1 /****************************************************************************** 2 * 3 * This file is provided under a dual BSD/GPLv2 license. When using or 4 * redistributing this file, you may do so under either license. 5 * 6 * GPL LICENSE SUMMARY 7 * 8 * Copyright(c) 2003 - 2014 Intel Corporation. All rights reserved. 9 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH 10 * Copyright(c) 2016 - 2017 Intel Deutschland GmbH 11 * Copyright(c) 2018 - 2019 Intel Corporation 12 * 13 * This program is free software; you can redistribute it and/or modify it 14 * under the terms of version 2 of the GNU General Public License as 15 * published by the Free Software Foundation. 16 * 17 * This program is distributed in the hope that it will be useful, but WITHOUT 18 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 19 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 20 * more details. 21 * 22 * The full GNU General Public License is included in this distribution in the 23 * file called COPYING. 24 * 25 * Contact Information: 26 * Intel Linux Wireless <linuxwifi@intel.com> 27 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 28 * 29 * BSD LICENSE 30 * 31 * Copyright(c) 2003 - 2014 Intel Corporation. All rights reserved. 32 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH 33 * Copyright(c) 2016 - 2017 Intel Deutschland GmbH 34 * Copyright(c) 2018 - 2019 Intel Corporation 35 * All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 41 * * Redistributions of source code must retain the above copyright 42 * notice, this list of conditions and the following disclaimer. 43 * * Redistributions in binary form must reproduce the above copyright 44 * notice, this list of conditions and the following disclaimer in 45 * the documentation and/or other materials provided with the 46 * distribution. 47 * * Neither the name Intel Corporation nor the names of its 48 * contributors may be used to endorse or promote products derived 49 * from this software without specific prior written permission. 50 * 51 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 52 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 53 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 54 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 55 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 56 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 57 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 58 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 59 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 60 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 61 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 62 * 63 *****************************************************************************/ 64 #include <linux/sched.h> 65 #include <linux/wait.h> 66 #include <linux/gfp.h> 67 68 #include "iwl-prph.h" 69 #include "iwl-io.h" 70 #include "internal.h" 71 #include "iwl-op-mode.h" 72 #include "iwl-context-info-gen3.h" 73 74 /****************************************************************************** 75 * 76 * RX path functions 77 * 78 ******************************************************************************/ 79 80 /* 81 * Rx theory of operation 82 * 83 * Driver allocates a circular buffer of Receive Buffer Descriptors (RBDs), 84 * each of which point to Receive Buffers to be filled by the NIC. These get 85 * used not only for Rx frames, but for any command response or notification 86 * from the NIC. The driver and NIC manage the Rx buffers by means 87 * of indexes into the circular buffer. 88 * 89 * Rx Queue Indexes 90 * The host/firmware share two index registers for managing the Rx buffers. 91 * 92 * The READ index maps to the first position that the firmware may be writing 93 * to -- the driver can read up to (but not including) this position and get 94 * good data. 95 * The READ index is managed by the firmware once the card is enabled. 96 * 97 * The WRITE index maps to the last position the driver has read from -- the 98 * position preceding WRITE is the last slot the firmware can place a packet. 99 * 100 * The queue is empty (no good data) if WRITE = READ - 1, and is full if 101 * WRITE = READ. 102 * 103 * During initialization, the host sets up the READ queue position to the first 104 * INDEX position, and WRITE to the last (READ - 1 wrapped) 105 * 106 * When the firmware places a packet in a buffer, it will advance the READ index 107 * and fire the RX interrupt. The driver can then query the READ index and 108 * process as many packets as possible, moving the WRITE index forward as it 109 * resets the Rx queue buffers with new memory. 110 * 111 * The management in the driver is as follows: 112 * + A list of pre-allocated RBDs is stored in iwl->rxq->rx_free. 113 * When the interrupt handler is called, the request is processed. 114 * The page is either stolen - transferred to the upper layer 115 * or reused - added immediately to the iwl->rxq->rx_free list. 116 * + When the page is stolen - the driver updates the matching queue's used 117 * count, detaches the RBD and transfers it to the queue used list. 118 * When there are two used RBDs - they are transferred to the allocator empty 119 * list. Work is then scheduled for the allocator to start allocating 120 * eight buffers. 121 * When there are another 6 used RBDs - they are transferred to the allocator 122 * empty list and the driver tries to claim the pre-allocated buffers and 123 * add them to iwl->rxq->rx_free. If it fails - it continues to claim them 124 * until ready. 125 * When there are 8+ buffers in the free list - either from allocation or from 126 * 8 reused unstolen pages - restock is called to update the FW and indexes. 127 * + In order to make sure the allocator always has RBDs to use for allocation 128 * the allocator has initial pool in the size of num_queues*(8-2) - the 129 * maximum missing RBDs per allocation request (request posted with 2 130 * empty RBDs, there is no guarantee when the other 6 RBDs are supplied). 131 * The queues supplies the recycle of the rest of the RBDs. 132 * + A received packet is processed and handed to the kernel network stack, 133 * detached from the iwl->rxq. The driver 'processed' index is updated. 134 * + If there are no allocated buffers in iwl->rxq->rx_free, 135 * the READ INDEX is not incremented and iwl->status(RX_STALLED) is set. 136 * If there were enough free buffers and RX_STALLED is set it is cleared. 137 * 138 * 139 * Driver sequence: 140 * 141 * iwl_rxq_alloc() Allocates rx_free 142 * iwl_pcie_rx_replenish() Replenishes rx_free list from rx_used, and calls 143 * iwl_pcie_rxq_restock. 144 * Used only during initialization. 145 * iwl_pcie_rxq_restock() Moves available buffers from rx_free into Rx 146 * queue, updates firmware pointers, and updates 147 * the WRITE index. 148 * iwl_pcie_rx_allocator() Background work for allocating pages. 149 * 150 * -- enable interrupts -- 151 * ISR - iwl_rx() Detach iwl_rx_mem_buffers from pool up to the 152 * READ INDEX, detaching the SKB from the pool. 153 * Moves the packet buffer from queue to rx_used. 154 * Posts and claims requests to the allocator. 155 * Calls iwl_pcie_rxq_restock to refill any empty 156 * slots. 157 * 158 * RBD life-cycle: 159 * 160 * Init: 161 * rxq.pool -> rxq.rx_used -> rxq.rx_free -> rxq.queue 162 * 163 * Regular Receive interrupt: 164 * Page Stolen: 165 * rxq.queue -> rxq.rx_used -> allocator.rbd_empty -> 166 * allocator.rbd_allocated -> rxq.rx_free -> rxq.queue 167 * Page not Stolen: 168 * rxq.queue -> rxq.rx_free -> rxq.queue 169 * ... 170 * 171 */ 172 173 /* 174 * iwl_rxq_space - Return number of free slots available in queue. 175 */ 176 static int iwl_rxq_space(const struct iwl_rxq *rxq) 177 { 178 /* Make sure rx queue size is a power of 2 */ 179 WARN_ON(rxq->queue_size & (rxq->queue_size - 1)); 180 181 /* 182 * There can be up to (RX_QUEUE_SIZE - 1) free slots, to avoid ambiguity 183 * between empty and completely full queues. 184 * The following is equivalent to modulo by RX_QUEUE_SIZE and is well 185 * defined for negative dividends. 