1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /*
3  * Copyright (C) 2003-2014, 2018-2021 Intel Corporation
4  * Copyright (C) 2013-2015 Intel Mobile Communications GmbH
5  * Copyright (C) 2016-2017 Intel Deutschland GmbH
6  */
7 #include <linux/sched.h>
8 #include <linux/wait.h>
9 #include <linux/gfp.h>
10 
11 #include "iwl-prph.h"
12 #include "iwl-io.h"
13 #include "internal.h"
14 #include "iwl-op-mode.h"
15 #include "iwl-context-info-gen3.h"
16 
17 /******************************************************************************
18  *
19  * RX path functions
20  *
21  ******************************************************************************/
22 
23 /*
24  * Rx theory of operation
25  *
26  * Driver allocates a circular buffer of Receive Buffer Descriptors (RBDs),
27  * each of which point to Receive Buffers to be filled by the NIC.  These get
28  * used not only for Rx frames, but for any command response or notification
29  * from the NIC.  The driver and NIC manage the Rx buffers by means
30  * of indexes into the circular buffer.
31  *
32  * Rx Queue Indexes
33  * The host/firmware share two index registers for managing the Rx buffers.
34  *
35  * The READ index maps to the first position that the firmware may be writing
36  * to -- the driver can read up to (but not including) this position and get
37  * good data.
38  * The READ index is managed by the firmware once the card is enabled.
39  *
40  * The WRITE index maps to the last position the driver has read from -- the
41  * position preceding WRITE is the last slot the firmware can place a packet.
42  *
43  * The queue is empty (no good data) if WRITE = READ - 1, and is full if
44  * WRITE = READ.
45  *
46  * During initialization, the host sets up the READ queue position to the first
47  * INDEX position, and WRITE to the last (READ - 1 wrapped)
48  *
49  * When the firmware places a packet in a buffer, it will advance the READ index
50  * and fire the RX interrupt.  The driver can then query the READ index and
51  * process as many packets as possible, moving the WRITE index forward as it
52  * resets the Rx queue buffers with new memory.
53  *
54  * The management in the driver is as follows:
55  * + A list of pre-allocated RBDs is stored in iwl->rxq->rx_free.
56  *   When the interrupt handler is called, the request is processed.
57  *   The page is either stolen - transferred to the upper layer
58  *   or reused - added immediately to the iwl->rxq->rx_free list.
59  * + When the page is stolen - the driver updates the matching queue's used
60  *   count, detaches the RBD and transfers it to the queue used list.
61  *   When there are two used RBDs - they are transferred to the allocator empty
62  *   list. Work is then scheduled for the allocator to start allocating
63  *   eight buffers.
64  *   When there are another 6 used RBDs - they are transferred to the allocator
65  *   empty list and the driver tries to claim the pre-allocated buffers and
66  *   add them to iwl->rxq->rx_free. If it fails - it continues to claim them
67  *   until ready.
68  *   When there are 8+ buffers in the free list - either from allocation or from
69  *   8 reused unstolen pages - restock is called to update the FW and indexes.
70  * + In order to make sure the allocator always has RBDs to use for allocation
71  *   the allocator has initial pool in the size of num_queues*(8-2) - the
72  *   maximum missing RBDs per allocation request (request posted with 2
73  *    empty RBDs, there is no guarantee when the other 6 RBDs are supplied).
74  *   The queues supplies the recycle of the rest of the RBDs.
75  * + A received packet is processed and handed to the kernel network stack,
76  *   detached from the iwl->rxq.  The driver 'processed' index is updated.
77  * + If there are no allocated buffers in iwl->rxq->rx_free,
78  *   the READ INDEX is not incremented and iwl->status(RX_STALLED) is set.
79  *   If there were enough free buffers and RX_STALLED is set it is cleared.
80  *
81  *
82  * Driver sequence:
83  *
84  * iwl_rxq_alloc()            Allocates rx_free
85  * iwl_pcie_rx_replenish()    Replenishes rx_free list from rx_used, and calls
86  *                            iwl_pcie_rxq_restock.
87  *                            Used only during initialization.
88  * iwl_pcie_rxq_restock()     Moves available buffers from rx_free into Rx
89  *                            queue, updates firmware pointers, and updates
90  *                            the WRITE index.
91  * iwl_pcie_rx_allocator()     Background work for allocating pages.
92  *
93  * -- enable interrupts --
94  * ISR - iwl_rx()             Detach iwl_rx_mem_buffers from pool up to the
95  *                            READ INDEX, detaching the SKB from the pool.
96  *                            Moves the packet buffer from queue to rx_used.
97  *                            Posts and claims requests to the allocator.
98  *                            Calls iwl_pcie_rxq_restock to refill any empty
99  *                            slots.
100  *
101  * RBD life-cycle:
102  *
103  * Init:
104  * rxq.pool -> rxq.rx_used -> rxq.rx_free -> rxq.queue
105  *
106  * Regular Receive interrupt:
107  * Page Stolen:
108  * rxq.queue -> rxq.rx_used -> allocator.rbd_empty ->
109  * allocator.rbd_allocated -> rxq.rx_free -> rxq.queue
110  * Page not Stolen:
111  * rxq.queue -> rxq.rx_free -> rxq.queue
112  * ...
113  *
114  */
115 
116 /*
117  * iwl_rxq_space - Return number of free slots available in queue.
118  */
119 static int iwl_rxq_space(const struct iwl_rxq *rxq)
120 {
121 	/* Make sure rx queue size is a power of 2 */
122 	WARN_ON(rxq->queue_size & (rxq->queue_size - 1));
123 
124 	/*
125 	 * There can be up to (RX_QUEUE_SIZE - 1) free slots, to avoid ambiguity
126 	 * between empty and completely full queues.
127 	 * The following is equivalent to modulo by RX_QUEUE_SIZE and is well
128 	 * defined for negative dividends.
129 	 */
130 	return (rxq->read - rxq->write - 1) & (rxq->queue_size - 1);
131 }
132 
133 /*
134  * iwl_dma_addr2rbd_ptr - convert a DMA address to a uCode read buffer ptr
135  */
136 static inline __le32 iwl_pcie_dma_addr2rbd_ptr(dma_addr_t dma_addr)
137 {
138 	return cpu_to_le32((u32)(dma_addr >> 8));
139 }
140 
141 /*
142  * iwl_pcie_rx_stop - stops the Rx DMA
143  */
144 int iwl_pcie_rx_stop(struct iwl_trans *trans)
145 {
146 	if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
147 		/* TODO: remove this once fw does it */
148 		iwl_write_umac_prph(trans, RFH_RXF_DMA_CFG_GEN3, 0);
149 		return iwl_poll_umac_prph_bit(trans, RFH_GEN_STATUS_GEN3,
150 					      RXF_DMA_IDLE, RXF_DMA_IDLE, 1000);
151 	} else if (trans->trans_cfg->mq_rx_supported) {
152 		iwl_write_prph(trans, RFH_RXF_DMA_CFG, 0);
153 		return iwl_poll_prph_bit(trans, RFH_GEN_STATUS,
154 					   RXF_DMA_IDLE, RXF_DMA_IDLE, 1000);
155 	} else {
156 		iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
157 		return iwl_poll_direct_bit(trans, FH_MEM_RSSR_RX_STATUS_REG,
158 					   FH_RSSR_CHNL0_RX_STATUS_CHNL_IDLE,
159 					   1000);
160 	}
161 }
162 
163 /*
164  * iwl_pcie_rxq_inc_wr_ptr - Update the write pointer for the RX queue
165  */
166 static void iwl_pcie_rxq_inc_wr_ptr(struct iwl_trans *trans,
167 				    struct iwl_rxq *rxq)
168 {
169 	u32 reg;
170 
171 	lockdep_assert_held(&rxq->lock);
172 
173 	/*
174 	 * explicitly wake up the NIC if:
175 	 * 1. shadow registers aren't enabled
176 	 * 2. there is a chance that the NIC is asleep
177 	 */
178 	if (!trans->trans_cfg->base_params->shadow_reg_enable &&
179 	    test_bit(STATUS_TPOWER_PMI, &trans->status)) {
180 		reg = iwl_read32(trans, CSR_UCODE_DRV_GP1);
181 
182 		if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) {
183 			IWL_DEBUG_INFO(trans, "Rx queue requesting wakeup, GP1 = 0x%x\n",
184 				       reg);
185 			iwl_set_bit(trans, CSR_GP_CNTRL,
186 				    CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
187 			rxq->need_update = true;
188 			return;
189 		}
190 	}
191 
192 	rxq->write_actual = round_down(rxq->write, 8);
193 	if (trans->trans_cfg->mq_rx_supported)
194 		iwl_write32(trans, RFH_Q_FRBDCB_WIDX_TRG(rxq->id),
195 			    rxq->write_actual);
196 	else
197 		iwl_write32(trans, FH_RSCSR_CHNL0_WPTR, rxq->write_actual);
198 }
199 
200 static void iwl_pcie_rxq_check_wrptr(struct iwl_trans *trans)
201 {
202 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
203 	int i;
204 
205 	for (i = 0; i < trans->num_rx_queues; i++) {
206 		struct iwl_rxq *rxq = &trans_pcie->rxq[i];
207 
208 		if (!rxq->need_update)
209 			continue;
210 		spin_lock_bh(&rxq->lock);
211 		iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
212 		rxq->need_update = false;
213 		spin_unlock_bh(&rxq->lock);
214 	}
215 }
216 
217 static void iwl_pcie_restock_bd(struct iwl_trans *trans,
218 				struct iwl_rxq *rxq,
219 				struct iwl_rx_mem_buffer *rxb)
220 {
221 	if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
222 		struct iwl_rx_transfer_desc *bd = rxq->bd;
223 
224 		BUILD_BUG_ON(sizeof(*bd) != 2 * sizeof(u64));
225 
226 		bd[rxq->write].addr = cpu_to_le64(rxb->page_dma);
227 		bd[rxq->write].rbid = cpu_to_le16(rxb->vid);
228 	} else {
229 		__le64 *bd = rxq->bd;
230 
231 		bd[rxq->write] = cpu_to_le64(rxb->page_dma | rxb->vid);
232 	}
233 
234 	IWL_DEBUG_RX(trans, "Assigned virtual RB ID %u to queue %d index %d\n",
235 		     (u32)rxb->vid, rxq->id, rxq->write);
236 }
237 
238 /*
239  * iwl_pcie_rxmq_restock - restock implementation for multi-queue rx
240  */
241 static void iwl_pcie_rxmq_restock(struct iwl_trans *trans,
242 				  struct iwl_rxq *rxq)
243 {
244 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
245 	struct iwl_rx_mem_buffer *rxb;
246 
247 	/*
248 	 * If the device isn't enabled - no need to try to add buffers...
249 	 * This can happen when we stop the device and still have an interrupt
250 	 * pending. We stop the APM before we sync the interrupts because we
251 	 * have to (see comment there). On the other hand, since the APM is
252 	 * stopped, we cannot access the HW (in particular not prph).
253 	 * So don't try to restock if the APM has been already stopped.
254 	 */
255 	if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
256 		return;
257 
258 	spin_lock_bh(&rxq->lock);
259 	while (rxq->free_count) {
260 		/* Get next free Rx buffer, remove from free list */
261 		rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
262 				       list);
263 		list_del(&rxb->list);
264 		rxb->invalid = false;
265 		/* some low bits are expected to be unset (depending on hw) */
266 		WARN_ON(rxb->page_dma & trans_pcie->supported_dma_mask);
267 		/* Point to Rx buffer via next RBD in circular buffer */
268 		iwl_pcie_restock_bd(trans, rxq, rxb);
269 		rxq->write = (rxq->write + 1) & (rxq->queue_size - 1);
270 		rxq->free_count--;
271 	}
272 	spin_unlock_bh(&rxq->lock);
273 
274 	/*
275 	 * If we've added more space for the firmware to place data, tell it.
276 	 * Increment device's write pointer in multiples of 8.
277 	 */
278 	if (rxq->write_actual != (rxq->write & ~0x7)) {
279 		spin_lock_bh(&rxq->lock);
280 		iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
281 		spin_unlock_bh(&rxq->lock);
282 	}
283 }
284 
285 /*
286  * iwl_pcie_rxsq_restock - restock implementation for single queue rx
287  */
288 static void iwl_pcie_rxsq_restock(struct iwl_trans *trans,
289 				  struct iwl_rxq *rxq)
290 {
291 	struct iwl_rx_mem_buffer *rxb;
292 
293 	/*
294 	 * If the device isn't enabled - not need to try to add buffers...
