1 /****************************************************************************** 2 * 3 * Copyright(c) 2003 - 2014 Intel Corporation. All rights reserved. 4 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH 5 * Copyright(c) 2016 - 2017 Intel Deutschland GmbH 6 * 7 * Portions of this file are derived from the ipw3945 project, as well 8 * as portions of the ieee80211 subsystem header files. 9 * 10 * This program is free software; you can redistribute it and/or modify it 11 * under the terms of version 2 of the GNU General Public License as 12 * published by the Free Software Foundation. 13 * 14 * This program is distributed in the hope that it will be useful, but WITHOUT 15 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 16 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 17 * more details. 18 * 19 * You should have received a copy of the GNU General Public License along with 20 * this program; if not, write to the Free Software Foundation, Inc., 21 * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA 22 * 23 * The full GNU General Public License is included in this distribution in the 24 * file called LICENSE. 25 * 26 * Contact Information: 27 * Intel Linux Wireless <linuxwifi@intel.com> 28 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 29 * 30 *****************************************************************************/ 31 #include <linux/sched.h> 32 #include <linux/wait.h> 33 #include <linux/gfp.h> 34 35 #include "iwl-prph.h" 36 #include "iwl-io.h" 37 #include "internal.h" 38 #include "iwl-op-mode.h" 39 40 /****************************************************************************** 41 * 42 * RX path functions 43 * 44 ******************************************************************************/ 45 46 /* 47 * Rx theory of operation 48 * 49 * Driver allocates a circular buffer of Receive Buffer Descriptors (RBDs), 50 * each of which point to Receive Buffers to be filled by the NIC. These get 51 * used not only for Rx frames, but for any command response or notification 52 * from the NIC. The driver and NIC manage the Rx buffers by means 53 * of indexes into the circular buffer. 54 * 55 * Rx Queue Indexes 56 * The host/firmware share two index registers for managing the Rx buffers. 57 * 58 * The READ index maps to the first position that the firmware may be writing 59 * to -- the driver can read up to (but not including) this position and get 60 * good data. 61 * The READ index is managed by the firmware once the card is enabled. 62 * 63 * The WRITE index maps to the last position the driver has read from -- the 64 * position preceding WRITE is the last slot the firmware can place a packet. 65 * 66 * The queue is empty (no good data) if WRITE = READ - 1, and is full if 67 * WRITE = READ. 68 * 69 * During initialization, the host sets up the READ queue position to the first 70 * INDEX position, and WRITE to the last (READ - 1 wrapped) 71 * 72 * When the firmware places a packet in a buffer, it will advance the READ index 73 * and fire the RX interrupt. The driver can then query the READ index and 74 * process as many packets as possible, moving the WRITE index forward as it 75 * resets the Rx queue buffers with new memory. 76 * 77 * The management in the driver is as follows: 78 * + A list of pre-allocated RBDs is stored in iwl->rxq->rx_free. 79 * When the interrupt handler is called, the request is processed. 80 * The page is either stolen - transferred to the upper layer 81 * or reused - added immediately to the iwl->rxq->rx_free list. 82 * + When the page is stolen - the driver updates the matching queue's used 83 * count, detaches the RBD and transfers it to the queue used list. 84 * When there are two used RBDs - they are transferred to the allocator empty 85 * list. Work is then scheduled for the allocator to start allocating 86 * eight buffers. 87 * When there are another 6 used RBDs - they are transferred to the allocator 88 * empty list and the driver tries to claim the pre-allocated buffers and 89 * add them to iwl->rxq->rx_free. If it fails - it continues to claim them 90 * until ready. 91 * When there are 8+ buffers in the free list - either from allocation or from 92 * 8 reused unstolen pages - restock is called to update the FW and indexes. 93 * + In order to make sure the allocator always has RBDs to use for allocation 94 * the allocator has initial pool in the size of num_queues*(8-2) - the 95 * maximum missing RBDs per allocation request (request posted with 2 96 * empty RBDs, there is no guarantee when the other 6 RBDs are supplied). 97 * The queues supplies the recycle of the rest of the RBDs. 98 * + A received packet is processed and handed to the kernel network stack, 99 * detached from the iwl->rxq. The driver 'processed' index is updated. 100 * + If there are no allocated buffers in iwl->rxq->rx_free, 101 * the READ INDEX is not incremented and iwl->status(RX_STALLED) is set. 102 * If there were enough free buffers and RX_STALLED is set it is cleared. 103 * 104 * 105 * Driver sequence: 106 * 107 * iwl_rxq_alloc() Allocates rx_free 108 * iwl_pcie_rx_replenish() Replenishes rx_free list from rx_used, and calls 109 * iwl_pcie_rxq_restock. 110 * Used only during initialization. 111 * iwl_pcie_rxq_restock() Moves available buffers from rx_free into Rx 112 * queue, updates firmware pointers, and updates 113 * the WRITE index. 114 * iwl_pcie_rx_allocator() Background work for allocating pages. 115 * 116 * -- enable interrupts -- 117 * ISR - iwl_rx() Detach iwl_rx_mem_buffers from pool up to the 118 * READ INDEX, detaching the SKB from the pool. 119 * Moves the packet buffer from queue to rx_used. 120 * Posts and claims requests to the allocator. 121 * Calls iwl_pcie_rxq_restock to refill any empty 122 * slots. 123 * 124 * RBD life-cycle: 125 * 126 * Init: 127 * rxq.pool -> rxq.rx_used -> rxq.rx_free -> rxq.queue 128 * 129 * Regular Receive interrupt: 130 * Page Stolen: 131 * rxq.queue -> rxq.rx_used -> allocator.rbd_empty -> 132 * allocator.rbd_allocated -> rxq.rx_free -> rxq.queue 133 * Page not Stolen: 134 * rxq.queue -> rxq.rx_free -> rxq.queue 135 * ... 136 * 137 */ 138 139 /* 140 * iwl_rxq_space - Return number of free slots available in queue. 141 */ 142 static int iwl_rxq_space(const struct iwl_rxq *rxq) 143 { 144 /* Make sure rx queue size is a power of 2 */ 145 WARN_ON(rxq->queue_size & (rxq->queue_size - 1)); 146 147 /* 148 * There can be up to (RX_QUEUE_SIZE - 1) free slots, to avoid ambiguity 149 * between empty and completely full queues. 150 * The following is equivalent to modulo by RX_QUEUE_SIZE and is well 151 * defined for negative dividends. 152 */ 153 return (rxq->read - rxq->write - 1) & (rxq->queue_size - 1); 154 } 155 156 /* 157 * iwl_dma_addr2rbd_ptr - convert a DMA address to a uCode read buffer ptr 158 */ 159 static inline __le32 iwl_pcie_dma_addr2rbd_ptr(dma_addr_t dma_addr) 160 { 161 return cpu_to_le32((u32)(dma_addr >> 8)); 162 } 163 164 /* 165 * iwl_pcie_rx_stop - stops the Rx DMA 166 */ 167 int iwl_pcie_rx_stop(struct iwl_trans *trans) 168 { 169 if (trans->cfg->mq_rx_supported) { 170 iwl_write_prph(trans, RFH_RXF_DMA_CFG, 0); 171 return iwl_poll_prph_bit(trans, RFH_GEN_STATUS, 172 RXF_DMA_IDLE, RXF_DMA_IDLE, 1000); 173 } else { 174 iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0); 175 return iwl_poll_direct_bit(trans, FH_MEM_RSSR_RX_STATUS_REG, 176 FH_RSSR_CHNL0_RX_STATUS_CHNL_IDLE, 177 1000); 178 } 179 } 180 181 /* 182 * iwl_pcie_rxq_inc_wr_ptr - Update the write pointer for the RX queue 183 */ 184 static void iwl_pcie_rxq_inc_wr_ptr(struct iwl_trans *trans, 185 struct iwl_rxq *rxq) 186 { 187 u32 reg; 188 189 lockdep_assert_held(&rxq->lock); 190 191 /* 192 * explicitly wake up the NIC if: 193 * 1. shadow registers aren't enabled 194 * 2. there is a chance that the NIC is asleep 195 */ 196 if (!trans->cfg->base_params->shadow_reg_enable && 197 test_bit(STATUS_TPOWER_PMI, &trans->status)) { 198 reg = iwl_read32(trans, CSR_UCODE_DRV_GP1); 199 200 if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) { 201 IWL_DEBUG_INFO(trans, "Rx queue requesting wakeup, GP1 = 0x%x\n", 202 reg); 203 iwl_set_bit(trans, CSR_GP_CNTRL, 204 CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ); 205 rxq->need_update = true; 206 return; 207 } 208 } 209 210 rxq->write_actual = round_down(rxq->write, 8); 211 if (trans->cfg->mq_rx_supported) 212 iwl_write32(trans, RFH_Q_FRBDCB_WIDX_TRG(rxq->id), 213 rxq->write_actual); 214 else 215 iwl_write32(trans, FH_RSCSR_CHNL0_WPTR, rxq->write_actual); 216 } 217 218 static void iwl_pcie_rxq_check_wrptr(struct iwl_trans *trans) 219 { 220 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 221 int i; 222 223 for (i = 0; i < trans->num_rx_queues; i++) { 224 struct iwl_rxq *rxq = &trans_pcie->rxq[i]; 225 226 if (!rxq->need_update) 227 continue; 228 spin_lock(&rxq->lock); 229 iwl_pcie_rxq_inc_wr_ptr(trans, rxq); 230 rxq->need_update = false; 231 spin_unlock(&rxq->lock); 232 } 233 } 234 235 /* 236 * iwl_pcie_rxmq_restock - restock implementation for multi-queue rx 237 */ 238 static void iwl_pcie_rxmq_restock(struct iwl_trans *trans, 239 struct iwl_rxq *rxq) 240 { 241 struct iwl_rx_mem_buffer *rxb; 242 243 /* 244 * If the device isn't enabled - no need to try to add buffers... 