186 */ 187 return (rxq->read - rxq->write - 1) & (rxq->queue_size - 1); 188 } 189 190 /* 191 * iwl_dma_addr2rbd_ptr - convert a DMA address to a uCode read buffer ptr 192 */ 193 static inline __le32 iwl_pcie_dma_addr2rbd_ptr(dma_addr_t dma_addr) 194 { 195 return cpu_to_le32((u32)(dma_addr >> 8)); 196 } 197 198 /* 199 * iwl_pcie_rx_stop - stops the Rx DMA 200 */ 201 int iwl_pcie_rx_stop(struct iwl_trans *trans) 202 { 203 if (trans->cfg->device_family >= IWL_DEVICE_FAMILY_22560) { 204 /* TODO: remove this for 22560 once fw does it */ 205 iwl_write_umac_prph(trans, RFH_RXF_DMA_CFG_GEN3, 0); 206 return iwl_poll_umac_prph_bit(trans, RFH_GEN_STATUS_GEN3, 207 RXF_DMA_IDLE, RXF_DMA_IDLE, 1000); 208 } else if (trans->cfg->mq_rx_supported) { 209 iwl_write_prph(trans, RFH_RXF_DMA_CFG, 0); 210 return iwl_poll_prph_bit(trans, RFH_GEN_STATUS, 211 RXF_DMA_IDLE, RXF_DMA_IDLE, 1000); 212 } else { 213 iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0); 214 return iwl_poll_direct_bit(trans, FH_MEM_RSSR_RX_STATUS_REG, 215 FH_RSSR_CHNL0_RX_STATUS_CHNL_IDLE, 216 1000); 217 } 218 } 219 220 /* 221 * iwl_pcie_rxq_inc_wr_ptr - Update the write pointer for the RX queue 222 */ 223 static void iwl_pcie_rxq_inc_wr_ptr(struct iwl_trans *trans, 224 struct iwl_rxq *rxq) 225 { 226 u32 reg; 227 228 lockdep_assert_held(&rxq->lock); 229 230 /* 231 * explicitly wake up the NIC if: 232 * 1. shadow registers aren't enabled 233 * 2. there is a chance that the NIC is asleep 234 */ 235 if (!trans->cfg->base_params->shadow_reg_enable && 236 test_bit(STATUS_TPOWER_PMI, &trans->status)) { 237 reg = iwl_read32(trans, CSR_UCODE_DRV_GP1); 238 239 if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) { 240 IWL_DEBUG_INFO(trans, "Rx queue requesting wakeup, GP1 = 0x%x\n", 241 reg); 242 iwl_set_bit(trans, CSR_GP_CNTRL, 243 BIT(trans->cfg->csr->flag_mac_access_req)); 244 rxq->need_update = true; 245 return; 246 } 247 } 248 249 rxq->write_actual = round_down(rxq->write, 8); 250 if (trans->cfg->device_family == IWL_DEVICE_FAMILY_22560) 251 iwl_write32(trans, HBUS_TARG_WRPTR, 252 (rxq->write_actual | 253 ((FIRST_RX_QUEUE + rxq->id) << 16))); 254 else if (trans->cfg->mq_rx_supported) 255 iwl_write32(trans, RFH_Q_FRBDCB_WIDX_TRG(rxq->id), 256 rxq->write_actual); 257 else 258 iwl_write32(trans, FH_RSCSR_CHNL0_WPTR, rxq->write_actual); 259 } 260 261 static void iwl_pcie_rxq_check_wrptr(struct iwl_trans *trans) 262 { 263 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 264 int i; 265 266 for (i = 0; i < trans->num_rx_queues; i++) { 267 struct iwl_rxq *rxq = &trans_pcie->rxq[i]; 268 269 if (!rxq->need_update) 270 continue; 271 spin_lock(&rxq->lock); 272 iwl_pcie_rxq_inc_wr_ptr(trans, rxq); 273 rxq->need_update = false; 274 spin_unlock(&rxq->lock); 275 } 276 } 277 278 static void iwl_pcie_restock_bd(struct iwl_trans *trans, 279 struct iwl_rxq *rxq, 280 struct iwl_rx_mem_buffer *rxb) 281 { 282 if (trans->cfg->device_family >= IWL_DEVICE_FAMILY_22560) { 283 struct iwl_rx_transfer_desc *bd = rxq->bd; 284 285 BUILD_BUG_ON(sizeof(*bd) != 2 * sizeof(u64)); 286 287 bd[rxq->write].addr = cpu_to_le64(rxb->page_dma); 288 bd[rxq->write].rbid = cpu_to_le16(rxb->vid); 289 } else { 290 __le64 *bd = rxq->bd; 291 292 bd[rxq->write] = cpu_to_le64(rxb->page_dma | rxb->vid); 293 } 294 295 IWL_DEBUG_RX(trans, "Assigned virtual RB ID %u to queue %d index %d\n", 296 (u32)rxb->vid, rxq->id, rxq->write); 297 } 298 299 /* 300 * iwl_pcie_rxmq_restock - restock implementation for multi-queue rx 301 */ 302 static void iwl_pcie_rxmq_restock(struct iwl_trans *trans, 303 struct iwl_rxq *rxq) 304 { 305 struct iwl_rx_mem_buffer *rxb; 306 307 /* 308 * If the device isn't enabled - no need to try to add buffers... 309 * This can happen when we stop the device and still have an interrupt 310 * pending. We stop the APM before we sync the interrupts because we 311 * have to (see comment there). On the other hand, since the APM is 312 * stopped, we cannot access the HW (in particular not prph). 313 * So don't try to restock if the APM has been already stopped. 314 */ 315 if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status)) 316 return; 317 318 spin_lock(&rxq->lock); 319 while (rxq->free_count) { 320 /* Get next free Rx buffer, remove from free list */ 321 rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer, 322 list); 323 list_del(&rxb->list); 324 rxb->invalid = false; 325 /* 12 first bits are expected to be empty */ 326 WARN_ON(rxb->page_dma & DMA_BIT_MASK(12)); 327 /* Point to Rx buffer via next RBD in circular buffer */ 328 iwl_pcie_restock_bd(trans, rxq, rxb); 329 rxq->write = (rxq->write + 1) & MQ_RX_TABLE_MASK; 330 rxq->free_count--; 331 } 332 spin_unlock(&rxq->lock); 333 334 /* 335 * If we've added more space for the firmware to place data, tell it. 336 * Increment device's write pointer in multiples of 8. 337 */ 338 if (rxq->write_actual != (rxq->write & ~0x7)) { 339 spin_lock(&rxq->lock); 340 iwl_pcie_rxq_inc_wr_ptr(trans, rxq); 341 spin_unlock(&rxq->lock); 342 } 343 } 344 345 /* 346 * iwl_pcie_rxsq_restock - restock implementation for single queue rx 347 */ 348 static void iwl_pcie_rxsq_restock(struct iwl_trans *trans, 349 struct iwl_rxq *rxq) 350 { 351 struct iwl_rx_mem_buffer *rxb; 352 353 /* 354 * If the device isn't enabled - not need to try to add buffers... 355 * This can happen when we stop the device and still have an interrupt 356 * pending. We stop the APM before we sync the interrupts because we 357 * have to (see comment there). On the other hand, since the APM is 358 * stopped, we cannot access the HW (in particular not prph). 359 * So don't try to restock if the APM has been already stopped. 360 */ 361 if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status)) 362 return; 363 364 spin_lock(&rxq->lock); 365 while ((iwl_rxq_space(rxq) > 0) && (rxq->free_count)) { 366 __le32 *bd = (__le32 *)rxq->bd; 367 /* The overwritten rxb must be a used one */ 368 rxb = rxq->queue[rxq->write]; 369 BUG_ON(rxb && rxb->page); 370 371 /* Get next free Rx buffer, remove from free list */ 372 rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer, 373 list); 374 list_del(&rxb->list); 375 rxb->invalid = false; 376 377 /* Point to Rx buffer via next RBD in circular buffer */ 378 bd[rxq->write] = iwl_pcie_dma_addr2rbd_ptr(rxb->page_dma); 379 rxq->queue[rxq->write] = rxb; 380 rxq->write = (rxq->write + 1) & RX_QUEUE_MASK; 381 rxq->free_count--; 382 } 383 spin_unlock(&rxq->lock); 384 385 /* If we've added more space for the firmware to place data, tell it. 386 * Increment device's write pointer in multiples of 8. */ 387 if (rxq->write_actual != (rxq->write & ~0x7)) { 388 spin_lock(&rxq->lock); 389 iwl_pcie_rxq_inc_wr_ptr(trans, rxq); 390 spin_unlock(&rxq->lock); 391 } 392 } 393 394 /* 395 * iwl_pcie_rxq_restock - refill RX queue from pre-allocated pool 396 * 397 * If there are slots in the RX queue that need to be restocked, 398 * and we have free pre-allocated buffers, fill the ranks as much 399 * as we can, pulling from rx_free. 400 * 401 * This moves the 'write' index forward to catch up with 'processed', and 402 * also updates the memory address in the firmware to reference the new 403 * target buffer. 404 */ 405 static 406 void iwl_pcie_rxq_restock(struct iwl_trans *trans, struct iwl_rxq *rxq) 407 { 408 if (trans->cfg->mq_rx_supported) 409 iwl_pcie_rxmq_restock(trans, rxq); 410 else 411 iwl_pcie_rxsq_restock(trans, rxq); 412 } 413 414 /* 415 * iwl_pcie_rx_alloc_page - allocates and returns a page. 416 * 417 */ 418 static struct page *iwl_pcie_rx_alloc_page(struct iwl_trans *trans, 419 gfp_t priority) 420 { 421 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 422 struct page *page; 423 gfp_t gfp_mask = priority; 424 425 if (trans_pcie->rx_page_order > 0) 426 gfp_mask |= __GFP_COMP; 427 428 /* Alloc a new receive buffer */ 429 page = alloc_pages(gfp_mask, trans_pcie->rx_page_order); 430 if (!page) { 431 if (net_ratelimit()) 432 IWL_DEBUG_INFO(trans, "alloc_pages failed, order: %d\n", 433 trans_pcie->rx_page_order); 434 /* 435 * Issue an error if we don't have enough pre-allocated 436 * buffers. 437 */ 438 if (!(gfp_mask & __GFP_NOWARN) && net_ratelimit()) 439 IWL_CRIT(trans, 440 "Failed to alloc_pages\n"); 441 return NULL; 442 } 443 return page; 444 } 445 446 /* 447 * iwl_pcie_rxq_alloc_rbs - allocate a page for each used RBD 448 * 449 * A used RBD is an Rx buffer that has been given to the stack. To use it again 450 * a page must be allocated and the RBD must point to the page. This function 451 * doesn't change the HW pointer but handles the list of pages that is used by 452 * iwl_pcie_rxq_restock. The latter function will update the HW to use the newly 453 * allocated buffers. 454 */ 455 void iwl_pcie_rxq_alloc_rbs(struct iwl_trans *trans, gfp_t priority, 456 struct iwl_rxq *rxq) 457 { 458 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 459 struct iwl_rx_mem_buffer *rxb; 460 struct page *page; 461 462 while (1) { 463 spin_lock(&rxq->lock); 464 if (list_empty(&rxq->rx_used)) { 465 spin_unlock(&rxq->lock); 466 return; 467 } 468 spin_unlock(&rxq->lock); 469 470 /* Alloc a new receive buffer */ 471 page = iwl_pcie_rx_alloc_page(trans, priority); 472 if (!page) 473 return; 474 475 spin_lock(&rxq->lock); 476 477 if (list_empty(&rxq->rx_used)) { 478 spin_unlock(&rxq->lock); 479 __free_pages(page, trans_pcie->rx_page_order); 480 return; 481 } 482 rxb = list_first_entry(&rxq->rx_used, struct iwl_rx_mem_buffer, 483 list); 484 list_del(&rxb->list); 485 spin_unlock(&rxq->lock); 486 487 BUG_ON(rxb->page); 488 rxb->page = page; 489 /* Get physical address of the RB */ 490 rxb->page_dma = 491 dma_map_page(trans->dev, page, 0, 492 PAGE_SIZE << trans_pcie->rx_page_order, 493 DMA_FROM_DEVICE); 494 if (dma_mapping_error(trans->dev, rxb->page_dma)) { 495 rxb->page = NULL; 496 spin_lock(&rxq->lock); 497 list_add(&rxb->list, &rxq->rx_used); 498 spin_unlock(&rxq->lock); 499 __free_pages(page, trans_pcie->rx_page_order); 500 return; 501 } 502 503 spin_lock(&rxq->lock); 504 505 list_add_tail(&rxb->list, &rxq->rx_free); 506 rxq->free_count++; 507 508 spin_unlock(&rxq->lock); 509 } 510 } 511 512 void iwl_pcie_free_rbs_pool(struct