR_UCODE_DRV_GP1);
200 
201 		if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) {
202 			IWL_DEBUG_INFO(trans, "Rx queue requesting wakeup, GP1 = 0x%x\n",
203 				       reg);
204 			iwl_set_bit(trans, CSR_GP_CNTRL,
205 				    BIT(trans->cfg->csr->flag_mac_access_req));
206 			rxq->need_update = true;
207 			return;
208 		}
209 	}
210 
211 	rxq->write_actual = round_down(rxq->write, 8);
212 	if (trans->cfg->mq_rx_supported)
213 		iwl_write32(trans, RFH_Q_FRBDCB_WIDX_TRG(rxq->id),
214 			    rxq->write_actual);
215 	else
216 		iwl_write32(trans, FH_RSCSR_CHNL0_WPTR, rxq->write_actual);
217 }
218 
219 static void iwl_pcie_rxq_check_wrptr(struct iwl_trans *trans)
220 {
221 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
222 	int i;
223 
224 	for (i = 0; i < trans->num_rx_queues; i++) {
225 		struct iwl_rxq *rxq = &trans_pcie->rxq[i];
226 
227 		if (!rxq->need_update)
228 			continue;
229 		spin_lock(&rxq->lock);
230 		iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
231 		rxq->need_update = false;
232 		spin_unlock(&rxq->lock);
233 	}
234 }
235 
236 /*
237  * iwl_pcie_rxmq_restock - restock implementation for multi-queue rx
238  */
239 static void iwl_pcie_rxmq_restock(struct iwl_trans *trans,
240 				  struct iwl_rxq *rxq)
241 {
242 	struct iwl_rx_mem_buffer *rxb;
243 
244 	/*
245 	 * If the device isn't enabled - no need to try to add buffers...
246 	 * This can happen when we stop the device and still have an interrupt
247 	 * pending. We stop the APM before we sync the interrupts because we
248 	 * have to (see comment there). On the other hand, since the APM is
249 	 * stopped, we cannot access the HW (in particular not prph).
250 	 * So don't try to restock if the APM has been already stopped.
251 	 */
252 	if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
253 		return;
254 
255 	spin_lock(&rxq->lock);
256 	while (rxq->free_count) {
257 		__le64 *bd = (__le64 *)rxq->bd;
258 
259 		/* Get next free Rx buffer, remove from free list */
260 		rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
261 				       list);
262 		list_del(&rxb->list);
263 		rxb->invalid = false;
264 		/* 12 first bits are expected to be empty */
265 		WARN_ON(rxb->page_dma & DMA_BIT_MASK(12));
266 		/* Point to Rx buffer via next RBD in circular buffer */
267 		bd[rxq->write] = cpu_to_le64(rxb->page_dma | rxb->vid);
268 		rxq->write = (rxq->write + 1) & MQ_RX_TABLE_MASK;
269 		rxq->free_count--;
270 	}
271 	spin_unlock(&rxq->lock);
272 
273 	/*
274 	 * If we've added more space for the firmware to place data, tell it.
275 	 * Increment device's write pointer in multiples of 8.
276 	 */
277 	if (rxq->write_actual != (rxq->write & ~0x7)) {
278 		spin_lock(&rxq->lock);
279 		iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
280 		spin_unlock(&rxq->lock);
281 	}
282 }
283 
284 /*
285  * iwl_pcie_rxsq_restock - restock implementation for single queue rx
286  */
287 static void iwl_pcie_rxsq_restock(struct iwl_trans *trans,
288 				  struct iwl_rxq *rxq)
289 {
290 	struct iwl_rx_mem_buffer *rxb;
291 
292 	/*
293 	 * If the device isn't enabled - not need to try to add buffers...
294 	 * This can happen when we stop the device and still have an interrupt
295 	 * pending. We stop the APM before we sync the interrupts because we
296 	 * have to (see comment there). On the other hand, since the APM is
297 	 * stopped, we cannot access the HW (in particular not prph).
298 	 * So don't try to restock if the APM has been already stopped.
299 	 */
300 	if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
301 		return;
302 
303 	spin_lock(&rxq->lock);
304 	while ((iwl_rxq_space(rxq) > 0) && (rxq->free_count)) {
305 		__le32 *bd = (__le32 *)rxq->bd;
306 		/* The overwritten rxb must be a used one */
307 		rxb = rxq->queue[rxq->write];
308 		BUG_ON(rxb && rxb->page);
309 
310 		/* Get next free Rx buffer, remove from free list */
311 		rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
312 				       list);
313 		list_del(&rxb->list);
314 		rxb->invalid = false;
315 
316 		/* Point to Rx buffer via next RBD in circular buffer */
317 		bd[rxq->write] = iwl_pcie_dma_addr2rbd_ptr(rxb->page_dma);
318 		rxq->queue[rxq->write] = rxb;
319 		rxq->write = (rxq->write + 1) & RX_QUEUE_MASK;
320 		rxq->free_count--;
321 	}
322 	spin_unlock(&rxq->lock);
323 
324 	/* If we've added more space for the firmware to place data, tell it.
325 	 * Increment device's write pointer in multiples of 8. */
326 	if (rxq->write_actual != (rxq->write & ~0x7)) {
327 		spin_lock(&rxq->lock);
328 		iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
329 		spin_unlock(&rxq->lock);
330 	}
331 }
332 
333 /*
334  * iwl_pcie_rxq_restock - refill RX queue from pre-allocated pool
335  *
336  * If there are slots in the RX queue that need to be restocked,
337  * and we have free pre-allocated buffers, fill the ranks as much
338  * as we can, pulling from rx_free.
339  *
340  * This moves the 'write' index forward to catch up with 'processed', and
341  * also updates the memory address in the firmware to reference the new
342  * target buffer.
343  */
344 static
345 void iwl_pcie_rxq_restock(struct iwl_trans *trans, struct iwl_rxq *rxq)
346 {
347 	if (trans->cfg->mq_rx_supported)
348 		iwl_pcie_rxmq_restock(trans, rxq);
349 	else
350 		iwl_pcie_rxsq_restock(trans, rxq);
351 }
352 
353 /*
354  * iwl_pcie_rx_alloc_page - allocates and returns a page.
355  *
356  */
357 static struct page *iwl_pcie_rx_alloc_page(struct iwl_trans *trans,
358 					   gfp_t priority)
359 {
360 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
361 	struct page *page;
362 	gfp_t gfp_mask = priority;
363 
364 	if (trans_pcie->rx_page_order > 0)
365 		gfp_mask |= __GFP_COMP;
366 
367 	/* Alloc a new receive buffer */
368 	page = alloc_pages(gfp_mask, trans_pcie->rx_page_order);
369 	if (!page) {
370 		if (net_ratelimit())
371 			IWL_DEBUG_INFO(trans, "alloc_pages failed, order: %d\n",
372 				       trans_pcie->rx_page_order);
373 		/*
374 		 * Issue an error if we don't have enough pre-allocated
375 		  * buffers.
376 `		 */
377 		if (!(gfp_mask & __GFP_NOWARN) && net_ratelimit())
378 			IWL_CRIT(trans,
379 				 "Failed to alloc_pages\n");
380 		return NULL;
381 	}
382 	return page;
383 }
384 
385 /*
386  * iwl_pcie_rxq_alloc_rbs - allocate a page for each used RBD
387  *
388  * A used RBD is an Rx buffer that has been given to the stack. To use it again
389  * a page must be allocated and the RBD must point to the page. This function
390  * doesn't change the HW pointer but handles the list of pages that is used by
391  * iwl_pcie_rxq_restock. The latter function will update the HW to use the newly
392  * allocated buffers.
393  */
394 static void iwl_pcie_rxq_alloc_rbs(struct iwl_trans *trans, gfp_t priority,
395 				   struct iwl_rxq *rxq)
396 {
397 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
398 	struct iwl_rx_mem_buffer *rxb;
399 	struct page *page;
400 
401 	while (1) {
402 		spin_lock(&rxq->lock);
403 		if (list_empty(&rxq->rx_used)) {
404 			spin_unlock(&rxq->lock);
405 			return;
406 		}
407 		spin_unlock(&rxq->lock);
408 
409 		/* Alloc a new receive buffer */
410 		page = iwl_pcie_rx_alloc_page(trans, priority);
411 		if (!page)
412 			return;
413 
414 		spin_lock(&rxq->lock);
415 
416 		if (list_empty(&rxq->rx_used)) {
417 			spin_unlock(&rxq->lock);
418 			__free_pages(page, trans_pcie->rx_page_order);
419 			return;
420 		}
421 		rxb = list_first_entry(&rxq->rx_used, struct iwl_rx_mem_buffer,
422 				       list);
423 		list_del(&rxb->list);
424 		spin_unlock(&rxq->lock);
425 
426 		BUG_ON(rxb->page);
427 		rxb->page = page;
428 		/* Get physical address of the RB */
429 		rxb->page_dma =
430 			dma_map_page(trans->dev, page, 0,
431 				     PAGE_SIZE << trans_pcie->rx_page_order,
432 				     DMA_FROM_DEVICE);
433 		if (dma_mapping_error(trans->dev, rxb->page_dma)) {
434 			rxb->page = NULL;
435 			spin_lock(&rxq->lock);
436 			list_add(&rxb->list, &rxq->rx_used);
437 			spin_unlock(&rxq->lock);
438 			__free_pages(page, trans_pcie->rx_page_order);
439 			return;
440 		}
441 
442 		spin_lock(&rxq->lock);
443 
444 		list_add_tail(&rxb->list, &rxq->rx_free);
445 		rxq->free_count++;
446 
447 		spin_unlock(&rxq->lock);
448 	}
449 }
450 
451 static void iwl_pcie_free_rbs_pool(struct iwl_trans *trans)
452 {
453 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
454 	int i;
455 
456 	for (i = 0; i < RX_POOL_SIZE; i++) {
457 		if (!trans_pcie->rx_pool[i].page)
458 			continue;
459 		dma_unmap_page(trans->dev, trans_pcie->rx_pool[i].page_dma,
460 			       PAGE_SIZE << trans_pcie->rx_page_order,
461 			       DMA_FROM_DEVICE);
462 		__free_pages(trans_pcie->rx_pool[i].page,
463 			     trans_pcie->rx_page_order);
464 		trans_pcie->rx_pool[i].page = NULL;
465 	}
466 }
467 
468 /*
469  * iwl_pcie_rx_allocator - Allocates pages in the background for RX queues
470  *
471  * Allocates for each received request 8 pages
472  * Called as a scheduled work item.