245 * This can happen when we stop the device and still have an interrupt 246 * pending. We stop the APM before we sync the interrupts because we 247 * have to (see comment there). On the other hand, since the APM is 248 * stopped, we cannot access the HW (in particular not prph). 249 * So don't try to restock if the APM has been already stopped. 250 */ 251 if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status)) 252 return; 253 254 spin_lock(&rxq->lock); 255 while (rxq->free_count) { 256 __le64 *bd = (__le64 *)rxq->bd; 257 258 /* Get next free Rx buffer, remove from free list */ 259 rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer, 260 list); 261 list_del(&rxb->list); 262 rxb->invalid = false; 263 /* 12 first bits are expected to be empty */ 264 WARN_ON(rxb->page_dma & DMA_BIT_MASK(12)); 265 /* Point to Rx buffer via next RBD in circular buffer */ 266 bd[rxq->write] = cpu_to_le64(rxb->page_dma | rxb->vid); 267 rxq->write = (rxq->write + 1) & MQ_RX_TABLE_MASK; 268 rxq->free_count--; 269 } 270 spin_unlock(&rxq->lock); 271 272 /* 273 * If we've added more space for the firmware to place data, tell it. 274 * Increment device's write pointer in multiples of 8. 275 */ 276 if (rxq->write_actual != (rxq->write & ~0x7)) { 277 spin_lock(&rxq->lock); 278 iwl_pcie_rxq_inc_wr_ptr(trans, rxq); 279 spin_unlock(&rxq->lock); 280 } 281 } 282 283 /* 284 * iwl_pcie_rxsq_restock - restock implementation for single queue rx 285 */ 286 static void iwl_pcie_rxsq_restock(struct iwl_trans *trans, 287 struct iwl_rxq *rxq) 288 { 289 struct iwl_rx_mem_buffer *rxb; 290 291 /* 292 * If the device isn't enabled - not need to try to add buffers... 293 * This can happen when we stop the device and still have an interrupt 294 * pending. We stop the APM before we sync the interrupts because we 295 * have to (see comment there). On the other hand, since the APM is 296 * stopped, we cannot access the HW (in particular not prph). 297 * So don't try to restock if the APM has been already stopped. 298 */ 299 if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status)) 300 return; 301 302 spin_lock(&rxq->lock); 303 while ((iwl_rxq_space(rxq) > 0) && (rxq->free_count)) { 304 __le32 *bd = (__le32 *)rxq->bd; 305 /* The overwritten rxb must be a used one */ 306 rxb = rxq->queue[rxq->write]; 307 BUG_ON(rxb && rxb->page); 308 309 /* Get next free Rx buffer, remove from free list */ 310 rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer, 311 list); 312 list_del(&rxb->list); 313 rxb->invalid = false; 314 315 /* Point to Rx buffer via next RBD in circular buffer */ 316 bd[rxq->write] = iwl_pcie_dma_addr2rbd_ptr(rxb->page_dma); 317 rxq->queue[rxq->write] = rxb; 318 rxq->write = (rxq->write + 1) & RX_QUEUE_MASK; 319 rxq->free_count--; 320 } 321 spin_unlock(&rxq->lock); 322 323 /* If we've added more space for the firmware to place data, tell it. 324 * Increment device's write pointer in multiples of 8. */ 325 if (rxq->write_actual != (rxq->write & ~0x7)) { 326 spin_lock(&rxq->lock); 327 iwl_pcie_rxq_inc_wr_ptr(trans, rxq); 328 spin_unlock(&rxq->lock); 329 } 330 } 331 332 /* 333 * iwl_pcie_rxq_restock - refill RX queue from pre-allocated pool 334 * 335 * If there are slots in the RX queue that need to be restocked, 336 * and we have free pre-allocated buffers, fill the ranks as much 337 * as we can, pulling from rx_free. 338 * 339 * This moves the 'write' index forward to catch up with 'processed', and 340 * also updates the memory address in the firmware to reference the new 341 * target buffer. 342 */ 343 static 344 void iwl_pcie_rxq_restock(struct iwl_trans *trans, struct iwl_rxq *rxq) 345 { 346 if (trans->cfg->mq_rx_supported) 347 iwl_pcie_rxmq_restock(trans, rxq); 348 else 349 iwl_pcie_rxsq_restock(trans, rxq); 350 } 351 352 /* 353 * iwl_pcie_rx_alloc_page - allocates and returns a page. 354 * 355 */ 356 static struct page *iwl_pcie_rx_alloc_page(struct iwl_trans *trans, 357 gfp_t priority) 358 { 359 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 360 struct page *page; 361 gfp_t gfp_mask = priority; 362 363 if (trans_pcie->rx_page_order > 0) 364 gfp_mask |= __GFP_COMP; 365 366 /* Alloc a new receive buffer */ 367 page = alloc_pages(gfp_mask, trans_pcie->rx_page_order); 368 if (!page) { 369 if (net_ratelimit()) 370 IWL_DEBUG_INFO(trans, "alloc_pages failed, order: %d\n", 371 trans_pcie->rx_page_order); 372 /* 373 * Issue an error if we don't have enough pre-allocated 374 * buffers. 375 ` */ 376 if (!(gfp_mask & __GFP_NOWARN) && net_ratelimit()) 377 IWL_CRIT(trans, 378 "Failed to alloc_pages\n"); 379 return NULL; 380 } 381 return page; 382 } 383 384 /* 385 * iwl_pcie_rxq_alloc_rbs - allocate a page for each used RBD 386 * 387 * A used RBD is an Rx buffer that has been given to the stack. To use it again 388 * a page must be allocated and the RBD must point to the page. This function 389 * doesn't change the HW pointer but handles the list of pages that is used by 390 * iwl_pcie_rxq_restock. The latter function will update the HW to use the newly 391 * allocated buffers. 392 */ 393 static void iwl_pcie_rxq_alloc_rbs(struct iwl_trans *trans, gfp_t priority, 394 struct iwl_rxq *rxq) 395 { 396 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 397 struct iwl_rx_mem_buffer *rxb; 398 struct page *page; 399 400 while (1) { 401 spin_lock(&rxq->lock); 402 if (list_empty(&rxq->rx_used)) { 403 spin_unlock(&rxq->lock); 404 return; 405 } 406 spin_unlock(&rxq->lock); 407 408 /* Alloc a new receive buffer */ 409 page = iwl_pcie_rx_alloc_page(trans, priority); 410 if (!page) 411 return; 412 413 spin_lock(&rxq->lock); 414 415 if (list_empty(&rxq->rx_used)) { 416 spin_unlock(&rxq->lock); 417 __free_pages(page, trans_pcie->rx_page_order); 418 return; 419 } 420 rxb = list_first_entry(&rxq->rx_used, struct iwl_rx_mem_buffer, 421 list); 422 list_del(&rxb->list); 423 spin_unlock(&rxq->lock); 424 425 BUG_ON(rxb->page); 426 rxb->page = page; 427 /* Get physical address of the RB */ 428 rxb->page_dma = 429 dma_map_page(trans->dev, page, 0, 430 PAGE_SIZE << trans_pcie->rx_page_order, 431 DMA_FROM_DEVICE); 432 if (dma_mapping_error(trans->dev, rxb->page_dma)) { 433 rxb->page = NULL; 434 spin_lock(&rxq->lock); 435 list_add(&rxb->list, &rxq->rx_used); 436 spin_unlock(&rxq->lock); 437 __free_pages(page, trans_pcie->rx_page_order); 438 return; 439 } 440 441 spin_lock(&rxq->lock); 442 443 list_add_tail(&rxb->list, &rxq->rx_free); 444 rxq->free_count++; 445 446 spin_unlock(&rxq->lock); 447 } 448 } 449 450 static void iwl_pcie_free_rbs_pool(struct iwl_trans *trans) 451 { 452 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 453 int i; 454 455 for (i = 0; i < RX_POOL_SIZE; i++) { 456 if (!trans_pcie->rx_pool[i].page) 457 continue; 458 dma_unmap_page(trans->dev, trans_pcie->rx_pool[i].page_dma, 459 PAGE_SIZE << trans_pcie->rx_page_order, 460 DMA_FROM_DEVICE); 461 __free_pages(trans_pcie->rx_pool[i].page, 462 trans_pcie->rx_page_order); 463 trans_pcie->rx_pool[i].page = NULL; 464 } 465 } 466 467 /* 468 * iwl_pcie_rx_allocator - Allocates pages in the background for RX queues 469 * 470 * Allocates for each received request 8 pages 471 * Called as a scheduled work item. 472 */ 473 static void iwl_pcie_rx_allocator(struct iwl_trans *trans) 474 { 475 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 476 struct iwl_rb_allocator *rba = &trans_pcie->rba; 477 struct list_head local_empty; 478 int pending = atomic_xchg(&rba->req_pending, 0); 479 480 IWL_DEBUG_RX(trans, "Pending allocation requests = %d\n", pending); 481 482 /* If we were scheduled - there is at least one request */ 483 spin_lock(&rba->lock); 484 /* swap out the rba->rbd_empty to a local list */ 485 list_replace_init(&rba->rbd_empty, &local_empty); 486 spin_unlock(&rba->lock); 487 488 while (pending) { 489 int i; 490 LIST_HEAD(local_allocated); 491 gfp_t gfp_mask = GFP_KERNEL; 492 493 /* Do not post a warning if there are only a few requests */ 494 if (pending < RX_PENDING_WATERMARK) 495 gfp_mask |= __GFP_NOWARN; 496 497 for (i = 0; i < RX_CLAIM_REQ_ALLOC;) { 498 struct iwl_rx_mem_buffer *rxb; 499 struct page *page; 500 501 /* List should never be empty - each reused RBD is 502 * returned to the list, and initial pool covers any 503 * possible gap between the time the page is allocated 504 * to the time the RBD is added. 