xref: /openbmc/linux/drivers/net/wireless/intel/iwlwifi/pcie/rx.c (revision 943126417891372d56aa3fe46295cbf53db31370)
1 /******************************************************************************
2  *
3  * Copyright(c) 2003 - 2014 Intel Corporation. All rights reserved.
4  * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
5  * Copyright(c) 2016 - 2017 Intel Deutschland GmbH
6  * Copyright(c) 2018 Intel Corporation
7  *
8  * Portions of this file are derived from the ipw3945 project, as well
9  * as portions of the ieee80211 subsystem header files.
10  *
11  * This program is free software; you can redistribute it and/or modify it
12  * under the terms of version 2 of the GNU General Public License as
13  * published by the Free Software Foundation.
14  *
15  * This program is distributed in the hope that it will be useful, but WITHOUT
16  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
18  * more details.
19  *
20  * The full GNU General Public License is included in this distribution in the
21  * file called LICENSE.
22  *
23  * Contact Information:
24  *  Intel Linux Wireless <linuxwifi@intel.com>
25  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26  *
27  *****************************************************************************/
28 #include <linux/sched.h>
29 #include <linux/wait.h>
30 #include <linux/gfp.h>
31 
32 #include "iwl-prph.h"
33 #include "iwl-io.h"
34 #include "internal.h"
35 #include "iwl-op-mode.h"
36 #include "iwl-context-info-gen3.h"
37 
38 /******************************************************************************
39  *
40  * RX path functions
41  *
42  ******************************************************************************/
43 
44 /*
45  * Rx theory of operation
46  *
47  * Driver allocates a circular buffer of Receive Buffer Descriptors (RBDs),
48  * each of which point to Receive Buffers to be filled by the NIC.  These get
49  * used not only for Rx frames, but for any command response or notification
50  * from the NIC.  The driver and NIC manage the Rx buffers by means
51  * of indexes into the circular buffer.
52  *
53  * Rx Queue Indexes
54  * The host/firmware share two index registers for managing the Rx buffers.
55  *
56  * The READ index maps to the first position that the firmware may be writing
57  * to -- the driver can read up to (but not including) this position and get
58  * good data.
59  * The READ index is managed by the firmware once the card is enabled.
60  *
61  * The WRITE index maps to the last position the driver has read from -- the
62  * position preceding WRITE is the last slot the firmware can place a packet.
63  *
64  * The queue is empty (no good data) if WRITE = READ - 1, and is full if
65  * WRITE = READ.
66  *
67  * During initialization, the host sets up the READ queue position to the first
68  * INDEX position, and WRITE to the last (READ - 1 wrapped)
69  *
70  * When the firmware places a packet in a buffer, it will advance the READ index
71  * and fire the RX interrupt.  The driver can then query the READ index and
72  * process as many packets as possible, moving the WRITE index forward as it
73  * resets the Rx queue buffers with new memory.
74  *
75  * The management in the driver is as follows:
76  * + A list of pre-allocated RBDs is stored in iwl->rxq->rx_free.
77  *   When the interrupt handler is called, the request is processed.
78  *   The page is either stolen - transferred to the upper layer
79  *   or reused - added immediately to the iwl->rxq->rx_free list.
80  * + When the page is stolen - the driver updates the matching queue's used
81  *   count, detaches the RBD and transfers it to the queue used list.
82  *   When there are two used RBDs - they are transferred to the allocator empty
83  *   list. Work is then scheduled for the allocator to start allocating
84  *   eight buffers.
85  *   When there are another 6 used RBDs - they are transferred to the allocator
86  *   empty list and the driver tries to claim the pre-allocated buffers and
87  *   add them to iwl->rxq->rx_free. If it fails - it continues to claim them
88  *   until ready.
89  *   When there are 8+ buffers in the free list - either from allocation or from
90  *   8 reused unstolen pages - restock is called to update the FW and indexes.
91  * + In order to make sure the allocator always has RBDs to use for allocation
92  *   the allocator has initial pool in the size of num_queues*(8-2) - the
93  *   maximum missing RBDs per allocation request (request posted with 2
94  *    empty RBDs, there is no guarantee when the other 6 RBDs are supplied).
95  *   The queues supplies the recycle of the rest of the RBDs.
96  * + A received packet is processed and handed to the kernel network stack,
97  *   detached from the iwl->rxq.  The driver 'processed' index is updated.