473  */
474 static void iwl_pcie_rx_allocator(struct iwl_trans *trans)
475 {
476 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
477 	struct iwl_rb_allocator *rba = &trans_pcie->rba;
478 	struct list_head local_empty;
479 	int pending = atomic_xchg(&rba->req_pending, 0);
480 
481 	IWL_DEBUG_RX(trans, "Pending allocation requests = %d\n", pending);
482 
483 	/* If we were scheduled - there is at least one request */
484 	spin_lock(&rba->lock);
485 	/* swap out the rba->rbd_empty to a local list */
486 	list_replace_init(&rba->rbd_empty, &local_empty);
487 	spin_unlock(&rba->lock);
488 
489 	while (pending) {
490 		int i;
491 		LIST_HEAD(local_allocated);
492 		gfp_t gfp_mask = GFP_KERNEL;
493 
494 		/* Do not post a warning if there are only a few requests */
495 		if (pending < RX_PENDING_WATERMARK)
496 			gfp_mask |= __GFP_NOWARN;
497 
498 		for (i = 0; i < RX_CLAIM_REQ_ALLOC;) {
499 			struct iwl_rx_mem_buffer *rxb;
500 			struct page *page;
501 
502 			/* List should never be empty - each reused RBD is
503 			 * returned to the list, and initial pool covers any
504 			 * possible gap between the time the page is allocated
505 			 * to the time the RBD is added.
506 			 */
507 			BUG_ON(list_empty(&local_empty));
508 			/* Get the first rxb from the rbd list */
509 			rxb = list_first_entry(&local_empty,
510 					       struct iwl_rx_mem_buffer, list);
511 			BUG_ON(rxb->page);
512 
513 			/* Alloc a new receive buffer */
514 			page = iwl_pcie_rx_alloc_page(trans, gfp_mask);
515 			if (!page)
516 				continue;
517 			rxb->page = page;
518 
519 			/* Get physical address of the RB */
520 			rxb->page_dma = dma_map_page(trans->dev, page, 0,
521 					PAGE_SIZE << trans_pcie->rx_page_order,
522 					DMA_FROM_DEVICE);
523 			if (dma_mapping_error(trans->dev, rxb->page_dma)) {
524 				rxb->page = NULL;
525 				__free_pages(page, trans_pcie->rx_page_order);
526 				continue;
527 			}
528 
529 			/* move the allocated entry to the out list */
530 			list_move(&rxb->list, &local_allocated);
531 			i++;
532 		}
533 
534 		pending--;
535 		if (!pending) {
536 			pending = atomic_xchg(&rba->req_pending, 0);
537 			IWL_DEBUG_RX(trans,
538 				     "Pending allocation requests = %d\n",
539 				     pending);
540 		}
541 
542 		spin_lock(&rba->lock);
543 		/* add the allocated rbds to the allocator allocated list */
544 		list_splice_tail(&local_allocated, &rba->rbd_allocated);
545 		/* get more empty RBDs for current pending requests */
546 		list_splice_tail_init(&rba->rbd_empty, &local_empty);
547 		spin_unlock(&rba->lock);
548 
549 		atomic_inc(&rba->req_ready);
550 	}
551 
552 	spin_lock(&rba->lock);
553 	/* return unused rbds to the allocator empty list */
554 	list_splice_tail(&local_empty, &rba->rbd_empty);
555 	spin_unlock(&rba->lock);
556 }
557 
558 /*
559  * iwl_pcie_rx_allocator_get - returns the pre-allocated pages
560 .*
561 .* Called by queue when the queue posted allocation request and
562  * has freed 8 RBDs in order to restock itself.
563  * This function directly moves the allocated RBs to the queue's ownership
564  * and updates the relevant counters.
565  */
566 static void iwl_pcie_rx_allocator_get(struct iwl_trans *trans,
567 				      struct iwl_rxq *rxq)
568 {
569 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
570 	struct iwl_rb_allocator *rba = &trans_pcie->rba;
571 	int i;
572 
573 	lockdep_assert_held(&rxq->lock);
574 
575 	/*
576 	 * atomic_dec_if_positive returns req_ready - 1 for any scenario.
577 	 * If req_ready is 0 atomic_dec_if_positive will return -1 and this
578 	 * function will return early, as there are no ready requests.
579 	 * atomic_dec_if_positive will perofrm the *actual* decrement only if
580 	 * req_ready > 0, i.e. - there are ready requests and the function
581 	 * hands one request to the caller.
582 	 */
583 	if (atomic_dec_if_positive(&rba->req_ready) < 0)
584 		return;
585 
586 	spin_lock(&rba->lock);
587 	for (i = 0; i < RX_CLAIM_REQ_ALLOC; i++) {
588 		/* Get next free Rx buffer, remove it from free list */
589 		struct iwl_rx_mem_buffer *rxb =
590 			list_first_entry(&rba->rbd_allocated,
591 					 struct iwl_rx_mem_buffer, list);
592 
593 		list_move(&rxb->list, &rxq->rx_free);
594 	}
595 	spin_unlock(&rba->lock);
596 
597 	rxq->used_count -= RX_CLAIM_REQ_ALLOC;
598 	rxq->free_count += RX_CLAIM_REQ_ALLOC;
599 }
600 
601 void iwl_pcie_rx_allocator_work(struct work_struct *data)
602 {
603 	struct iwl_rb_allocator *rba_p =
604 		container_of(data, struct iwl_rb_allocator, rx_alloc);
605 	struct iwl_trans_pcie *trans_pcie =
606 		container_of(rba_p, struct iwl_trans_pcie, rba);
607 
608 	iwl_pcie_rx_allocator(trans_pcie->trans);
609 }
610 
611 static int iwl_pcie_rx_alloc(struct iwl_trans *trans)
612 {
613 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
614 	struct iwl_rb_allocator *rba = &trans_pcie->rba;
615 	struct device *dev = trans->dev;
616 	int i;
617 	int free_size = trans->cfg->mq_rx_supported ? sizeof(__le64) :
618 						      sizeof(__le32);
619 
620 	if (WARN_ON(trans_pcie->rxq))
621 		return -EINVAL;
622 
623 	trans_pcie->rxq = kcalloc(trans->num_rx_queues, sizeof(struct iwl_rxq),
624 				  GFP_KERNEL);
625 	if (!trans_pcie->rxq)
626 		return -EINVAL;
627 
628 	spin_lock_init(&rba->lock);
629 
630 	for (i = 0; i < trans->num_rx_queues; i++) {
631 		struct iwl_rxq *rxq = &trans_pcie->rxq[i];
632 
633 		spin_lock_init(&rxq->lock);
634 		if (trans->cfg->mq_rx_supported)
635 			rxq->queue_size = MQ_RX_TABLE_SIZE;
636 		else
637 			rxq->queue_size = RX_QUEUE_SIZE;
638 
639 		/*
640 		 * Allocate the circular buffer of Read Buffer Descriptors
641 		 * (RBDs)
642 		 */
643 		rxq->bd = dma_zalloc_coherent(dev,
644 					     free_size * rxq->queue_size,
645 					     &rxq->bd_dma, GFP_KERNEL);
646 		if (!rxq->bd)
647 			goto err;
648 
649 		if (trans->cfg->mq_rx_supported) {
650 			rxq->used_bd = dma_zalloc_coherent(dev,
651 							   sizeof(__le32) *
652 							   rxq->queue_size,
653 							   &rxq->used_bd_dma,
654 							   GFP_KERNEL);
655 			if (!rxq->used_bd)
656 				goto err;
657 		}
658 
659 		/*Allocate the driver's pointer to receive buffer status */
660 		rxq->rb_stts = dma_zalloc_coherent(dev, sizeof(*rxq->rb_stts),
661 						   &rxq->rb_stts_dma,
662 						   GFP_KERNEL);
663 		if (!rxq->rb_stts)
664 			goto err;
665 	}
666 	return 0;
667 
668 err:
669 	for (i = 0; i < trans->num_rx_queues; i++) {
670 		struct iwl_rxq *rxq = &trans_pcie->rxq[i];
671 
672 		if (rxq->bd)
673 			dma_free_coherent(dev, free_size * rxq->queue_size,
674 					  rxq->bd, rxq->bd_dma);
675 		rxq->bd_dma = 0;
676 		rxq->bd = NULL;
677 
678 		if (rxq->rb_stts)
679 			dma_free_coherent(trans->dev,
680 					  sizeof(struct iwl_rb_status),
681 					  rxq->rb_stts, rxq->rb_stts_dma);
682 
683 		if (rxq->used_bd)
684 			dma_free_coherent(dev, sizeof(__le32) * rxq->queue_size,
685 					  rxq->used_bd, rxq->used_bd_dma);
686 		rxq->used_bd_dma = 0;
687 		rxq->used_bd = NULL;
688 	}
689 	kfree(trans_pcie->rxq);
690 
691 	return -ENOMEM;
692 }
693 
694 static void iwl_pcie_rx_hw_init(struct iwl_trans *trans, struct iwl_rxq *rxq)
695 {
696 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
697 	u32 rb_size;
698 	unsigned long flags;
699 	const u32 rfdnlog = RX_QUEUE_SIZE_LOG; /* 256 RBDs */
700 
701 	switch (trans_pcie->rx_buf_size) {
702 	case IWL_AMSDU_4K:
703 		rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
704 		break;
705 	case IWL_AMSDU_8K:
706 		rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_8K;
707 		break;
708 	case IWL_AMSDU_12K:
709 		rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_12K;
710 		break;
711 	default:
712 		WARN_ON(1);
713 		rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
714 	}
715 