295 	 * This can happen when we stop the device and still have an interrupt
296 	 * pending. We stop the APM before we sync the interrupts because we
297 	 * have to (see comment there). On the other hand, since the APM is
298 	 * stopped, we cannot access the HW (in particular not prph).
299 	 * So don't try to restock if the APM has been already stopped.
300 	 */
301 	if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
302 		return;
303 
304 	spin_lock_bh(&rxq->lock);
305 	while ((iwl_rxq_space(rxq) > 0) && (rxq->free_count)) {
306 		__le32 *bd = (__le32 *)rxq->bd;
307 		/* The overwritten rxb must be a used one */
308 		rxb = rxq->queue[rxq->write];
309 		BUG_ON(rxb && rxb->page);
310 
311 		/* Get next free Rx buffer, remove from free list */
312 		rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
313 				       list);
314 		list_del(&rxb->list);
315 		rxb->invalid = false;
316 
317 		/* Point to Rx buffer via next RBD in circular buffer */
318 		bd[rxq->write] = iwl_pcie_dma_addr2rbd_ptr(rxb->page_dma);
319 		rxq->queue[rxq->write] = rxb;
320 		rxq->write = (rxq->write + 1) & RX_QUEUE_MASK;
321 		rxq->free_count--;
322 	}
323 	spin_unlock_bh(&rxq->lock);
324 
325 	/* If we've added more space for the firmware to place data, tell it.
326 	 * Increment device's write pointer in multiples of 8. */
327 	if (rxq->write_actual != (rxq->write & ~0x7)) {
328 		spin_lock_bh(&rxq->lock);
329 		iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
330 		spin_unlock_bh(&rxq->lock);
331 	}
332 }
333 
334 /*
335  * iwl_pcie_rxq_restock - refill RX queue from pre-allocated pool
336  *
337  * If there are slots in the RX queue that need to be restocked,
338  * and we have free pre-allocated buffers, fill the ranks as much
339  * as we can, pulling from rx_free.
340  *
341  * This moves the 'write' index forward to catch up with 'processed', and
342  * also updates the memory address in the firmware to reference the new
343  * target buffer.
344  */
345 static
346 void iwl_pcie_rxq_restock(struct iwl_trans *trans, struct iwl_rxq *rxq)
347 {
348 	if (trans->trans_cfg->mq_rx_supported)
349 		iwl_pcie_rxmq_restock(trans, rxq);
350 	else
351 		iwl_pcie_rxsq_restock(trans, rxq);
352 }
353 
354 /*
355  * iwl_pcie_rx_alloc_page - allocates and returns a page.
356  *
357  */
358 static struct page *iwl_pcie_rx_alloc_page(struct iwl_trans *trans,
359 					   u32 *offset, gfp_t priority)
360 {
361 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
362 	unsigned int rbsize = iwl_trans_get_rb_size(trans_pcie->rx_buf_size);
363 	unsigned int allocsize = PAGE_SIZE << trans_pcie->rx_page_order;
364 	struct page *page;
365 	gfp_t gfp_mask = priority;
366 
367 	if (trans_pcie->rx_page_order > 0)
368 		gfp_mask |= __GFP_COMP;
369 
370 	if (trans_pcie->alloc_page) {
371 		spin_lock_bh(&trans_pcie->alloc_page_lock);
372 		/* recheck */
373 		if (trans_pcie->alloc_page) {
374 			*offset = trans_pcie->alloc_page_used;
375 			page = trans_pcie->alloc_page;
376 			trans_pcie->alloc_page_used += rbsize;
377 			if (trans_pcie->alloc_page_used >= allocsize)
378 				trans_pcie->alloc_page = NULL;
379 			else
380 				get_page(page);
381 			spin_unlock_bh(&trans_pcie->alloc_page_lock);
382 			return page;
383 		}
384 		spin_unlock_bh(&trans_pcie->alloc_page_lock);
385 	}
386 
387 	/* Alloc a new receive buffer */
388 	page = alloc_pages(gfp_mask, trans_pcie->rx_page_order);
389 	if (!page) {
390 		if (net_ratelimit())
391 			IWL_DEBUG_INFO(trans, "alloc_pages failed, order: %d\n",
392 				       trans_pcie->rx_page_order);
393 		/*
394 		 * Issue an error if we don't have enough pre-allocated
395 		  * buffers.
396 		 */
397 		if (!(gfp_mask & __GFP_NOWARN) && net_ratelimit())
398 			IWL_CRIT(trans,
399 				 "Failed to alloc_pages\n");
400 		return NULL;
401 	}
402 
403 	if (2 * rbsize <= allocsize) {
404 		spin_lock_bh(&trans_pcie->alloc_page_lock);
405 		if (!trans_pcie->alloc_page) {
406 			get_page(page);
407 			trans_pcie->alloc_page = page;
408 			trans_pcie->alloc_page_used = rbsize;
409 		}
410 		spin_unlock_bh(&trans_pcie->alloc_page_lock);
411 	}
412 
413 	*offset = 0;
414 	return page;
415 }
416 
417 /*
418  * iwl_pcie_rxq_alloc_rbs - allocate a page for each used RBD
419  *
420  * A used RBD is an Rx buffer that has been given to the stack. To use it again
421  * a page must be allocated and the RBD must point to the page. This function
422  * doesn't change the HW pointer but handles the list of pages that is used by
423  * iwl_pcie_rxq_restock. The latter function will update the HW to use the newly
424  * allocated buffers.
425  */
426 void iwl_pcie_rxq_alloc_rbs(struct iwl_trans *trans, gfp_t priority,
427 			    struct iwl_rxq *rxq)
428 {
429 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
430 	struct iwl_rx_mem_buffer *rxb;
431 	struct page *page;
432 
433 	while (1) {
434 		unsigned int offset;
435 
436 		spin_lock_bh(&rxq->lock);
437 		if (list_empty(&rxq->rx_used)) {
438 			spin_unlock_bh(&rxq->lock);
439 			return;
440 		}
441 		spin_unlock_bh(&rxq->lock);
442 
443 		page = iwl_pcie_rx_alloc_page(trans, &offset, priority);
444 		if (!page)
445 			return;
446 
447 		spin_lock_bh(&rxq->lock);
448 
449 		if (list_empty(&rxq->rx_used)) {
450 			spin_unlock_bh(&rxq->lock);
451 			__free_pages(page, trans_pcie->rx_page_order);
452 			return;
453 		}
454 		rxb = list_first_entry(&rxq->rx_used, struct iwl_rx_mem_buffer,
455 				       list);
456 		list_del(&rxb->list);
457 		spin_unlock_bh(&rxq->lock);
458 
459 		BUG_ON(rxb->page);
460 		rxb->page = page;
461 		rxb->offset = offset;
462 		/* Get physical address of the RB */
463 		rxb->page_dma =
464 			dma_map_page(trans->dev, page, rxb->offset,
465 				     trans_pcie->rx_buf_bytes,
466 				     DMA_FROM_DEVICE);
467 		if (dma_mapping_error(trans->dev, rxb->page_dma)) {
468 			rxb->page = NULL;
469 			spin_lock_bh(&rxq->lock);
470 			list_add(&rxb->list, &rxq->rx_used);
471 			spin_unlock_bh(&rxq->lock);
472 			__free_pages(page, trans_pcie->rx_page_order);
473 			return;
474 		}
475 
476 		spin_lock_bh(&rxq->lock);
477 
478 		list_add_tail(&rxb->list, &rxq->rx_free);
479 		rxq->free_count++;
480 
481 		spin_unlock_bh(&rxq->lock);
482 	}
483 }
484 
485 void iwl_pcie_free_rbs_pool(struct iwl_trans *trans)
486 {
487 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
488 	int i;
489 
490 	for (i = 0; i < RX_POOL_SIZE(trans_pcie->num_rx_bufs); i++) {
491 		if (!trans_pcie->rx_pool[i].page)
492 			continue;
493 		dma_unmap_page(trans->dev, trans_pcie->rx_pool[i].page_dma,
494 			       trans_pcie->rx_buf_bytes, DMA_FROM_DEVICE);
495 		__free_pages(trans_pcie->rx_pool[i].page,
496 			     trans_pcie->rx_page_order);
497 		trans_pcie->rx_pool[i].page = NULL;
498 	}
499 }
500 
501 /*
502  * iwl_pcie_rx_allocator - Allocates pages in the background for RX queues
503  *
504  * Allocates for each received request 8 pages
505  * Called as a scheduled work item.
506  */
507 static void iwl_pcie_rx_allocator(struct iwl_trans *trans)
508 {
509 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
510 	struct iwl_rb_allocator *rba = &trans_pcie->rba;
511 	struct list_head local_empty;
512 	int pending = atomic_read(&rba->req_pending);
513 
514 	IWL_DEBUG_TPT(trans, "Pending allocation requests = %d\n", pending);
515 
516 	/* If we were scheduled - there is at least one request */
517 	spin_lock_bh(&rba->lock);
518 	/* swap out the rba->rbd_empty to a local list */
519 	list_replace_init(&rba->rbd_empty, &local_empty);
520 	spin_unlock_bh(&rba->lock);
521 
522 	while (pending) {
523 		int i;
524 		LIST_HEAD(local_allocated);
525 		gfp_t gfp_mask = GFP_KERNEL;
526 
527 		/* Do not post a warning if there are only a few requests */
528 		if (pending < RX_PENDING_WATERMARK)
529 			gfp_mask |= __GFP_NOWARN;
530 
531 		for (i = 0; i < RX_CLAIM_REQ_ALLOC;) {
532 			struct iwl_rx_mem_buffer *rxb;
533 			struct page *page;
534 
535 			/* List should never be empty - each reused RBD is
536 			 * returned to the list, and initial pool covers any
537 			 * possible gap between the time the page is allocated
538 			 * to the time the RBD is added.
539 			 */
540 			BUG_ON(list_empty(&local_empty));
541 			/* Get the first rxb from the rbd list */
542 			rxb = list_first_entry(&local_empty,
543 					       struct iwl_rx_mem_buffer, list);
544 			BUG_ON(rxb->page);
545 
546 			/* Alloc a new receive buffer */
547 			page = iwl_pcie_rx_alloc_page(trans, &rxb->offset,
548 						      gfp_mask);
549 			if (!page)
550 				continue;
551 			rxb->page = page;
552 
553 			/* Get physical address of the RB */
554 			rxb->page_dma = dma_map_page(trans->dev, page,
555 						     rxb->offset,
556 						     trans_pcie->rx_buf_bytes,
557 						     DMA_FROM_DEVICE);
558 			if (dma_mapping_error(trans->dev, rxb->page_dma)) {
559 				rxb->page = NULL;
560 				__free_pages(page, trans_pcie->rx_page_order);
561 				continue;
562 			}
563 
564 			/* move the allocated entry to the out list */
565 			list_move(&rxb->list, &local_allocated);
566 			i++;
567 		}
568 
569 		atomic_dec(&rba->req_pending);
570 		pending--;
571 
572 		if (!pending) {
573 			pending = atomic_read(&rba->req_pending);
574 			if (pending)
575 				IWL_DEBUG_TPT(trans,
576 					      "Got more pending allocation requests = %d\n",
577 					      pending);
578 		}
579 
580 		spin_lock_bh(&rba->lock);
581 		/* add the allocated rbds to the allocator allocated list */
582 		list_splice_tail(&local_allocated, &rba->rbd_allocated);
583 		/* get more empty RBDs for current pending requests */
584 		list_splice_tail_init(&rba->rbd_empty, &local_empty);
585 		spin_unlock_bh(&rba->lock);
586 
587 		atomic_inc(&rba->req_ready);
588 
589 	}
590 
591 	spin_lock_bh(&rba->lock);
592 	/* return unused rbds to the allocator empty list */
593 	list_splice_tail(&local_empty, &rba->rbd_empty);
594 	spin_unlock_bh(&rba->lock);
595 
596 	IWL_DEBUG_TPT(trans, "%s, exit.\n", __func__);
597 }
598 
599 /*
600  * iwl_pcie_rx_allocator_get - returns the pre-allocated pages
601 .*
602 .* Called by queue when the queue posted allocation request and
603  * has freed 8 RBDs in order to restock itself.