iwl_trans *trans) 513 { 514 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 515 int i; 516 517 for (i = 0; i < RX_POOL_SIZE; i++) { 518 if (!trans_pcie->rx_pool[i].page) 519 continue; 520 dma_unmap_page(trans->dev, trans_pcie->rx_pool[i].page_dma, 521 PAGE_SIZE << trans_pcie->rx_page_order, 522 DMA_FROM_DEVICE); 523 __free_pages(trans_pcie->rx_pool[i].page, 524 trans_pcie->rx_page_order); 525 trans_pcie->rx_pool[i].page = NULL; 526 } 527 } 528 529 /* 530 * iwl_pcie_rx_allocator - Allocates pages in the background for RX queues 531 * 532 * Allocates for each received request 8 pages 533 * Called as a scheduled work item. 534 */ 535 static void iwl_pcie_rx_allocator(struct iwl_trans *trans) 536 { 537 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 538 struct iwl_rb_allocator *rba = &trans_pcie->rba; 539 struct list_head local_empty; 540 int pending = atomic_read(&rba->req_pending); 541 542 IWL_DEBUG_TPT(trans, "Pending allocation requests = %d\n", pending); 543 544 /* If we were scheduled - there is at least one request */ 545 spin_lock(&rba->lock); 546 /* swap out the rba->rbd_empty to a local list */ 547 list_replace_init(&rba->rbd_empty, &local_empty); 548 spin_unlock(&rba->lock); 549 550 while (pending) { 551 int i; 552 LIST_HEAD(local_allocated); 553 gfp_t gfp_mask = GFP_KERNEL; 554 555 /* Do not post a warning if there are only a few requests */ 556 if (pending < RX_PENDING_WATERMARK) 557 gfp_mask |= __GFP_NOWARN; 558 559 for (i = 0; i < RX_CLAIM_REQ_ALLOC;) { 560 struct iwl_rx_mem_buffer *rxb; 561 struct page *page; 562 563 /* List should never be empty - each reused RBD is 564 * returned to the list, and initial pool covers any 565 * possible gap between the time the page is allocated 566 * to the time the RBD is added. 567 */ 568 BUG_ON(list_empty(&local_empty)); 569 /* Get the first rxb from the rbd list */ 570 rxb = list_first_entry(&local_empty, 571 struct iwl_rx_mem_buffer, list); 572 BUG_ON(rxb->page); 573 574 /* Alloc a new receive buffer */ 575 page = iwl_pcie_rx_alloc_page(trans, gfp_mask); 576 if (!page) 577 continue; 578 rxb->page = page; 579 580 /* Get physical address of the RB */ 581 rxb->page_dma = dma_map_page(trans->dev, page, 0, 582 PAGE_SIZE << trans_pcie->rx_page_order, 583 DMA_FROM_DEVICE); 584 if (dma_mapping_error(trans->dev, rxb->page_dma)) { 585 rxb->page = NULL; 586 __free_pages(page, trans_pcie->rx_page_order); 587 continue; 588 } 589 590 /* move the allocated entry to the out list */ 591 list_move(&rxb->list, &local_allocated); 592 i++; 593 } 594 595 atomic_dec(&rba->req_pending); 596 pending--; 597 598 if (!pending) { 599 pending = atomic_read(&rba->req_pending); 600 if (pending) 601 IWL_DEBUG_TPT(trans, 602 "Got more pending allocation requests = %d\n", 603 pending); 604 } 605 606 spin_lock(&rba->lock); 607 /* add the allocated rbds to the allocator allocated list */ 608 list_splice_tail(&local_allocated, &rba->rbd_allocated); 609 /* get more empty RBDs for current pending requests */ 610 list_splice_tail_init(&rba->rbd_empty, &local_empty); 611 spin_unlock(&rba->lock); 612 613 atomic_inc(&rba->req_ready); 614 615 } 616 617 spin_lock(&rba->lock); 618 /* return unused rbds to the allocator empty list */ 619 list_splice_tail(&local_empty, &rba->rbd_empty); 620 spin_unlock(&rba->lock); 621 622 IWL_DEBUG_TPT(trans, "%s, exit.\n", __func__); 623 } 624 625 /* 626 * iwl_pcie_rx_allocator_get - returns the pre-allocated pages 627 .* 628 .* Called by queue when the queue posted allocation request and 629 * has freed 8 RBDs in order to restock itself. 630 * This function directly moves the allocated RBs to the queue's ownership 631 * and updates the relevant counters. 632 */ 633 static void iwl_pcie_rx_allocator_get(struct iwl_trans *trans, 634 struct iwl_rxq *rxq) 635 { 636 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 637 struct iwl_rb_allocator *rba = &trans_pcie->rba; 638 int i; 639 640 lockdep_assert_held(&rxq->lock); 641 642 /* 643 * atomic_dec_if_positive returns req_ready - 1 for any scenario. 644 * If req_ready is 0 atomic_dec_if_positive will return -1 and this 645 * function will return early, as there are no ready requests. 646 * atomic_dec_if_positive will perofrm the *actual* decrement only if 647 * req_ready > 0, i.e. - there are ready requests and the function 648 * hands one request to the caller. 649 */ 650 if (atomic_dec_if_positive(&rba->req_ready) < 0) 651 return; 652 653 spin_lock(&rba->lock); 654 for (i = 0; i < RX_CLAIM_REQ_ALLOC; i++) { 655 /* Get next free Rx buffer, remove it from free list */ 656 struct iwl_rx_mem_buffer *rxb = 657 list_first_entry(&rba->rbd_allocated, 658 struct iwl_rx_mem_buffer, list); 659 660 list_move(&rxb->list, &rxq->rx_free); 661 } 662 spin_unlock(&rba->lock); 663 664 rxq->used_count -= RX_CLAIM_REQ_ALLOC; 665 rxq->free_count += RX_CLAIM_REQ_ALLOC; 666 } 667 668 void iwl_pcie_rx_allocator_work(struct work_struct *data) 669 { 670 struct iwl_rb_allocator *rba_p = 671 container_of(data, struct iwl_rb_allocator, rx_alloc); 672 struct iwl_trans_pcie *trans_pcie = 673 container_of(rba_p, struct iwl_trans_pcie, rba); 674 675 iwl_pcie_rx_allocator(trans_pcie->trans); 676 } 677 678 static int iwl_pcie_free_bd_size(struct iwl_trans *trans, bool use_rx_td) 679 { 680 struct iwl_rx_transfer_desc *rx_td; 681 682 if (use_rx_td) 683 return sizeof(*rx_td); 684 else 685 return trans->cfg->mq_rx_supported ? sizeof(__le64) : 686 sizeof(__le32); 687 } 688 689 static void iwl_pcie_free_rxq_dma(struct iwl_trans *trans, 690 struct iwl_rxq *rxq) 691 { 692 struct device *dev = trans->dev; 693 bool use_rx_td = (trans->cfg->device_family >= 694 IWL_DEVICE_FAMILY_22560); 695 int free_size = iwl_pcie_free_bd_size(trans, use_rx_td); 696 697 if (rxq->bd) 698 dma_free_coherent(trans->dev, 699 free_size * rxq->queue_size, 700 rxq->bd, rxq->bd_dma); 701 rxq->bd_dma = 0; 702 rxq->bd = NULL; 703 704 rxq->rb_stts_dma = 0; 705 rxq->rb_stts = NULL; 706 707 if (rxq->used_bd) 708 dma_free_coherent(trans->dev, 709 (use_rx_td ? sizeof(*rxq->cd) : 710 sizeof(__le32)) * rxq->queue_size, 711 rxq->used_bd, rxq->used_bd_dma); 712 rxq->used_bd_dma = 0; 713 rxq->used_bd = NULL; 714 715 if (trans->cfg->device_family < IWL_DEVICE_FAMILY_22560) 716 return; 717 718 if (rxq->tr_tail) 719 dma_free_coherent(dev, sizeof(__le16), 720 rxq->tr_tail, rxq->tr_tail_dma); 721 rxq->tr_tail_dma = 0; 722 rxq->tr_tail = NULL; 723 724 if (rxq->cr_tail) 725 dma_free_coherent(dev, sizeof(__le16), 726 rxq->cr_tail, rxq->cr_tail_dma); 727 rxq->cr_tail_dma = 0; 728 rxq->cr_tail = NULL; 729 } 730 731 static int iwl_pcie_alloc_rxq_dma(struct iwl_trans *trans, 732 struct iwl_rxq *rxq) 733 { 734 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 735 struct device *dev = trans->dev; 736 int i; 737 int free_size; 738 bool use_rx_td = (trans->cfg->device_family >= 739 IWL_DEVICE_FAMILY_22560); 740 size_t rb_stts_size = use_rx_td ? sizeof(__le16) : 741 sizeof(struct iwl_rb_status); 742 743 spin_lock_init(&rxq->lock); 744 if (trans->cfg->mq_rx_supported) 745 rxq->queue_size = MQ_RX_TABLE_SIZE; 746 else 747 rxq->queue_size = RX_QUEUE_SIZE; 748 749 free_size = iwl_pcie_free_bd_size(trans, use_rx_td); 750 751 /* 752 * Allocate the circular buffer of Read Buffer Descriptors 753 * (RBDs) 754 */ 755 rxq->bd = dma_alloc_coherent(dev, free_size * rxq->queue_size, 756 &rxq->bd_dma, GFP_KERNEL); 757 if (!rxq->bd) 758 goto err; 759 760 if (trans->cfg->mq_rx_supported) { 761 rxq->used_bd = dma_alloc_coherent(dev, 762 (use_rx_td ? sizeof(*rxq->cd) : sizeof(__le32)) * rxq->queue_size, 763 &rxq->used_bd_dma, 764 GFP_KERNEL); 765 if (!rxq->used_bd) 766 goto err; 767 } 768 769 rxq->rb_stts = trans_pcie->base_rb_stts + rxq->id * rb_stts_size; 770 rxq->rb_stts_dma = 771 trans_pcie->base_rb_stts_dma + rxq->id * rb_stts_size; 772 773 if (!use_rx_td) 774 return 0; 775 776 /* Allocate the driver's pointer to TR tail */ 777 rxq->tr_tail = dma_alloc_coherent(dev, sizeof(__le16), 778 &rxq->tr_tail_dma, GFP_KERNEL); 779 if (!rxq->tr_tail) 780 goto err; 781 782 /* Allocate the driver's pointer to CR tail */ 783 rxq->cr_tail = dma_alloc_coherent(dev, sizeof(__le16), 784 &rxq->cr_tail_dma, GFP_KERNEL); 785 if (!rxq->cr_tail) 786 goto err; 787 /* 788 * W/A 22560 device step Z0 must be non zero bug 789 * TODO: remove this when stop supporting Z0 790 */ 791 *rxq->cr_tail = cpu_to_le16(500); 792 793 return 0; 794 795 err: 796 for (i = 0; i < trans->num_rx_queues; i++) { 797 struct iwl_rxq *rxq = &trans_pcie->rxq[i]; 798 799 iwl_pcie_free_rxq_dma(trans, rxq); 800 } 801 802 return -ENOMEM; 803 } 804 805 int iwl_pcie_rx_alloc(struct iwl_trans *trans) 806 { 807 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 808 struct iwl_rb_allocator *rba = &trans_pcie->rba; 809 int i, ret; 810 size_t rb_stts_size = trans->cfg->device_family >= 811 IWL_DEVICE_FAMILY_22560 ? 812 sizeof(__le16) : sizeof(struct iwl_rb_status); 813 814 if (WARN_ON(trans_pcie->rxq)) 815 return -EINVAL; 816 817 trans_pcie->rxq = kcalloc(trans->num_rx_queues, sizeof(struct iwl_rxq), 818 GFP_KERNEL); 819 if (!trans_pcie->rxq) 820 return -ENOMEM; 821 822 spin_lock_init(&rba->lock); 823 824 /* 825 * Allocate the driver's pointer to receive buffer status. 