716 	if (!iwl_trans_grab_nic_access(trans, &flags))
717 		return;
718 
719 	/* Stop Rx DMA */
720 	iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
721 	/* reset and flush pointers */
722 	iwl_write32(trans, FH_MEM_RCSR_CHNL0_RBDCB_WPTR, 0);
723 	iwl_write32(trans, FH_MEM_RCSR_CHNL0_FLUSH_RB_REQ, 0);
724 	iwl_write32(trans, FH_RSCSR_CHNL0_RDPTR, 0);
725 
726 	/* Reset driver's Rx queue write index */
727 	iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0);
728 
729 	/* Tell device where to find RBD circular buffer in DRAM */
730 	iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_BASE_REG,
731 		    (u32)(rxq->bd_dma >> 8));
732 
733 	/* Tell device where in DRAM to update its Rx status */
734 	iwl_write32(trans, FH_RSCSR_CHNL0_STTS_WPTR_REG,
735 		    rxq->rb_stts_dma >> 4);
736 
737 	/* Enable Rx DMA
738 	 * FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY is set because of HW bug in
739 	 *      the credit mechanism in 5000 HW RX FIFO
740 	 * Direct rx interrupts to hosts
741 	 * Rx buffer size 4 or 8k or 12k
742 	 * RB timeout 0x10
743 	 * 256 RBDs
744 	 */
745 	iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG,
746 		    FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL |
747 		    FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY |
748 		    FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL |
749 		    rb_size |
750 		    (RX_RB_TIMEOUT << FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS) |
751 		    (rfdnlog << FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS));
752 
753 	iwl_trans_release_nic_access(trans, &flags);
754 
755 	/* Set interrupt coalescing timer to default (2048 usecs) */
756 	iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
757 
758 	/* W/A for interrupt coalescing bug in 7260 and 3160 */
759 	if (trans->cfg->host_interrupt_operation_mode)
760 		iwl_set_bit(trans, CSR_INT_COALESCING, IWL_HOST_INT_OPER_MODE);
761 }
762 
763 void iwl_pcie_enable_rx_wake(struct iwl_trans *trans, bool enable)
764 {
765 	if (trans->cfg->device_family != IWL_DEVICE_FAMILY_9000)
766 		return;
767 
768 	if (CSR_HW_REV_STEP(trans->hw_rev) != SILICON_A_STEP)
769 		return;
770 
771 	if (!trans->cfg->integrated)
772 		return;
773 
774 	/*
775 	 * Turn on the chicken-bits that cause MAC wakeup for RX-related
776 	 * values.
777 	 * This costs some power, but needed for W/A 9000 integrated A-step
778 	 * bug where shadow registers are not in the retention list and their
779 	 * value is lost when NIC powers down
780 	 */
781 	iwl_set_bit(trans, CSR_MAC_SHADOW_REG_CTRL,
782 		    CSR_MAC_SHADOW_REG_CTRL_RX_WAKE);
783 	iwl_set_bit(trans, CSR_MAC_SHADOW_REG_CTL2,
784 		    CSR_MAC_SHADOW_REG_CTL2_RX_WAKE);
785 }
786 
787 static void iwl_pcie_rx_mq_hw_init(struct iwl_trans *trans)
788 {
789 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
790 	u32 rb_size, enabled = 0;
791 	unsigned long flags;
792 	int i;
793 
794 	switch (trans_pcie->rx_buf_size) {
795 	case IWL_AMSDU_4K:
796 		rb_size = RFH_RXF_DMA_RB_SIZE_4K;
797 		break;
798 	case IWL_AMSDU_8K:
799 		rb_size = RFH_RXF_DMA_RB_SIZE_8K;
800 		break;
801 	case IWL_AMSDU_12K:
802 		rb_size = RFH_RXF_DMA_RB_SIZE_12K;
803 		break;
804 	default:
805 		WARN_ON(1);
806 		rb_size = RFH_RXF_DMA_RB_SIZE_4K;
807 	}
808 
809 	if (!iwl_trans_grab_nic_access(trans, &flags))
810 		return;
811 
812 	/* Stop Rx DMA */
813 	iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG, 0);
814 	/* disable free amd used rx queue operation */
815 	iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, 0);
816 
817 	for (i = 0; i < trans->num_rx_queues; i++) {
818 		/* Tell device where to find RBD free table in DRAM */
819 		iwl_write_prph64_no_grab(trans,
820 					 RFH_Q_FRBDCB_BA_LSB(i),
821 					 trans_pcie->rxq[i].bd_dma);
822 		/* Tell device where to find RBD used table in DRAM */
823 		iwl_write_prph64_no_grab(trans,
824 					 RFH_Q_URBDCB_BA_LSB(i),
825 					 trans_pcie->rxq[i].used_bd_dma);
826 		/* Tell device where in DRAM to update its Rx status */
827 		iwl_write_prph64_no_grab(trans,
828 					 RFH_Q_URBD_STTS_WPTR_LSB(i),
829 					 trans_pcie->rxq[i].rb_stts_dma);
830 		/* Reset device indice tables */
831 		iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_WIDX(i), 0);
832 		iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_RIDX(i), 0);
833 		iwl_write_prph_no_grab(trans, RFH_Q_URBDCB_WIDX(i), 0);
834 
835 		enabled |= BIT(i) | BIT(i + 16);
836 	}
837 
838 	/*
839 	 * Enable Rx DMA
840 	 * Rx buffer size 4 or 8k or 12k
841 	 * Min RB size 4 or 8
842 	 * Drop frames that exceed RB size
843 	 * 512 RBDs
844 	 */
845 	iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG,
846 			       RFH_DMA_EN_ENABLE_VAL | rb_size |
847 			       RFH_RXF_DMA_MIN_RB_4_8 |
848 			       RFH_RXF_DMA_DROP_TOO_LARGE_MASK |
849 			       RFH_RXF_DMA_RBDCB_SIZE_512);
850 
851 	/*
852 	 * Activate DMA snooping.
853 	 * Set RX DMA chunk size to 64B for IOSF and 128B for PCIe
854 	 * Default queue is 0
855 	 */
856 	iwl_write_prph_no_grab(trans, RFH_GEN_CFG,
857 			       RFH_GEN_CFG_RFH_DMA_SNOOP |
858 			       RFH_GEN_CFG_VAL(DEFAULT_RXQ_NUM, 0) |
859 			       RFH_GEN_CFG_SERVICE_DMA_SNOOP |
860 			       RFH_GEN_CFG_VAL(RB_CHUNK_SIZE,
861 					       trans->cfg->integrated ?
862 					       RFH_GEN_CFG_RB_CHUNK_SIZE_64 :
863 					       RFH_GEN_CFG_RB_CHUNK_SIZE_128));
864 	/* Enable the relevant rx queues */
865 	iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, enabled);
866 
867 	iwl_trans_release_nic_access(trans, &flags);
868 
869 	/* Set interrupt coalescing timer to default (2048 usecs) */
870 	iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
871 
872 	iwl_pcie_enable_rx_wake(trans, true);
873 }
874 
875 static void iwl_pcie_rx_init_rxb_lists(struct iwl_rxq *rxq)
876 {
877 	lockdep_assert_held(&rxq->lock);
878 
879 	INIT_LIST_HEAD(&rxq->rx_free);
880 	INIT_LIST_HEAD(&rxq->rx_used);
881 	rxq->free_count = 0;
882 	rxq->used_count = 0;
883 }
884 
885 static int iwl_pcie_dummy_napi_poll(struct napi_struct *napi, int budget)
886 {
887 	WARN_ON(1);
888 	return 0;
889 }
890 
891 static int _iwl_pcie_rx_init(struct iwl_trans *trans)
892 {
893 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
894 	struct iwl_rxq *def_rxq;
895 	struct iwl_rb_allocator *rba = &trans_pcie->rba;
896 	int i, err, queue_size, allocator_pool_size, num_alloc;
897 
898 	if (!trans_pcie->rxq) {
899 		err = iwl_pcie_rx_alloc(trans);
900 		if (err)
901 			return err;
902 	}
903 	def_rxq = trans_pcie->rxq;
904 
905 	cancel_work_sync(&rba->rx_alloc);
906 
907 	spin_lock(&rba->lock);
908 	atomic_set(&rba->req_pending, 0);
909 	atomic_set(&rba->req_ready, 0);
910 	INIT_LIST_HEAD(&rba->rbd_allocated);
911 	INIT_LIST_HEAD(&rba->rbd_empty);
912 	spin_unlock(&rba->lock);
913 
914 	/* free all first - we might be reconfigured for a different size */
915 	iwl_pcie_free_rbs_pool(trans);
916 
917 	for (i = 0; i < RX_QUEUE_SIZE; i++)
918 		def_rxq->queue[i] = NULL;
919 
920 	for (i = 0; i < trans->num_rx_queues; i++) {
921 		struct iwl_rxq *rxq = &trans_pcie->rxq[i];
922 
923 		rxq->id = i;
924 
925 		spin_lock(&rxq->lock);
926 		/*
927 		 * Set read write pointer to reflect that we have processed
928 		 * and used all buffers, but have not restocked the Rx queue
929 		 * with fresh buffers
930 		 */
931 		rxq->read = 0;
932 		rxq->write = 0;
933 		rxq->write_actual = 0;
934 		memset(rxq->rb_stts, 0, sizeof(*rxq->rb_stts));
935 
936 		iwl_pcie_rx_init_rxb_lists(rxq);
937 
938 		if (!rxq->napi.poll)
939 			netif_napi_add(&trans_pcie->napi_dev, &rxq->napi,
940 				       iwl_pcie_dummy_napi_poll, 64);
941 
942 		spin_unlock(&rxq->lock);
943 	}
944 
945 	/* move the pool to the default queue and allocator ownerships */
946 	queue_size = trans->cfg->mq_rx_supported ?