505 */ 506 BUG_ON(list_empty(&local_empty)); 507 /* Get the first rxb from the rbd list */ 508 rxb = list_first_entry(&local_empty, 509 struct iwl_rx_mem_buffer, list); 510 BUG_ON(rxb->page); 511 512 /* Alloc a new receive buffer */ 513 page = iwl_pcie_rx_alloc_page(trans, gfp_mask); 514 if (!page) 515 continue; 516 rxb->page = page; 517 518 /* Get physical address of the RB */ 519 rxb->page_dma = dma_map_page(trans->dev, page, 0, 520 PAGE_SIZE << trans_pcie->rx_page_order, 521 DMA_FROM_DEVICE); 522 if (dma_mapping_error(trans->dev, rxb->page_dma)) { 523 rxb->page = NULL; 524 __free_pages(page, trans_pcie->rx_page_order); 525 continue; 526 } 527 528 /* move the allocated entry to the out list */ 529 list_move(&rxb->list, &local_allocated); 530 i++; 531 } 532 533 pending--; 534 if (!pending) { 535 pending = atomic_xchg(&rba->req_pending, 0); 536 IWL_DEBUG_RX(trans, 537 "Pending allocation requests = %d\n", 538 pending); 539 } 540 541 spin_lock(&rba->lock); 542 /* add the allocated rbds to the allocator allocated list */ 543 list_splice_tail(&local_allocated, &rba->rbd_allocated); 544 /* get more empty RBDs for current pending requests */ 545 list_splice_tail_init(&rba->rbd_empty, &local_empty); 546 spin_unlock(&rba->lock); 547 548 atomic_inc(&rba->req_ready); 549 } 550 551 spin_lock(&rba->lock); 552 /* return unused rbds to the allocator empty list */ 553 list_splice_tail(&local_empty, &rba->rbd_empty); 554 spin_unlock(&rba->lock); 555 } 556 557 /* 558 * iwl_pcie_rx_allocator_get - returns the pre-allocated pages 559 .* 560 .* Called by queue when the queue posted allocation request and 561 * has freed 8 RBDs in order to restock itself. 562 * This function directly moves the allocated RBs to the queue's ownership 563 * and updates the relevant counters. 564 */ 565 static void iwl_pcie_rx_allocator_get(struct iwl_trans *trans, 566 struct iwl_rxq *rxq) 567 { 568 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 569 struct iwl_rb_allocator *rba = &trans_pcie->rba; 570 int i; 571 572 lockdep_assert_held(&rxq->lock); 573 574 /* 575 * atomic_dec_if_positive returns req_ready - 1 for any scenario. 576 * If req_ready is 0 atomic_dec_if_positive will return -1 and this 577 * function will return early, as there are no ready requests. 578 * atomic_dec_if_positive will perofrm the *actual* decrement only if 579 * req_ready > 0, i.e. - there are ready requests and the function 580 * hands one request to the caller. 581 */ 582 if (atomic_dec_if_positive(&rba->req_ready) < 0) 583 return; 584 585 spin_lock(&rba->lock); 586 for (i = 0; i < RX_CLAIM_REQ_ALLOC; i++) { 587 /* Get next free Rx buffer, remove it from free list */ 588 struct iwl_rx_mem_buffer *rxb = 589 list_first_entry(&rba->rbd_allocated, 590 struct iwl_rx_mem_buffer, list); 591 592 list_move(&rxb->list, &rxq->rx_free); 593 } 594 spin_unlock(&rba->lock); 595 596 rxq->used_count -= RX_CLAIM_REQ_ALLOC; 597 rxq->free_count += RX_CLAIM_REQ_ALLOC; 598 } 599 600 static void iwl_pcie_rx_allocator_work(struct work_struct *data) 601 { 602 struct iwl_rb_allocator *rba_p = 603 container_of(data, struct iwl_rb_allocator, rx_alloc); 604 struct iwl_trans_pcie *trans_pcie = 605 container_of(rba_p, struct iwl_trans_pcie, rba); 606 607 iwl_pcie_rx_allocator(trans_pcie->trans); 608 } 609 610 static int iwl_pcie_rx_alloc(struct iwl_trans *trans) 611 { 612 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 613 struct iwl_rb_allocator *rba = &trans_pcie->rba; 614 struct device *dev = trans->dev; 615 int i; 616 int free_size = trans->cfg->mq_rx_supported ? sizeof(__le64) : 617 sizeof(__le32); 618 619 if (WARN_ON(trans_pcie->rxq)) 620 return -EINVAL; 621 622 trans_pcie->rxq = kcalloc(trans->num_rx_queues, sizeof(struct iwl_rxq), 623 GFP_KERNEL); 624 if (!trans_pcie->rxq) 625 return -EINVAL; 626 627 spin_lock_init(&rba->lock); 628 629 for (i = 0; i < trans->num_rx_queues; i++) { 630 struct iwl_rxq *rxq = &trans_pcie->rxq[i]; 631 632 spin_lock_init(&rxq->lock); 633 if (trans->cfg->mq_rx_supported) 634 rxq->queue_size = MQ_RX_TABLE_SIZE; 635 else 636 rxq->queue_size = RX_QUEUE_SIZE; 637 638 /* 639 * Allocate the circular buffer of Read Buffer Descriptors 640 * (RBDs) 641 */ 642 rxq->bd = dma_zalloc_coherent(dev, 643 free_size * rxq->queue_size, 644 &rxq->bd_dma, GFP_KERNEL); 645 if (!rxq->bd) 646 goto err; 647 648 if (trans->cfg->mq_rx_supported) { 649 rxq->used_bd = dma_zalloc_coherent(dev, 650 sizeof(__le32) * 651 rxq->queue_size, 652 &rxq->used_bd_dma, 653 GFP_KERNEL); 654 if (!rxq->used_bd) 655 goto err; 656 } 657 658 /*Allocate the driver's pointer to receive buffer status */ 659 rxq->rb_stts = dma_zalloc_coherent(dev, sizeof(*rxq->rb_stts), 660 &rxq->rb_stts_dma, 661 GFP_KERNEL); 662 if (!rxq->rb_stts) 663 goto err; 664 } 665 return 0; 666 667 err: 668 for (i = 0; i < trans->num_rx_queues; i++) { 669 struct iwl_rxq *rxq = &trans_pcie->rxq[i]; 670 671 if (rxq->bd) 672 dma_free_coherent(dev, free_size * rxq->queue_size, 673 rxq->bd, rxq->bd_dma); 674 rxq->bd_dma = 0; 675 rxq->bd = NULL; 676 677 if (rxq->rb_stts) 678 dma_free_coherent(trans->dev, 679 sizeof(struct iwl_rb_status), 680 rxq->rb_stts, rxq->rb_stts_dma); 681 682 if (rxq->used_bd) 683 dma_free_coherent(dev, sizeof(__le32) * rxq->queue_size, 684 rxq->used_bd, rxq->used_bd_dma); 685 rxq->used_bd_dma = 0; 686 rxq->used_bd = NULL; 687 } 688 kfree(trans_pcie->rxq); 689 690 return -ENOMEM; 691 } 692 693 static void iwl_pcie_rx_hw_init(struct iwl_trans *trans, struct iwl_rxq *rxq) 694 { 695 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 696 u32 rb_size; 697 unsigned long flags; 698 const u32 rfdnlog = RX_QUEUE_SIZE_LOG; /* 256 RBDs */ 699 700 switch (trans_pcie->rx_buf_size) { 701 case IWL_AMSDU_4K: 702 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K; 703 break; 704 case IWL_AMSDU_8K: 705 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_8K; 706 break; 707 case IWL_AMSDU_12K: 708 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_12K; 709 break; 710 default: 711 WARN_ON(1); 712 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K; 713 } 714 715 if (!iwl_trans_grab_nic_access(trans, &flags)) 716 return; 717 718 /* Stop Rx DMA */ 719 iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0); 720 /* reset and flush pointers */ 721 iwl_write32(trans, FH_MEM_RCSR_CHNL0_RBDCB_WPTR, 0); 722 iwl_write32(trans, FH_MEM_RCSR_CHNL0_FLUSH_RB_REQ, 0); 723 iwl_write32(trans, FH_RSCSR_CHNL0_RDPTR, 0); 724 725 /* Reset driver's Rx queue write index */ 726 iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0); 727 728 /* Tell device where to find RBD circular buffer in DRAM */ 729 iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_BASE_REG, 730 (u32)(rxq->bd_dma >> 8)); 731 732 /* Tell device where in DRAM to update its Rx status */ 733 iwl_write32(trans, FH_RSCSR_CHNL0_STTS_WPTR_REG, 734 rxq->rb_stts_dma >> 4); 735 736 /* Enable Rx DMA 737 * FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY is set because of HW bug in 738 * the credit mechanism in 5000 HW RX FIFO 739 * Direct rx interrupts to hosts 740 * Rx buffer size 4 or 8k or 12k 741 * RB timeout 0x10 742 * 256 RBDs 743 */ 744 iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 745 FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL | 746 FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY | 747 FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL | 748 rb_size | 749 (RX_RB_TIMEOUT << FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS) | 750 (rfdnlog << FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS)); 751 752 iwl_trans_release_nic_access(trans, &flags); 753 754 /* Set interrupt coalescing timer to default (2048 usecs) */ 755 iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF); 756 757 /* W/A for interrupt coalescing bug in 7260 and 3160 */ 758 if (trans->cfg->host_interrupt_operation_mode) 759 iwl_set_bit(trans, CSR_INT_COALESCING, IWL_HOST_INT_OPER_MODE); 760 } 761 762 void iwl_pcie_enable_rx_wake(struct iwl_trans *trans, bool enable) 763 { 764 /* 765 * Turn on the chicken-bits that cause MAC wakeup for RX-related 766 * values. 