826 * Allocate for all queues continuously (HW requirement). 827 */ 828 trans_pcie->base_rb_stts = 829 dma_alloc_coherent(trans->dev, 830 rb_stts_size * trans->num_rx_queues, 831 &trans_pcie->base_rb_stts_dma, 832 GFP_KERNEL); 833 if (!trans_pcie->base_rb_stts) { 834 ret = -ENOMEM; 835 goto err; 836 } 837 838 for (i = 0; i < trans->num_rx_queues; i++) { 839 struct iwl_rxq *rxq = &trans_pcie->rxq[i]; 840 841 rxq->id = i; 842 ret = iwl_pcie_alloc_rxq_dma(trans, rxq); 843 if (ret) 844 goto err; 845 } 846 return 0; 847 848 err: 849 if (trans_pcie->base_rb_stts) { 850 dma_free_coherent(trans->dev, 851 rb_stts_size * trans->num_rx_queues, 852 trans_pcie->base_rb_stts, 853 trans_pcie->base_rb_stts_dma); 854 trans_pcie->base_rb_stts = NULL; 855 trans_pcie->base_rb_stts_dma = 0; 856 } 857 kfree(trans_pcie->rxq); 858 859 return ret; 860 } 861 862 static void iwl_pcie_rx_hw_init(struct iwl_trans *trans, struct iwl_rxq *rxq) 863 { 864 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 865 u32 rb_size; 866 unsigned long flags; 867 const u32 rfdnlog = RX_QUEUE_SIZE_LOG; /* 256 RBDs */ 868 869 switch (trans_pcie->rx_buf_size) { 870 case IWL_AMSDU_4K: 871 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K; 872 break; 873 case IWL_AMSDU_8K: 874 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_8K; 875 break; 876 case IWL_AMSDU_12K: 877 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_12K; 878 break; 879 default: 880 WARN_ON(1); 881 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K; 882 } 883 884 if (!iwl_trans_grab_nic_access(trans, &flags)) 885 return; 886 887 /* Stop Rx DMA */ 888 iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0); 889 /* reset and flush pointers */ 890 iwl_write32(trans, FH_MEM_RCSR_CHNL0_RBDCB_WPTR, 0); 891 iwl_write32(trans, FH_MEM_RCSR_CHNL0_FLUSH_RB_REQ, 0); 892 iwl_write32(trans, FH_RSCSR_CHNL0_RDPTR, 0); 893 894 /* Reset driver's Rx queue write index */ 895 iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0); 896 897 /* Tell device where to find RBD circular buffer in DRAM */ 898 iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_BASE_REG, 899 (u32)(rxq->bd_dma >> 8)); 900 901 /* Tell device where in DRAM to update its Rx status */ 902 iwl_write32(trans, FH_RSCSR_CHNL0_STTS_WPTR_REG, 903 rxq->rb_stts_dma >> 4); 904 905 /* Enable Rx DMA 906 * FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY is set because of HW bug in 907 * the credit mechanism in 5000 HW RX FIFO 908 * Direct rx interrupts to hosts 909 * Rx buffer size 4 or 8k or 12k 910 * RB timeout 0x10 911 * 256 RBDs 912 */ 913 iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 914 FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL | 915 FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY | 916 FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL | 917 rb_size | 918 (RX_RB_TIMEOUT << FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS) | 919 (rfdnlog << FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS)); 920 921 iwl_trans_release_nic_access(trans, &flags); 922 923 /* Set interrupt coalescing timer to default (2048 usecs) */ 924 iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF); 925 926 /* W/A for interrupt coalescing bug in 7260 and 3160 */ 927 if (trans->cfg->host_interrupt_operation_mode) 928 iwl_set_bit(trans, CSR_INT_COALESCING, IWL_HOST_INT_OPER_MODE); 929 } 930 931 static void iwl_pcie_rx_mq_hw_init(struct iwl_trans *trans) 932 { 933 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 934 u32 rb_size, enabled = 0; 935 unsigned long flags; 936 int i; 937 938 switch (trans_pcie->rx_buf_size) { 939 case IWL_AMSDU_2K: 940 rb_size = RFH_RXF_DMA_RB_SIZE_2K; 941 break; 942 case IWL_AMSDU_4K: 943 rb_size = RFH_RXF_DMA_RB_SIZE_4K; 944 break; 945 case IWL_AMSDU_8K: 946 rb_size = RFH_RXF_DMA_RB_SIZE_8K; 947 break; 948 case IWL_AMSDU_12K: 949 rb_size = RFH_RXF_DMA_RB_SIZE_12K; 950 break; 951 default: 952 WARN_ON(1); 953 rb_size = RFH_RXF_DMA_RB_SIZE_4K; 954 } 955 956 if (!iwl_trans_grab_nic_access(trans, &flags)) 957 return; 958 959 /* Stop Rx DMA */ 960 iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG, 0); 961 /* disable free amd used rx queue operation */ 962 iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, 0); 963 964 for (i = 0; i < trans->num_rx_queues; i++) { 965 /* Tell device where to find RBD free table in DRAM */ 966 iwl_write_prph64_no_grab(trans, 967 RFH_Q_FRBDCB_BA_LSB(i), 968 trans_pcie->rxq[i].bd_dma); 969 /* Tell device where to find RBD used table in DRAM */ 970 iwl_write_prph64_no_grab(trans, 971 RFH_Q_URBDCB_BA_LSB(i), 972 trans_pcie->rxq[i].used_bd_dma); 973 /* Tell device where in DRAM to update its Rx status */ 974 iwl_write_prph64_no_grab(trans, 975 RFH_Q_URBD_STTS_WPTR_LSB(i), 976 trans_pcie->rxq[i].rb_stts_dma); 977 /* Reset device indice tables */ 978 iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_WIDX(i), 0); 979 iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_RIDX(i), 0); 980 iwl_write_prph_no_grab(trans, RFH_Q_URBDCB_WIDX(i), 0); 981 982 enabled |= BIT(i) | BIT(i + 16); 983 } 984 985 /* 986 * Enable Rx DMA 987 * Rx buffer size 4 or 8k or 12k 988 * Min RB size 4 or 8 989 * Drop frames that exceed RB size 990 * 512 RBDs 991 */ 992 iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG, 993 RFH_DMA_EN_ENABLE_VAL | rb_size | 994 RFH_RXF_DMA_MIN_RB_4_8 | 995 RFH_RXF_DMA_DROP_TOO_LARGE_MASK | 996 RFH_RXF_DMA_RBDCB_SIZE_512); 997 998 /* 999 * Activate DMA snooping. 1000 * Set RX DMA chunk size to 64B for IOSF and 128B for PCIe 1001 * Default queue is 0 1002 */ 1003 iwl_write_prph_no_grab(trans, RFH_GEN_CFG, 1004 RFH_GEN_CFG_RFH_DMA_SNOOP | 1005 RFH_GEN_CFG_VAL(DEFAULT_RXQ_NUM, 0) | 1006 RFH_GEN_CFG_SERVICE_DMA_SNOOP | 1007 RFH_GEN_CFG_VAL(RB_CHUNK_SIZE, 1008 trans->cfg->integrated ? 1009 RFH_GEN_CFG_RB_CHUNK_SIZE_64 : 1010 RFH_GEN_CFG_RB_CHUNK_SIZE_128)); 1011 /* Enable the relevant rx queues */ 1012 iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, enabled); 1013 1014 iwl_trans_release_nic_access(trans, &flags); 1015 1016 /* Set interrupt coalescing timer to default (2048 usecs) */ 1017 iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF); 1018 } 1019 1020 void iwl_pcie_rx_init_rxb_lists(struct iwl_rxq *rxq) 1021 { 1022 lockdep_assert_held(&rxq->lock); 1023 1024 INIT_LIST_HEAD(&rxq->rx_free); 1025 INIT_LIST_HEAD(&rxq->rx_used); 1026 rxq->free_count = 0; 1027 rxq->used_count = 0; 1028 } 1029 1030 int iwl_pcie_dummy_napi_poll(struct napi_struct *napi, int budget) 1031 { 1032 WARN_ON(1); 1033 return 0; 1034 } 1035 1036 int _iwl_pcie_rx_init(struct iwl_trans *trans) 1037 { 1038 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1039 struct iwl_rxq *def_rxq; 1040 struct iwl_rb_allocator *rba = &trans_pcie->rba; 1041 int i, err, queue_size, allocator_pool_size, num_alloc; 1042 1043 if (!trans_pcie->rxq) { 1044 err = iwl_pcie_rx_alloc(trans); 1045 if (err) 1046 return err; 1047 } 1048 def_rxq = trans_pcie->rxq; 1049 1050 cancel_work_sync(&rba->rx_alloc); 1051 1052 spin_lock(&rba->lock); 1053 atomic_set(&rba->req_pending, 0); 1054 atomic_set(&rba->req_ready, 0); 1055 INIT_LIST_HEAD(&rba->rbd_allocated); 1056 INIT_LIST_HEAD(&rba->rbd_empty); 1057 spin_unlock(&rba->lock); 1058 1059 /* free all first - we might be reconfigured for a different size */ 1060 iwl_pcie_free_rbs_pool(trans); 1061 1062 for (i = 0; i < RX_QUEUE_SIZE; i++) 1063 def_rxq->queue[i] = NULL; 1064 1065 for (i = 0; i < trans->num_rx_queues; i++) { 1066 struct iwl_rxq *rxq = &trans_pcie->rxq[i]; 1067 1068 spin_lock(&rxq->lock); 1069 /* 1070 * Set read write pointer to reflect that we have processed 1071 * and used all buffers, but have not restocked the Rx queue 1072 * with fresh buffers 1073 */ 1074 rxq->read = 0; 1075 rxq->write = 0; 1076 rxq->write_actual = 0; 1077 memset(rxq->rb_stts, 0, 1078 (trans->cfg->device_family >= IWL_DEVICE_FAMILY_22560) ? 1079 sizeof(__le16) : sizeof(struct iwl_rb_status)); 1080 1081 iwl_pcie_rx_init_rxb_lists(rxq); 1082 1083 if (!rxq->napi.poll) 1084 netif_napi_add(&trans_pcie->napi_dev, &rxq->napi, 1085 iwl_pcie_dummy_napi_poll, 64); 1086 1087 spin_unlock(&rxq->lock); 1088 } 1089 1090 /* move the pool to the default queue and allocator ownerships */ 1091 queue_size = trans->cfg->mq_rx_supported ? 