947 		     MQ_RX_NUM_RBDS : RX_QUEUE_SIZE;
948 	allocator_pool_size = trans->num_rx_queues *
949 		(RX_CLAIM_REQ_ALLOC - RX_POST_REQ_ALLOC);
950 	num_alloc = queue_size + allocator_pool_size;
951 	BUILD_BUG_ON(ARRAY_SIZE(trans_pcie->global_table) !=
952 		     ARRAY_SIZE(trans_pcie->rx_pool));
953 	for (i = 0; i < num_alloc; i++) {
954 		struct iwl_rx_mem_buffer *rxb = &trans_pcie->rx_pool[i];
955 
956 		if (i < allocator_pool_size)
957 			list_add(&rxb->list, &rba->rbd_empty);
958 		else
959 			list_add(&rxb->list, &def_rxq->rx_used);
960 		trans_pcie->global_table[i] = rxb;
961 		rxb->vid = (u16)(i + 1);
962 		rxb->invalid = true;
963 	}
964 
965 	iwl_pcie_rxq_alloc_rbs(trans, GFP_KERNEL, def_rxq);
966 
967 	return 0;
968 }
969 
970 int iwl_pcie_rx_init(struct iwl_trans *trans)
971 {
972 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
973 	int ret = _iwl_pcie_rx_init(trans);
974 
975 	if (ret)
976 		return ret;
977 
978 	if (trans->cfg->mq_rx_supported)
979 		iwl_pcie_rx_mq_hw_init(trans);
980 	else
981 		iwl_pcie_rx_hw_init(trans, trans_pcie->rxq);
982 
983 	iwl_pcie_rxq_restock(trans, trans_pcie->rxq);
984 
985 	spin_lock(&trans_pcie->rxq->lock);
986 	iwl_pcie_rxq_inc_wr_ptr(trans, trans_pcie->rxq);
987 	spin_unlock(&trans_pcie->rxq->lock);
988 
989 	return 0;
990 }
991 
992 int iwl_pcie_gen2_rx_init(struct iwl_trans *trans)
993 {
994 	/*
995 	 * We don't configure the RFH.
996 	 * Restock will be done at alive, after firmware configured the RFH.
997 	 */
998 	return _iwl_pcie_rx_init(trans);
999 }
1000 
1001 void iwl_pcie_rx_free(struct iwl_trans *trans)
1002 {
1003 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1004 	struct iwl_rb_allocator *rba = &trans_pcie->rba;
1005 	int free_size = trans->cfg->mq_rx_supported ? sizeof(__le64) :
1006 					      sizeof(__le32);
1007 	int i;
1008 
1009 	/*
1010 	 * if rxq is NULL, it means that nothing has been allocated,
1011 	 * exit now
1012 	 */
1013 	if (!trans_pcie->rxq) {
1014 		IWL_DEBUG_INFO(trans, "Free NULL rx context\n");
1015 		return;
1016 	}
1017 
1018 	cancel_work_sync(&rba->rx_alloc);
1019 
1020 	iwl_pcie_free_rbs_pool(trans);
1021 
1022 	for (i = 0; i < trans->num_rx_queues; i++) {
1023 		struct iwl_rxq *rxq = &trans_pcie->rxq[i];
1024 
1025 		if (rxq->bd)
1026 			dma_free_coherent(trans->dev,
1027 					  free_size * rxq->queue_size,
1028 					  rxq->bd, rxq->bd_dma);
1029 		rxq->bd_dma = 0;
1030 		rxq->bd = NULL;
1031 
1032 		if (rxq->rb_stts)
1033 			dma_free_coherent(trans->dev,
1034 					  sizeof(struct iwl_rb_status),
1035 					  rxq->rb_stts, rxq->rb_stts_dma);
1036 		else
1037 			IWL_DEBUG_INFO(trans,
1038 				       "Free rxq->rb_stts which is NULL\n");
1039 
1040 		if (rxq->used_bd)
1041 			dma_free_coherent(trans->dev,
1042 					  sizeof(__le32) * rxq->queue_size,
1043 					  rxq->used_bd, rxq->used_bd_dma);
1044 		rxq->used_bd_dma = 0;
1045 		rxq->used_bd = NULL;
1046 
1047 		if (rxq->napi.poll)
1048 			netif_napi_del(&rxq->napi);
1049 	}
1050 	kfree(trans_pcie->rxq);
1051 }
1052 
1053 /*
1054  * iwl_pcie_rx_reuse_rbd - Recycle used RBDs
1055  *
1056  * Called when a RBD can be reused. The RBD is transferred to the allocator.
1057  * When there are 2 empty RBDs - a request for allocation is posted
1058  */
1059 static void iwl_pcie_rx_reuse_rbd(struct iwl_trans *trans,
1060 				  struct iwl_rx_mem_buffer *rxb,
1061 				  struct iwl_rxq *rxq, bool emergency)
1062 {
1063 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1064 	struct iwl_rb_allocator *rba = &trans_pcie->rba;
1065 
1066 	/* Move the RBD to the used list, will be moved to allocator in batches
1067 	 * before claiming or posting a request*/
1068 	list_add_tail(&rxb->list, &rxq->rx_used);
1069 
1070 	if (unlikely(emergency))
1071 		return;
1072 
1073 	/* Count the allocator owned RBDs */
1074 	rxq->used_count++;
1075 
1076 	/* If we have RX_POST_REQ_ALLOC new released rx buffers -
1077 	 * issue a request for allocator. Modulo RX_CLAIM_REQ_ALLOC is
1078 	 * used for the case we failed to claim RX_CLAIM_REQ_ALLOC,
1079 	 * after but we still need to post another request.
1080 	 */
1081 	if ((rxq->used_count % RX_CLAIM_REQ_ALLOC) == RX_POST_REQ_ALLOC) {
1082 		/* Move the 2 RBDs to the allocator ownership.
1083 		 Allocator has another 6 from pool for the request completion*/
1084 		spin_lock(&rba->lock);
1085 		list_splice_tail_init(&rxq->rx_used, &rba->rbd_empty);
1086 		spin_unlock(&rba->lock);
1087 
1088 		atomic_inc(&rba->req_pending);
1089 		queue_work(rba->alloc_wq, &rba->rx_alloc);
1090 	}
1091 }
1092 
1093 static void iwl_pcie_rx_handle_rb(struct iwl_trans *trans,
1094 				struct iwl_rxq *rxq,
1095 				struct iwl_rx_mem_buffer *rxb,
1096 				bool emergency)
1097 {
1098 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1099 	struct iwl_txq *txq = trans_pcie->txq[trans_pcie->cmd_queue];
1100 	bool page_stolen = false;
1101 	int max_len = PAGE_SIZE << trans_pcie->rx_page_order;
1102 	u32 offset = 0;
1103 
1104 	if (WARN_ON(!rxb))
1105 		return;
1106 
1107 	dma_unmap_page(trans->dev, rxb->page_dma, max_len, DMA_FROM_DEVICE);
1108 
1109 	while (offset + sizeof(u32) + sizeof(struct iwl_cmd_header) < max_len) {
1110 		struct iwl_rx_packet *pkt;
1111 		u16 sequence;
1112 		bool reclaim;
1113 		int index, cmd_index, len;
1114 		struct iwl_rx_cmd_buffer rxcb = {
1115 			._offset = offset,
1116 			._rx_page_order = trans_pcie->rx_page_order,
1117 			._page = rxb->page,
1118 			._page_stolen = false,
1119 			.truesize = max_len,
1120 		};
1121 
1122 		pkt = rxb_addr(&rxcb);
1123 
1124 		if (pkt->len_n_flags == cpu_to_le32(FH_RSCSR_FRAME_INVALID)) {
1125 			IWL_DEBUG_RX(trans,
1126 				     "Q %d: RB end marker at offset %d\n",
1127 				     rxq->id, offset);
1128 			break;
1129 		}
1130 
1131 		WARN((le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_RXQ_MASK) >>
1132 			FH_RSCSR_RXQ_POS != rxq->id,
1133 		     "frame on invalid queue - is on %d and indicates %d\n",
1134 		     rxq->id,
1135 		     (le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_RXQ_MASK) >>
1136 			FH_RSCSR_RXQ_POS);
1137 
1138 		IWL_DEBUG_RX(trans,
1139 			     "Q %d: cmd at offset %d: %s (%.2x.%2x, seq 0x%x)\n",
1140 			     rxq->id, offset,
1141 			     iwl_get_cmd_string(trans,
1142 						iwl_cmd_id(pkt->hdr.cmd,
1143 							   pkt->hdr.group_id,
1144 							   0)),
1145 			     pkt->hdr.group_id, pkt->hdr.cmd,
1146 			     le16_to_cpu(pkt->hdr.sequence));
1147 
1148 		len = iwl_rx_packet_len(pkt);
1149 		len += sizeof(u32); /* account for status word */
1150 		trace_iwlwifi_dev_rx(trans->dev, trans, pkt, len);
1151 		trace_iwlwifi_dev_rx_data(trans->dev, trans, pkt, len);
1152 
1153 		/* Reclaim a command buffer only if this packet is a response
1154 		 *   to a (driver-originated) command.