767 * This costs some power, but needed for W/A 9000 integrated A-step 768 * bug where shadow registers are not in the retention list and their 769 * value is lost when NIC powers down 770 */ 771 if (trans->cfg->integrated) { 772 iwl_set_bit(trans, CSR_MAC_SHADOW_REG_CTRL, 773 CSR_MAC_SHADOW_REG_CTRL_RX_WAKE); 774 iwl_set_bit(trans, CSR_MAC_SHADOW_REG_CTL2, 775 CSR_MAC_SHADOW_REG_CTL2_RX_WAKE); 776 } 777 } 778 779 static void iwl_pcie_rx_mq_hw_init(struct iwl_trans *trans) 780 { 781 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 782 u32 rb_size, enabled = 0; 783 unsigned long flags; 784 int i; 785 786 switch (trans_pcie->rx_buf_size) { 787 case IWL_AMSDU_4K: 788 rb_size = RFH_RXF_DMA_RB_SIZE_4K; 789 break; 790 case IWL_AMSDU_8K: 791 rb_size = RFH_RXF_DMA_RB_SIZE_8K; 792 break; 793 case IWL_AMSDU_12K: 794 rb_size = RFH_RXF_DMA_RB_SIZE_12K; 795 break; 796 default: 797 WARN_ON(1); 798 rb_size = RFH_RXF_DMA_RB_SIZE_4K; 799 } 800 801 if (!iwl_trans_grab_nic_access(trans, &flags)) 802 return; 803 804 /* Stop Rx DMA */ 805 iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG, 0); 806 /* disable free amd used rx queue operation */ 807 iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, 0); 808 809 for (i = 0; i < trans->num_rx_queues; i++) { 810 /* Tell device where to find RBD free table in DRAM */ 811 iwl_write_prph64_no_grab(trans, 812 RFH_Q_FRBDCB_BA_LSB(i), 813 trans_pcie->rxq[i].bd_dma); 814 /* Tell device where to find RBD used table in DRAM */ 815 iwl_write_prph64_no_grab(trans, 816 RFH_Q_URBDCB_BA_LSB(i), 817 trans_pcie->rxq[i].used_bd_dma); 818 /* Tell device where in DRAM to update its Rx status */ 819 iwl_write_prph64_no_grab(trans, 820 RFH_Q_URBD_STTS_WPTR_LSB(i), 821 trans_pcie->rxq[i].rb_stts_dma); 822 /* Reset device indice tables */ 823 iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_WIDX(i), 0); 824 iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_RIDX(i), 0); 825 iwl_write_prph_no_grab(trans, RFH_Q_URBDCB_WIDX(i), 0); 826 827 enabled |= BIT(i) | BIT(i + 16); 828 } 829 830 /* 831 * Enable Rx DMA 832 * Rx buffer size 4 or 8k or 12k 833 * Min RB size 4 or 8 834 * Drop frames that exceed RB size 835 * 512 RBDs 836 */ 837 iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG, 838 RFH_DMA_EN_ENABLE_VAL | rb_size | 839 RFH_RXF_DMA_MIN_RB_4_8 | 840 RFH_RXF_DMA_DROP_TOO_LARGE_MASK | 841 RFH_RXF_DMA_RBDCB_SIZE_512); 842 843 /* 844 * Activate DMA snooping. 845 * Set RX DMA chunk size to 64B for IOSF and 128B for PCIe 846 * Default queue is 0 847 */ 848 iwl_write_prph_no_grab(trans, RFH_GEN_CFG, RFH_GEN_CFG_RFH_DMA_SNOOP | 849 (DEFAULT_RXQ_NUM << 850 RFH_GEN_CFG_DEFAULT_RXQ_NUM_POS) | 851 RFH_GEN_CFG_SERVICE_DMA_SNOOP | 852 (trans->cfg->integrated ? 853 RFH_GEN_CFG_RB_CHUNK_SIZE_64 : 854 RFH_GEN_CFG_RB_CHUNK_SIZE_128) << 855 RFH_GEN_CFG_RB_CHUNK_SIZE_POS); 856 /* Enable the relevant rx queues */ 857 iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, enabled); 858 859 iwl_trans_release_nic_access(trans, &flags); 860 861 /* Set interrupt coalescing timer to default (2048 usecs) */ 862 iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF); 863 864 iwl_pcie_enable_rx_wake(trans, true); 865 } 866 867 static void iwl_pcie_rx_init_rxb_lists(struct iwl_rxq *rxq) 868 { 869 lockdep_assert_held(&rxq->lock); 870 871 INIT_LIST_HEAD(&rxq->rx_free); 872 INIT_LIST_HEAD(&rxq->rx_used); 873 rxq->free_count = 0; 874 rxq->used_count = 0; 875 } 876 877 static int iwl_pcie_dummy_napi_poll(struct napi_struct *napi, int budget) 878 { 879 WARN_ON(1); 880 return 0; 881 } 882 883 static int _iwl_pcie_rx_init(struct iwl_trans *trans) 884 { 885 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 886 struct iwl_rxq *def_rxq; 887 struct iwl_rb_allocator *rba = &trans_pcie->rba; 888 int i, err, queue_size, allocator_pool_size, num_alloc; 889 890 if (!trans_pcie->rxq) { 891 err = iwl_pcie_rx_alloc(trans); 892 if (err) 893 return err; 894 } 895 def_rxq = trans_pcie->rxq; 896 if (!rba->alloc_wq) 897 rba->alloc_wq = alloc_workqueue("rb_allocator", 898 WQ_HIGHPRI | WQ_UNBOUND, 1); 899 INIT_WORK(&rba->rx_alloc, iwl_pcie_rx_allocator_work); 900 901 spin_lock(&rba->lock); 902 atomic_set(&rba->req_pending, 0); 903 atomic_set(&rba->req_ready, 0); 904 INIT_LIST_HEAD(&rba->rbd_allocated); 905 INIT_LIST_HEAD(&rba->rbd_empty); 906 spin_unlock(&rba->lock); 907 908 /* free all first - we might be reconfigured for a different size */ 909 iwl_pcie_free_rbs_pool(trans); 910 911 for (i = 0; i < RX_QUEUE_SIZE; i++) 912 def_rxq->queue[i] = NULL; 913 914 for (i = 0; i < trans->num_rx_queues; i++) { 915 struct iwl_rxq *rxq = &trans_pcie->rxq[i]; 916 917 rxq->id = i; 918 919 spin_lock(&rxq->lock); 920 /* 921 * Set read write pointer to reflect that we have processed 922 * and used all buffers, but have not restocked the Rx queue 923 * with fresh buffers 924 */ 925 rxq->read = 0; 926 rxq->write = 0; 927 rxq->write_actual = 0; 928 memset(rxq->rb_stts, 0, sizeof(*rxq->rb_stts)); 929 930 iwl_pcie_rx_init_rxb_lists(rxq); 931 932 if (!rxq->napi.poll) 933 netif_napi_add(&trans_pcie->napi_dev, &rxq->napi, 934 iwl_pcie_dummy_napi_poll, 64); 935 936 spin_unlock(&rxq->lock); 937 } 938 939 /* move the pool to the default queue and allocator ownerships */ 940 queue_size = trans->cfg->mq_rx_supported ? 941 MQ_RX_NUM_RBDS : RX_QUEUE_SIZE; 942 allocator_pool_size = trans->num_rx_queues * 943 (RX_CLAIM_REQ_ALLOC - RX_POST_REQ_ALLOC); 944 num_alloc = queue_size + allocator_pool_size; 945 BUILD_BUG_ON(ARRAY_SIZE(trans_pcie->global_table) != 946 ARRAY_SIZE(trans_pcie->rx_pool)); 947 for (i = 0; i < num_alloc; i++) { 948 struct iwl_rx_mem_buffer *rxb = &trans_pcie->rx_pool[i]; 949 950 if (i < allocator_pool_size) 951 list_add(&rxb->list, &rba->rbd_empty); 952 else 953 list_add(&rxb->list, &def_rxq->rx_used); 954 trans_pcie->global_table[i] = rxb; 955 rxb->vid = (u16)(i + 1); 956 rxb->invalid = true; 957 } 958 959 iwl_pcie_rxq_alloc_rbs(trans, GFP_KERNEL, def_rxq); 960 961 return 0; 962 } 963 964 int iwl_pcie_rx_init(struct iwl_trans *trans) 965 { 966 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 967 int ret = _iwl_pcie_rx_init(trans); 968 969 if (ret) 970 return ret; 971 972 if (trans->cfg->mq_rx_supported) 973 iwl_pcie_rx_mq_hw_init(trans); 974 else 975 iwl_pcie_rx_hw_init(trans, trans_pcie->rxq); 976 977 iwl_pcie_rxq_restock(trans, trans_pcie->rxq); 978 979 spin_lock(&trans_pcie->rxq->lock); 980 iwl_pcie_rxq_inc_wr_ptr(trans, trans_pcie->rxq); 981 spin_unlock(&trans_pcie->rxq->lock); 982 983 return 0; 984 } 985 986 int iwl_pcie_gen2_rx_init(struct iwl_trans *trans) 987 { 988 /* 989 * We don't configure the RFH. 990 * Restock will be done at alive, after firmware configured the RFH. 991 */ 992 return _iwl_pcie_rx_init(trans); 993 } 994 995 void iwl_pcie_rx_free(struct iwl_trans *trans) 996 { 997 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 998 struct iwl_rb_allocator *rba = &trans_pcie->rba; 999 int free_size = trans->cfg->mq_rx_supported ? sizeof(__le64) : 1000 sizeof(__le32); 1001 int i; 1002 1003 /* 1004 * if rxq is NULL, it means that nothing has been allocated, 1005 * exit now 1006 */ 1007 if (!trans_pcie->rxq) { 1008 IWL_DEBUG_INFO(trans, "Free NULL rx context\n"); 1009 return; 1010 } 1011 1012 cancel_work_sync(&rba->rx_alloc); 1013 if (rba->alloc_wq) { 1014 destroy_workqueue(rba->alloc_wq); 1015 rba->alloc_wq = NULL; 1016 } 1017 1018 iwl_pcie_free_rbs_pool(trans); 1019 1020 for (i = 0; i < trans->num_rx_queues; i++) { 1021 struct iwl_rxq *rxq = &trans_pcie->rxq[i]; 1022 1023 if (rxq->bd) 1024 dma_free_coherent(trans->dev, 1025 free_size * rxq->queue_size, 1026 rxq->bd, rxq->bd_dma); 1027 rxq->bd_dma = 0; 1028 rxq->bd = NULL; 1029 1030 if (rxq->rb_stts) 1031 dma_free_coherent(trans->dev, 1032 sizeof(struct iwl_rb_status), 1033 rxq->rb_stts, rxq->rb_stts_dma); 1034 else 1035 IWL_DEBUG_INFO(trans, 1036 "Free rxq->rb_stts which is NULL\n"); 1037 1038 if (rxq->used_bd) 1039 dma_free_coherent(trans->dev, 1040 sizeof(__le32) * rxq->queue_size, 1041 rxq->used_bd, rxq->used_bd_dma); 1042 rxq->used_bd_dma = 0; 1043 rxq->used_bd = NULL; 1044 1045 if (rxq->napi.poll) 1046 netif_napi_del(&rxq->napi); 1047 } 1048 kfree(trans_pcie->rxq); 1049 } 1050 1051 /* 1052 * iwl_pcie_rx_reuse_rbd - Recycle used RBDs 1053 * 1054 * Called when a RBD can be reused. The RBD is transferred to the allocator. 