604  * This function directly moves the allocated RBs to the queue's ownership
605  * and updates the relevant counters.
606  */
607 static void iwl_pcie_rx_allocator_get(struct iwl_trans *trans,
608 				      struct iwl_rxq *rxq)
609 {
610 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
611 	struct iwl_rb_allocator *rba = &trans_pcie->rba;
612 	int i;
613 
614 	lockdep_assert_held(&rxq->lock);
615 
616 	/*
617 	 * atomic_dec_if_positive returns req_ready - 1 for any scenario.
618 	 * If req_ready is 0 atomic_dec_if_positive will return -1 and this
619 	 * function will return early, as there are no ready requests.
620 	 * atomic_dec_if_positive will perofrm the *actual* decrement only if
621 	 * req_ready > 0, i.e. - there are ready requests and the function
622 	 * hands one request to the caller.
623 	 */
624 	if (atomic_dec_if_positive(&rba->req_ready) < 0)
625 		return;
626 
627 	spin_lock(&rba->lock);
628 	for (i = 0; i < RX_CLAIM_REQ_ALLOC; i++) {
629 		/* Get next free Rx buffer, remove it from free list */
630 		struct iwl_rx_mem_buffer *rxb =
631 			list_first_entry(&rba->rbd_allocated,
632 					 struct iwl_rx_mem_buffer, list);
633 
634 		list_move(&rxb->list, &rxq->rx_free);
635 	}
636 	spin_unlock(&rba->lock);
637 
638 	rxq->used_count -= RX_CLAIM_REQ_ALLOC;
639 	rxq->free_count += RX_CLAIM_REQ_ALLOC;
640 }
641 
642 void iwl_pcie_rx_allocator_work(struct work_struct *data)
643 {
644 	struct iwl_rb_allocator *rba_p =
645 		container_of(data, struct iwl_rb_allocator, rx_alloc);
646 	struct iwl_trans_pcie *trans_pcie =
647 		container_of(rba_p, struct iwl_trans_pcie, rba);
648 
649 	iwl_pcie_rx_allocator(trans_pcie->trans);
650 }
651 
652 static int iwl_pcie_free_bd_size(struct iwl_trans *trans, bool use_rx_td)
653 {
654 	struct iwl_rx_transfer_desc *rx_td;
655 
656 	if (use_rx_td)
657 		return sizeof(*rx_td);
658 	else
659 		return trans->trans_cfg->mq_rx_supported ? sizeof(__le64) :
660 			sizeof(__le32);
661 }
662 
663 static void iwl_pcie_free_rxq_dma(struct iwl_trans *trans,
664 				  struct iwl_rxq *rxq)
665 {
666 	bool use_rx_td = (trans->trans_cfg->device_family >=
667 			  IWL_DEVICE_FAMILY_AX210);
668 	int free_size = iwl_pcie_free_bd_size(trans, use_rx_td);
669 
670 	if (rxq->bd)
671 		dma_free_coherent(trans->dev,
672 				  free_size * rxq->queue_size,
673 				  rxq->bd, rxq->bd_dma);
674 	rxq->bd_dma = 0;
675 	rxq->bd = NULL;
676 
677 	rxq->rb_stts_dma = 0;
678 	rxq->rb_stts = NULL;
679 
680 	if (rxq->used_bd)
681 		dma_free_coherent(trans->dev,
682 				  (use_rx_td ? sizeof(*rxq->cd) :
683 				   sizeof(__le32)) * rxq->queue_size,
684 				  rxq->used_bd, rxq->used_bd_dma);
685 	rxq->used_bd_dma = 0;
686 	rxq->used_bd = NULL;
687 }
688 
689 static int iwl_pcie_alloc_rxq_dma(struct iwl_trans *trans,
690 				  struct iwl_rxq *rxq)
691 {
692 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
693 	struct device *dev = trans->dev;
694 	int i;
695 	int free_size;
696 	bool use_rx_td = (trans->trans_cfg->device_family >=
697 			  IWL_DEVICE_FAMILY_AX210);
698 	size_t rb_stts_size = use_rx_td ? sizeof(__le16) :
699 			      sizeof(struct iwl_rb_status);
700 
701 	spin_lock_init(&rxq->lock);
702 	if (trans->trans_cfg->mq_rx_supported)
703 		rxq->queue_size = trans->cfg->num_rbds;
704 	else
705 		rxq->queue_size = RX_QUEUE_SIZE;
706 
707 	free_size = iwl_pcie_free_bd_size(trans, use_rx_td);
708 
709 	/*
710 	 * Allocate the circular buffer of Read Buffer Descriptors
711 	 * (RBDs)
712 	 */
713 	rxq->bd = dma_alloc_coherent(dev, free_size * rxq->queue_size,
714 				     &rxq->bd_dma, GFP_KERNEL);
715 	if (!rxq->bd)
716 		goto err;
717 
718 	if (trans->trans_cfg->mq_rx_supported) {
719 		rxq->used_bd = dma_alloc_coherent(dev,
720 						  (use_rx_td ? sizeof(*rxq->cd) : sizeof(__le32)) * rxq->queue_size,
721 						  &rxq->used_bd_dma,
722 						  GFP_KERNEL);
723 		if (!rxq->used_bd)
724 			goto err;
725 	}
726 
727 	rxq->rb_stts = trans_pcie->base_rb_stts + rxq->id * rb_stts_size;
728 	rxq->rb_stts_dma =
729 		trans_pcie->base_rb_stts_dma + rxq->id * rb_stts_size;
730 
731 	return 0;
732 
733 err:
734 	for (i = 0; i < trans->num_rx_queues; i++) {
735 		struct iwl_rxq *rxq = &trans_pcie->rxq[i];
736 
737 		iwl_pcie_free_rxq_dma(trans, rxq);
738 	}
739 
740 	return -ENOMEM;
741 }
742 
743 static int iwl_pcie_rx_alloc(struct iwl_trans *trans)
744 {
745 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
746 	struct iwl_rb_allocator *rba = &trans_pcie->rba;
747 	int i, ret;
748 	size_t rb_stts_size = trans->trans_cfg->device_family >=
749 				IWL_DEVICE_FAMILY_AX210 ?
750 			      sizeof(__le16) : sizeof(struct iwl_rb_status);
751 
752 	if (WARN_ON(trans_pcie->rxq))
753 		return -EINVAL;
754 
755 	trans_pcie->rxq = kcalloc(trans->num_rx_queues, sizeof(struct iwl_rxq),
756 				  GFP_KERNEL);
757 	trans_pcie->rx_pool = kcalloc(RX_POOL_SIZE(trans_pcie->num_rx_bufs),
758 				      sizeof(trans_pcie->rx_pool[0]),
759 				      GFP_KERNEL);
760 	trans_pcie->global_table =
761 		kcalloc(RX_POOL_SIZE(trans_pcie->num_rx_bufs),
762 			sizeof(trans_pcie->global_table[0]),
763 			GFP_KERNEL);
764 	if (!trans_pcie->rxq || !trans_pcie->rx_pool ||
765 	    !trans_pcie->global_table) {
766 		ret = -ENOMEM;
767 		goto err;
768 	}
769 
770 	spin_lock_init(&rba->lock);
771 
772 	/*
773 	 * Allocate the driver's pointer to receive buffer status.
774 	 * Allocate for all queues continuously (HW requirement).
775 	 */
776 	trans_pcie->base_rb_stts =
777 			dma_alloc_coherent(trans->dev,
778 					   rb_stts_size * trans->num_rx_queues,
779 					   &trans_pcie->base_rb_stts_dma,
780 					   GFP_KERNEL);
781 	if (!trans_pcie->base_rb_stts) {
782 		ret = -ENOMEM;
783 		goto err;
784 	}
785 
786 	for (i = 0; i < trans->num_rx_queues; i++) {
787 		struct iwl_rxq *rxq = &trans_pcie->rxq[i];
788 
789 		rxq->id = i;
790 		ret = iwl_pcie_alloc_rxq_dma(trans, rxq);
791 		if (ret)
792 			goto err;
793 	}
794 	return 0;
795 
796 err:
797 	if (trans_pcie->base_rb_stts) {
798 		dma_free_coherent(trans->dev,
799 				  rb_stts_size * trans->num_rx_queues,
800 				  trans_pcie->base_rb_stts,
801 				  trans_pcie->base_rb_stts_dma);
802 		trans_pcie->base_rb_stts = NULL;
803 		trans_pcie->base_rb_stts_dma = 0;
804 	}
805 	kfree(trans_pcie->rx_pool);
806 	trans_pcie->rx_pool = NULL;
807 	kfree(trans_pcie->global_table);
808 	trans_pcie->global_table = NULL;
809 	kfree(trans_pcie->rxq);
810 	trans_pcie->rxq = NULL;
811 
812 	return ret;
813 }
814 
815 static void iwl_pcie_rx_hw_init(struct iwl_trans *trans, struct iwl_rxq *rxq)
816 {
817 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
818 	u32 rb_size;
819 	const u32 rfdnlog = RX_QUEUE_SIZE_LOG; /* 256 RBDs */
820 
821 	switch (trans_pcie->rx_buf_size) {
822 	case IWL_AMSDU_4K:
823 		rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
824 		break;
825 	case IWL_AMSDU_8K:
826 		rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_8K;
827 		break;
828 	case IWL_AMSDU_12K:
829 		rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_12K;
830 		break;
831 	default:
832 		WARN_ON(1);
833 		rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
834 	}
835 
836 	if (!iwl_trans_grab_nic_access(trans))
837 		return;
838 
839 	/* Stop Rx DMA */
840 	iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
841 	/* reset and flush pointers */
842 	iwl_write32(trans, FH_MEM_RCSR_CHNL0_RBDCB_WPTR, 0);
843 	iwl_write32(trans, FH_MEM_RCSR_CHNL0_FLUSH_RB_REQ, 0);
844 	iwl_write32(trans, FH_RSCSR_CHNL0_RDPTR, 0);
845 
846 	/* Reset driver's Rx queue write index */
847 	iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0);
848 
849 	/* Tell device where to find RBD circular buffer in DRAM */
850 	iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_BASE_REG,
851 		    (u32)(rxq->bd_dma >> 8));
852 
853 	/* Tell device where in DRAM to update its Rx status */
854 	iwl_write32(trans, FH_RSCSR_CHNL0_STTS_WPTR_REG,
855 		    rxq->rb_stts_dma >> 4);
856 
857 	/* Enable Rx DMA
858 	 * FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY is set because of HW bug in
859 	 *      the credit mechanism in 5000 HW RX FIFO
860 	 * Direct rx interrupts to hosts
861 	 * Rx buffer size 4 or 8k or 12k
862 	 * RB timeout 0x10
863 	 * 256 RBDs
864 	 */
865 	iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG,
866 		    FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL |
867 		    FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY |
868 		    FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL |
869 		    rb_size |
870 		    (RX_RB_TIMEOUT << FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS) |
871 		    (rfdnlog << FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS));
872 
873 	iwl_trans_release_nic_access(trans);
874 
875 	/* Set interrupt coalescing timer to default (2048 usecs) */
876 	iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
877 
878 	/* W/A for interrupt coalescing bug in 7260 and 3160 */
879 	if (trans->cfg->host_interrupt_operation_mode)
880 		iwl_set_bit(trans, CSR_INT_COALESCING, IWL_HOST_INT_OPER_MODE);
881 }
882 
883 static void iwl_pcie_rx_mq_hw_init(struct iwl_trans *trans)
884 {
885 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
886 	u32 rb_size, enabled = 0;
887 	int i;
888 
889 	switch (trans_pcie->rx_buf_size) {
890 	case IWL_AMSDU_2K:
891 		rb_size = RFH_RXF_DMA_RB_SIZE_2K;
892 		break;
893 	case IWL_AMSDU_4K:
894 		rb_size = RFH_RXF_DMA_RB_SIZE_4K;
895 		break;
896 	case IWL_AMSDU_8K:
897 		rb_size = RFH_RXF_DMA_RB_SIZE_8K;
898 		break;
899 	case IWL_AMSDU_12K:
900 		rb_size = RFH_RXF_DMA_RB_SIZE_12K;
901 		break;
902 	default:
903 		WARN_ON(1);
904 		rb_size = RFH_RXF_DMA_RB_SIZE_4K;
905 	}
906 
907 	if (!iwl_trans_grab_nic_access(trans))
908 		return;
909 
910 	/* Stop Rx DMA */
911 	iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG, 0);
912 	/* disable free amd used rx queue operation */
913 	iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, 0);
914 
915 	for (i = 0; i < trans->num_rx_queues; i++) {
916 		/* Tell device where to find RBD free table in DRAM */
917 		iwl_write_prph64_no_grab(trans,
918 					 RFH_Q_FRBDCB_BA_LSB(i),
919 					 trans_pcie->rxq[i].bd_dma);
920 		/* Tell device where to find RBD used table in DRAM */
921 		iwl_write_prph64_no_grab(trans,
922 					 RFH_Q_URBDCB_BA_LSB(i),
923 					 trans_pcie->rxq[i].used_bd_dma);
924 		/* Tell device where in DRAM to update its Rx status */
925 		iwl_write_prph64_no_grab(trans,
926 					 RFH_Q_URBD_STTS_WPTR_LSB(i),
927 					 trans_pcie->rxq[i].rb_stts_dma);
928 		/* Reset device indice tables */
929 		iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_WIDX(i), 0);
930 		iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_RIDX(i), 0);
931 		iwl_write_prph_no_grab(trans, RFH_Q_URBDCB_WIDX(i), 0);
932 
933 		enabled |= BIT(i) | BIT(i + 16);
934 	}
935 
936 	/*
937 	 * Enable Rx DMA
938 	 * Rx buffer size 4 or 8k or 12k
939 	 * Min RB size 4 or 8
940 	 * Drop frames that exceed RB size
941 	 * 512 RBDs
942 	 */
943 	iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG,
944 			       RFH_DMA_EN_ENABLE_VAL | rb_size |
945 			       RFH_RXF_DMA_MIN_RB_4_8 |
946 			       RFH_RXF_DMA_DROP_TOO_LARGE_MASK |
947 			       RFH_RXF_DMA_RBDCB_SIZE_512);
948 
949 	/*
950 	 * Activate DMA snooping.