1155 		 * If the packet (e.g. Rx frame) originated from uCode,
1156 		 *   there is no command buffer to reclaim.
1157 		 * Ucode should set SEQ_RX_FRAME bit if ucode-originated,
1158 		 *   but apparently a few don't get set; catch them here. */
1159 		reclaim = !(pkt->hdr.sequence & SEQ_RX_FRAME);
1160 		if (reclaim && !pkt->hdr.group_id) {
1161 			int i;
1162 
1163 			for (i = 0; i < trans_pcie->n_no_reclaim_cmds; i++) {
1164 				if (trans_pcie->no_reclaim_cmds[i] ==
1165 							pkt->hdr.cmd) {
1166 					reclaim = false;
1167 					break;
1168 				}
1169 			}
1170 		}
1171 
1172 		sequence = le16_to_cpu(pkt->hdr.sequence);
1173 		index = SEQ_TO_INDEX(sequence);
1174 		cmd_index = iwl_pcie_get_cmd_index(txq, index);
1175 
1176 		if (rxq->id == 0)
1177 			iwl_op_mode_rx(trans->op_mode, &rxq->napi,
1178 				       &rxcb);
1179 		else
1180 			iwl_op_mode_rx_rss(trans->op_mode, &rxq->napi,
1181 					   &rxcb, rxq->id);
1182 
1183 		if (reclaim) {
1184 			kzfree(txq->entries[cmd_index].free_buf);
1185 			txq->entries[cmd_index].free_buf = NULL;
1186 		}
1187 
1188 		/*
1189 		 * After here, we should always check rxcb._page_stolen,
1190 		 * if it is true then one of the handlers took the page.
1191 		 */
1192 
1193 		if (reclaim) {
1194 			/* Invoke any callbacks, transfer the buffer to caller,
1195 			 * and fire off the (possibly) blocking
1196 			 * iwl_trans_send_cmd()
1197 			 * as we reclaim the driver command queue */
1198 			if (!rxcb._page_stolen)
1199 				iwl_pcie_hcmd_complete(trans, &rxcb);
1200 			else
1201 				IWL_WARN(trans, "Claim null rxb?\n");
1202 		}
1203 
1204 		page_stolen |= rxcb._page_stolen;
1205 		offset += ALIGN(len, FH_RSCSR_FRAME_ALIGN);
1206 	}
1207 
1208 	/* page was stolen from us -- free our reference */
1209 	if (page_stolen) {
1210 		__free_pages(rxb->page, trans_pcie->rx_page_order);
1211 		rxb->page = NULL;
1212 	}
1213 
1214 	/* Reuse the page if possible. For notification packets and
1215 	 * SKBs that fail to Rx correctly, add them back into the
1216 	 * rx_free list for reuse later. */
1217 	if (rxb->page != NULL) {
1218 		rxb->page_dma =
1219 			dma_map_page(trans->dev, rxb->page, 0,
1220 				     PAGE_SIZE << trans_pcie->rx_page_order,
1221 				     DMA_FROM_DEVICE);
1222 		if (dma_mapping_error(trans->dev, rxb->page_dma)) {
1223 			/*
1224 			 * free the page(s) as well to not break
1225 			 * the invariant that the items on the used
1226 			 * list have no page(s)
1227 			 */
1228 			__free_pages(rxb->page, trans_pcie->rx_page_order);
1229 			rxb->page = NULL;
1230 			iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency);
1231 		} else {
1232 			list_add_tail(&rxb->list, &rxq->rx_free);
1233 			rxq->free_count++;
1234 		}
1235 	} else
1236 		iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency);
1237 }
1238 
1239 /*
1240  * iwl_pcie_rx_handle - Main entry function for receiving responses from fw
1241  */
1242 static void iwl_pcie_rx_handle(struct iwl_trans *trans, int queue)
1243 {
1244 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1245 	struct iwl_rxq *rxq = &trans_pcie->rxq[queue];
1246 	u32 r, i, count = 0;
1247 	bool emergency = false;
1248 
1249 restart:
1250 	spin_lock(&rxq->lock);
1251 	/* uCode's read index (stored in shared DRAM) indicates the last Rx
1252 	 * buffer that the driver may process (last buffer filled by ucode). */
1253 	r = le16_to_cpu(READ_ONCE(rxq->rb_stts->closed_rb_num)) & 0x0FFF;
1254 	i = rxq->read;
1255 
1256 	/* W/A 9000 device step A0 wrap-around bug */
1257 	r &= (rxq->queue_size - 1);
1258 
1259 	/* Rx interrupt, but nothing sent from uCode */
1260 	if (i == r)
1261 		IWL_DEBUG_RX(trans, "Q %d: HW = SW = %d\n", rxq->id, r);
1262 
1263 	while (i != r) {
1264 		struct iwl_rx_mem_buffer *rxb;
1265 
1266 		if (unlikely(rxq->used_count == rxq->queue_size / 2))
1267 			emergency = true;
1268 
1269 		if (trans->cfg->mq_rx_supported) {
1270 			/*
1271 			 * used_bd is a 32 bit but only 12 are used to retrieve
1272 			 * the vid
1273 			 */
1274 			u16 vid = le32_to_cpu(rxq->used_bd[i]) & 0x0FFF;
1275 
1276 			if (WARN(!vid ||
1277 				 vid > ARRAY_SIZE(trans_pcie->global_table),
1278 				 "Invalid rxb index from HW %u\n", (u32)vid)) {
1279 				iwl_force_nmi(trans);
1280 				goto out;
1281 			}
1282 			rxb = trans_pcie->global_table[vid - 1];
1283 			if (WARN(rxb->invalid,
1284 				 "Invalid rxb from HW %u\n", (u32)vid)) {
1285 				iwl_force_nmi(trans);
1286 				goto out;
1287 			}
1288 			rxb->invalid = true;
1289 		} else {
1290 			rxb = rxq->queue[i];
1291 			rxq->queue[i] = NULL;
1292 		}
1293 
1294 		IWL_DEBUG_RX(trans, "Q %d: HW = %d, SW = %d\n", rxq->id, r, i);
1295 		iwl_pcie_rx_handle_rb(trans, rxq, rxb, emergency);
1296 
1297 		i = (i + 1) & (rxq->queue_size - 1);
1298 
1299 		/*
1300 		 * If we have RX_CLAIM_REQ_ALLOC released rx buffers -
1301 		 * try to claim the pre-allocated buffers from the allocator.
1302 		 * If not ready - will try to reclaim next time.
1303 		 * There is no need to reschedule work - allocator exits only
1304 		 * on success
1305 		 */
1306 		if (rxq->used_count >= RX_CLAIM_REQ_ALLOC)
1307 			iwl_pcie_rx_allocator_get(trans, rxq);
1308 
1309 		if (rxq->used_count % RX_CLAIM_REQ_ALLOC == 0 && !emergency) {
1310 			struct iwl_rb_allocator *rba = &trans_pcie->rba;
1311 
1312 			/* Add the remaining empty RBDs for allocator use */
1313 			spin_lock(&rba->lock);
1314 			list_splice_tail_init(&rxq->rx_used, &rba->rbd_empty);
1315 			spin_unlock(&rba->lock);
1316 		} else if (emergency) {
1317 			count++;
1318 			if (count == 8) {
1319 				count = 0;
1320 				if (rxq->used_count < rxq->queue_size / 3)
1321 					emergency = false;
1322 
1323 				rxq->read = i;
1324 				spin_unlock(&rxq->lock);
1325 				iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq);
1326 				iwl_pcie_rxq_restock(trans, rxq);
1327 				goto restart;
1328 			}
1329 		}
1330 	}
1331 out:
1332 	/* Backtrack one entry */
1333 	rxq->read = i;
1334 	spin_unlock(&rxq->lock);
1335 
1336 	/*
1337 	 * handle a case where in emergency there are some unallocated RBDs.
1338 	 * those RBDs are in the used list, but are not tracked by the queue's
1339 	 * used_count which counts allocator owned RBDs.
1340 	 * unallocated emergency RBDs must be allocated on exit, otherwise
1341 	 * when called again the function may not be in emergency mode and
1342 	 * they will be handed to the allocator with no tracking in the RBD
1343 	 * allocator counters, which will lead to them never being claimed back
1344 	 * by the queue.
1345 	 * by allocating them here, they are now in the queue free list, and
1346 	 * will be restocked by the next call of iwl_pcie_rxq_restock.
1347 	 */
1348 	if (unlikely(emergency && count))
1349 		iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq);
1350 
1351 	if (rxq->napi.poll)
1352 		napi_gro_flush(&rxq->napi, false);
1353 
1354 	iwl_pcie_rxq_restock(trans, rxq);
1355 }
1356 
1357 static struct iwl_trans_pcie *iwl_pcie_get_trans_pcie(struct msix_entry *entry)
1358 {
1359 	u8 queue = entry->entry;
1360 	struct msix_entry *entries = entry - queue;
1361 
1362 	return container_of(entries, struct iwl_trans_pcie, msix_entries[0]);
1363 }
1364 
1365 static inline void iwl_pcie_clear_irq(struct iwl_trans *trans,
1366 				      struct msix_entry *entry)
1367 {
1368 	/*
1369 	 * Before sending the interrupt the HW disables it to prevent
1370 	 * a nested interrupt. This is done by writing 1 to the corresponding
1371 	 * bit in the mask register. After handling the interrupt, it should be
1372 	 * re-enabled by clearing this bit. This register is defined as
1373 	 * write 1 clear (W1C) register, meaning that it's being clear
1374 	 * by writing 1 to the bit.