1055 * When there are 2 empty RBDs - a request for allocation is posted 1056 */ 1057 static void iwl_pcie_rx_reuse_rbd(struct iwl_trans *trans, 1058 struct iwl_rx_mem_buffer *rxb, 1059 struct iwl_rxq *rxq, bool emergency) 1060 { 1061 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1062 struct iwl_rb_allocator *rba = &trans_pcie->rba; 1063 1064 /* Move the RBD to the used list, will be moved to allocator in batches 1065 * before claiming or posting a request*/ 1066 list_add_tail(&rxb->list, &rxq->rx_used); 1067 1068 if (unlikely(emergency)) 1069 return; 1070 1071 /* Count the allocator owned RBDs */ 1072 rxq->used_count++; 1073 1074 /* If we have RX_POST_REQ_ALLOC new released rx buffers - 1075 * issue a request for allocator. Modulo RX_CLAIM_REQ_ALLOC is 1076 * used for the case we failed to claim RX_CLAIM_REQ_ALLOC, 1077 * after but we still need to post another request. 1078 */ 1079 if ((rxq->used_count % RX_CLAIM_REQ_ALLOC) == RX_POST_REQ_ALLOC) { 1080 /* Move the 2 RBDs to the allocator ownership. 1081 Allocator has another 6 from pool for the request completion*/ 1082 spin_lock(&rba->lock); 1083 list_splice_tail_init(&rxq->rx_used, &rba->rbd_empty); 1084 spin_unlock(&rba->lock); 1085 1086 atomic_inc(&rba->req_pending); 1087 queue_work(rba->alloc_wq, &rba->rx_alloc); 1088 } 1089 } 1090 1091 static void iwl_pcie_rx_handle_rb(struct iwl_trans *trans, 1092 struct iwl_rxq *rxq, 1093 struct iwl_rx_mem_buffer *rxb, 1094 bool emergency) 1095 { 1096 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1097 struct iwl_txq *txq = trans_pcie->txq[trans_pcie->cmd_queue]; 1098 bool page_stolen = false; 1099 int max_len = PAGE_SIZE << trans_pcie->rx_page_order; 1100 u32 offset = 0; 1101 1102 if (WARN_ON(!rxb)) 1103 return; 1104 1105 dma_unmap_page(trans->dev, rxb->page_dma, max_len, DMA_FROM_DEVICE); 1106 1107 while (offset + sizeof(u32) + sizeof(struct iwl_cmd_header) < max_len) { 1108 struct iwl_rx_packet *pkt; 1109 u16 sequence; 1110 bool reclaim; 1111 int index, cmd_index, len; 1112 struct iwl_rx_cmd_buffer rxcb = { 1113 ._offset = offset, 1114 ._rx_page_order = trans_pcie->rx_page_order, 1115 ._page = rxb->page, 1116 ._page_stolen = false, 1117 .truesize = max_len, 1118 }; 1119 1120 pkt = rxb_addr(&rxcb); 1121 1122 if (pkt->len_n_flags == cpu_to_le32(FH_RSCSR_FRAME_INVALID)) 1123 break; 1124 1125 WARN_ON((le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_RXQ_MASK) >> 1126 FH_RSCSR_RXQ_POS != rxq->id); 1127 1128 IWL_DEBUG_RX(trans, 1129 "cmd at offset %d: %s (%.2x.%2x, seq 0x%x)\n", 1130 rxcb._offset, 1131 iwl_get_cmd_string(trans, 1132 iwl_cmd_id(pkt->hdr.cmd, 1133 pkt->hdr.group_id, 1134 0)), 1135 pkt->hdr.group_id, pkt->hdr.cmd, 1136 le16_to_cpu(pkt->hdr.sequence)); 1137 1138 len = iwl_rx_packet_len(pkt); 1139 len += sizeof(u32); /* account for status word */ 1140 trace_iwlwifi_dev_rx(trans->dev, trans, pkt, len); 1141 trace_iwlwifi_dev_rx_data(trans->dev, trans, pkt, len); 1142 1143 /* Reclaim a command buffer only if this packet is a response 1144 * to a (driver-originated) command. 1145 * If the packet (e.g. Rx frame) originated from uCode, 1146 * there is no command buffer to reclaim. 1147 * Ucode should set SEQ_RX_FRAME bit if ucode-originated, 1148 * but apparently a few don't get set; catch them here. */ 1149 reclaim = !(pkt->hdr.sequence & SEQ_RX_FRAME); 1150 if (reclaim && !pkt->hdr.group_id) { 1151 int i; 1152 1153 for (i = 0; i < trans_pcie->n_no_reclaim_cmds; i++) { 1154 if (trans_pcie->no_reclaim_cmds[i] == 1155 pkt->hdr.cmd) { 1156 reclaim = false; 1157 break; 1158 } 1159 } 1160 } 1161 1162 sequence = le16_to_cpu(pkt->hdr.sequence); 1163 index = SEQ_TO_INDEX(sequence); 1164 cmd_index = get_cmd_index(txq, index); 1165 1166 if (rxq->id == 0) 1167 iwl_op_mode_rx(trans->op_mode, &rxq->napi, 1168 &rxcb); 1169 else 1170 iwl_op_mode_rx_rss(trans->op_mode, &rxq->napi, 1171 &rxcb, rxq->id); 1172 1173 if (reclaim) { 1174 kzfree(txq->entries[cmd_index].free_buf); 1175 txq->entries[cmd_index].free_buf = NULL; 1176 } 1177 1178 /* 1179 * After here, we should always check rxcb._page_stolen, 1180 * if it is true then one of the handlers took the page. 1181 */ 1182 1183 if (reclaim) { 1184 /* Invoke any callbacks, transfer the buffer to caller, 1185 * and fire off the (possibly) blocking 1186 * iwl_trans_send_cmd() 1187 * as we reclaim the driver command queue */ 1188 if (!rxcb._page_stolen) 1189 iwl_pcie_hcmd_complete(trans, &rxcb); 1190 else 1191 IWL_WARN(trans, "Claim null rxb?\n"); 1192 } 1193 1194 page_stolen |= rxcb._page_stolen; 1195 offset += ALIGN(len, FH_RSCSR_FRAME_ALIGN); 1196 } 1197 1198 /* page was stolen from us -- free our reference */ 1199 if (page_stolen) { 1200 __free_pages(rxb->page, trans_pcie->rx_page_order); 1201 rxb->page = NULL; 1202 } 1203 1204 /* Reuse the page if possible. For notification packets and 1205 * SKBs that fail to Rx correctly, add them back into the 1206 * rx_free list for reuse later. */ 1207 if (rxb->page != NULL) { 1208 rxb->page_dma = 1209 dma_map_page(trans->dev, rxb->page, 0, 1210 PAGE_SIZE << trans_pcie->rx_page_order, 1211 DMA_FROM_DEVICE); 1212 if (dma_mapping_error(trans->dev, rxb->page_dma)) { 1213 /* 1214 * free the page(s) as well to not break 1215 * the invariant that the items on the used 1216 * list have no page(s) 1217 */ 1218 __free_pages(rxb->page, trans_pcie->rx_page_order); 1219 rxb->page = NULL; 1220 iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency); 1221 } else { 1222 list_add_tail(&rxb->list, &rxq->rx_free); 1223 rxq->free_count++; 1224 } 1225 } else 1226 iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency); 1227 } 1228 1229 /* 1230 * iwl_pcie_rx_handle - Main entry function for receiving responses from fw 1231 */ 1232 static void iwl_pcie_rx_handle(struct iwl_trans *trans, int queue) 1233 { 1234 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1235 struct iwl_rxq *rxq = &trans_pcie->rxq[queue]; 1236 u32 r, i, count = 0; 1237 bool emergency = false; 1238 1239 restart: 1240 spin_lock(&rxq->lock); 1241 /* uCode's read index (stored in shared DRAM) indicates the last Rx 1242 * buffer that the driver may process (last buffer filled by ucode). */ 1243 r = le16_to_cpu(ACCESS_ONCE(rxq->rb_stts->closed_rb_num)) & 0x0FFF; 1244 i = rxq->read; 1245 1246 /* W/A 9000 device step A0 wrap-around bug */ 1247 r &= (rxq->queue_size - 1); 1248 1249 /* Rx interrupt, but nothing sent from uCode */ 1250 if (i == r) 1251 IWL_DEBUG_RX(trans, "Q %d: HW = SW = %d\n", rxq->id, r); 1252 1253 while (i != r) { 1254 struct iwl_rx_mem_buffer *rxb; 1255 1256 if (unlikely(rxq->used_count == rxq->queue_size / 2)) 1257 emergency = true; 1258 1259 if (trans->cfg->mq_rx_supported) { 1260 /* 1261 * used_bd is a 32 bit but only 12 are used to retrieve 1262 * the vid 1263 */ 1264 u16 vid = le32_to_cpu(rxq->used_bd[i]) & 0x0FFF; 1265 1266 if (WARN(!vid || 1267 vid > ARRAY_SIZE(trans_pcie->global_table), 1268 "Invalid rxb index from HW %u\n", (u32)vid)) { 1269 iwl_force_nmi(trans); 1270 goto out; 1271 } 1272 rxb = trans_pcie->global_table[vid - 1]; 1273 if (WARN(rxb->invalid, 1274 "Invalid rxb from HW %u\n", (u32)vid)) { 1275 iwl_force_nmi(trans); 1276 goto out; 1277 } 1278 rxb->invalid = true; 1279 } else { 1280 rxb = rxq->queue[i]; 1281 rxq->queue[i] = NULL; 1282 } 1283 1284 IWL_DEBUG_RX(trans, "Q %d: HW = %d, SW = %d\n", rxq->id, r, i); 1285 iwl_pcie_rx_handle_rb(trans, rxq, rxb, emergency); 1286 1287 i = (i + 1) & (rxq->queue_size - 1); 1288 1289 /* 1290 * If we have RX_CLAIM_REQ_ALLOC released rx buffers - 1291 * try to claim the pre-allocated buffers from the allocator. 