951 	 * Set RX DMA chunk size to 64B for IOSF and 128B for PCIe
952 	 * Default queue is 0
953 	 */
954 	iwl_write_prph_no_grab(trans, RFH_GEN_CFG,
955 			       RFH_GEN_CFG_RFH_DMA_SNOOP |
956 			       RFH_GEN_CFG_VAL(DEFAULT_RXQ_NUM, 0) |
957 			       RFH_GEN_CFG_SERVICE_DMA_SNOOP |
958 			       RFH_GEN_CFG_VAL(RB_CHUNK_SIZE,
959 					       trans->trans_cfg->integrated ?
960 					       RFH_GEN_CFG_RB_CHUNK_SIZE_64 :
961 					       RFH_GEN_CFG_RB_CHUNK_SIZE_128));
962 	/* Enable the relevant rx queues */
963 	iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, enabled);
964 
965 	iwl_trans_release_nic_access(trans);
966 
967 	/* Set interrupt coalescing timer to default (2048 usecs) */
968 	iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
969 }
970 
971 void iwl_pcie_rx_init_rxb_lists(struct iwl_rxq *rxq)
972 {
973 	lockdep_assert_held(&rxq->lock);
974 
975 	INIT_LIST_HEAD(&rxq->rx_free);
976 	INIT_LIST_HEAD(&rxq->rx_used);
977 	rxq->free_count = 0;
978 	rxq->used_count = 0;
979 }
980 
981 static int iwl_pcie_rx_handle(struct iwl_trans *trans, int queue, int budget);
982 
983 static int iwl_pcie_napi_poll(struct napi_struct *napi, int budget)
984 {
985 	struct iwl_rxq *rxq = container_of(napi, struct iwl_rxq, napi);
986 	struct iwl_trans_pcie *trans_pcie;
987 	struct iwl_trans *trans;
988 	int ret;
989 
990 	trans_pcie = container_of(napi->dev, struct iwl_trans_pcie, napi_dev);
991 	trans = trans_pcie->trans;
992 
993 	ret = iwl_pcie_rx_handle(trans, rxq->id, budget);
994 
995 	IWL_DEBUG_ISR(trans, "[%d] handled %d, budget %d\n",
996 		      rxq->id, ret, budget);
997 
998 	if (ret < budget) {
999 		spin_lock(&trans_pcie->irq_lock);
1000 		if (test_bit(STATUS_INT_ENABLED, &trans->status))
1001 			_iwl_enable_interrupts(trans);
1002 		spin_unlock(&trans_pcie->irq_lock);
1003 
1004 		napi_complete_done(&rxq->napi, ret);
1005 	}
1006 
1007 	return ret;
1008 }
1009 
1010 static int iwl_pcie_napi_poll_msix(struct napi_struct *napi, int budget)
1011 {
1012 	struct iwl_rxq *rxq = container_of(napi, struct iwl_rxq, napi);
1013 	struct iwl_trans_pcie *trans_pcie;
1014 	struct iwl_trans *trans;
1015 	int ret;
1016 
1017 	trans_pcie = container_of(napi->dev, struct iwl_trans_pcie, napi_dev);
1018 	trans = trans_pcie->trans;
1019 
1020 	ret = iwl_pcie_rx_handle(trans, rxq->id, budget);
1021 	IWL_DEBUG_ISR(trans, "[%d] handled %d, budget %d\n", rxq->id, ret,
1022 		      budget);
1023 
1024 	if (ret < budget) {
1025 		int irq_line = rxq->id;
1026 
1027 		/* FIRST_RSS is shared with line 0 */
1028 		if (trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS &&
1029 		    rxq->id == 1)
1030 			irq_line = 0;
1031 
1032 		spin_lock(&trans_pcie->irq_lock);
1033 		iwl_pcie_clear_irq(trans, irq_line);
1034 		spin_unlock(&trans_pcie->irq_lock);
1035 
1036 		napi_complete_done(&rxq->napi, ret);
1037 	}
1038 
1039 	return ret;
1040 }
1041 
1042 static int _iwl_pcie_rx_init(struct iwl_trans *trans)
1043 {
1044 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1045 	struct iwl_rxq *def_rxq;
1046 	struct iwl_rb_allocator *rba = &trans_pcie->rba;
1047 	int i, err, queue_size, allocator_pool_size, num_alloc;
1048 
1049 	if (!trans_pcie->rxq) {
1050 		err = iwl_pcie_rx_alloc(trans);
1051 		if (err)
1052 			return err;
1053 	}
1054 	def_rxq = trans_pcie->rxq;
1055 
1056 	cancel_work_sync(&rba->rx_alloc);
1057 
1058 	spin_lock_bh(&rba->lock);
1059 	atomic_set(&rba->req_pending, 0);
1060 	atomic_set(&rba->req_ready, 0);
1061 	INIT_LIST_HEAD(&rba->rbd_allocated);
1062 	INIT_LIST_HEAD(&rba->rbd_empty);
1063 	spin_unlock_bh(&rba->lock);
1064 
1065 	/* free all first - we might be reconfigured for a different size */
1066 	iwl_pcie_free_rbs_pool(trans);
1067 
1068 	for (i = 0; i < RX_QUEUE_SIZE; i++)
1069 		def_rxq->queue[i] = NULL;
1070 
1071 	for (i = 0; i < trans->num_rx_queues; i++) {
1072 		struct iwl_rxq *rxq = &trans_pcie->rxq[i];
1073 
1074 		spin_lock_bh(&rxq->lock);
1075 		/*
1076 		 * Set read write pointer to reflect that we have processed
1077 		 * and used all buffers, but have not restocked the Rx queue
1078 		 * with fresh buffers
1079 		 */
1080 		rxq->read = 0;
1081 		rxq->write = 0;
1082 		rxq->write_actual = 0;
1083 		memset(rxq->rb_stts, 0,
1084 		       (trans->trans_cfg->device_family >=
1085 			IWL_DEVICE_FAMILY_AX210) ?
1086 		       sizeof(__le16) : sizeof(struct iwl_rb_status));
1087 
1088 		iwl_pcie_rx_init_rxb_lists(rxq);
1089 
1090 		spin_unlock_bh(&rxq->lock);
1091 
1092 		if (!rxq->napi.poll) {
1093 			int (*poll)(struct napi_struct *, int) = iwl_pcie_napi_poll;
1094 
1095 			if (trans_pcie->msix_enabled)
1096 				poll = iwl_pcie_napi_poll_msix;
1097 
1098 			netif_napi_add(&trans_pcie->napi_dev, &rxq->napi,
1099 				       poll, NAPI_POLL_WEIGHT);
1100 			napi_enable(&rxq->napi);
1101 		}
1102 
1103 	}
1104 
1105 	/* move the pool to the default queue and allocator ownerships */
1106 	queue_size = trans->trans_cfg->mq_rx_supported ?
1107 			trans_pcie->num_rx_bufs - 1 : RX_QUEUE_SIZE;
1108 	allocator_pool_size = trans->num_rx_queues *
1109 		(RX_CLAIM_REQ_ALLOC - RX_POST_REQ_ALLOC);
1110 	num_alloc = queue_size + allocator_pool_size;
1111 
1112 	for (i = 0; i < num_alloc; i++) {
1113 		struct iwl_rx_mem_buffer *rxb = &trans_pcie->rx_pool[i];
1114 
1115 		if (i < allocator_pool_size)
1116 			list_add(&rxb->list, &rba->rbd_empty);
1117 		else
1118 			list_add(&rxb->list, &def_rxq->rx_used);
1119 		trans_pcie->global_table[i] = rxb;
1120 		rxb->vid = (u16)(i + 1);
1121 		rxb->invalid = true;
1122 	}
1123 
1124 	iwl_pcie_rxq_alloc_rbs(trans, GFP_KERNEL, def_rxq);
1125 
1126 	return 0;
1127 }
1128 
1129 int iwl_pcie_rx_init(struct iwl_trans *trans)
1130 {
1131 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1132 	int ret = _iwl_pcie_rx_init(trans);
1133 
1134 	if (ret)
1135 		return ret;
1136 
1137 	if (trans->trans_cfg->mq_rx_supported)
1138 		iwl_pcie_rx_mq_hw_init(trans);
1139 	else
1140 		iwl_pcie_rx_hw_init(trans, trans_pcie->rxq);
1141 
1142 	iwl_pcie_rxq_restock(trans, trans_pcie->rxq);
1143 
1144 	spin_lock_bh(&trans_pcie->rxq->lock);
1145 	iwl_pcie_rxq_inc_wr_ptr(trans, trans_pcie->rxq);
1146 	spin_unlock_bh(&trans_pcie->rxq->lock);
1147 
1148 	return 0;
1149 }
1150 
1151 int iwl_pcie_gen2_rx_init(struct iwl_trans *trans)
1152 {
1153 	/* Set interrupt coalescing timer to default (2048 usecs) */
1154 	iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
1155 
1156 	/*
1157 	 * We don't configure the RFH.
1158 	 * Restock will be done at alive, after firmware configured the RFH.
1159 	 */
1160 	return _iwl_pcie_rx_init(trans);
1161 }
1162 
1163 void iwl_pcie_rx_free(struct iwl_trans *trans)
1164 {
1165 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1166 	struct iwl_rb_allocator *rba = &trans_pcie->rba;
1167 	int i;
1168 	size_t rb_stts_size = trans->trans_cfg->device_family >=
1169 				IWL_DEVICE_FAMILY_AX210 ?
1170 			      sizeof(__le16) : sizeof(struct iwl_rb_status);
1171 
1172 	/*
1173 	 * if rxq is NULL, it means that nothing has been allocated,
1174 	 * exit now
1175 	 */
1176 	if (!trans_pcie->rxq) {
1177 		IWL_DEBUG_INFO(trans, "Free NULL rx context\n");
1178 		return;
1179 	}
1180 
1181 	cancel_work_sync(&rba->rx_alloc);
1182 
1183 	iwl_pcie_free_rbs_pool(trans);
1184 
1185 	if (trans_pcie->base_rb_stts) {
1186 		dma_free_coherent(trans->dev,
1187 				  rb_stts_size * trans->num_rx_queues,
1188 				  trans_pcie->base_rb_stts,
1189 				  trans_pcie->base_rb_stts_dma);
1190 		trans_pcie->base_rb_stts = NULL;
1191 		trans_pcie->base_rb_stts_dma = 0;
1192 	}
1193 
1194 	for (i = 0; i < trans->num_rx_queues; i++) {
1195 		struct iwl_rxq *rxq = &trans_pcie->rxq[i];
1196 
1197 		iwl_pcie_free_rxq_dma(trans, rxq);
1198 
1199 		if (rxq->napi.poll) {
1200 			napi_disable(&rxq->napi);
1201 			netif_napi_del(&rxq->napi);
1202 		}
1203 	}
1204 	kfree(trans_pcie->rx_pool);
1205 	kfree(trans_pcie->global_table);
1206 	kfree(trans_pcie->rxq);
1207 
1208 	if (trans_pcie->alloc_page)
1209 		__free_pages(trans_pcie->alloc_page, trans_pcie->rx_page_order);
1210 }
1211 
1212 static void iwl_pcie_rx_move_to_allocator(struct iwl_rxq *rxq,
1213 					  struct iwl_rb_allocator *rba)
1214 {
1215 	spin_lock(&rba->lock);
1216 	list_splice_tail_init(&rxq->rx_used, &rba->rbd_empty);
1217 	spin_unlock(&rba->lock);
1218 }
1219 
1220 /*
1221  * iwl_pcie_rx_reuse_rbd - Recycle used RBDs
1222  *
1223  * Called when a RBD can be reused. The RBD is transferred to the allocator.