1375 	 */
1376 	iwl_write32(trans, CSR_MSIX_AUTOMASK_ST_AD, BIT(entry->entry));
1377 }
1378 
1379 /*
1380  * iwl_pcie_rx_msix_handle - Main entry function for receiving responses from fw
1381  * This interrupt handler should be used with RSS queue only.
1382  */
1383 irqreturn_t iwl_pcie_irq_rx_msix_handler(int irq, void *dev_id)
1384 {
1385 	struct msix_entry *entry = dev_id;
1386 	struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry);
1387 	struct iwl_trans *trans = trans_pcie->trans;
1388 
1389 	trace_iwlwifi_dev_irq_msix(trans->dev, entry, false, 0, 0);
1390 
1391 	if (WARN_ON(entry->entry >= trans->num_rx_queues))
1392 		return IRQ_NONE;
1393 
1394 	lock_map_acquire(&trans->sync_cmd_lockdep_map);
1395 
1396 	local_bh_disable();
1397 	iwl_pcie_rx_handle(trans, entry->entry);
1398 	local_bh_enable();
1399 
1400 	iwl_pcie_clear_irq(trans, entry);
1401 
1402 	lock_map_release(&trans->sync_cmd_lockdep_map);
1403 
1404 	return IRQ_HANDLED;
1405 }
1406 
1407 /*
1408  * iwl_pcie_irq_handle_error - called for HW or SW error interrupt from card
1409  */
1410 static void iwl_pcie_irq_handle_error(struct iwl_trans *trans)
1411 {
1412 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1413 	int i;
1414 
1415 	/* W/A for WiFi/WiMAX coex and WiMAX own the RF */
1416 	if (trans->cfg->internal_wimax_coex &&
1417 	    !trans->cfg->apmg_not_supported &&
1418 	    (!(iwl_read_prph(trans, APMG_CLK_CTRL_REG) &
1419 			     APMS_CLK_VAL_MRB_FUNC_MODE) ||
1420 	     (iwl_read_prph(trans, APMG_PS_CTRL_REG) &
1421 			    APMG_PS_CTRL_VAL_RESET_REQ))) {
1422 		clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
1423 		iwl_op_mode_wimax_active(trans->op_mode);
1424 		wake_up(&trans_pcie->wait_command_queue);
1425 		return;
1426 	}
1427 
1428 	for (i = 0; i < trans->cfg->base_params->num_of_queues; i++) {
1429 		if (!trans_pcie->txq[i])
1430 			continue;
1431 		del_timer(&trans_pcie->txq[i]->stuck_timer);
1432 	}
1433 
1434 	/* The STATUS_FW_ERROR bit is set in this function. This must happen
1435 	 * before we wake up the command caller, to ensure a proper cleanup. */
1436 	iwl_trans_fw_error(trans);
1437 
1438 	clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
1439 	wake_up(&trans_pcie->wait_command_queue);
1440 }
1441 
1442 static u32 iwl_pcie_int_cause_non_ict(struct iwl_trans *trans)
1443 {
1444 	u32 inta;
1445 
1446 	lockdep_assert_held(&IWL_TRANS_GET_PCIE_TRANS(trans)->irq_lock);
1447 
1448 	trace_iwlwifi_dev_irq(trans->dev);
1449 
1450 	/* Discover which interrupts are active/pending */
1451 	inta = iwl_read32(trans, CSR_INT);
1452 
1453 	/* the thread will service interrupts and re-enable them */
1454 	return inta;
1455 }
1456 
1457 /* a device (PCI-E) page is 4096 bytes long */
1458 #define ICT_SHIFT	12
1459 #define ICT_SIZE	(1 << ICT_SHIFT)
1460 #define ICT_COUNT	(ICT_SIZE / sizeof(u32))
1461 
1462 /* interrupt handler using ict table, with this interrupt driver will
1463  * stop using INTA register to get device's interrupt, reading this register
1464  * is expensive, device will write interrupts in ICT dram table, increment
1465  * index then will fire interrupt to driver, driver will OR all ICT table
1466  * entries from current index up to table entry with 0 value. the result is
1467  * the interrupt we need to service, driver will set the entries back to 0 and
1468  * set index.
1469  */
1470 static u32 iwl_pcie_int_cause_ict(struct iwl_trans *trans)
1471 {
1472 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1473 	u32 inta;
1474 	u32 val = 0;
1475 	u32 read;
1476 
1477 	trace_iwlwifi_dev_irq(trans->dev);
1478 
1479 	/* Ignore interrupt if there's nothing in NIC to service.
1480 	 * This may be due to IRQ shared with another device,
1481 	 * or due to sporadic interrupts thrown from our NIC. */
1482 	read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
1483 	trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index, read);
1484 	if (!read)
1485 		return 0;
1486 
1487 	/*
1488 	 * Collect all entries up to the first 0, starting from ict_index;
1489 	 * note we already read at ict_index.
1490 	 */
1491 	do {
1492 		val |= read;
1493 		IWL_DEBUG_ISR(trans, "ICT index %d value 0x%08X\n",
1494 				trans_pcie->ict_index, read);
1495 		trans_pcie->ict_tbl[trans_pcie->ict_index] = 0;
1496 		trans_pcie->ict_index =
1497 			((trans_pcie->ict_index + 1) & (ICT_COUNT - 1));
1498 
1499 		read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
1500 		trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index,
1501 					   read);
1502 	} while (read);
1503 
1504 	/* We should not get this value, just ignore it. */
1505 	if (val == 0xffffffff)
1506 		val = 0;
1507 
1508 	/*
1509 	 * this is a w/a for a h/w bug. the h/w bug may cause the Rx bit
1510 	 * (bit 15 before shifting it to 31) to clear when using interrupt
1511 	 * coalescing. fortunately, bits 18 and 19 stay set when this happens
1512 	 * so we use them to decide on the real state of the Rx bit.
1513 	 * In order words, bit 15 is set if bit 18 or bit 19 are set.
1514 	 */
1515 	if (val & 0xC0000)
1516 		val |= 0x8000;
1517 
1518 	inta = (0xff & val) | ((0xff00 & val) << 16);
1519 	return inta;
1520 }
1521 
1522 void iwl_pcie_handle_rfkill_irq(struct iwl_trans *trans)
1523 {
1524 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1525 	struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
1526 	bool hw_rfkill, prev, report;
1527 
1528 	mutex_lock(&trans_pcie->mutex);
1529 	prev = test_bit(STATUS_RFKILL_OPMODE, &trans->status);
1530 	hw_rfkill = iwl_is_rfkill_set(trans);
1531 	if (hw_rfkill) {
1532 		set_bit(STATUS_RFKILL_OPMODE, &trans->status);
1533 		set_bit(STATUS_RFKILL_HW, &trans->status);
1534 	}
1535 	if (trans_pcie->opmode_down)
1536 		report = hw_rfkill;
1537 	else
1538 		report = test_bit(STATUS_RFKILL_OPMODE, &trans->status);
1539 
1540 	IWL_WARN(trans, "RF_KILL bit toggled to %s.\n",
1541 		 hw_rfkill ? "disable radio" : "enable radio");
1542 
1543 	isr_stats->rfkill++;
1544 
1545 	if (prev != report)
1546 		iwl_trans_pcie_rf_kill(trans, report);
1547 	mutex_unlock(&trans_pcie->mutex);
1548 
1549 	if (hw_rfkill) {
1550 		if (test_and_clear_bit(STATUS_SYNC_HCMD_ACTIVE,
1551 				       &trans->status))
1552 			IWL_DEBUG_RF_KILL(trans,
1553 					  "Rfkill while SYNC HCMD in flight\n");
1554 		wake_up(&trans_pcie->wait_command_queue);
1555 	} else {
1556 		clear_bit(STATUS_RFKILL_HW, &trans->status);
1557 		if (trans_pcie->opmode_down)
1558 			clear_bit(STATUS_RFKILL_OPMODE, &trans->status);
1559 	}
1560 }
1561 
1562 irqreturn_t iwl_pcie_irq_handler(int irq, void *dev_id)
1563 {
1564 	struct iwl_trans *trans = dev_id;
1565 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1566 	struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
1567 	u32 inta = 0;
1568 	u32 handled = 0;
1569 
1570 	lock_map_acquire(&trans->sync_cmd_lockdep_map);
1571 
1572 	spin_lock(&trans_pcie->irq_lock);
1573 
1574 	/* dram interrupt table not set yet,
1575 	 * use legacy interrupt.
1576 	 */
1577 	if (likely(trans_pcie->use_ict))
1578 		inta = iwl_pcie_int_cause_ict(trans);
1579 	else
1580 		inta = iwl_pcie_int_cause_non_ict(trans);
1581 
1582 	if (iwl_have_debug_level(IWL_DL_ISR)) {
1583 		IWL_DEBUG_ISR(trans,
1584 			      "ISR inta 0x%08x, enabled 0x%08x(sw), enabled(hw) 0x%08x, fh 0x%08x\n",
1585 			      inta, trans_pcie->inta_mask,
1586 			      iwl_read32(trans, CSR_INT_MASK),
1587 			      iwl_read32(trans, CSR_FH_INT_STATUS));
1588 		if (inta & (~trans_pcie->inta_mask))
1589 			IWL_DEBUG_ISR(trans,
1590 				      "We got a masked interrupt (0x%08x)\n",
1591 				      inta & (~trans_pcie->inta_mask));
1592 	}
1593 
1594 	inta &= trans_pcie->inta_mask;
1595 
1596 	/*
1597 	 * Ignore interrupt if there's nothing in NIC to service.
1598 	 * This may be due to IRQ shared with another device,
1599 	 * or due to sporadic interrupts thrown from our NIC.