1292 * If not ready - will try to reclaim next time. 1293 * There is no need to reschedule work - allocator exits only 1294 * on success 1295 */ 1296 if (rxq->used_count >= RX_CLAIM_REQ_ALLOC) 1297 iwl_pcie_rx_allocator_get(trans, rxq); 1298 1299 if (rxq->used_count % RX_CLAIM_REQ_ALLOC == 0 && !emergency) { 1300 struct iwl_rb_allocator *rba = &trans_pcie->rba; 1301 1302 /* Add the remaining empty RBDs for allocator use */ 1303 spin_lock(&rba->lock); 1304 list_splice_tail_init(&rxq->rx_used, &rba->rbd_empty); 1305 spin_unlock(&rba->lock); 1306 } else if (emergency) { 1307 count++; 1308 if (count == 8) { 1309 count = 0; 1310 if (rxq->used_count < rxq->queue_size / 3) 1311 emergency = false; 1312 1313 rxq->read = i; 1314 spin_unlock(&rxq->lock); 1315 iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq); 1316 iwl_pcie_rxq_restock(trans, rxq); 1317 goto restart; 1318 } 1319 } 1320 } 1321 out: 1322 /* Backtrack one entry */ 1323 rxq->read = i; 1324 spin_unlock(&rxq->lock); 1325 1326 /* 1327 * handle a case where in emergency there are some unallocated RBDs. 1328 * those RBDs are in the used list, but are not tracked by the queue's 1329 * used_count which counts allocator owned RBDs. 1330 * unallocated emergency RBDs must be allocated on exit, otherwise 1331 * when called again the function may not be in emergency mode and 1332 * they will be handed to the allocator with no tracking in the RBD 1333 * allocator counters, which will lead to them never being claimed back 1334 * by the queue. 1335 * by allocating them here, they are now in the queue free list, and 1336 * will be restocked by the next call of iwl_pcie_rxq_restock. 1337 */ 1338 if (unlikely(emergency && count)) 1339 iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq); 1340 1341 if (rxq->napi.poll) 1342 napi_gro_flush(&rxq->napi, false); 1343 1344 iwl_pcie_rxq_restock(trans, rxq); 1345 } 1346 1347 static struct iwl_trans_pcie *iwl_pcie_get_trans_pcie(struct msix_entry *entry) 1348 { 1349 u8 queue = entry->entry; 1350 struct msix_entry *entries = entry - queue; 1351 1352 return container_of(entries, struct iwl_trans_pcie, msix_entries[0]); 1353 } 1354 1355 static inline void iwl_pcie_clear_irq(struct iwl_trans *trans, 1356 struct msix_entry *entry) 1357 { 1358 /* 1359 * Before sending the interrupt the HW disables it to prevent 1360 * a nested interrupt. This is done by writing 1 to the corresponding 1361 * bit in the mask register. After handling the interrupt, it should be 1362 * re-enabled by clearing this bit. This register is defined as 1363 * write 1 clear (W1C) register, meaning that it's being clear 1364 * by writing 1 to the bit. 1365 */ 1366 iwl_write32(trans, CSR_MSIX_AUTOMASK_ST_AD, BIT(entry->entry)); 1367 } 1368 1369 /* 1370 * iwl_pcie_rx_msix_handle - Main entry function for receiving responses from fw 1371 * This interrupt handler should be used with RSS queue only. 1372 */ 1373 irqreturn_t iwl_pcie_irq_rx_msix_handler(int irq, void *dev_id) 1374 { 1375 struct msix_entry *entry = dev_id; 1376 struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry); 1377 struct iwl_trans *trans = trans_pcie->trans; 1378 1379 if (WARN_ON(entry->entry >= trans->num_rx_queues)) 1380 return IRQ_NONE; 1381 1382 lock_map_acquire(&trans->sync_cmd_lockdep_map); 1383 1384 local_bh_disable(); 1385 iwl_pcie_rx_handle(trans, entry->entry); 1386 local_bh_enable(); 1387 1388 iwl_pcie_clear_irq(trans, entry); 1389 1390 lock_map_release(&trans->sync_cmd_lockdep_map); 1391 1392 return IRQ_HANDLED; 1393 } 1394 1395 /* 1396 * iwl_pcie_irq_handle_error - called for HW or SW error interrupt from card 1397 */ 1398 static void iwl_pcie_irq_handle_error(struct iwl_trans *trans) 1399 { 1400 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1401 int i; 1402 1403 /* W/A for WiFi/WiMAX coex and WiMAX own the RF */ 1404 if (trans->cfg->internal_wimax_coex && 1405 !trans->cfg->apmg_not_supported && 1406 (!(iwl_read_prph(trans, APMG_CLK_CTRL_REG) & 1407 APMS_CLK_VAL_MRB_FUNC_MODE) || 1408 (iwl_read_prph(trans, APMG_PS_CTRL_REG) & 1409 APMG_PS_CTRL_VAL_RESET_REQ))) { 1410 clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status); 1411 iwl_op_mode_wimax_active(trans->op_mode); 1412 wake_up(&trans_pcie->wait_command_queue); 1413 return; 1414 } 1415 1416 local_bh_disable(); 1417 /* The STATUS_FW_ERROR bit is set in this function. This must happen 1418 * before we wake up the command caller, to ensure a proper cleanup. */ 1419 iwl_trans_fw_error(trans); 1420 local_bh_enable(); 1421 1422 for (i = 0; i < trans->cfg->base_params->num_of_queues; i++) { 1423 if (!trans_pcie->txq[i]) 1424 continue; 1425 del_timer(&trans_pcie->txq[i]->stuck_timer); 1426 } 1427 1428 clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status); 1429 wake_up(&trans_pcie->wait_command_queue); 1430 } 1431 1432 static u32 iwl_pcie_int_cause_non_ict(struct iwl_trans *trans) 1433 { 1434 u32 inta; 1435 1436 lockdep_assert_held(&IWL_TRANS_GET_PCIE_TRANS(trans)->irq_lock); 1437 1438 trace_iwlwifi_dev_irq(trans->dev); 1439 1440 /* Discover which interrupts are active/pending */ 1441 inta = iwl_read32(trans, CSR_INT); 1442 1443 /* the thread will service interrupts and re-enable them */ 1444 return inta; 1445 } 1446 1447 /* a device (PCI-E) page is 4096 bytes long */ 1448 #define ICT_SHIFT 12 1449 #define ICT_SIZE (1 << ICT_SHIFT) 1450 #define ICT_COUNT (ICT_SIZE / sizeof(u32)) 1451 1452 /* interrupt handler using ict table, with this interrupt driver will 1453 * stop using INTA register to get device's interrupt, reading this register 1454 * is expensive, device will write interrupts in ICT dram table, increment 1455 * index then will fire interrupt to driver, driver will OR all ICT table 1456 * entries from current index up to table entry with 0 value. the result is 1457 * the interrupt we need to service, driver will set the entries back to 0 and 1458 * set index. 1459 */ 1460 static u32 iwl_pcie_int_cause_ict(struct iwl_trans *trans) 1461 { 1462 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1463 u32 inta; 1464 u32 val = 0; 1465 u32 read; 1466 1467 trace_iwlwifi_dev_irq(trans->dev); 1468 1469 /* Ignore interrupt if there's nothing in NIC to service. 1470 * This may be due to IRQ shared with another device, 1471 * or due to sporadic interrupts thrown from our NIC. */ 1472 read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]); 1473 trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index, read); 1474 if (!read) 1475 return 0; 1476 1477 /* 1478 * Collect all entries up to the first 0, starting from ict_index; 1479 * note we already read at ict_index. 1480 */ 1481 do { 1482 val |= read; 1483 IWL_DEBUG_ISR(trans, "ICT index %d value 0x%08X\n", 1484 trans_pcie->ict_index, read); 1485 trans_pcie->ict_tbl[trans_pcie->ict_index] = 0; 1486 trans_pcie->ict_index = 1487 ((trans_pcie->ict_index + 1) & (ICT_COUNT - 1)); 1488 1489 read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]); 1490 trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index, 1491 read); 1492 } while (read); 1493 1494 /* We should not get this value, just ignore it. */ 1495 if (val == 0xffffffff) 1496 val = 0; 1497 1498 /* 1499 * this is a w/a for a h/w bug. the h/w bug may cause the Rx bit 1500 * (bit 15 before shifting it to 31) to clear when using interrupt 1501 * coalescing. fortunately, bits 18 and 19 stay set when this happens 1502 * so we use them to decide on the real state of the Rx bit. 1503 * In order words, bit 15 is set if bit 18 or bit 19 are set. 1504 */ 1505 if (val & 0xC0000) 1506 val |= 0x8000; 1507 1508 inta = (0xff & val) | ((0xff00 & val) << 16); 1509 return inta; 1510 } 1511 1512 irqreturn_t iwl_pcie_irq_handler(int irq, void *dev_id) 1513 { 1514 struct iwl_trans *trans = dev_id; 1515 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1516 struct isr_statistics *isr_stats = &trans_pcie->isr_stats; 1517 u32 inta = 0; 1518 u32 handled = 0; 1519 1520 lock_map_acquire(&trans->sync_cmd_lockdep_map); 1521 1522 spin_lock(&trans_pcie->irq_lock); 1523 1524 /* dram interrupt table not set yet, 1525 * use legacy interrupt. 