1224  * When there are 2 empty RBDs - a request for allocation is posted
1225  */
1226 static void iwl_pcie_rx_reuse_rbd(struct iwl_trans *trans,
1227 				  struct iwl_rx_mem_buffer *rxb,
1228 				  struct iwl_rxq *rxq, bool emergency)
1229 {
1230 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1231 	struct iwl_rb_allocator *rba = &trans_pcie->rba;
1232 
1233 	/* Move the RBD to the used list, will be moved to allocator in batches
1234 	 * before claiming or posting a request*/
1235 	list_add_tail(&rxb->list, &rxq->rx_used);
1236 
1237 	if (unlikely(emergency))
1238 		return;
1239 
1240 	/* Count the allocator owned RBDs */
1241 	rxq->used_count++;
1242 
1243 	/* If we have RX_POST_REQ_ALLOC new released rx buffers -
1244 	 * issue a request for allocator. Modulo RX_CLAIM_REQ_ALLOC is
1245 	 * used for the case we failed to claim RX_CLAIM_REQ_ALLOC,
1246 	 * after but we still need to post another request.
1247 	 */
1248 	if ((rxq->used_count % RX_CLAIM_REQ_ALLOC) == RX_POST_REQ_ALLOC) {
1249 		/* Move the 2 RBDs to the allocator ownership.
1250 		 Allocator has another 6 from pool for the request completion*/
1251 		iwl_pcie_rx_move_to_allocator(rxq, rba);
1252 
1253 		atomic_inc(&rba->req_pending);
1254 		queue_work(rba->alloc_wq, &rba->rx_alloc);
1255 	}
1256 }
1257 
1258 static void iwl_pcie_rx_handle_rb(struct iwl_trans *trans,
1259 				struct iwl_rxq *rxq,
1260 				struct iwl_rx_mem_buffer *rxb,
1261 				bool emergency,
1262 				int i)
1263 {
1264 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1265 	struct iwl_txq *txq = trans->txqs.txq[trans->txqs.cmd.q_id];
1266 	bool page_stolen = false;
1267 	int max_len = trans_pcie->rx_buf_bytes;
1268 	u32 offset = 0;
1269 
1270 	if (WARN_ON(!rxb))
1271 		return;
1272 
1273 	dma_unmap_page(trans->dev, rxb->page_dma, max_len, DMA_FROM_DEVICE);
1274 
1275 	while (offset + sizeof(u32) + sizeof(struct iwl_cmd_header) < max_len) {
1276 		struct iwl_rx_packet *pkt;
1277 		bool reclaim;
1278 		int len;
1279 		struct iwl_rx_cmd_buffer rxcb = {
1280 			._offset = rxb->offset + offset,
1281 			._rx_page_order = trans_pcie->rx_page_order,
1282 			._page = rxb->page,
1283 			._page_stolen = false,
1284 			.truesize = max_len,
1285 		};
1286 
1287 		pkt = rxb_addr(&rxcb);
1288 
1289 		if (pkt->len_n_flags == cpu_to_le32(FH_RSCSR_FRAME_INVALID)) {
1290 			IWL_DEBUG_RX(trans,
1291 				     "Q %d: RB end marker at offset %d\n",
1292 				     rxq->id, offset);
1293 			break;
1294 		}
1295 
1296 		WARN((le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_RXQ_MASK) >>
1297 			FH_RSCSR_RXQ_POS != rxq->id,
1298 		     "frame on invalid queue - is on %d and indicates %d\n",
1299 		     rxq->id,
1300 		     (le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_RXQ_MASK) >>
1301 			FH_RSCSR_RXQ_POS);
1302 
1303 		IWL_DEBUG_RX(trans,
1304 			     "Q %d: cmd at offset %d: %s (%.2x.%2x, seq 0x%x)\n",
1305 			     rxq->id, offset,
1306 			     iwl_get_cmd_string(trans,
1307 						iwl_cmd_id(pkt->hdr.cmd,
1308 							   pkt->hdr.group_id,
1309 							   0)),
1310 			     pkt->hdr.group_id, pkt->hdr.cmd,
1311 			     le16_to_cpu(pkt->hdr.sequence));
1312 
1313 		len = iwl_rx_packet_len(pkt);
1314 		len += sizeof(u32); /* account for status word */
1315 
1316 		offset += ALIGN(len, FH_RSCSR_FRAME_ALIGN);
1317 
1318 		/* check that what the device tells us made sense */
1319 		if (offset > max_len)
1320 			break;
1321 
1322 		trace_iwlwifi_dev_rx(trans->dev, trans, pkt, len);
1323 		trace_iwlwifi_dev_rx_data(trans->dev, trans, pkt, len);
1324 
1325 		/* Reclaim a command buffer only if this packet is a response
1326 		 *   to a (driver-originated) command.
1327 		 * If the packet (e.g. Rx frame) originated from uCode,
1328 		 *   there is no command buffer to reclaim.
1329 		 * Ucode should set SEQ_RX_FRAME bit if ucode-originated,
1330 		 *   but apparently a few don't get set; catch them here. */
1331 		reclaim = !(pkt->hdr.sequence & SEQ_RX_FRAME);
1332 		if (reclaim && !pkt->hdr.group_id) {
1333 			int i;
1334 
1335 			for (i = 0; i < trans_pcie->n_no_reclaim_cmds; i++) {
1336 				if (trans_pcie->no_reclaim_cmds[i] ==
1337 							pkt->hdr.cmd) {
1338 					reclaim = false;
1339 					break;
1340 				}
1341 			}
1342 		}
1343 
1344 		if (rxq->id == trans_pcie->def_rx_queue)
1345 			iwl_op_mode_rx(trans->op_mode, &rxq->napi,
1346 				       &rxcb);
1347 		else
1348 			iwl_op_mode_rx_rss(trans->op_mode, &rxq->napi,
1349 					   &rxcb, rxq->id);
1350 
1351 		/*
1352 		 * After here, we should always check rxcb._page_stolen,
1353 		 * if it is true then one of the handlers took the page.
1354 		 */
1355 
1356 		if (reclaim) {
1357 			u16 sequence = le16_to_cpu(pkt->hdr.sequence);
1358 			int index = SEQ_TO_INDEX(sequence);
1359 			int cmd_index = iwl_txq_get_cmd_index(txq, index);
1360 
1361 			kfree_sensitive(txq->entries[cmd_index].free_buf);
1362 			txq->entries[cmd_index].free_buf = NULL;
1363 
1364 			/* Invoke any callbacks, transfer the buffer to caller,
1365 			 * and fire off the (possibly) blocking
1366 			 * iwl_trans_send_cmd()
1367 			 * as we reclaim the driver command queue */
1368 			if (!rxcb._page_stolen)
1369 				iwl_pcie_hcmd_complete(trans, &rxcb);
1370 			else
1371 				IWL_WARN(trans, "Claim null rxb?\n");
1372 		}
1373 
1374 		page_stolen |= rxcb._page_stolen;
1375 		if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210)
1376 			break;
1377 	}
1378 
1379 	/* page was stolen from us -- free our reference */
1380 	if (page_stolen) {
1381 		__free_pages(rxb->page, trans_pcie->rx_page_order);
1382 		rxb->page = NULL;
1383 	}
1384 
1385 	/* Reuse the page if possible. For notification packets and
1386 	 * SKBs that fail to Rx correctly, add them back into the
1387 	 * rx_free list for reuse later. */
1388 	if (rxb->page != NULL) {
1389 		rxb->page_dma =
1390 			dma_map_page(trans->dev, rxb->page, rxb->offset,
1391 				     trans_pcie->rx_buf_bytes,
1392 				     DMA_FROM_DEVICE);
1393 		if (dma_mapping_error(trans->dev, rxb->page_dma)) {
1394 			/*
1395 			 * free the page(s) as well to not break
1396 			 * the invariant that the items on the used
1397 			 * list have no page(s)
1398 			 */
1399 			__free_pages(rxb->page, trans_pcie->rx_page_order);
1400 			rxb->page = NULL;
1401 			iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency);
1402 		} else {
1403 			list_add_tail(&rxb->list, &rxq->rx_free);
1404 			rxq->free_count++;
1405 		}
1406 	} else
1407 		iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency);
1408 }
1409 
1410 static struct iwl_rx_mem_buffer *iwl_pcie_get_rxb(struct iwl_trans *trans,
1411 						  struct iwl_rxq *rxq, int i,
1412 						  bool *join)
1413 {
1414 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1415 	struct iwl_rx_mem_buffer *rxb;
1416 	u16 vid;
1417 
1418 	BUILD_BUG_ON(sizeof(struct iwl_rx_completion_desc) != 32);
1419 
1420 	if (!trans->trans_cfg->mq_rx_supported) {
1421 		rxb = rxq->queue[i];
1422 		rxq->queue[i] = NULL;
1423 		return rxb;
1424 	}
1425 
1426 	if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
1427 		vid = le16_to_cpu(rxq->cd[i].rbid);
1428 		*join = rxq->cd[i].flags & IWL_RX_CD_FLAGS_FRAGMENTED;
1429 	} else {
1430 		vid = le32_to_cpu(rxq->bd_32[i]) & 0x0FFF; /* 12-bit VID */
1431 	}
1432 
1433 	if (!vid || vid > RX_POOL_SIZE(trans_pcie->num_rx_bufs))
1434 		goto out_err;
1435 
1436 	rxb = trans_pcie->global_table[vid - 1];
1437 	if (rxb->invalid)
1438 		goto out_err;
1439 
1440 	IWL_DEBUG_RX(trans, "Got virtual RB ID %u\n", (u32)rxb->vid);
1441 
1442 	rxb->invalid = true;
1443 
1444 	return rxb;
1445 
1446 out_err:
1447 	WARN(1, "Invalid rxb from HW %u\n", (u32)vid);
1448 	iwl_force_nmi(trans);
1449 	return NULL;
1450 }
1451 
1452 /*
1453  * iwl_pcie_rx_handle - Main entry function for receiving responses from fw
1454  */
1455 static int iwl_pcie_rx_handle(struct iwl_trans *trans, int queue, int budget)
1456 {
1457 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1458 	struct iwl_rxq *rxq;
1459 	u32 r, i, count = 0, handled = 0;
1460 	bool emergency = false;
1461 
1462 	if (WARN_ON_ONCE(!trans_pcie->rxq || !trans_pcie->rxq[queue].bd))
1463 		return budget;
1464 
1465 	rxq = &trans_pcie->rxq[queue];
1466 
1467 restart:
1468 	spin_lock(&rxq->lock);
1469 	/* uCode's read index (stored in shared DRAM) indicates the last Rx
1470 	 * buffer that the driver may process (last buffer filled by ucode). */
1471 	r = le16_to_cpu(iwl_get_closed_rb_stts(trans, rxq)) & 0x0FFF;
1472 	i = rxq->read;
1473 
1474 	/* W/A 9000 device step A0 wrap-around bug */
1475 	r &= (rxq->queue_size - 1);
1476 
1477 	/* Rx interrupt, but nothing sent from uCode */
1478 	if (i == r)
1479 		IWL_DEBUG_RX(trans, "Q %d: HW = SW = %d\n", rxq->id, r);
1480 
1481 	while (i != r && ++handled < budget) {
1482 		struct iwl_rb_allocator *rba = &trans_pcie->rba;
1483 		struct iwl_rx_mem_buffer *rxb;
1484 		/* number of RBDs still waiting for page allocation */
1485 		u32 rb_pending_alloc =
1486 			atomic_read(&trans_pcie->rba.req_pending) *
1487 			RX_CLAIM_REQ_ALLOC;
1488 		bool join = false;
1489 
1490 		if (unlikely(rb_pending_alloc >= rxq->queue_size / 2 &&
1491 			     !emergency)) {
1492 			iwl_pcie_rx_move_to_allocator(rxq, rba);
1493 			emergency = true;
1494 			IWL_DEBUG_TPT(trans,
1495 				      "RX path is in emergency. Pending allocations %d\n",
1496 				      rb_pending_alloc);
1497 		}
1498 
1499 		IWL_DEBUG_RX(trans, "Q %d: HW = %d, SW = %d\n", rxq->id, r, i);
1500 
1501 		rxb = iwl_pcie_get_rxb(trans, rxq, i, &join);
1502 		if (!rxb)
1503 			goto out;
1504 
1505 		if (unlikely(join || rxq->next_rb_is_fragment)) {
1506 			rxq->next_rb_is_fragment = join;
1507 			/*
1508 			 * We can only get a multi-RB in the following cases:
1509 			 *  - firmware issue, sending a too big notification
1510 			 *  - sniffer mode with a large A-MSDU
1511 			 *  - large MTU frames (>2k)
1512 			 * since the multi-RB functionality is limited to newer
1513 			 * hardware that cannot put multiple entries into a
1514 			 * single RB.