1092 MQ_RX_NUM_RBDS : RX_QUEUE_SIZE; 1093 allocator_pool_size = trans->num_rx_queues * 1094 (RX_CLAIM_REQ_ALLOC - RX_POST_REQ_ALLOC); 1095 num_alloc = queue_size + allocator_pool_size; 1096 BUILD_BUG_ON(ARRAY_SIZE(trans_pcie->global_table) != 1097 ARRAY_SIZE(trans_pcie->rx_pool)); 1098 for (i = 0; i < num_alloc; i++) { 1099 struct iwl_rx_mem_buffer *rxb = &trans_pcie->rx_pool[i]; 1100 1101 if (i < allocator_pool_size) 1102 list_add(&rxb->list, &rba->rbd_empty); 1103 else 1104 list_add(&rxb->list, &def_rxq->rx_used); 1105 trans_pcie->global_table[i] = rxb; 1106 rxb->vid = (u16)(i + 1); 1107 rxb->invalid = true; 1108 } 1109 1110 iwl_pcie_rxq_alloc_rbs(trans, GFP_KERNEL, def_rxq); 1111 1112 return 0; 1113 } 1114 1115 int iwl_pcie_rx_init(struct iwl_trans *trans) 1116 { 1117 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1118 int ret = _iwl_pcie_rx_init(trans); 1119 1120 if (ret) 1121 return ret; 1122 1123 if (trans->cfg->mq_rx_supported) 1124 iwl_pcie_rx_mq_hw_init(trans); 1125 else 1126 iwl_pcie_rx_hw_init(trans, trans_pcie->rxq); 1127 1128 iwl_pcie_rxq_restock(trans, trans_pcie->rxq); 1129 1130 spin_lock(&trans_pcie->rxq->lock); 1131 iwl_pcie_rxq_inc_wr_ptr(trans, trans_pcie->rxq); 1132 spin_unlock(&trans_pcie->rxq->lock); 1133 1134 return 0; 1135 } 1136 1137 int iwl_pcie_gen2_rx_init(struct iwl_trans *trans) 1138 { 1139 /* Set interrupt coalescing timer to default (2048 usecs) */ 1140 iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF); 1141 1142 /* 1143 * We don't configure the RFH. 1144 * Restock will be done at alive, after firmware configured the RFH. 1145 */ 1146 return _iwl_pcie_rx_init(trans); 1147 } 1148 1149 void iwl_pcie_rx_free(struct iwl_trans *trans) 1150 { 1151 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1152 struct iwl_rb_allocator *rba = &trans_pcie->rba; 1153 int i; 1154 size_t rb_stts_size = trans->cfg->device_family >= 1155 IWL_DEVICE_FAMILY_22560 ? 1156 sizeof(__le16) : sizeof(struct iwl_rb_status); 1157 1158 /* 1159 * if rxq is NULL, it means that nothing has been allocated, 1160 * exit now 1161 */ 1162 if (!trans_pcie->rxq) { 1163 IWL_DEBUG_INFO(trans, "Free NULL rx context\n"); 1164 return; 1165 } 1166 1167 cancel_work_sync(&rba->rx_alloc); 1168 1169 iwl_pcie_free_rbs_pool(trans); 1170 1171 if (trans_pcie->base_rb_stts) { 1172 dma_free_coherent(trans->dev, 1173 rb_stts_size * trans->num_rx_queues, 1174 trans_pcie->base_rb_stts, 1175 trans_pcie->base_rb_stts_dma); 1176 trans_pcie->base_rb_stts = NULL; 1177 trans_pcie->base_rb_stts_dma = 0; 1178 } 1179 1180 for (i = 0; i < trans->num_rx_queues; i++) { 1181 struct iwl_rxq *rxq = &trans_pcie->rxq[i]; 1182 1183 iwl_pcie_free_rxq_dma(trans, rxq); 1184 1185 if (rxq->napi.poll) 1186 netif_napi_del(&rxq->napi); 1187 } 1188 kfree(trans_pcie->rxq); 1189 } 1190 1191 static void iwl_pcie_rx_move_to_allocator(struct iwl_rxq *rxq, 1192 struct iwl_rb_allocator *rba) 1193 { 1194 spin_lock(&rba->lock); 1195 list_splice_tail_init(&rxq->rx_used, &rba->rbd_empty); 1196 spin_unlock(&rba->lock); 1197 } 1198 1199 /* 1200 * iwl_pcie_rx_reuse_rbd - Recycle used RBDs 1201 * 1202 * Called when a RBD can be reused. The RBD is transferred to the allocator. 1203 * When there are 2 empty RBDs - a request for allocation is posted 1204 */ 1205 static void iwl_pcie_rx_reuse_rbd(struct iwl_trans *trans, 1206 struct iwl_rx_mem_buffer *rxb, 1207 struct iwl_rxq *rxq, bool emergency) 1208 { 1209 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1210 struct iwl_rb_allocator *rba = &trans_pcie->rba; 1211 1212 /* Move the RBD to the used list, will be moved to allocator in batches 1213 * before claiming or posting a request*/ 1214 list_add_tail(&rxb->list, &rxq->rx_used); 1215 1216 if (unlikely(emergency)) 1217 return; 1218 1219 /* Count the allocator owned RBDs */ 1220 rxq->used_count++; 1221 1222 /* If we have RX_POST_REQ_ALLOC new released rx buffers - 1223 * issue a request for allocator. Modulo RX_CLAIM_REQ_ALLOC is 1224 * used for the case we failed to claim RX_CLAIM_REQ_ALLOC, 1225 * after but we still need to post another request. 1226 */ 1227 if ((rxq->used_count % RX_CLAIM_REQ_ALLOC) == RX_POST_REQ_ALLOC) { 1228 /* Move the 2 RBDs to the allocator ownership. 1229 Allocator has another 6 from pool for the request completion*/ 1230 iwl_pcie_rx_move_to_allocator(rxq, rba); 1231 1232 atomic_inc(&rba->req_pending); 1233 queue_work(rba->alloc_wq, &rba->rx_alloc); 1234 } 1235 } 1236 1237 static void iwl_pcie_rx_handle_rb(struct iwl_trans *trans, 1238 struct iwl_rxq *rxq, 1239 struct iwl_rx_mem_buffer *rxb, 1240 bool emergency, 1241 int i) 1242 { 1243 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1244 struct iwl_txq *txq = trans_pcie->txq[trans_pcie->cmd_queue]; 1245 bool page_stolen = false; 1246 int max_len = PAGE_SIZE << trans_pcie->rx_page_order; 1247 u32 offset = 0; 1248 1249 if (WARN_ON(!rxb)) 1250 return; 1251 1252 dma_unmap_page(trans->dev, rxb->page_dma, max_len, DMA_FROM_DEVICE); 1253 1254 while (offset + sizeof(u32) + sizeof(struct iwl_cmd_header) < max_len) { 1255 struct iwl_rx_packet *pkt; 1256 u16 sequence; 1257 bool reclaim; 1258 int index, cmd_index, len; 1259 struct iwl_rx_cmd_buffer rxcb = { 1260 ._offset = offset, 1261 ._rx_page_order = trans_pcie->rx_page_order, 1262 ._page = rxb->page, 1263 ._page_stolen = false, 1264 .truesize = max_len, 1265 }; 1266 1267 pkt = rxb_addr(&rxcb); 1268 1269 if (pkt->len_n_flags == cpu_to_le32(FH_RSCSR_FRAME_INVALID)) { 1270 IWL_DEBUG_RX(trans, 1271 "Q %d: RB end marker at offset %d\n", 1272 rxq->id, offset); 1273 break; 1274 } 1275 1276 WARN((le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_RXQ_MASK) >> 1277 FH_RSCSR_RXQ_POS != rxq->id, 1278 "frame on invalid queue - is on %d and indicates %d\n", 1279 rxq->id, 1280 (le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_RXQ_MASK) >> 1281 FH_RSCSR_RXQ_POS); 1282 1283 IWL_DEBUG_RX(trans, 1284 "Q %d: cmd at offset %d: %s (%.2x.%2x, seq 0x%x)\n", 1285 rxq->id, offset, 1286 iwl_get_cmd_string(trans, 1287 iwl_cmd_id(pkt->hdr.cmd, 1288 pkt->hdr.group_id, 1289 0)), 1290 pkt->hdr.group_id, pkt->hdr.cmd, 1291 le16_to_cpu(pkt->hdr.sequence)); 1292 1293 len = iwl_rx_packet_len(pkt); 1294 len += sizeof(u32); /* account for status word */ 1295 trace_iwlwifi_dev_rx(trans->dev, trans, pkt, len); 1296 trace_iwlwifi_dev_rx_data(trans->dev, trans, pkt, len); 1297 1298 /* Reclaim a command buffer only if this packet is a response 1299 * to a (driver-originated) command. 1300 * If the packet (e.g. Rx frame) originated from uCode, 1301 * there is no command buffer to reclaim. 1302 * Ucode should set SEQ_RX_FRAME bit if ucode-originated, 1303 * but apparently a few don't get set; catch them here. */ 1304 reclaim = !(pkt->hdr.sequence & SEQ_RX_FRAME); 1305 if (reclaim && !pkt->hdr.group_id) { 1306 int i; 1307 1308 for (i = 0; i < trans_pcie->n_no_reclaim_cmds; i++) { 1309 if (trans_pcie->no_reclaim_cmds[i] == 1310 pkt->hdr.cmd) { 1311 reclaim = false; 1312 break; 1313 } 1314 } 1315 } 1316 1317 sequence = le16_to_cpu(pkt->hdr.sequence); 1318 index = SEQ_TO_INDEX(sequence); 1319 cmd_index = iwl_pcie_get_cmd_index(txq, index); 1320 1321 if (rxq->id == trans_pcie->def_rx_queue) 1322 iwl_op_mode_rx(trans->op_mode, &rxq->napi, 1323 &rxcb); 1324 else 1325 iwl_op_mode_rx_rss(trans->op_mode, &rxq->napi, 1326 &rxcb, rxq->id); 1327 1328 if (reclaim) { 1329 kzfree(txq->entries[cmd_index].free_buf); 1330 txq->entries[cmd_index].free_buf = NULL; 1331 } 1332 1333 /* 1334 * After here, we should always check rxcb._page_stolen, 1335 * if it is true then one of the handlers took the page. 1336 */ 1337 1338 if (reclaim) { 1339 /* Invoke any callbacks, transfer the buffer to caller, 1340 * and fire off the (possibly) blocking 1341 * iwl_trans_send_cmd() 1342 * as we reclaim the driver command queue */ 1343 if (!rxcb._page_stolen) 1344 iwl_pcie_hcmd_complete(trans, &rxcb); 1345 else 1346 IWL_WARN(trans, "Claim null rxb?\n"); 1347 } 1348 1349 page_stolen |= rxcb._page_stolen; 1350 if (trans->cfg->device_family >= IWL_DEVICE_FAMILY_22560) 1351 break; 1352 offset += ALIGN(len, FH_RSCSR_FRAME_ALIGN); 1353 } 1354 1355 /* page was stolen from us -- free our reference */ 1356 if (page_stolen) { 1357 __free_pages(rxb->page, trans_pcie->rx_page_order); 1358 rxb->page = NULL; 1359 } 1360 1361 /* Reuse the page if possible. For notification packets and 1362 * SKBs that fail to Rx correctly, add them back into the 1363 * rx_free list for reuse later. */ 1364 if (rxb->page != NULL) { 1365 rxb->page_dma = 1366 dma_map_page(trans->dev, rxb->page, 0, 1367 PAGE_SIZE << trans_pcie->rx_page_order, 1368 DMA_FROM_DEVICE); 1369 if (dma_mapping_error(trans->dev, rxb->page_dma)) { 1370 /* 1371 * free the page(s) as well to not break 1372 * the invariant that the items on the used 1373 * list have no page(s) 1374 */ 1375 __free_pages(rxb->page, trans_pcie->rx_page_order); 1376 rxb->page = NULL; 1377 iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency); 1378 } else { 1379 list_add_tail(&rxb->list, &rxq->rx_free); 1380 rxq->free_count++; 1381 } 1382 } else 1383 iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency); 1384 } 1385 1386 static struct iwl_rx_mem_buffer *iwl_pcie_get_rxb(struct iwl_trans *trans, 1387 struct iwl_rxq *rxq, int i) 1388 { 1389 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1390 struct iwl_rx_mem_buffer *rxb; 1391 u16 vid; 1392 1393 BUILD_BUG_ON(sizeof(struct iwl_rx_completion_desc) != 32); 1394 1395 if (!trans->cfg->mq_rx_supported) { 1396 rxb = rxq->queue[i]; 1397 rxq->queue[i] = NULL; 1398 return rxb; 1399 } 1400 1401 /* used_bd is a 32/16 bit but only 12 are used to retrieve the vid */ 1402 if (trans->cfg->device_family >= IWL_DEVICE_FAMILY_22560) 1403 vid = le16_to_cpu(rxq->cd[i].rbid) & 0x0FFF; 1404 else 1405 vid = le32_to_cpu(rxq->bd_32[i]) & 0x0FFF; 1406 1407 if (!vid || vid > ARRAY_SIZE(trans_pcie->global_table)) 1408 goto out_err; 1409 1410 rxb = trans_pcie->global_table[vid - 1]; 1411 if (rxb->invalid) 