1600 	 */
1601 	if (unlikely(!inta)) {
1602 		IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
1603 		/*
1604 		 * Re-enable interrupts here since we don't
1605 		 * have anything to service
1606 		 */
1607 		if (test_bit(STATUS_INT_ENABLED, &trans->status))
1608 			_iwl_enable_interrupts(trans);
1609 		spin_unlock(&trans_pcie->irq_lock);
1610 		lock_map_release(&trans->sync_cmd_lockdep_map);
1611 		return IRQ_NONE;
1612 	}
1613 
1614 	if (unlikely(inta == 0xFFFFFFFF || (inta & 0xFFFFFFF0) == 0xa5a5a5a0)) {
1615 		/*
1616 		 * Hardware disappeared. It might have
1617 		 * already raised an interrupt.
1618 		 */
1619 		IWL_WARN(trans, "HARDWARE GONE?? INTA == 0x%08x\n", inta);
1620 		spin_unlock(&trans_pcie->irq_lock);
1621 		goto out;
1622 	}
1623 
1624 	/* Ack/clear/reset pending uCode interrupts.
1625 	 * Note:  Some bits in CSR_INT are "OR" of bits in CSR_FH_INT_STATUS,
1626 	 */
1627 	/* There is a hardware bug in the interrupt mask function that some
1628 	 * interrupts (i.e. CSR_INT_BIT_SCD) can still be generated even if
1629 	 * they are disabled in the CSR_INT_MASK register. Furthermore the
1630 	 * ICT interrupt handling mechanism has another bug that might cause
1631 	 * these unmasked interrupts fail to be detected. We workaround the
1632 	 * hardware bugs here by ACKing all the possible interrupts so that
1633 	 * interrupt coalescing can still be achieved.
1634 	 */
1635 	iwl_write32(trans, CSR_INT, inta | ~trans_pcie->inta_mask);
1636 
1637 	if (iwl_have_debug_level(IWL_DL_ISR))
1638 		IWL_DEBUG_ISR(trans, "inta 0x%08x, enabled 0x%08x\n",
1639 			      inta, iwl_read32(trans, CSR_INT_MASK));
1640 
1641 	spin_unlock(&trans_pcie->irq_lock);
1642 
1643 	/* Now service all interrupt bits discovered above. */
1644 	if (inta & CSR_INT_BIT_HW_ERR) {
1645 		IWL_ERR(trans, "Hardware error detected.  Restarting.\n");
1646 
1647 		/* Tell the device to stop sending interrupts */
1648 		iwl_disable_interrupts(trans);
1649 
1650 		isr_stats->hw++;
1651 		iwl_pcie_irq_handle_error(trans);
1652 
1653 		handled |= CSR_INT_BIT_HW_ERR;
1654 
1655 		goto out;
1656 	}
1657 
1658 	if (iwl_have_debug_level(IWL_DL_ISR)) {
1659 		/* NIC fires this, but we don't use it, redundant with WAKEUP */
1660 		if (inta & CSR_INT_BIT_SCD) {
1661 			IWL_DEBUG_ISR(trans,
1662 				      "Scheduler finished to transmit the frame/frames.\n");
1663 			isr_stats->sch++;
1664 		}
1665 
1666 		/* Alive notification via Rx interrupt will do the real work */
1667 		if (inta & CSR_INT_BIT_ALIVE) {
1668 			IWL_DEBUG_ISR(trans, "Alive interrupt\n");
1669 			isr_stats->alive++;
1670 			if (trans->cfg->gen2) {
1671 				/*
1672 				 * We can restock, since firmware configured
1673 				 * the RFH
1674 				 */
1675 				iwl_pcie_rxmq_restock(trans, trans_pcie->rxq);
1676 			}
1677 		}
1678 	}
1679 
1680 	/* Safely ignore these bits for debug checks below */
1681 	inta &= ~(CSR_INT_BIT_SCD | CSR_INT_BIT_ALIVE);
1682 
1683 	/* HW RF KILL switch toggled */
1684 	if (inta & CSR_INT_BIT_RF_KILL) {
1685 		iwl_pcie_handle_rfkill_irq(trans);
1686 		handled |= CSR_INT_BIT_RF_KILL;
1687 	}
1688 
1689 	/* Chip got too hot and stopped itself */
1690 	if (inta & CSR_INT_BIT_CT_KILL) {
1691 		IWL_ERR(trans, "Microcode CT kill error detected.\n");
1692 		isr_stats->ctkill++;
1693 		handled |= CSR_INT_BIT_CT_KILL;
1694 	}
1695 
1696 	/* Error detected by uCode */
1697 	if (inta & CSR_INT_BIT_SW_ERR) {
1698 		IWL_ERR(trans, "Microcode SW error detected. "
1699 			" Restarting 0x%X.\n", inta);
1700 		isr_stats->sw++;
1701 		iwl_pcie_irq_handle_error(trans);
1702 		handled |= CSR_INT_BIT_SW_ERR;
1703 	}
1704 
1705 	/* uCode wakes up after power-down sleep */
1706 	if (inta & CSR_INT_BIT_WAKEUP) {
1707 		IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
1708 		iwl_pcie_rxq_check_wrptr(trans);
1709 		iwl_pcie_txq_check_wrptrs(trans);
1710 
1711 		isr_stats->wakeup++;
1712 
1713 		handled |= CSR_INT_BIT_WAKEUP;
1714 	}
1715 
1716 	/* All uCode command responses, including Tx command responses,
1717 	 * Rx "responses" (frame-received notification), and other
1718 	 * notifications from uCode come through here*/
1719 	if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX |
1720 		    CSR_INT_BIT_RX_PERIODIC)) {
1721 		IWL_DEBUG_ISR(trans, "Rx interrupt\n");
1722 		if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX)) {
1723 			handled |= (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX);
1724 			iwl_write32(trans, CSR_FH_INT_STATUS,
1725 					CSR_FH_INT_RX_MASK);
1726 		}
1727 		if (inta & CSR_INT_BIT_RX_PERIODIC) {
1728 			handled |= CSR_INT_BIT_RX_PERIODIC;
1729 			iwl_write32(trans,
1730 				CSR_INT, CSR_INT_BIT_RX_PERIODIC);
1731 		}
1732 		/* Sending RX interrupt require many steps to be done in the
1733 		 * the device:
1734 		 * 1- write interrupt to current index in ICT table.
1735 		 * 2- dma RX frame.
1736 		 * 3- update RX shared data to indicate last write index.
1737 		 * 4- send interrupt.
1738 		 * This could lead to RX race, driver could receive RX interrupt
1739 		 * but the shared data changes does not reflect this;
1740 		 * periodic interrupt will detect any dangling Rx activity.
1741 		 */
1742 
1743 		/* Disable periodic interrupt; we use it as just a one-shot. */
1744 		iwl_write8(trans, CSR_INT_PERIODIC_REG,
1745 			    CSR_INT_PERIODIC_DIS);
1746 
1747 		/*
1748 		 * Enable periodic interrupt in 8 msec only if we received
1749 		 * real RX interrupt (instead of just periodic int), to catch
1750 		 * any dangling Rx interrupt.  If it was just the periodic
1751 		 * interrupt, there was no dangling Rx activity, and no need
1752 		 * to extend the periodic interrupt; one-shot is enough.
1753 		 */
1754 		if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX))
1755 			iwl_write8(trans, CSR_INT_PERIODIC_REG,
1756 				   CSR_INT_PERIODIC_ENA);
1757 
1758 		isr_stats->rx++;
1759 
1760 		local_bh_disable();
1761 		iwl_pcie_rx_handle(trans, 0);
1762 		local_bh_enable();
1763 	}
1764 
1765 	/* This "Tx" DMA channel is used only for loading uCode */
1766 	if (inta & CSR_INT_BIT_FH_TX) {
1767 		iwl_write32(trans, CSR_FH_INT_STATUS, CSR_FH_INT_TX_MASK);
1768 		IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
1769 		isr_stats->tx++;
1770 		handled |= CSR_INT_BIT_FH_TX;
1771 		/* Wake up uCode load routine, now that load is complete */
1772 		trans_pcie->ucode_write_complete = true;
1773 		wake_up(&trans_pcie->ucode_write_waitq);
1774 	}
1775 
1776 	if (inta & ~handled) {
1777 		IWL_ERR(trans, "Unhandled INTA bits 0x%08x\n", inta & ~handled);
1778 		isr_stats->unhandled++;
1779 	}
1780 
1781 	if (inta & ~(trans_pcie->inta_mask)) {
1782 		IWL_WARN(trans, "Disabled INTA bits 0x%08x were pending\n",
1783 			 inta & ~trans_pcie->inta_mask);
1784 	}
1785 
1786 	spin_lock(&trans_pcie->irq_lock);
1787 	/* only Re-enable all interrupt if disabled by irq */
1788 	if (test_bit(STATUS_INT_ENABLED, &trans->status))
1789 		_iwl_enable_interrupts(trans);
1790 	/* we are loading the firmware, enable FH_TX interrupt only */
1791 	else if (handled & CSR_INT_BIT_FH_TX)
1792 		iwl_enable_fw_load_int(trans);
1793 	/* Re-enable RF_KILL if it occurred */
1794 	else if (handled & CSR_INT_BIT_RF_KILL)
1795 		iwl_enable_rfkill_int(trans);
1796 	spin_unlock(&trans_pcie->irq_lock);
1797 
1798 out:
1799 	lock_map_release(&trans->sync_cmd_lockdep_map);
1800 	return IRQ_HANDLED;
1801 }
1802 
1803 /******************************************************************************
1804  *
1805  * ICT functions
1806  *
1807  ******************************************************************************/
1808 
1809 /* Free dram table */
1810 void iwl_pcie_free_ict(struct iwl_trans *trans)
1811 {
1812 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1813 
1814 	if (trans_pcie->ict_tbl) {
1815 		dma_free_coherent(trans->dev, ICT_SIZE,
1816 				  trans_pcie->ict_tbl,
1817 				  trans_pcie->ict_tbl_dma);
1818 		trans_pcie->ict_tbl = NULL;
1819 		trans_pcie->ict_tbl_dma = 0;
1820 	}
1821 }
1822 
1823 /*
1824  * allocate dram shared table, it is an aligned memory
1825  * block of ICT_SIZE.