1515 			 *
1516 			 * Right now, the higher layers aren't set up to deal
1517 			 * with that, so discard all of these.
1518 			 */
1519 			list_add_tail(&rxb->list, &rxq->rx_free);
1520 			rxq->free_count++;
1521 		} else {
1522 			iwl_pcie_rx_handle_rb(trans, rxq, rxb, emergency, i);
1523 		}
1524 
1525 		i = (i + 1) & (rxq->queue_size - 1);
1526 
1527 		/*
1528 		 * If we have RX_CLAIM_REQ_ALLOC released rx buffers -
1529 		 * try to claim the pre-allocated buffers from the allocator.
1530 		 * If not ready - will try to reclaim next time.
1531 		 * There is no need to reschedule work - allocator exits only
1532 		 * on success
1533 		 */
1534 		if (rxq->used_count >= RX_CLAIM_REQ_ALLOC)
1535 			iwl_pcie_rx_allocator_get(trans, rxq);
1536 
1537 		if (rxq->used_count % RX_CLAIM_REQ_ALLOC == 0 && !emergency) {
1538 			/* Add the remaining empty RBDs for allocator use */
1539 			iwl_pcie_rx_move_to_allocator(rxq, rba);
1540 		} else if (emergency) {
1541 			count++;
1542 			if (count == 8) {
1543 				count = 0;
1544 				if (rb_pending_alloc < rxq->queue_size / 3) {
1545 					IWL_DEBUG_TPT(trans,
1546 						      "RX path exited emergency. Pending allocations %d\n",
1547 						      rb_pending_alloc);
1548 					emergency = false;
1549 				}
1550 
1551 				rxq->read = i;
1552 				spin_unlock(&rxq->lock);
1553 				iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq);
1554 				iwl_pcie_rxq_restock(trans, rxq);
1555 				goto restart;
1556 			}
1557 		}
1558 	}
1559 out:
1560 	/* Backtrack one entry */
1561 	rxq->read = i;
1562 	spin_unlock(&rxq->lock);
1563 
1564 	/*
1565 	 * handle a case where in emergency there are some unallocated RBDs.
1566 	 * those RBDs are in the used list, but are not tracked by the queue's
1567 	 * used_count which counts allocator owned RBDs.
1568 	 * unallocated emergency RBDs must be allocated on exit, otherwise
1569 	 * when called again the function may not be in emergency mode and
1570 	 * they will be handed to the allocator with no tracking in the RBD
1571 	 * allocator counters, which will lead to them never being claimed back
1572 	 * by the queue.
1573 	 * by allocating them here, they are now in the queue free list, and
1574 	 * will be restocked by the next call of iwl_pcie_rxq_restock.
1575 	 */
1576 	if (unlikely(emergency && count))
1577 		iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq);
1578 
1579 	iwl_pcie_rxq_restock(trans, rxq);
1580 
1581 	return handled;
1582 }
1583 
1584 static struct iwl_trans_pcie *iwl_pcie_get_trans_pcie(struct msix_entry *entry)
1585 {
1586 	u8 queue = entry->entry;
1587 	struct msix_entry *entries = entry - queue;
1588 
1589 	return container_of(entries, struct iwl_trans_pcie, msix_entries[0]);
1590 }
1591 
1592 /*
1593  * iwl_pcie_rx_msix_handle - Main entry function for receiving responses from fw
1594  * This interrupt handler should be used with RSS queue only.
1595  */
1596 irqreturn_t iwl_pcie_irq_rx_msix_handler(int irq, void *dev_id)
1597 {
1598 	struct msix_entry *entry = dev_id;
1599 	struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry);
1600 	struct iwl_trans *trans = trans_pcie->trans;
1601 	struct iwl_rxq *rxq = &trans_pcie->rxq[entry->entry];
1602 
1603 	trace_iwlwifi_dev_irq_msix(trans->dev, entry, false, 0, 0);
1604 
1605 	if (WARN_ON(entry->entry >= trans->num_rx_queues))
1606 		return IRQ_NONE;
1607 
1608 	if (WARN_ONCE(!rxq,
1609 		      "[%d] Got MSI-X interrupt before we have Rx queues",
1610 		      entry->entry))
1611 		return IRQ_NONE;
1612 
1613 	lock_map_acquire(&trans->sync_cmd_lockdep_map);
1614 	IWL_DEBUG_ISR(trans, "[%d] Got interrupt\n", entry->entry);
1615 
1616 	local_bh_disable();
1617 	if (napi_schedule_prep(&rxq->napi))
1618 		__napi_schedule(&rxq->napi);
1619 	else
1620 		iwl_pcie_clear_irq(trans, entry->entry);
1621 	local_bh_enable();
1622 
1623 	lock_map_release(&trans->sync_cmd_lockdep_map);
1624 
1625 	return IRQ_HANDLED;
1626 }
1627 
1628 /*
1629  * iwl_pcie_irq_handle_error - called for HW or SW error interrupt from card
1630  */
1631 static void iwl_pcie_irq_handle_error(struct iwl_trans *trans)
1632 {
1633 	int i;
1634 
1635 	/* W/A for WiFi/WiMAX coex and WiMAX own the RF */
1636 	if (trans->cfg->internal_wimax_coex &&
1637 	    !trans->cfg->apmg_not_supported &&
1638 	    (!(iwl_read_prph(trans, APMG_CLK_CTRL_REG) &
1639 			     APMS_CLK_VAL_MRB_FUNC_MODE) ||
1640 	     (iwl_read_prph(trans, APMG_PS_CTRL_REG) &
1641 			    APMG_PS_CTRL_VAL_RESET_REQ))) {
1642 		clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
1643 		iwl_op_mode_wimax_active(trans->op_mode);
1644 		wake_up(&trans->wait_command_queue);
1645 		return;
1646 	}
1647 
1648 	for (i = 0; i < trans->trans_cfg->base_params->num_of_queues; i++) {
1649 		if (!trans->txqs.txq[i])
1650 			continue;
1651 		del_timer(&trans->txqs.txq[i]->stuck_timer);
1652 	}
1653 
1654 	/* The STATUS_FW_ERROR bit is set in this function. This must happen
1655 	 * before we wake up the command caller, to ensure a proper cleanup. */
1656 	iwl_trans_fw_error(trans);
1657 
1658 	clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
1659 	wake_up(&trans->wait_command_queue);
1660 }
1661 
1662 static u32 iwl_pcie_int_cause_non_ict(struct iwl_trans *trans)
1663 {
1664 	u32 inta;
1665 
1666 	lockdep_assert_held(&IWL_TRANS_GET_PCIE_TRANS(trans)->irq_lock);
1667 
1668 	trace_iwlwifi_dev_irq(trans->dev);
1669 
1670 	/* Discover which interrupts are active/pending */
1671 	inta = iwl_read32(trans, CSR_INT);
1672 
1673 	/* the thread will service interrupts and re-enable them */
1674 	return inta;
1675 }
1676 
1677 /* a device (PCI-E) page is 4096 bytes long */
1678 #define ICT_SHIFT	12
1679 #define ICT_SIZE	(1 << ICT_SHIFT)
1680 #define ICT_COUNT	(ICT_SIZE / sizeof(u32))
1681 
1682 /* interrupt handler using ict table, with this interrupt driver will
1683  * stop using INTA register to get device's interrupt, reading this register
1684  * is expensive, device will write interrupts in ICT dram table, increment
1685  * index then will fire interrupt to driver, driver will OR all ICT table
1686  * entries from current index up to table entry with 0 value. the result is
1687  * the interrupt we need to service, driver will set the entries back to 0 and
1688  * set index.
1689  */
1690 static u32 iwl_pcie_int_cause_ict(struct iwl_trans *trans)
1691 {
1692 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1693 	u32 inta;
1694 	u32 val = 0;
1695 	u32 read;
1696 
1697 	trace_iwlwifi_dev_irq(trans->dev);
1698 
1699 	/* Ignore interrupt if there's nothing in NIC to service.
1700 	 * This may be due to IRQ shared with another device,
1701 	 * or due to sporadic interrupts thrown from our NIC. */
1702 	read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
1703 	trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index, read);
1704 	if (!read)
1705 		return 0;
1706 
1707 	/*
1708 	 * Collect all entries up to the first 0, starting from ict_index;
1709 	 * note we already read at ict_index.
1710 	 */
1711 	do {
1712 		val |= read;
1713 		IWL_DEBUG_ISR(trans, "ICT index %d value 0x%08X\n",
1714 				trans_pcie->ict_index, read);
1715 		trans_pcie->ict_tbl[trans_pcie->ict_index] = 0;
1716 		trans_pcie->ict_index =
1717 			((trans_pcie->ict_index + 1) & (ICT_COUNT - 1));
1718 
1719 		read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
1720 		trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index,
1721 					   read);
1722 	} while (read);
1723 
1724 	/* We should not get this value, just ignore it. */
1725 	if (val == 0xffffffff)
1726 		val = 0;
1727 
1728 	/*
1729 	 * this is a w/a for a h/w bug. the h/w bug may cause the Rx bit
1730 	 * (bit 15 before shifting it to 31) to clear when using interrupt
1731 	 * coalescing. fortunately, bits 18 and 19 stay set when this happens
1732 	 * so we use them to decide on the real state of the Rx bit.
1733 	 * In order words, bit 15 is set if bit 18 or bit 19 are set.
1734 	 */
1735 	if (val & 0xC0000)
1736 		val |= 0x8000;
1737 
1738 	inta = (0xff & val) | ((0xff00 & val) << 16);
1739 	return inta;
1740 }
1741 
1742 void iwl_pcie_handle_rfkill_irq(struct iwl_trans *trans)
1743 {
1744 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1745 	struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
1746 	bool hw_rfkill, prev, report;
1747 
1748 	mutex_lock(&trans_pcie->mutex);
1749 	prev = test_bit(STATUS_RFKILL_OPMODE, &trans->status);
1750 	hw_rfkill = iwl_is_rfkill_set(trans);
1751 	if (hw_rfkill) {
1752 		set_bit(STATUS_RFKILL_OPMODE, &trans->status);
1753 		set_bit(STATUS_RFKILL_HW, &trans->status);
1754 	}
1755 	if (trans_pcie->opmode_down)
1756 		report = hw_rfkill;
1757 	else
1758 		report = test_bit(STATUS_RFKILL_OPMODE, &trans->status);
1759 
1760 	IWL_WARN(trans, "RF_KILL bit toggled to %s.\n",
1761 		 hw_rfkill ? "disable radio" : "enable radio");
1762 
1763 	isr_stats->rfkill++;
1764 
1765 	if (prev != report)
1766 		iwl_trans_pcie_rf_kill(trans, report);
1767 	mutex_unlock(&trans_pcie->mutex);
1768 
1769 	if (hw_rfkill) {
1770 		if (test_and_clear_bit(STATUS_SYNC_HCMD_ACTIVE,
1771 				       &trans->status))
1772 			IWL_DEBUG_RF_KILL(trans,
1773 					  "Rfkill while SYNC HCMD in flight\n");
1774 		wake_up(&trans->wait_command_queue);
1775 	} else {
1776 		clear_bit(STATUS_RFKILL_HW, &trans->status);
1777 		if (trans_pcie->opmode_down)
1778 			clear_bit(STATUS_RFKILL_OPMODE, &trans->status);
1779 	}
1780 }
1781 
1782 irqreturn_t iwl_pcie_irq_handler(int irq, void *dev_id)
1783 {
1784 	struct iwl_trans *trans = dev_id;
1785 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1786 	struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
1787 	u32 inta = 0;
1788 	u32 handled = 0;
1789 	bool polling = false;
1790 
1791 	lock_map_acquire(&trans->sync_cmd_lockdep_map);
1792 
1793 	spin_lock_bh(&trans_pcie->irq_lock);
1794 
1795 	/* dram interrupt table not set yet,
1796 	 * use legacy interrupt.