1412 goto out_err; 1413 1414 IWL_DEBUG_RX(trans, "Got virtual RB ID %u\n", (u32)rxb->vid); 1415 1416 rxb->invalid = true; 1417 1418 return rxb; 1419 1420 out_err: 1421 WARN(1, "Invalid rxb from HW %u\n", (u32)vid); 1422 iwl_force_nmi(trans); 1423 return NULL; 1424 } 1425 1426 /* 1427 * iwl_pcie_rx_handle - Main entry function for receiving responses from fw 1428 */ 1429 static void iwl_pcie_rx_handle(struct iwl_trans *trans, int queue) 1430 { 1431 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1432 struct iwl_rxq *rxq; 1433 u32 r, i, count = 0; 1434 bool emergency = false; 1435 1436 if (WARN_ON_ONCE(!trans_pcie->rxq || !trans_pcie->rxq[queue].bd)) 1437 return; 1438 1439 rxq = &trans_pcie->rxq[queue]; 1440 1441 restart: 1442 spin_lock(&rxq->lock); 1443 /* uCode's read index (stored in shared DRAM) indicates the last Rx 1444 * buffer that the driver may process (last buffer filled by ucode). */ 1445 r = le16_to_cpu(iwl_get_closed_rb_stts(trans, rxq)) & 0x0FFF; 1446 i = rxq->read; 1447 1448 /* W/A 9000 device step A0 wrap-around bug */ 1449 r &= (rxq->queue_size - 1); 1450 1451 /* Rx interrupt, but nothing sent from uCode */ 1452 if (i == r) 1453 IWL_DEBUG_RX(trans, "Q %d: HW = SW = %d\n", rxq->id, r); 1454 1455 while (i != r) { 1456 struct iwl_rb_allocator *rba = &trans_pcie->rba; 1457 struct iwl_rx_mem_buffer *rxb; 1458 /* number of RBDs still waiting for page allocation */ 1459 u32 rb_pending_alloc = 1460 atomic_read(&trans_pcie->rba.req_pending) * 1461 RX_CLAIM_REQ_ALLOC; 1462 1463 if (unlikely(rb_pending_alloc >= rxq->queue_size / 2 && 1464 !emergency)) { 1465 iwl_pcie_rx_move_to_allocator(rxq, rba); 1466 emergency = true; 1467 IWL_DEBUG_TPT(trans, 1468 "RX path is in emergency. Pending allocations %d\n", 1469 rb_pending_alloc); 1470 } 1471 1472 IWL_DEBUG_RX(trans, "Q %d: HW = %d, SW = %d\n", rxq->id, r, i); 1473 1474 rxb = iwl_pcie_get_rxb(trans, rxq, i); 1475 if (!rxb) 1476 goto out; 1477 1478 iwl_pcie_rx_handle_rb(trans, rxq, rxb, emergency, i); 1479 1480 i = (i + 1) & (rxq->queue_size - 1); 1481 1482 /* 1483 * If we have RX_CLAIM_REQ_ALLOC released rx buffers - 1484 * try to claim the pre-allocated buffers from the allocator. 1485 * If not ready - will try to reclaim next time. 1486 * There is no need to reschedule work - allocator exits only 1487 * on success 1488 */ 1489 if (rxq->used_count >= RX_CLAIM_REQ_ALLOC) 1490 iwl_pcie_rx_allocator_get(trans, rxq); 1491 1492 if (rxq->used_count % RX_CLAIM_REQ_ALLOC == 0 && !emergency) { 1493 /* Add the remaining empty RBDs for allocator use */ 1494 iwl_pcie_rx_move_to_allocator(rxq, rba); 1495 } else if (emergency) { 1496 count++; 1497 if (count == 8) { 1498 count = 0; 1499 if (rb_pending_alloc < rxq->queue_size / 3) { 1500 IWL_DEBUG_TPT(trans, 1501 "RX path exited emergency. Pending allocations %d\n", 1502 rb_pending_alloc); 1503 emergency = false; 1504 } 1505 1506 rxq->read = i; 1507 spin_unlock(&rxq->lock); 1508 iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq); 1509 iwl_pcie_rxq_restock(trans, rxq); 1510 goto restart; 1511 } 1512 } 1513 } 1514 out: 1515 /* Backtrack one entry */ 1516 rxq->read = i; 1517 /* update cr tail with the rxq read pointer */ 1518 if (trans->cfg->device_family >= IWL_DEVICE_FAMILY_22560) 1519 *rxq->cr_tail = cpu_to_le16(r); 1520 spin_unlock(&rxq->lock); 1521 1522 /* 1523 * handle a case where in emergency there are some unallocated RBDs. 1524 * those RBDs are in the used list, but are not tracked by the queue's 1525 * used_count which counts allocator owned RBDs. 1526 * unallocated emergency RBDs must be allocated on exit, otherwise 1527 * when called again the function may not be in emergency mode and 1528 * they will be handed to the allocator with no tracking in the RBD 1529 * allocator counters, which will lead to them never being claimed back 1530 * by the queue. 1531 * by allocating them here, they are now in the queue free list, and 1532 * will be restocked by the next call of iwl_pcie_rxq_restock. 1533 */ 1534 if (unlikely(emergency && count)) 1535 iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq); 1536 1537 if (rxq->napi.poll) 1538 napi_gro_flush(&rxq->napi, false); 1539 1540 iwl_pcie_rxq_restock(trans, rxq); 1541 } 1542 1543 static struct iwl_trans_pcie *iwl_pcie_get_trans_pcie(struct msix_entry *entry) 1544 { 1545 u8 queue = entry->entry; 1546 struct msix_entry *entries = entry - queue; 1547 1548 return container_of(entries, struct iwl_trans_pcie, msix_entries[0]); 1549 } 1550 1551 /* 1552 * iwl_pcie_rx_msix_handle - Main entry function for receiving responses from fw 1553 * This interrupt handler should be used with RSS queue only. 1554 */ 1555 irqreturn_t iwl_pcie_irq_rx_msix_handler(int irq, void *dev_id) 1556 { 1557 struct msix_entry *entry = dev_id; 1558 struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry); 1559 struct iwl_trans *trans = trans_pcie->trans; 1560 1561 trace_iwlwifi_dev_irq_msix(trans->dev, entry, false, 0, 0); 1562 1563 if (WARN_ON(entry->entry >= trans->num_rx_queues)) 1564 return IRQ_NONE; 1565 1566 lock_map_acquire(&trans->sync_cmd_lockdep_map); 1567 1568 local_bh_disable(); 1569 iwl_pcie_rx_handle(trans, entry->entry); 1570 local_bh_enable(); 1571 1572 iwl_pcie_clear_irq(trans, entry); 1573 1574 lock_map_release(&trans->sync_cmd_lockdep_map); 1575 1576 return IRQ_HANDLED; 1577 } 1578 1579 /* 1580 * iwl_pcie_irq_handle_error - called for HW or SW error interrupt from card 1581 */ 1582 static void iwl_pcie_irq_handle_error(struct iwl_trans *trans) 1583 { 1584 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1585 int i; 1586 1587 /* W/A for WiFi/WiMAX coex and WiMAX own the RF */ 1588 if (trans->cfg->internal_wimax_coex && 1589 !trans->cfg->apmg_not_supported && 1590 (!(iwl_read_prph(trans, APMG_CLK_CTRL_REG) & 1591 APMS_CLK_VAL_MRB_FUNC_MODE) || 1592 (iwl_read_prph(trans, APMG_PS_CTRL_REG) & 1593 APMG_PS_CTRL_VAL_RESET_REQ))) { 1594 clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status); 1595 iwl_op_mode_wimax_active(trans->op_mode); 1596 wake_up(&trans_pcie->wait_command_queue); 1597 return; 1598 } 1599 1600 for (i = 0; i < trans->cfg->base_params->num_of_queues; i++) { 1601 if (!trans_pcie->txq[i]) 1602 continue; 1603 del_timer(&trans_pcie->txq[i]->stuck_timer); 1604 } 1605 1606 /* The STATUS_FW_ERROR bit is set in this function. This must happen 1607 * before we wake up the command caller, to ensure a proper cleanup. */ 1608 iwl_trans_fw_error(trans); 1609 1610 clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status); 1611 wake_up(&trans_pcie->wait_command_queue); 1612 } 1613 1614 static u32 iwl_pcie_int_cause_non_ict(struct iwl_trans *trans) 1615 { 1616 u32 inta; 1617 1618 lockdep_assert_held(&IWL_TRANS_GET_PCIE_TRANS(trans)->irq_lock); 1619 1620 trace_iwlwifi_dev_irq(trans->dev); 1621 1622 /* Discover which interrupts are active/pending */ 1623 inta = iwl_read32(trans, CSR_INT); 1624 1625 /* the thread will service interrupts and re-enable them */ 1626 return inta; 1627 } 1628 1629 /* a device (PCI-E) page is 4096 bytes long */ 1630 #define ICT_SHIFT 12 1631 #define ICT_SIZE (1 << ICT_SHIFT) 1632 #define ICT_COUNT (ICT_SIZE / sizeof(u32)) 1633 1634 /* interrupt handler using ict table, with this interrupt driver will 1635 * stop using INTA register to get device's interrupt, reading this register 1636 * is expensive, device will write interrupts in ICT dram table, increment 1637 * index then will fire interrupt to driver, driver will OR all ICT table 1638 * entries from current index up to table entry with 0 value. the result is 1639 * the interrupt we need to service, driver will set the entries back to 0 and 1640 * set index. 1641 */ 1642 static u32 iwl_pcie_int_cause_ict(struct iwl_trans *trans) 1643 { 1644 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1645 u32 inta; 1646 u32 val = 0; 1647 u32 read; 1648 1649 trace_iwlwifi_dev_irq(trans->dev); 1650 1651 /* Ignore interrupt if there's nothing in NIC to service. 1652 * This may be due to IRQ shared with another device, 1653 * or due to sporadic interrupts thrown from our NIC. */ 1654 read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]); 1655 trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index, read); 1656 if (!read) 1657 return 0; 1658 1659 /* 1660 * Collect all entries up to the first 0, starting from ict_index; 1661 * note we already read at ict_index. 