1526 */ 1527 if (likely(trans_pcie->use_ict)) 1528 inta = iwl_pcie_int_cause_ict(trans); 1529 else 1530 inta = iwl_pcie_int_cause_non_ict(trans); 1531 1532 if (iwl_have_debug_level(IWL_DL_ISR)) { 1533 IWL_DEBUG_ISR(trans, 1534 "ISR inta 0x%08x, enabled 0x%08x(sw), enabled(hw) 0x%08x, fh 0x%08x\n", 1535 inta, trans_pcie->inta_mask, 1536 iwl_read32(trans, CSR_INT_MASK), 1537 iwl_read32(trans, CSR_FH_INT_STATUS)); 1538 if (inta & (~trans_pcie->inta_mask)) 1539 IWL_DEBUG_ISR(trans, 1540 "We got a masked interrupt (0x%08x)\n", 1541 inta & (~trans_pcie->inta_mask)); 1542 } 1543 1544 inta &= trans_pcie->inta_mask; 1545 1546 /* 1547 * Ignore interrupt if there's nothing in NIC to service. 1548 * This may be due to IRQ shared with another device, 1549 * or due to sporadic interrupts thrown from our NIC. 1550 */ 1551 if (unlikely(!inta)) { 1552 IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n"); 1553 /* 1554 * Re-enable interrupts here since we don't 1555 * have anything to service 1556 */ 1557 if (test_bit(STATUS_INT_ENABLED, &trans->status)) 1558 _iwl_enable_interrupts(trans); 1559 spin_unlock(&trans_pcie->irq_lock); 1560 lock_map_release(&trans->sync_cmd_lockdep_map); 1561 return IRQ_NONE; 1562 } 1563 1564 if (unlikely(inta == 0xFFFFFFFF || (inta & 0xFFFFFFF0) == 0xa5a5a5a0)) { 1565 /* 1566 * Hardware disappeared. It might have 1567 * already raised an interrupt. 1568 */ 1569 IWL_WARN(trans, "HARDWARE GONE?? INTA == 0x%08x\n", inta); 1570 spin_unlock(&trans_pcie->irq_lock); 1571 goto out; 1572 } 1573 1574 /* Ack/clear/reset pending uCode interrupts. 1575 * Note: Some bits in CSR_INT are "OR" of bits in CSR_FH_INT_STATUS, 1576 */ 1577 /* There is a hardware bug in the interrupt mask function that some 1578 * interrupts (i.e. CSR_INT_BIT_SCD) can still be generated even if 1579 * they are disabled in the CSR_INT_MASK register. Furthermore the 1580 * ICT interrupt handling mechanism has another bug that might cause 1581 * these unmasked interrupts fail to be detected. We workaround the 1582 * hardware bugs here by ACKing all the possible interrupts so that 1583 * interrupt coalescing can still be achieved. 1584 */ 1585 iwl_write32(trans, CSR_INT, inta | ~trans_pcie->inta_mask); 1586 1587 if (iwl_have_debug_level(IWL_DL_ISR)) 1588 IWL_DEBUG_ISR(trans, "inta 0x%08x, enabled 0x%08x\n", 1589 inta, iwl_read32(trans, CSR_INT_MASK)); 1590 1591 spin_unlock(&trans_pcie->irq_lock); 1592 1593 /* Now service all interrupt bits discovered above. */ 1594 if (inta & CSR_INT_BIT_HW_ERR) { 1595 IWL_ERR(trans, "Hardware error detected. Restarting.\n"); 1596 1597 /* Tell the device to stop sending interrupts */ 1598 iwl_disable_interrupts(trans); 1599 1600 isr_stats->hw++; 1601 iwl_pcie_irq_handle_error(trans); 1602 1603 handled |= CSR_INT_BIT_HW_ERR; 1604 1605 goto out; 1606 } 1607 1608 if (iwl_have_debug_level(IWL_DL_ISR)) { 1609 /* NIC fires this, but we don't use it, redundant with WAKEUP */ 1610 if (inta & CSR_INT_BIT_SCD) { 1611 IWL_DEBUG_ISR(trans, 1612 "Scheduler finished to transmit the frame/frames.\n"); 1613 isr_stats->sch++; 1614 } 1615 1616 /* Alive notification via Rx interrupt will do the real work */ 1617 if (inta & CSR_INT_BIT_ALIVE) { 1618 IWL_DEBUG_ISR(trans, "Alive interrupt\n"); 1619 isr_stats->alive++; 1620 if (trans->cfg->gen2) { 1621 /* 1622 * We can restock, since firmware configured 1623 * the RFH 1624 */ 1625 iwl_pcie_rxmq_restock(trans, trans_pcie->rxq); 1626 } 1627 } 1628 } 1629 1630 /* Safely ignore these bits for debug checks below */ 1631 inta &= ~(CSR_INT_BIT_SCD | CSR_INT_BIT_ALIVE); 1632 1633 /* HW RF KILL switch toggled */ 1634 if (inta & CSR_INT_BIT_RF_KILL) { 1635 bool hw_rfkill; 1636 1637 mutex_lock(&trans_pcie->mutex); 1638 hw_rfkill = iwl_is_rfkill_set(trans); 1639 if (hw_rfkill) 1640 set_bit(STATUS_RFKILL, &trans->status); 1641 1642 IWL_WARN(trans, "RF_KILL bit toggled to %s.\n", 1643 hw_rfkill ? "disable radio" : "enable radio"); 1644 1645 isr_stats->rfkill++; 1646 1647 iwl_trans_pcie_rf_kill(trans, hw_rfkill); 1648 mutex_unlock(&trans_pcie->mutex); 1649 if (hw_rfkill) { 1650 if (test_and_clear_bit(STATUS_SYNC_HCMD_ACTIVE, 1651 &trans->status)) 1652 IWL_DEBUG_RF_KILL(trans, 1653 "Rfkill while SYNC HCMD in flight\n"); 1654 wake_up(&trans_pcie->wait_command_queue); 1655 } else { 1656 clear_bit(STATUS_RFKILL, &trans->status); 1657 } 1658 1659 handled |= CSR_INT_BIT_RF_KILL; 1660 } 1661 1662 /* Chip got too hot and stopped itself */ 1663 if (inta & CSR_INT_BIT_CT_KILL) { 1664 IWL_ERR(trans, "Microcode CT kill error detected.\n"); 1665 isr_stats->ctkill++; 1666 handled |= CSR_INT_BIT_CT_KILL; 1667 } 1668 1669 /* Error detected by uCode */ 1670 if (inta & CSR_INT_BIT_SW_ERR) { 1671 IWL_ERR(trans, "Microcode SW error detected. " 1672 " Restarting 0x%X.\n", inta); 1673 isr_stats->sw++; 1674 iwl_pcie_irq_handle_error(trans); 1675 handled |= CSR_INT_BIT_SW_ERR; 1676 } 1677 1678 /* uCode wakes up after power-down sleep */ 1679 if (inta & CSR_INT_BIT_WAKEUP) { 1680 IWL_DEBUG_ISR(trans, "Wakeup interrupt\n"); 1681 iwl_pcie_rxq_check_wrptr(trans); 1682 iwl_pcie_txq_check_wrptrs(trans); 1683 1684 isr_stats->wakeup++; 1685 1686 handled |= CSR_INT_BIT_WAKEUP; 1687 } 1688 1689 /* All uCode command responses, including Tx command responses, 1690 * Rx "responses" (frame-received notification), and other 1691 * notifications from uCode come through here*/ 1692 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX | 1693 CSR_INT_BIT_RX_PERIODIC)) { 1694 IWL_DEBUG_ISR(trans, "Rx interrupt\n"); 1695 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX)) { 1696 handled |= (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX); 1697 iwl_write32(trans, CSR_FH_INT_STATUS, 1698 CSR_FH_INT_RX_MASK); 1699 } 1700 if (inta & CSR_INT_BIT_RX_PERIODIC) { 1701 handled |= CSR_INT_BIT_RX_PERIODIC; 1702 iwl_write32(trans, 1703 CSR_INT, CSR_INT_BIT_RX_PERIODIC); 1704 } 1705 /* Sending RX interrupt require many steps to be done in the 1706 * the device: 1707 * 1- write interrupt to current index in ICT table. 1708 * 2- dma RX frame. 1709 * 3- update RX shared data to indicate last write index. 1710 * 4- send interrupt. 1711 * This could lead to RX race, driver could receive RX interrupt 1712 * but the shared data changes does not reflect this; 1713 * periodic interrupt will detect any dangling Rx activity. 1714 */ 1715 1716 /* Disable periodic interrupt; we use it as just a one-shot. */ 1717 iwl_write8(trans, CSR_INT_PERIODIC_REG, 1718 CSR_INT_PERIODIC_DIS); 1719 1720 /* 1721 * Enable periodic interrupt in 8 msec only if we received 1722 * real RX interrupt (instead of just periodic int), to catch 1723 * any dangling Rx interrupt. If it was just the periodic 1724 * interrupt, there was no dangling Rx activity, and no need 1725 * to extend the periodic interrupt; one-shot is enough. 