1797 	 */
1798 	if (likely(trans_pcie->use_ict))
1799 		inta = iwl_pcie_int_cause_ict(trans);
1800 	else
1801 		inta = iwl_pcie_int_cause_non_ict(trans);
1802 
1803 	if (iwl_have_debug_level(IWL_DL_ISR)) {
1804 		IWL_DEBUG_ISR(trans,
1805 			      "ISR inta 0x%08x, enabled 0x%08x(sw), enabled(hw) 0x%08x, fh 0x%08x\n",
1806 			      inta, trans_pcie->inta_mask,
1807 			      iwl_read32(trans, CSR_INT_MASK),
1808 			      iwl_read32(trans, CSR_FH_INT_STATUS));
1809 		if (inta & (~trans_pcie->inta_mask))
1810 			IWL_DEBUG_ISR(trans,
1811 				      "We got a masked interrupt (0x%08x)\n",
1812 				      inta & (~trans_pcie->inta_mask));
1813 	}
1814 
1815 	inta &= trans_pcie->inta_mask;
1816 
1817 	/*
1818 	 * Ignore interrupt if there's nothing in NIC to service.
1819 	 * This may be due to IRQ shared with another device,
1820 	 * or due to sporadic interrupts thrown from our NIC.
1821 	 */
1822 	if (unlikely(!inta)) {
1823 		IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
1824 		/*
1825 		 * Re-enable interrupts here since we don't
1826 		 * have anything to service
1827 		 */
1828 		if (test_bit(STATUS_INT_ENABLED, &trans->status))
1829 			_iwl_enable_interrupts(trans);
1830 		spin_unlock_bh(&trans_pcie->irq_lock);
1831 		lock_map_release(&trans->sync_cmd_lockdep_map);
1832 		return IRQ_NONE;
1833 	}
1834 
1835 	if (unlikely(inta == 0xFFFFFFFF || (inta & 0xFFFFFFF0) == 0xa5a5a5a0)) {
1836 		/*
1837 		 * Hardware disappeared. It might have
1838 		 * already raised an interrupt.
1839 		 */
1840 		IWL_WARN(trans, "HARDWARE GONE?? INTA == 0x%08x\n", inta);
1841 		spin_unlock_bh(&trans_pcie->irq_lock);
1842 		goto out;
1843 	}
1844 
1845 	/* Ack/clear/reset pending uCode interrupts.
1846 	 * Note:  Some bits in CSR_INT are "OR" of bits in CSR_FH_INT_STATUS,
1847 	 */
1848 	/* There is a hardware bug in the interrupt mask function that some
1849 	 * interrupts (i.e. CSR_INT_BIT_SCD) can still be generated even if
1850 	 * they are disabled in the CSR_INT_MASK register. Furthermore the
1851 	 * ICT interrupt handling mechanism has another bug that might cause
1852 	 * these unmasked interrupts fail to be detected. We workaround the
1853 	 * hardware bugs here by ACKing all the possible interrupts so that
1854 	 * interrupt coalescing can still be achieved.
1855 	 */
1856 	iwl_write32(trans, CSR_INT, inta | ~trans_pcie->inta_mask);
1857 
1858 	if (iwl_have_debug_level(IWL_DL_ISR))
1859 		IWL_DEBUG_ISR(trans, "inta 0x%08x, enabled 0x%08x\n",
1860 			      inta, iwl_read32(trans, CSR_INT_MASK));
1861 
1862 	spin_unlock_bh(&trans_pcie->irq_lock);
1863 
1864 	/* Now service all interrupt bits discovered above. */
1865 	if (inta & CSR_INT_BIT_HW_ERR) {
1866 		IWL_ERR(trans, "Hardware error detected.  Restarting.\n");
1867 
1868 		/* Tell the device to stop sending interrupts */
1869 		iwl_disable_interrupts(trans);
1870 
1871 		isr_stats->hw++;
1872 		iwl_pcie_irq_handle_error(trans);
1873 
1874 		handled |= CSR_INT_BIT_HW_ERR;
1875 
1876 		goto out;
1877 	}
1878 
1879 	/* NIC fires this, but we don't use it, redundant with WAKEUP */
1880 	if (inta & CSR_INT_BIT_SCD) {
1881 		IWL_DEBUG_ISR(trans,
1882 			      "Scheduler finished to transmit the frame/frames.\n");
1883 		isr_stats->sch++;
1884 	}
1885 
1886 	/* Alive notification via Rx interrupt will do the real work */
1887 	if (inta & CSR_INT_BIT_ALIVE) {
1888 		IWL_DEBUG_ISR(trans, "Alive interrupt\n");
1889 		isr_stats->alive++;
1890 		if (trans->trans_cfg->gen2) {
1891 			/*
1892 			 * We can restock, since firmware configured
1893 			 * the RFH
1894 			 */
1895 			iwl_pcie_rxmq_restock(trans, trans_pcie->rxq);
1896 		}
1897 
1898 		handled |= CSR_INT_BIT_ALIVE;
1899 	}
1900 
1901 	/* Safely ignore these bits for debug checks below */
1902 	inta &= ~(CSR_INT_BIT_SCD | CSR_INT_BIT_ALIVE);
1903 
1904 	/* HW RF KILL switch toggled */
1905 	if (inta & CSR_INT_BIT_RF_KILL) {
1906 		iwl_pcie_handle_rfkill_irq(trans);
1907 		handled |= CSR_INT_BIT_RF_KILL;
1908 	}
1909 
1910 	/* Chip got too hot and stopped itself */
1911 	if (inta & CSR_INT_BIT_CT_KILL) {
1912 		IWL_ERR(trans, "Microcode CT kill error detected.\n");
1913 		isr_stats->ctkill++;
1914 		handled |= CSR_INT_BIT_CT_KILL;
1915 	}
1916 
1917 	/* Error detected by uCode */
1918 	if (inta & CSR_INT_BIT_SW_ERR) {
1919 		IWL_ERR(trans, "Microcode SW error detected. "
1920 			" Restarting 0x%X.\n", inta);
1921 		isr_stats->sw++;
1922 		iwl_pcie_irq_handle_error(trans);
1923 		handled |= CSR_INT_BIT_SW_ERR;
1924 	}
1925 
1926 	/* uCode wakes up after power-down sleep */
1927 	if (inta & CSR_INT_BIT_WAKEUP) {
1928 		IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
1929 		iwl_pcie_rxq_check_wrptr(trans);
1930 		iwl_pcie_txq_check_wrptrs(trans);
1931 
1932 		isr_stats->wakeup++;
1933 
1934 		handled |= CSR_INT_BIT_WAKEUP;
1935 	}
1936 
1937 	/* All uCode command responses, including Tx command responses,
1938 	 * Rx "responses" (frame-received notification), and other
1939 	 * notifications from uCode come through here*/
1940 	if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX |
1941 		    CSR_INT_BIT_RX_PERIODIC)) {
1942 		IWL_DEBUG_ISR(trans, "Rx interrupt\n");
1943 		if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX)) {
1944 			handled |= (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX);
1945 			iwl_write32(trans, CSR_FH_INT_STATUS,
1946 					CSR_FH_INT_RX_MASK);
1947 		}
1948 		if (inta & CSR_INT_BIT_RX_PERIODIC) {
1949 			handled |= CSR_INT_BIT_RX_PERIODIC;
1950 			iwl_write32(trans,
1951 				CSR_INT, CSR_INT_BIT_RX_PERIODIC);
1952 		}
1953 		/* Sending RX interrupt require many steps to be done in the
1954 		 * the device:
1955 		 * 1- write interrupt to current index in ICT table.
1956 		 * 2- dma RX frame.
1957 		 * 3- update RX shared data to indicate last write index.
1958 		 * 4- send interrupt.
1959 		 * This could lead to RX race, driver could receive RX interrupt
1960 		 * but the shared data changes does not reflect this;
1961 		 * periodic interrupt will detect any dangling Rx activity.
1962 		 */
1963 
1964 		/* Disable periodic interrupt; we use it as just a one-shot. */
1965 		iwl_write8(trans, CSR_INT_PERIODIC_REG,
1966 			    CSR_INT_PERIODIC_DIS);
1967 
1968 		/*
1969 		 * Enable periodic interrupt in 8 msec only if we received
1970 		 * real RX interrupt (instead of just periodic int), to catch
1971 		 * any dangling Rx interrupt.  If it was just the periodic
1972 		 * interrupt, there was no dangling Rx activity, and no need
1973 		 * to extend the periodic interrupt; one-shot is enough.
1974 		 */
1975 		if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX))
1976 			iwl_write8(trans, CSR_INT_PERIODIC_REG,
1977 				   CSR_INT_PERIODIC_ENA);
1978 
1979 		isr_stats->rx++;
1980 
1981 		local_bh_disable();
1982 		if (napi_schedule_prep(&trans_pcie->rxq[0].napi)) {
1983 			polling = true;
1984 			__napi_schedule(&trans_pcie->rxq[0].napi);
1985 		}
1986 		local_bh_enable();
1987 	}
1988 
1989 	/* This "Tx" DMA channel is used only for loading uCode */
1990 	if (inta & CSR_INT_BIT_FH_TX) {
1991 		iwl_write32(trans, CSR_FH_INT_STATUS, CSR_FH_INT_TX_MASK);
1992 		IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
1993 		isr_stats->tx++;
1994 		handled |= CSR_INT_BIT_FH_TX;
1995 		/* Wake up uCode load routine, now that load is complete */
1996 		trans_pcie->ucode_write_complete = true;
1997 		wake_up(&trans_pcie->ucode_write_waitq);
1998 	}
1999 
2000 	if (inta & ~handled) {
2001 		IWL_ERR(trans, "Unhandled INTA bits 0x%08x\n", inta & ~handled);
2002 		isr_stats->unhandled++;
2003 	}
2004 
2005 	if (inta & ~(trans_pcie->inta_mask)) {
2006 		IWL_WARN(trans, "Disabled INTA bits 0x%08x were pending\n",
2007 			 inta & ~trans_pcie->inta_mask);
2008 	}
2009 
2010 	if (!polling) {
2011 		spin_lock_bh(&trans_pcie->irq_lock);
2012 		/* only Re-enable all interrupt if disabled by irq */
2013 		if (test_bit(STATUS_INT_ENABLED, &trans->status))
2014 			_iwl_enable_interrupts(trans);
2015 		/* we are loading the firmware, enable FH_TX interrupt only */
2016 		else if (handled & CSR_INT_BIT_FH_TX)
2017 			iwl_enable_fw_load_int(trans);
2018 		/* Re-enable RF_KILL if it occurred */
2019 		else if (handled & CSR_INT_BIT_RF_KILL)
2020 			iwl_enable_rfkill_int(trans);
2021 		/* Re-enable the ALIVE / Rx interrupt if it occurred */
2022 		else if (handled & (CSR_INT_BIT_ALIVE | CSR_INT_BIT_FH_RX))
2023 			iwl_enable_fw_load_int_ctx_info(trans);
2024 		spin_unlock_bh(&trans_pcie->irq_lock);
2025 	}
2026 
2027 out:
2028 	lock_map_release(&trans->sync_cmd_lockdep_map);
2029 	return IRQ_HANDLED;
2030 }
2031 
2032 /******************************************************************************
2033  *
2034  * ICT functions
2035  *
2036  ******************************************************************************/
2037 
2038 /* Free dram table */
2039 void iwl_pcie_free_ict(struct iwl_trans *trans)
2040 {
2041 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2042 
2043 	if (trans_pcie->ict_tbl) {
2044 		dma_free_coherent(trans->dev, ICT_SIZE,
2045 				  trans_pcie->ict_tbl,
2046 				  trans_pcie->ict_tbl_dma);
2047 		trans_pcie->ict_tbl = NULL;
2048 		trans_pcie->ict_tbl_dma = 0;
2049 	}
2050 }
2051 
2052 /*
2053  * allocate dram shared table, it is an aligned memory
2054  * block of ICT_SIZE.