1826  * also reset all data related to ICT table interrupt.
1827  */
1828 int iwl_pcie_alloc_ict(struct iwl_trans *trans)
1829 {
1830 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1831 
1832 	trans_pcie->ict_tbl =
1833 		dma_zalloc_coherent(trans->dev, ICT_SIZE,
1834 				   &trans_pcie->ict_tbl_dma,
1835 				   GFP_KERNEL);
1836 	if (!trans_pcie->ict_tbl)
1837 		return -ENOMEM;
1838 
1839 	/* just an API sanity check ... it is guaranteed to be aligned */
1840 	if (WARN_ON(trans_pcie->ict_tbl_dma & (ICT_SIZE - 1))) {
1841 		iwl_pcie_free_ict(trans);
1842 		return -EINVAL;
1843 	}
1844 
1845 	return 0;
1846 }
1847 
1848 /* Device is going up inform it about using ICT interrupt table,
1849  * also we need to tell the driver to start using ICT interrupt.
1850  */
1851 void iwl_pcie_reset_ict(struct iwl_trans *trans)
1852 {
1853 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1854 	u32 val;
1855 
1856 	if (!trans_pcie->ict_tbl)
1857 		return;
1858 
1859 	spin_lock(&trans_pcie->irq_lock);
1860 	_iwl_disable_interrupts(trans);
1861 
1862 	memset(trans_pcie->ict_tbl, 0, ICT_SIZE);
1863 
1864 	val = trans_pcie->ict_tbl_dma >> ICT_SHIFT;
1865 
1866 	val |= CSR_DRAM_INT_TBL_ENABLE |
1867 	       CSR_DRAM_INIT_TBL_WRAP_CHECK |
1868 	       CSR_DRAM_INIT_TBL_WRITE_POINTER;
1869 
1870 	IWL_DEBUG_ISR(trans, "CSR_DRAM_INT_TBL_REG =0x%x\n", val);
1871 
1872 	iwl_write32(trans, CSR_DRAM_INT_TBL_REG, val);
1873 	trans_pcie->use_ict = true;
1874 	trans_pcie->ict_index = 0;
1875 	iwl_write32(trans, CSR_INT, trans_pcie->inta_mask);
1876 	_iwl_enable_interrupts(trans);
1877 	spin_unlock(&trans_pcie->irq_lock);
1878 }
1879 
1880 /* Device is going down disable ict interrupt usage */
1881 void iwl_pcie_disable_ict(struct iwl_trans *trans)
1882 {
1883 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1884 
1885 	spin_lock(&trans_pcie->irq_lock);
1886 	trans_pcie->use_ict = false;
1887 	spin_unlock(&trans_pcie->irq_lock);
1888 }
1889 
1890 irqreturn_t iwl_pcie_isr(int irq, void *data)
1891 {
1892 	struct iwl_trans *trans = data;
1893 
1894 	if (!trans)
1895 		return IRQ_NONE;
1896 
1897 	/* Disable (but don't clear!) interrupts here to avoid
1898 	 * back-to-back ISRs and sporadic interrupts from our NIC.
1899 	 * If we have something to service, the tasklet will re-enable ints.
1900 	 * If we *don't* have something, we'll re-enable before leaving here.
1901 	 */
1902 	iwl_write32(trans, CSR_INT_MASK, 0x00000000);
1903 
1904 	return IRQ_WAKE_THREAD;
1905 }
1906 
1907 irqreturn_t iwl_pcie_msix_isr(int irq, void *data)
1908 {
1909 	return IRQ_WAKE_THREAD;
1910 }
1911 
1912 irqreturn_t iwl_pcie_irq_msix_handler(int irq, void *dev_id)
1913 {
1914 	struct msix_entry *entry = dev_id;
1915 	struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry);
1916 	struct iwl_trans *trans = trans_pcie->trans;
1917 	struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
1918 	u32 inta_fh, inta_hw;
1919 
1920 	lock_map_acquire(&trans->sync_cmd_lockdep_map);
1921 
1922 	spin_lock(&trans_pcie->irq_lock);
1923 	inta_fh = iwl_read32(trans, CSR_MSIX_FH_INT_CAUSES_AD);
1924 	inta_hw = iwl_read32(trans, CSR_MSIX_HW_INT_CAUSES_AD);
1925 	/*
1926 	 * Clear causes registers to avoid being handling the same cause.
1927 	 */
1928 	iwl_write32(trans, CSR_MSIX_FH_INT_CAUSES_AD, inta_fh);
1929 	iwl_write32(trans, CSR_MSIX_HW_INT_CAUSES_AD, inta_hw);
1930 	spin_unlock(&trans_pcie->irq_lock);
1931 
1932 	trace_iwlwifi_dev_irq_msix(trans->dev, entry, true, inta_fh, inta_hw);
1933 
1934 	if (unlikely(!(inta_fh | inta_hw))) {
1935 		IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
1936 		lock_map_release(&trans->sync_cmd_lockdep_map);
1937 		return IRQ_NONE;
1938 	}
1939 
1940 	if (iwl_have_debug_level(IWL_DL_ISR))
1941 		IWL_DEBUG_ISR(trans, "ISR inta_fh 0x%08x, enabled 0x%08x\n",
1942 			      inta_fh,
1943 			      iwl_read32(trans, CSR_MSIX_FH_INT_MASK_AD));
1944 
1945 	if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_NON_RX) &&
1946 	    inta_fh & MSIX_FH_INT_CAUSES_Q0) {
1947 		local_bh_disable();
1948 		iwl_pcie_rx_handle(trans, 0);
1949 		local_bh_enable();
1950 	}
1951 
1952 	if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS) &&
1953 	    inta_fh & MSIX_FH_INT_CAUSES_Q1) {
1954 		local_bh_disable();
1955 		iwl_pcie_rx_handle(trans, 1);
1956 		local_bh_enable();
1957 	}
1958 
1959 	/* This "Tx" DMA channel is used only for loading uCode */
1960 	if (inta_fh & MSIX_FH_INT_CAUSES_D2S_CH0_NUM) {
1961 		IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
1962 		isr_stats->tx++;
1963 		/*
1964 		 * Wake up uCode load routine,
1965 		 * now that load is complete
1966 		 */
1967 		trans_pcie->ucode_write_complete = true;
1968 		wake_up(&trans_pcie->ucode_write_waitq);
1969 	}
1970 
1971 	/* Error detected by uCode */
1972 	if ((inta_fh & MSIX_FH_INT_CAUSES_FH_ERR) ||
1973 	    (inta_hw & MSIX_HW_INT_CAUSES_REG_SW_ERR)) {
1974 		IWL_ERR(trans,
1975 			"Microcode SW error detected. Restarting 0x%X.\n",
1976 			inta_fh);
1977 		isr_stats->sw++;
1978 		iwl_pcie_irq_handle_error(trans);
1979 	}
1980 
1981 	/* After checking FH register check HW register */
1982 	if (iwl_have_debug_level(IWL_DL_ISR))
1983 		IWL_DEBUG_ISR(trans,
1984 			      "ISR inta_hw 0x%08x, enabled 0x%08x\n",
1985 			      inta_hw,
1986 			      iwl_read32(trans, CSR_MSIX_HW_INT_MASK_AD));
1987 
1988 	/* Alive notification via Rx interrupt will do the real work */
1989 	if (inta_hw & MSIX_HW_INT_CAUSES_REG_ALIVE) {
1990 		IWL_DEBUG_ISR(trans, "Alive interrupt\n");
1991 		isr_stats->alive++;
1992 		if (trans->cfg->gen2) {
1993 			/* We can restock, since firmware configured the RFH */
1994 			iwl_pcie_rxmq_restock(trans, trans_pcie->rxq);
1995 		}
1996 	}
1997 
1998 	/* uCode wakes up after power-down sleep */
1999 	if (inta_hw & MSIX_HW_INT_CAUSES_REG_WAKEUP) {
2000 		IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
2001 		iwl_pcie_rxq_check_wrptr(trans);
2002 		iwl_pcie_txq_check_wrptrs(trans);
2003 
2004 		isr_stats->wakeup++;
2005 	}
2006 
2007 	/* Chip got too hot and stopped itself */
2008 	if (inta_hw & MSIX_HW_INT_CAUSES_REG_CT_KILL) {
2009 		IWL_ERR(trans, "Microcode CT kill error detected.\n");
2010 		isr_stats->ctkill++;
2011 	}
2012 
2013 	/* HW RF KILL switch toggled */
2014 	if (inta_hw & MSIX_HW_INT_CAUSES_REG_RF_KILL)
2015 		iwl_pcie_handle_rfkill_irq(trans);
2016 
2017 	if (inta_hw & MSIX_HW_INT_CAUSES_REG_HW_ERR) {
2018 		IWL_ERR(trans,
2019 			"Hardware error detected. Restarting.\n");
2020 
2021 		isr_stats->hw++;
2022 		iwl_pcie_irq_handle_error(trans);
2023 	}
2024 
2025 	iwl_pcie_clear_irq(trans, entry);
2026 
2027 	lock_map_release(&trans->sync_cmd_lockdep_map);
2028 
2029 	return IRQ_HANDLED;
2030 }
2031