1662 */ 1663 do { 1664 val |= read; 1665 IWL_DEBUG_ISR(trans, "ICT index %d value 0x%08X\n", 1666 trans_pcie->ict_index, read); 1667 trans_pcie->ict_tbl[trans_pcie->ict_index] = 0; 1668 trans_pcie->ict_index = 1669 ((trans_pcie->ict_index + 1) & (ICT_COUNT - 1)); 1670 1671 read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]); 1672 trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index, 1673 read); 1674 } while (read); 1675 1676 /* We should not get this value, just ignore it. */ 1677 if (val == 0xffffffff) 1678 val = 0; 1679 1680 /* 1681 * this is a w/a for a h/w bug. the h/w bug may cause the Rx bit 1682 * (bit 15 before shifting it to 31) to clear when using interrupt 1683 * coalescing. fortunately, bits 18 and 19 stay set when this happens 1684 * so we use them to decide on the real state of the Rx bit. 1685 * In order words, bit 15 is set if bit 18 or bit 19 are set. 1686 */ 1687 if (val & 0xC0000) 1688 val |= 0x8000; 1689 1690 inta = (0xff & val) | ((0xff00 & val) << 16); 1691 return inta; 1692 } 1693 1694 void iwl_pcie_handle_rfkill_irq(struct iwl_trans *trans) 1695 { 1696 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1697 struct isr_statistics *isr_stats = &trans_pcie->isr_stats; 1698 bool hw_rfkill, prev, report; 1699 1700 mutex_lock(&trans_pcie->mutex); 1701 prev = test_bit(STATUS_RFKILL_OPMODE, &trans->status); 1702 hw_rfkill = iwl_is_rfkill_set(trans); 1703 if (hw_rfkill) { 1704 set_bit(STATUS_RFKILL_OPMODE, &trans->status); 1705 set_bit(STATUS_RFKILL_HW, &trans->status); 1706 } 1707 if (trans_pcie->opmode_down) 1708 report = hw_rfkill; 1709 else 1710 report = test_bit(STATUS_RFKILL_OPMODE, &trans->status); 1711 1712 IWL_WARN(trans, "RF_KILL bit toggled to %s.\n", 1713 hw_rfkill ? "disable radio" : "enable radio"); 1714 1715 isr_stats->rfkill++; 1716 1717 if (prev != report) 1718 iwl_trans_pcie_rf_kill(trans, report); 1719 mutex_unlock(&trans_pcie->mutex); 1720 1721 if (hw_rfkill) { 1722 if (test_and_clear_bit(STATUS_SYNC_HCMD_ACTIVE, 1723 &trans->status)) 1724 IWL_DEBUG_RF_KILL(trans, 1725 "Rfkill while SYNC HCMD in flight\n"); 1726 wake_up(&trans_pcie->wait_command_queue); 1727 } else { 1728 clear_bit(STATUS_RFKILL_HW, &trans->status); 1729 if (trans_pcie->opmode_down) 1730 clear_bit(STATUS_RFKILL_OPMODE, &trans->status); 1731 } 1732 } 1733 1734 irqreturn_t iwl_pcie_irq_handler(int irq, void *dev_id) 1735 { 1736 struct iwl_trans *trans = dev_id; 1737 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1738 struct isr_statistics *isr_stats = &trans_pcie->isr_stats; 1739 u32 inta = 0; 1740 u32 handled = 0; 1741 1742 lock_map_acquire(&trans->sync_cmd_lockdep_map); 1743 1744 spin_lock(&trans_pcie->irq_lock); 1745 1746 /* dram interrupt table not set yet, 1747 * use legacy interrupt. 1748 */ 1749 if (likely(trans_pcie->use_ict)) 1750 inta = iwl_pcie_int_cause_ict(trans); 1751 else 1752 inta = iwl_pcie_int_cause_non_ict(trans); 1753 1754 if (iwl_have_debug_level(IWL_DL_ISR)) { 1755 IWL_DEBUG_ISR(trans, 1756 "ISR inta 0x%08x, enabled 0x%08x(sw), enabled(hw) 0x%08x, fh 0x%08x\n", 1757 inta, trans_pcie->inta_mask, 1758 iwl_read32(trans, CSR_INT_MASK), 1759 iwl_read32(trans, CSR_FH_INT_STATUS)); 1760 if (inta & (~trans_pcie->inta_mask)) 1761 IWL_DEBUG_ISR(trans, 1762 "We got a masked interrupt (0x%08x)\n", 1763 inta & (~trans_pcie->inta_mask)); 1764 } 1765 1766 inta &= trans_pcie->inta_mask; 1767 1768 /* 1769 * Ignore interrupt if there's nothing in NIC to service. 1770 * This may be due to IRQ shared with another device, 1771 * or due to sporadic interrupts thrown from our NIC. 1772 */ 1773 if (unlikely(!inta)) { 1774 IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n"); 1775 /* 1776 * Re-enable interrupts here since we don't 1777 * have anything to service 1778 */ 1779 if (test_bit(STATUS_INT_ENABLED, &trans->status)) 1780 _iwl_enable_interrupts(trans); 1781 spin_unlock(&trans_pcie->irq_lock); 1782 lock_map_release(&trans->sync_cmd_lockdep_map); 1783 return IRQ_NONE; 1784 } 1785 1786 if (unlikely(inta == 0xFFFFFFFF || (inta & 0xFFFFFFF0) == 0xa5a5a5a0)) { 1787 /* 1788 * Hardware disappeared. It might have 1789 * already raised an interrupt. 1790 */ 1791 IWL_WARN(trans, "HARDWARE GONE?? INTA == 0x%08x\n", inta); 1792 spin_unlock(&trans_pcie->irq_lock); 1793 goto out; 1794 } 1795 1796 /* Ack/clear/reset pending uCode interrupts. 1797 * Note: Some bits in CSR_INT are "OR" of bits in CSR_FH_INT_STATUS, 1798 */ 1799 /* There is a hardware bug in the interrupt mask function that some 1800 * interrupts (i.e. CSR_INT_BIT_SCD) can still be generated even if 1801 * they are disabled in the CSR_INT_MASK register. Furthermore the 1802 * ICT interrupt handling mechanism has another bug that might cause 1803 * these unmasked interrupts fail to be detected. We workaround the 1804 * hardware bugs here by ACKing all the possible interrupts so that 1805 * interrupt coalescing can still be achieved. 1806 */ 1807 iwl_write32(trans, CSR_INT, inta | ~trans_pcie->inta_mask); 1808 1809 if (iwl_have_debug_level(IWL_DL_ISR)) 1810 IWL_DEBUG_ISR(trans, "inta 0x%08x, enabled 0x%08x\n", 1811 inta, iwl_read32(trans, CSR_INT_MASK)); 1812 1813 spin_unlock(&trans_pcie->irq_lock); 1814 1815 /* Now service all interrupt bits discovered above. */ 1816 if (inta & CSR_INT_BIT_HW_ERR) { 1817 IWL_ERR(trans, "Hardware error detected. Restarting.\n"); 1818 1819 /* Tell the device to stop sending interrupts */ 1820 iwl_disable_interrupts(trans); 1821 1822 isr_stats->hw++; 1823 iwl_pcie_irq_handle_error(trans); 1824 1825 handled |= CSR_INT_BIT_HW_ERR; 1826 1827 goto out; 1828 } 1829 1830 /* NIC fires this, but we don't use it, redundant with WAKEUP */ 1831 if (inta & CSR_INT_BIT_SCD) { 1832 IWL_DEBUG_ISR(trans, 1833 "Scheduler finished to transmit the frame/frames.\n"); 1834 isr_stats->sch++; 1835 } 1836 1837 /* Alive notification via Rx interrupt will do the real work */ 1838 if (inta & CSR_INT_BIT_ALIVE) { 1839 IWL_DEBUG_ISR(trans, "Alive interrupt\n"); 1840 isr_stats->alive++; 1841 if (trans->cfg->gen2) { 1842 /* 1843 * We can restock, since firmware configured 1844 * the RFH 1845 */ 1846 iwl_pcie_rxmq_restock(trans, trans_pcie->rxq); 1847 } 1848 1849 handled |= CSR_INT_BIT_ALIVE; 1850 } 1851 1852 /* Safely ignore these bits for debug checks below */ 1853 inta &= ~(CSR_INT_BIT_SCD | CSR_INT_BIT_ALIVE); 1854 1855 /* HW RF KILL switch toggled */ 1856 if (inta & CSR_INT_BIT_RF_KILL) { 1857 iwl_pcie_handle_rfkill_irq(trans); 1858 handled |= CSR_INT_BIT_RF_KILL; 1859 } 1860 1861 /* Chip got too hot and stopped itself */ 1862 if (inta & CSR_INT_BIT_CT_KILL) { 1863 IWL_ERR(trans, "Microcode CT kill error detected.\n"); 1864 isr_stats->ctkill++; 1865 handled |= CSR_INT_BIT_CT_KILL; 1866 } 1867 1868 /* Error detected by uCode */ 1869 if (inta & CSR_INT_BIT_SW_ERR) { 1870 IWL_ERR(trans, "Microcode SW error detected. " 1871 " Restarting 0x%X.\n", inta); 1872 isr_stats->sw++; 1873 iwl_pcie_irq_handle_error(trans); 1874 handled |= CSR_INT_BIT_SW_ERR; 1875 } 1876 1877 /* uCode wakes up after power-down sleep */ 1878 if (inta & CSR_INT_BIT_WAKEUP) { 1879 IWL_DEBUG_ISR(trans, "Wakeup interrupt\n"); 1880 iwl_pcie_rxq_check_wrptr(trans); 1881 iwl_pcie_txq_check_wrptrs(trans); 1882 1883 isr_stats->wakeup++; 1884 1885 handled |= CSR_INT_BIT_WAKEUP; 1886 } 1887 1888 /* All uCode command responses, including Tx command responses, 1889 * Rx "responses" (frame-received notification), and other 1890 * notifications from uCode come through here*/ 1891 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX | 1892 CSR_INT_BIT_RX_PERIODIC)) { 1893 IWL_DEBUG_ISR(trans, "Rx interrupt\n"); 1894 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX)) { 1895 handled |= (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX); 1896 iwl_write32(trans, CSR_FH_INT_STATUS, 1897 CSR_FH_INT_RX_MASK); 1898 } 1899 if (inta & CSR_INT_BIT_RX_PERIODIC) { 1900 handled |= CSR_INT_BIT_RX_PERIODIC; 1901 iwl_write32(trans, 1902 CSR_INT, CSR_INT_BIT_RX_PERIODIC); 1903 } 1904 /* Sending RX interrupt require many steps to be done in the 1905 * the device: 1906 * 1- write interrupt to current index in ICT table. 1907 * 2- dma RX frame. 1908 * 3- update RX shared data to indicate last write index. 1909 * 4- send interrupt. 1910 * This could lead to RX race, driver could receive RX interrupt 1911 * but the shared data changes does not reflect this; 1912 * periodic interrupt will detect any dangling Rx activity. 1913 */ 1914 1915 /* Disable periodic interrupt; we use it as just a one-shot. */ 1916 iwl_write8(trans, CSR_INT_PERIODIC_REG, 1917 CSR_INT_PERIODIC_DIS); 1918 1919 /* 1920 * Enable periodic interrupt in 8 msec only if we received 1921 * real RX interrupt (instead of just periodic int), to catch 1922 * any dangling Rx interrupt. If it was just the periodic 1923 * interrupt, there was no dangling Rx activity, and no need 1924 * to extend the periodic interrupt; one-shot is enough. 