2055  * also reset all data related to ICT table interrupt.
2056  */
2057 int iwl_pcie_alloc_ict(struct iwl_trans *trans)
2058 {
2059 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2060 
2061 	trans_pcie->ict_tbl =
2062 		dma_alloc_coherent(trans->dev, ICT_SIZE,
2063 				   &trans_pcie->ict_tbl_dma, GFP_KERNEL);
2064 	if (!trans_pcie->ict_tbl)
2065 		return -ENOMEM;
2066 
2067 	/* just an API sanity check ... it is guaranteed to be aligned */
2068 	if (WARN_ON(trans_pcie->ict_tbl_dma & (ICT_SIZE - 1))) {
2069 		iwl_pcie_free_ict(trans);
2070 		return -EINVAL;
2071 	}
2072 
2073 	return 0;
2074 }
2075 
2076 /* Device is going up inform it about using ICT interrupt table,
2077  * also we need to tell the driver to start using ICT interrupt.
2078  */
2079 void iwl_pcie_reset_ict(struct iwl_trans *trans)
2080 {
2081 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2082 	u32 val;
2083 
2084 	if (!trans_pcie->ict_tbl)
2085 		return;
2086 
2087 	spin_lock_bh(&trans_pcie->irq_lock);
2088 	_iwl_disable_interrupts(trans);
2089 
2090 	memset(trans_pcie->ict_tbl, 0, ICT_SIZE);
2091 
2092 	val = trans_pcie->ict_tbl_dma >> ICT_SHIFT;
2093 
2094 	val |= CSR_DRAM_INT_TBL_ENABLE |
2095 	       CSR_DRAM_INIT_TBL_WRAP_CHECK |
2096 	       CSR_DRAM_INIT_TBL_WRITE_POINTER;
2097 
2098 	IWL_DEBUG_ISR(trans, "CSR_DRAM_INT_TBL_REG =0x%x\n", val);
2099 
2100 	iwl_write32(trans, CSR_DRAM_INT_TBL_REG, val);
2101 	trans_pcie->use_ict = true;
2102 	trans_pcie->ict_index = 0;
2103 	iwl_write32(trans, CSR_INT, trans_pcie->inta_mask);
2104 	_iwl_enable_interrupts(trans);
2105 	spin_unlock_bh(&trans_pcie->irq_lock);
2106 }
2107 
2108 /* Device is going down disable ict interrupt usage */
2109 void iwl_pcie_disable_ict(struct iwl_trans *trans)
2110 {
2111 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2112 
2113 	spin_lock_bh(&trans_pcie->irq_lock);
2114 	trans_pcie->use_ict = false;
2115 	spin_unlock_bh(&trans_pcie->irq_lock);
2116 }
2117 
2118 irqreturn_t iwl_pcie_isr(int irq, void *data)
2119 {
2120 	struct iwl_trans *trans = data;
2121 
2122 	if (!trans)
2123 		return IRQ_NONE;
2124 
2125 	/* Disable (but don't clear!) interrupts here to avoid
2126 	 * back-to-back ISRs and sporadic interrupts from our NIC.
2127 	 * If we have something to service, the tasklet will re-enable ints.
2128 	 * If we *don't* have something, we'll re-enable before leaving here.
2129 	 */
2130 	iwl_write32(trans, CSR_INT_MASK, 0x00000000);
2131 
2132 	return IRQ_WAKE_THREAD;
2133 }
2134 
2135 irqreturn_t iwl_pcie_msix_isr(int irq, void *data)
2136 {
2137 	return IRQ_WAKE_THREAD;
2138 }
2139 
2140 irqreturn_t iwl_pcie_irq_msix_handler(int irq, void *dev_id)
2141 {
2142 	struct msix_entry *entry = dev_id;
2143 	struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry);
2144 	struct iwl_trans *trans = trans_pcie->trans;
2145 	struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
2146 	u32 inta_fh_msk = ~MSIX_FH_INT_CAUSES_DATA_QUEUE;
2147 	u32 inta_fh, inta_hw;
2148 	bool polling = false;
2149 
2150 	if (trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_NON_RX)
2151 		inta_fh_msk |= MSIX_FH_INT_CAUSES_Q0;
2152 
2153 	if (trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS)
2154 		inta_fh_msk |= MSIX_FH_INT_CAUSES_Q1;
2155 
2156 	lock_map_acquire(&trans->sync_cmd_lockdep_map);
2157 
2158 	spin_lock_bh(&trans_pcie->irq_lock);
2159 	inta_fh = iwl_read32(trans, CSR_MSIX_FH_INT_CAUSES_AD);
2160 	inta_hw = iwl_read32(trans, CSR_MSIX_HW_INT_CAUSES_AD);
2161 	/*
2162 	 * Clear causes registers to avoid being handling the same cause.
2163 	 */
2164 	iwl_write32(trans, CSR_MSIX_FH_INT_CAUSES_AD, inta_fh & inta_fh_msk);
2165 	iwl_write32(trans, CSR_MSIX_HW_INT_CAUSES_AD, inta_hw);
2166 	spin_unlock_bh(&trans_pcie->irq_lock);
2167 
2168 	trace_iwlwifi_dev_irq_msix(trans->dev, entry, true, inta_fh, inta_hw);
2169 
2170 	if (unlikely(!(inta_fh | inta_hw))) {
2171 		IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
2172 		lock_map_release(&trans->sync_cmd_lockdep_map);
2173 		return IRQ_NONE;
2174 	}
2175 
2176 	if (iwl_have_debug_level(IWL_DL_ISR)) {
2177 		IWL_DEBUG_ISR(trans,
2178 			      "ISR[%d] inta_fh 0x%08x, enabled (sw) 0x%08x (hw) 0x%08x\n",
2179 			      entry->entry, inta_fh, trans_pcie->fh_mask,
2180 			      iwl_read32(trans, CSR_MSIX_FH_INT_MASK_AD));
2181 		if (inta_fh & ~trans_pcie->fh_mask)
2182 			IWL_DEBUG_ISR(trans,
2183 				      "We got a masked interrupt (0x%08x)\n",
2184 				      inta_fh & ~trans_pcie->fh_mask);
2185 	}
2186 
2187 	inta_fh &= trans_pcie->fh_mask;
2188 
2189 	if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_NON_RX) &&
2190 	    inta_fh & MSIX_FH_INT_CAUSES_Q0) {
2191 		local_bh_disable();
2192 		if (napi_schedule_prep(&trans_pcie->rxq[0].napi)) {
2193 			polling = true;
2194 			__napi_schedule(&trans_pcie->rxq[0].napi);
2195 		}
2196 		local_bh_enable();
2197 	}
2198 
2199 	if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS) &&
2200 	    inta_fh & MSIX_FH_INT_CAUSES_Q1) {
2201 		local_bh_disable();
2202 		if (napi_schedule_prep(&trans_pcie->rxq[1].napi)) {
2203 			polling = true;
2204 			__napi_schedule(&trans_pcie->rxq[1].napi);
2205 		}
2206 		local_bh_enable();
2207 	}
2208 
2209 	/* This "Tx" DMA channel is used only for loading uCode */
2210 	if (inta_fh & MSIX_FH_INT_CAUSES_D2S_CH0_NUM) {
2211 		IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
2212 		isr_stats->tx++;
2213 		/*
2214 		 * Wake up uCode load routine,
2215 		 * now that load is complete
2216 		 */
2217 		trans_pcie->ucode_write_complete = true;
2218 		wake_up(&trans_pcie->ucode_write_waitq);
2219 	}
2220 
2221 	/* Error detected by uCode */
2222 	if ((inta_fh & MSIX_FH_INT_CAUSES_FH_ERR) ||
2223 	    (inta_hw & MSIX_HW_INT_CAUSES_REG_SW_ERR)) {
2224 		IWL_ERR(trans,
2225 			"Microcode SW error detected. Restarting 0x%X.\n",
2226 			inta_fh);
2227 		isr_stats->sw++;
2228 		iwl_pcie_irq_handle_error(trans);
2229 	}
2230 
2231 	/* After checking FH register check HW register */
2232 	if (iwl_have_debug_level(IWL_DL_ISR)) {
2233 		IWL_DEBUG_ISR(trans,
2234 			      "ISR[%d] inta_hw 0x%08x, enabled (sw) 0x%08x (hw) 0x%08x\n",
2235 			      entry->entry, inta_hw, trans_pcie->hw_mask,
2236 			      iwl_read32(trans, CSR_MSIX_HW_INT_MASK_AD));
2237 		if (inta_hw & ~trans_pcie->hw_mask)
2238 			IWL_DEBUG_ISR(trans,
2239 				      "We got a masked interrupt 0x%08x\n",
2240 				      inta_hw & ~trans_pcie->hw_mask);
2241 	}
2242 
2243 	inta_hw &= trans_pcie->hw_mask;
2244 
2245 	/* Alive notification via Rx interrupt will do the real work */
2246 	if (inta_hw & MSIX_HW_INT_CAUSES_REG_ALIVE) {
2247 		IWL_DEBUG_ISR(trans, "Alive interrupt\n");
2248 		isr_stats->alive++;
2249 		if (trans->trans_cfg->gen2) {
2250 			/* We can restock, since firmware configured the RFH */
2251 			iwl_pcie_rxmq_restock(trans, trans_pcie->rxq);
2252 		}
2253 	}
2254 
2255 	if (inta_hw & MSIX_HW_INT_CAUSES_REG_WAKEUP) {
2256 		u32 sleep_notif =
2257 			le32_to_cpu(trans_pcie->prph_info->sleep_notif);
2258 		if (sleep_notif == IWL_D3_SLEEP_STATUS_SUSPEND ||
2259 		    sleep_notif == IWL_D3_SLEEP_STATUS_RESUME) {
2260 			IWL_DEBUG_ISR(trans,
2261 				      "Sx interrupt: sleep notification = 0x%x\n",
2262 				      sleep_notif);
2263 			trans_pcie->sx_complete = true;
2264 			wake_up(&trans_pcie->sx_waitq);
2265 		} else {
2266 			/* uCode wakes up after power-down sleep */
2267 			IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
2268 			iwl_pcie_rxq_check_wrptr(trans);
2269 			iwl_pcie_txq_check_wrptrs(trans);
2270 
2271 			isr_stats->wakeup++;
2272 		}
2273 	}
2274 
2275 	/* Chip got too hot and stopped itself */
2276 	if (inta_hw & MSIX_HW_INT_CAUSES_REG_CT_KILL) {
2277 		IWL_ERR(trans, "Microcode CT kill error detected.\n");
2278 		isr_stats->ctkill++;
2279 	}
2280 
2281 	/* HW RF KILL switch toggled */
2282 	if (inta_hw & MSIX_HW_INT_CAUSES_REG_RF_KILL)
2283 		iwl_pcie_handle_rfkill_irq(trans);
2284 
2285 	if (inta_hw & MSIX_HW_INT_CAUSES_REG_HW_ERR) {
2286 		IWL_ERR(trans,
2287 			"Hardware error detected. Restarting.\n");
2288 
2289 		isr_stats->hw++;
2290 		trans->dbg.hw_error = true;
2291 		iwl_pcie_irq_handle_error(trans);
2292 	}
2293 
2294 	if (inta_hw & MSIX_HW_INT_CAUSES_REG_RESET_DONE) {
2295 		IWL_DEBUG_ISR(trans, "Reset flow completed\n");
2296 		trans_pcie->fw_reset_done = true;
2297 		wake_up(&trans_pcie->fw_reset_waitq);
2298 	}
2299 
2300 	if (!polling)
2301 		iwl_pcie_clear_irq(trans, entry->entry);
2302 
2303 	lock_map_release(&trans->sync_cmd_lockdep_map);
2304 
2305 	return IRQ_HANDLED;
2306 }
2307