1726 */ 1727 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX)) 1728 iwl_write8(trans, CSR_INT_PERIODIC_REG, 1729 CSR_INT_PERIODIC_ENA); 1730 1731 isr_stats->rx++; 1732 1733 local_bh_disable(); 1734 iwl_pcie_rx_handle(trans, 0); 1735 local_bh_enable(); 1736 } 1737 1738 /* This "Tx" DMA channel is used only for loading uCode */ 1739 if (inta & CSR_INT_BIT_FH_TX) { 1740 iwl_write32(trans, CSR_FH_INT_STATUS, CSR_FH_INT_TX_MASK); 1741 IWL_DEBUG_ISR(trans, "uCode load interrupt\n"); 1742 isr_stats->tx++; 1743 handled |= CSR_INT_BIT_FH_TX; 1744 /* Wake up uCode load routine, now that load is complete */ 1745 trans_pcie->ucode_write_complete = true; 1746 wake_up(&trans_pcie->ucode_write_waitq); 1747 } 1748 1749 if (inta & ~handled) { 1750 IWL_ERR(trans, "Unhandled INTA bits 0x%08x\n", inta & ~handled); 1751 isr_stats->unhandled++; 1752 } 1753 1754 if (inta & ~(trans_pcie->inta_mask)) { 1755 IWL_WARN(trans, "Disabled INTA bits 0x%08x were pending\n", 1756 inta & ~trans_pcie->inta_mask); 1757 } 1758 1759 spin_lock(&trans_pcie->irq_lock); 1760 /* only Re-enable all interrupt if disabled by irq */ 1761 if (test_bit(STATUS_INT_ENABLED, &trans->status)) 1762 _iwl_enable_interrupts(trans); 1763 /* we are loading the firmware, enable FH_TX interrupt only */ 1764 else if (handled & CSR_INT_BIT_FH_TX) 1765 iwl_enable_fw_load_int(trans); 1766 /* Re-enable RF_KILL if it occurred */ 1767 else if (handled & CSR_INT_BIT_RF_KILL) 1768 iwl_enable_rfkill_int(trans); 1769 spin_unlock(&trans_pcie->irq_lock); 1770 1771 out: 1772 lock_map_release(&trans->sync_cmd_lockdep_map); 1773 return IRQ_HANDLED; 1774 } 1775 1776 /****************************************************************************** 1777 * 1778 * ICT functions 1779 * 1780 ******************************************************************************/ 1781 1782 /* Free dram table */ 1783 void iwl_pcie_free_ict(struct iwl_trans *trans) 1784 { 1785 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1786 1787 if (trans_pcie->ict_tbl) { 1788 dma_free_coherent(trans->dev, ICT_SIZE, 1789 trans_pcie->ict_tbl, 1790 trans_pcie->ict_tbl_dma); 1791 trans_pcie->ict_tbl = NULL; 1792 trans_pcie->ict_tbl_dma = 0; 1793 } 1794 } 1795 1796 /* 1797 * allocate dram shared table, it is an aligned memory 1798 * block of ICT_SIZE. 1799 * also reset all data related to ICT table interrupt. 1800 */ 1801 int iwl_pcie_alloc_ict(struct iwl_trans *trans) 1802 { 1803 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1804 1805 trans_pcie->ict_tbl = 1806 dma_zalloc_coherent(trans->dev, ICT_SIZE, 1807 &trans_pcie->ict_tbl_dma, 1808 GFP_KERNEL); 1809 if (!trans_pcie->ict_tbl) 1810 return -ENOMEM; 1811 1812 /* just an API sanity check ... it is guaranteed to be aligned */ 1813 if (WARN_ON(trans_pcie->ict_tbl_dma & (ICT_SIZE - 1))) { 1814 iwl_pcie_free_ict(trans); 1815 return -EINVAL; 1816 } 1817 1818 return 0; 1819 } 1820 1821 /* Device is going up inform it about using ICT interrupt table, 1822 * also we need to tell the driver to start using ICT interrupt. 1823 */ 1824 void iwl_pcie_reset_ict(struct iwl_trans *trans) 1825 { 1826 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1827 u32 val; 1828 1829 if (!trans_pcie->ict_tbl) 1830 return; 1831 1832 spin_lock(&trans_pcie->irq_lock); 1833 _iwl_disable_interrupts(trans); 1834 1835 memset(trans_pcie->ict_tbl, 0, ICT_SIZE); 1836 1837 val = trans_pcie->ict_tbl_dma >> ICT_SHIFT; 1838 1839 val |= CSR_DRAM_INT_TBL_ENABLE | 1840 CSR_DRAM_INIT_TBL_WRAP_CHECK | 1841 CSR_DRAM_INIT_TBL_WRITE_POINTER; 1842 1843 IWL_DEBUG_ISR(trans, "CSR_DRAM_INT_TBL_REG =0x%x\n", val); 1844 1845 iwl_write32(trans, CSR_DRAM_INT_TBL_REG, val); 1846 trans_pcie->use_ict = true; 1847 trans_pcie->ict_index = 0; 1848 iwl_write32(trans, CSR_INT, trans_pcie->inta_mask); 1849 _iwl_enable_interrupts(trans); 1850 spin_unlock(&trans_pcie->irq_lock); 1851 } 1852 1853 /* Device is going down disable ict interrupt usage */ 1854 void iwl_pcie_disable_ict(struct iwl_trans *trans) 1855 { 1856 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1857 1858 spin_lock(&trans_pcie->irq_lock); 1859 trans_pcie->use_ict = false; 1860 spin_unlock(&trans_pcie->irq_lock); 1861 } 1862 1863 irqreturn_t iwl_pcie_isr(int irq, void *data) 1864 { 1865 struct iwl_trans *trans = data; 1866 1867 if (!trans) 1868 return IRQ_NONE; 1869 1870 /* Disable (but don't clear!) interrupts here to avoid 1871 * back-to-back ISRs and sporadic interrupts from our NIC. 1872 * If we have something to service, the tasklet will re-enable ints. 1873 * If we *don't* have something, we'll re-enable before leaving here. 1874 */ 1875 iwl_write32(trans, CSR_INT_MASK, 0x00000000); 1876 1877 return IRQ_WAKE_THREAD; 1878 } 1879 1880 irqreturn_t iwl_pcie_msix_isr(int irq, void *data) 1881 { 1882 return IRQ_WAKE_THREAD; 1883 } 1884 1885 irqreturn_t iwl_pcie_irq_msix_handler(int irq, void *dev_id) 1886 { 1887 struct msix_entry *entry = dev_id; 1888 struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry); 1889 struct iwl_trans *trans = trans_pcie->trans; 1890 struct isr_statistics *isr_stats = &trans_pcie->isr_stats; 1891 u32 inta_fh, inta_hw; 1892 1893 lock_map_acquire(&trans->sync_cmd_lockdep_map); 1894 1895 spin_lock(&trans_pcie->irq_lock); 1896 inta_fh = iwl_read32(trans, CSR_MSIX_FH_INT_CAUSES_AD); 1897 inta_hw = iwl_read32(trans, CSR_MSIX_HW_INT_CAUSES_AD); 1898 /* 1899 * Clear causes registers to avoid being handling the same cause. 1900 */ 1901 iwl_write32(trans, CSR_MSIX_FH_INT_CAUSES_AD, inta_fh); 1902 iwl_write32(trans, CSR_MSIX_HW_INT_CAUSES_AD, inta_hw); 1903 spin_unlock(&trans_pcie->irq_lock); 1904 1905 if (unlikely(!(inta_fh | inta_hw))) { 1906 IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n"); 1907 lock_map_release(&trans->sync_cmd_lockdep_map); 1908 return IRQ_NONE; 1909 } 1910 1911 if (iwl_have_debug_level(IWL_DL_ISR)) 1912 IWL_DEBUG_ISR(trans, "ISR inta_fh 0x%08x, enabled 0x%08x\n", 1913 inta_fh, 1914 iwl_read32(trans, CSR_MSIX_FH_INT_MASK_AD)); 1915 1916 if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_NON_RX) && 1917 inta_fh & MSIX_FH_INT_CAUSES_Q0) { 1918 local_bh_disable(); 1919 iwl_pcie_rx_handle(trans, 0); 1920 local_bh_enable(); 1921 } 1922 1923 if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS) && 1924 inta_fh & MSIX_FH_INT_CAUSES_Q1) { 1925 local_bh_disable(); 1926 iwl_pcie_rx_handle(trans, 1); 1927 local_bh_enable(); 1928 } 1929 1930 /* This "Tx" DMA channel is used only for loading uCode */ 1931 if (inta_fh & MSIX_FH_INT_CAUSES_D2S_CH0_NUM) { 1932 IWL_DEBUG_ISR(trans, "uCode load interrupt\n"); 1933 isr_stats->tx++; 1934 /* 1935 * Wake up uCode load routine, 1936 * now that load is complete 1937 */ 1938 trans_pcie->ucode_write_complete = true; 1939 wake_up(&trans_pcie->ucode_write_waitq); 1940 } 1941 1942 /* Error detected by uCode */ 1943 if ((inta_fh & MSIX_FH_INT_CAUSES_FH_ERR) || 1944 (inta_hw & MSIX_HW_INT_CAUSES_REG_SW_ERR)) { 1945 IWL_ERR(trans, 1946 "Microcode SW error detected. Restarting 0x%X.\n", 1947 inta_fh); 1948 isr_stats->sw++; 1949 iwl_pcie_irq_handle_error(trans); 1950 } 1951 1952 /* After checking FH register check HW register */ 1953 if (iwl_have_debug_level(IWL_DL_ISR)) 1954 IWL_DEBUG_ISR(trans, 1955 "ISR inta_hw 0x%08x, enabled 0x%08x\n", 1956 inta_hw, 1957 iwl_read32(trans, CSR_MSIX_HW_INT_MASK_AD)); 1958 1959 /* Alive notification via Rx interrupt will do the real work */ 1960 if (inta_hw & MSIX_HW_INT_CAUSES_REG_ALIVE) { 1961 IWL_DEBUG_ISR(trans, "Alive interrupt\n"); 1962 isr_stats->alive++; 1963 if (trans->cfg->gen2) { 1964 /* We can restock, since firmware configured the RFH */ 1965 iwl_pcie_rxmq_restock(trans, trans_pcie->rxq); 1966 } 1967 } 1968 1969 /* uCode wakes up after power-down sleep */ 1970 if (inta_hw & MSIX_HW_INT_CAUSES_REG_WAKEUP) { 1971 IWL_DEBUG_ISR(trans, "Wakeup interrupt\n"); 1972 iwl_pcie_rxq_check_wrptr(trans); 1973 iwl_pcie_txq_check_wrptrs(trans); 1974 1975 isr_stats->wakeup++; 1976 } 1977 1978 /* Chip got too hot and stopped itself */ 1979 if (inta_hw & MSIX_HW_INT_CAUSES_REG_CT_KILL) { 1980 IWL_ERR(trans, "Microcode CT kill error detected.\n"); 1981 isr_stats->ctkill++; 1982 } 1983 1984 /* HW RF KILL switch toggled */ 1985 if (inta_hw & MSIX_HW_INT_CAUSES_REG_RF_KILL) { 1986 bool hw_rfkill; 1987 1988 mutex_lock(&trans_pcie->mutex); 1989 hw_rfkill = iwl_is_rfkill_set(trans); 1990 if (hw_rfkill) 1991 set_bit(STATUS_RFKILL, &trans->status); 1992 1993 IWL_WARN(trans, "RF_KILL bit toggled to %s.\n", 1994 hw_rfkill ? "disable radio" : "enable radio"); 1995 1996 isr_stats->rfkill++; 1997 1998 iwl_trans_pcie_rf_kill(trans, hw_rfkill); 1999 mutex_unlock(&trans_pcie->mutex); 2000 if (hw_rfkill) { 2001 if (test_and_clear_bit(STATUS_SYNC_HCMD_ACTIVE, 2002 &trans->status)) 2003 IWL_DEBUG_RF_KILL(trans, 2004 "Rfkill while SYNC HCMD in flight\n"); 2005 wake_up(&trans_pcie->wait_command_queue); 2006 } else { 2007 clear_bit(STATUS_RFKILL, &trans->status); 2008 } 2009 } 2010 2011 if (inta_hw & MSIX_HW_INT_CAUSES_REG_HW_ERR) { 2012 IWL_ERR(trans, 2013 "Hardware error detected. Restarting.\n"); 2014 2015 isr_stats->hw++; 2016 iwl_pcie_irq_handle_error(trans); 2017 } 2018 2019 iwl_pcie_clear_irq(trans, entry); 2020 2021 lock_map_release(&trans->sync_cmd_lockdep_map); 2022 2023 return IRQ_HANDLED; 2024 } 2025