1925 */ 1926 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX)) 1927 iwl_write8(trans, CSR_INT_PERIODIC_REG, 1928 CSR_INT_PERIODIC_ENA); 1929 1930 isr_stats->rx++; 1931 1932 local_bh_disable(); 1933 iwl_pcie_rx_handle(trans, 0); 1934 local_bh_enable(); 1935 } 1936 1937 /* This "Tx" DMA channel is used only for loading uCode */ 1938 if (inta & CSR_INT_BIT_FH_TX) { 1939 iwl_write32(trans, CSR_FH_INT_STATUS, CSR_FH_INT_TX_MASK); 1940 IWL_DEBUG_ISR(trans, "uCode load interrupt\n"); 1941 isr_stats->tx++; 1942 handled |= CSR_INT_BIT_FH_TX; 1943 /* Wake up uCode load routine, now that load is complete */ 1944 trans_pcie->ucode_write_complete = true; 1945 wake_up(&trans_pcie->ucode_write_waitq); 1946 } 1947 1948 if (inta & ~handled) { 1949 IWL_ERR(trans, "Unhandled INTA bits 0x%08x\n", inta & ~handled); 1950 isr_stats->unhandled++; 1951 } 1952 1953 if (inta & ~(trans_pcie->inta_mask)) { 1954 IWL_WARN(trans, "Disabled INTA bits 0x%08x were pending\n", 1955 inta & ~trans_pcie->inta_mask); 1956 } 1957 1958 spin_lock(&trans_pcie->irq_lock); 1959 /* only Re-enable all interrupt if disabled by irq */ 1960 if (test_bit(STATUS_INT_ENABLED, &trans->status)) 1961 _iwl_enable_interrupts(trans); 1962 /* we are loading the firmware, enable FH_TX interrupt only */ 1963 else if (handled & CSR_INT_BIT_FH_TX) 1964 iwl_enable_fw_load_int(trans); 1965 /* Re-enable RF_KILL if it occurred */ 1966 else if (handled & CSR_INT_BIT_RF_KILL) 1967 iwl_enable_rfkill_int(trans); 1968 /* Re-enable the ALIVE / Rx interrupt if it occurred */ 1969 else if (handled & (CSR_INT_BIT_ALIVE | CSR_INT_BIT_FH_RX)) 1970 iwl_enable_fw_load_int_ctx_info(trans); 1971 spin_unlock(&trans_pcie->irq_lock); 1972 1973 out: 1974 lock_map_release(&trans->sync_cmd_lockdep_map); 1975 return IRQ_HANDLED; 1976 } 1977 1978 /****************************************************************************** 1979 * 1980 * ICT functions 1981 * 1982 ******************************************************************************/ 1983 1984 /* Free dram table */ 1985 void iwl_pcie_free_ict(struct iwl_trans *trans) 1986 { 1987 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1988 1989 if (trans_pcie->ict_tbl) { 1990 dma_free_coherent(trans->dev, ICT_SIZE, 1991 trans_pcie->ict_tbl, 1992 trans_pcie->ict_tbl_dma); 1993 trans_pcie->ict_tbl = NULL; 1994 trans_pcie->ict_tbl_dma = 0; 1995 } 1996 } 1997 1998 /* 1999 * allocate dram shared table, it is an aligned memory 2000 * block of ICT_SIZE. 2001 * also reset all data related to ICT table interrupt. 2002 */ 2003 int iwl_pcie_alloc_ict(struct iwl_trans *trans) 2004 { 2005 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 2006 2007 trans_pcie->ict_tbl = 2008 dma_alloc_coherent(trans->dev, ICT_SIZE, 2009 &trans_pcie->ict_tbl_dma, GFP_KERNEL); 2010 if (!trans_pcie->ict_tbl) 2011 return -ENOMEM; 2012 2013 /* just an API sanity check ... it is guaranteed to be aligned */ 2014 if (WARN_ON(trans_pcie->ict_tbl_dma & (ICT_SIZE - 1))) { 2015 iwl_pcie_free_ict(trans); 2016 return -EINVAL; 2017 } 2018 2019 return 0; 2020 } 2021 2022 /* Device is going up inform it about using ICT interrupt table, 2023 * also we need to tell the driver to start using ICT interrupt. 2024 */ 2025 void iwl_pcie_reset_ict(struct iwl_trans *trans) 2026 { 2027 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 2028 u32 val; 2029 2030 if (!trans_pcie->ict_tbl) 2031 return; 2032 2033 spin_lock(&trans_pcie->irq_lock); 2034 _iwl_disable_interrupts(trans); 2035 2036 memset(trans_pcie->ict_tbl, 0, ICT_SIZE); 2037 2038 val = trans_pcie->ict_tbl_dma >> ICT_SHIFT; 2039 2040 val |= CSR_DRAM_INT_TBL_ENABLE | 2041 CSR_DRAM_INIT_TBL_WRAP_CHECK | 2042 CSR_DRAM_INIT_TBL_WRITE_POINTER; 2043 2044 IWL_DEBUG_ISR(trans, "CSR_DRAM_INT_TBL_REG =0x%x\n", val); 2045 2046 iwl_write32(trans, CSR_DRAM_INT_TBL_REG, val); 2047 trans_pcie->use_ict = true; 2048 trans_pcie->ict_index = 0; 2049 iwl_write32(trans, CSR_INT, trans_pcie->inta_mask); 2050 _iwl_enable_interrupts(trans); 2051 spin_unlock(&trans_pcie->irq_lock); 2052 } 2053 2054 /* Device is going down disable ict interrupt usage */ 2055 void iwl_pcie_disable_ict(struct iwl_trans *trans) 2056 { 2057 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 2058 2059 spin_lock(&trans_pcie->irq_lock); 2060 trans_pcie->use_ict = false; 2061 spin_unlock(&trans_pcie->irq_lock); 2062 } 2063 2064 irqreturn_t iwl_pcie_isr(int irq, void *data) 2065 { 2066 struct iwl_trans *trans = data; 2067 2068 if (!trans) 2069 return IRQ_NONE; 2070 2071 /* Disable (but don't clear!) interrupts here to avoid 2072 * back-to-back ISRs and sporadic interrupts from our NIC. 2073 * If we have something to service, the tasklet will re-enable ints. 2074 * If we *don't* have something, we'll re-enable before leaving here. 2075 */ 2076 iwl_write32(trans, CSR_INT_MASK, 0x00000000); 2077 2078 return IRQ_WAKE_THREAD; 2079 } 2080 2081 irqreturn_t iwl_pcie_msix_isr(int irq, void *data) 2082 { 2083 return IRQ_WAKE_THREAD; 2084 } 2085 2086 irqreturn_t iwl_pcie_irq_msix_handler(int irq, void *dev_id) 2087 { 2088 struct msix_entry *entry = dev_id; 2089 struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry); 2090 struct iwl_trans *trans = trans_pcie->trans; 2091 struct isr_statistics *isr_stats = &trans_pcie->isr_stats; 2092 u32 inta_fh, inta_hw; 2093 2094 lock_map_acquire(&trans->sync_cmd_lockdep_map); 2095 2096 spin_lock(&trans_pcie->irq_lock); 2097 inta_fh = iwl_read32(trans, CSR_MSIX_FH_INT_CAUSES_AD); 2098 inta_hw = iwl_read32(trans, CSR_MSIX_HW_INT_CAUSES_AD); 2099 /* 2100 * Clear causes registers to avoid being handling the same cause. 2101 */ 2102 iwl_write32(trans, CSR_MSIX_FH_INT_CAUSES_AD, inta_fh); 2103 iwl_write32(trans, CSR_MSIX_HW_INT_CAUSES_AD, inta_hw); 2104 spin_unlock(&trans_pcie->irq_lock); 2105 2106 trace_iwlwifi_dev_irq_msix(trans->dev, entry, true, inta_fh, inta_hw); 2107 2108 if (unlikely(!(inta_fh | inta_hw))) { 2109 IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n"); 2110 lock_map_release(&trans->sync_cmd_lockdep_map); 2111 return IRQ_NONE; 2112 } 2113 2114 if (iwl_have_debug_level(IWL_DL_ISR)) { 2115 IWL_DEBUG_ISR(trans, 2116 "ISR inta_fh 0x%08x, enabled (sw) 0x%08x (hw) 0x%08x\n", 2117 inta_fh, trans_pcie->fh_mask, 2118 iwl_read32(trans, CSR_MSIX_FH_INT_MASK_AD)); 2119 if (inta_fh & ~trans_pcie->fh_mask) 2120 IWL_DEBUG_ISR(trans, 2121 "We got a masked interrupt (0x%08x)\n", 2122 inta_fh & ~trans_pcie->fh_mask); 2123 } 2124 2125 inta_fh &= trans_pcie->fh_mask; 2126 2127 if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_NON_RX) && 2128 inta_fh & MSIX_FH_INT_CAUSES_Q0) { 2129 local_bh_disable(); 2130 iwl_pcie_rx_handle(trans, 0); 2131 local_bh_enable(); 2132 } 2133 2134 if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS) && 2135 inta_fh & MSIX_FH_INT_CAUSES_Q1) { 2136 local_bh_disable(); 2137 iwl_pcie_rx_handle(trans, 1); 2138 local_bh_enable(); 2139 } 2140 2141 /* This "Tx" DMA channel is used only for loading uCode */ 2142 if (inta_fh & MSIX_FH_INT_CAUSES_D2S_CH0_NUM) { 2143 IWL_DEBUG_ISR(trans, "uCode load interrupt\n"); 2144 isr_stats->tx++; 2145 /* 2146 * Wake up uCode load routine, 2147 * now that load is complete 2148 */ 2149 trans_pcie->ucode_write_complete = true; 2150 wake_up(&trans_pcie->ucode_write_waitq); 2151 } 2152 2153 /* Error detected by uCode */ 2154 if ((inta_fh & MSIX_FH_INT_CAUSES_FH_ERR) || 2155 (inta_hw & MSIX_HW_INT_CAUSES_REG_SW_ERR) || 2156 (inta_hw & MSIX_HW_INT_CAUSES_REG_SW_ERR_V2)) { 2157 IWL_ERR(trans, 2158 "Microcode SW error detected. Restarting 0x%X.\n", 2159 inta_fh); 2160 isr_stats->sw++; 2161 iwl_pcie_irq_handle_error(trans); 2162 } 2163 2164 /* After checking FH register check HW register */ 2165 if (iwl_have_debug_level(IWL_DL_ISR)) { 2166 IWL_DEBUG_ISR(trans, 2167 "ISR inta_hw 0x%08x, enabled (sw) 0x%08x (hw) 0x%08x\n", 2168 inta_hw, trans_pcie->hw_mask, 2169 iwl_read32(trans, CSR_MSIX_HW_INT_MASK_AD)); 2170 if (inta_hw & ~trans_pcie->hw_mask) 2171 IWL_DEBUG_ISR(trans, 2172 "We got a masked interrupt 0x%08x\n", 2173 inta_hw & ~trans_pcie->hw_mask); 2174 } 2175 2176 inta_hw &= trans_pcie->hw_mask; 2177 2178 /* Alive notification via Rx interrupt will do the real work */ 2179 if (inta_hw & MSIX_HW_INT_CAUSES_REG_ALIVE) { 2180 IWL_DEBUG_ISR(trans, "Alive interrupt\n"); 2181 isr_stats->alive++; 2182 if (trans->cfg->gen2) { 2183 /* We can restock, since firmware configured the RFH */ 2184 iwl_pcie_rxmq_restock(trans, trans_pcie->rxq); 2185 } 2186 } 2187 2188 if (trans->cfg->device_family == IWL_DEVICE_FAMILY_22560 && 2189 inta_hw & MSIX_HW_INT_CAUSES_REG_IPC) { 2190 /* Reflect IML transfer status */ 2191 int res = iwl_read32(trans, CSR_IML_RESP_ADDR); 2192 2193 IWL_DEBUG_ISR(trans, "IML transfer status: %d\n", res); 2194 if (res == IWL_IMAGE_RESP_FAIL) { 2195 isr_stats->sw++; 2196 iwl_pcie_irq_handle_error(trans); 2197 } 2198 } else if (inta_hw & MSIX_HW_INT_CAUSES_REG_WAKEUP) { 2199 /* uCode wakes up after power-down sleep */ 2200 IWL_DEBUG_ISR(trans, "Wakeup interrupt\n"); 2201 iwl_pcie_rxq_check_wrptr(trans); 2202 iwl_pcie_txq_check_wrptrs(trans); 2203 2204 isr_stats->wakeup++; 2205 } 2206 2207 if (inta_hw & MSIX_HW_INT_CAUSES_REG_IML) { 2208 /* Reflect IML transfer status */ 2209 int res = iwl_read32(trans, CSR_IML_RESP_ADDR); 2210 2211 IWL_DEBUG_ISR(trans, "IML transfer status: %d\n", res); 2212 if (res == IWL_IMAGE_RESP_FAIL) { 2213 isr_stats->sw++; 2214 iwl_pcie_irq_handle_error(trans); 2215 } 2216 } 2217 2218 /* Chip got too hot and stopped itself */ 2219 if (inta_hw & MSIX_HW_INT_CAUSES_REG_CT_KILL) { 2220 IWL_ERR(trans, "Microcode CT kill error detected.\n"); 2221 isr_stats->ctkill++; 2222 } 2223 2224 /* HW RF KILL switch toggled */ 2225 if (inta_hw & MSIX_HW_INT_CAUSES_REG_RF_KILL) 2226 iwl_pcie_handle_rfkill_irq(trans); 2227 2228 if (inta_hw & MSIX_HW_INT_CAUSES_REG_HW_ERR) { 2229 IWL_ERR(trans, 2230 "Hardware error detected. Restarting.\n"); 2231 2232 isr_stats->hw++; 2233 trans->dbg.hw_error = true; 2234 iwl_pcie_irq_handle_error(trans); 2235 } 2236 2237 iwl_pcie_clear_irq(trans, entry); 2238 2239 lock_map_release(&trans->sync_cmd_lockdep_map); 2240 2241 return IRQ_HANDLED; 2242 } 2243