98  * + If there are no allocated buffers in iwl->rxq->rx_free,
99  *   the READ INDEX is not incremented and iwl->status(RX_STALLED) is set.
100  *   If there were enough free buffers and RX_STALLED is set it is cleared.
101  *
102  *
103  * Driver sequence:
104  *
105  * iwl_rxq_alloc()            Allocates rx_free
106  * iwl_pcie_rx_replenish()    Replenishes rx_free list from rx_used, and calls
107  *                            iwl_pcie_rxq_restock.
108  *                            Used only during initialization.
109  * iwl_pcie_rxq_restock()     Moves available buffers from rx_free into Rx
110  *                            queue, updates firmware pointers, and updates
111  *                            the WRITE index.
112  * iwl_pcie_rx_allocator()     Background work for allocating pages.
113  *
114  * -- enable interrupts --
115  * ISR - iwl_rx()             Detach iwl_rx_mem_buffers from pool up to the
116  *                            READ INDEX, detaching the SKB from the pool.
117  *                            Moves the packet buffer from queue to rx_used.
118  *                            Posts and claims requests to the allocator.
119  *                            Calls iwl_pcie_rxq_restock to refill any empty
120  *                            slots.
121  *
122  * RBD life-cycle:
123  *
124  * Init:
125  * rxq.pool -> rxq.rx_used -> rxq.rx_free -> rxq.queue
126  *
127  * Regular Receive interrupt:
128  * Page Stolen:
129  * rxq.queue -> rxq.rx_used -> allocator.rbd_empty ->
130  * allocator.rbd_allocated -> rxq.rx_free -> rxq.queue
131  * Page not Stolen:
132  * rxq.queue -> rxq.rx_free -> rxq.queue
133  * ...
134  *
135  */
136 
137 /*
138  * iwl_rxq_space - Return number of free slots available in queue.
139  */
140 static int iwl_rxq_space(const struct iwl_rxq *rxq)
141 {
142 	/* Make sure rx queue size is a power of 2 */
143 	WARN_ON(rxq->queue_size & (rxq->queue_size - 1));
144 
145 	/*
146 	 * There can be up to (RX_QUEUE_SIZE - 1) free slots, to avoid ambiguity
147 	 * between empty and completely full queues.
148 	 * The following is equivalent to modulo by RX_QUEUE_SIZE and is well
149 	 * defined for negative dividends.
150 	 */
151 	return (rxq->read - rxq->write - 1) & (rxq->queue_size - 1);
152 }
153 
154 /*
155  * iwl_dma_addr2rbd_ptr - convert a DMA address to a uCode read buffer ptr
156  */
157 static inline __le32 iwl_pcie_dma_addr2rbd_ptr(dma_addr_t dma_addr)
158 {
159 	return cpu_to_le32((u32)(dma_addr >> 8));
160 }
161 
162 /*
163  * iwl_pcie_rx_stop - stops the Rx DMA
164  */
165 int iwl_pcie_rx_stop(struct iwl_trans *trans)
166 {
167 	if (trans->cfg->device_family >= IWL_DEVICE_FAMILY_22560) {
168 		/* TODO: remove this for 22560 once fw does it */
169 		iwl_write_prph(trans, RFH_RXF_DMA_CFG_GEN3, 0);
170 		return iwl_poll_prph_bit(trans, RFH_GEN_STATUS_GEN3,
171 					 RXF_DMA_IDLE, RXF_DMA_IDLE, 1000);
172 	} else if (trans->cfg->mq_rx_supported) {
173 		iwl_write_prph(trans, RFH_RXF_DMA_CFG, 0);
174 		return iwl_poll_prph_bit(trans, RFH_GEN_STATUS,
175 					   RXF_DMA_IDLE, RXF_DMA_IDLE, 1000);
176 	} else {
177 		iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
178 		return iwl_poll_direct_bit(trans, FH_MEM_RSSR_RX_STATUS_REG,
179 					   FH_RSSR_CHNL0_RX_STATUS_CHNL_IDLE,
180 					   1000);
181 	}
182 }
183 
184 /*
185  * iwl_pcie_rxq_inc_wr_ptr - Update the write pointer for the RX queue
186  */
187 static void iwl_pcie_rxq_inc_wr_ptr(struct iwl_trans *trans,
188 				    struct iwl_rxq *rxq)
189 {
190 	u32 reg;
191 
192 	lockdep_assert_held(&rxq->lock);
193 
194 	/*
195 	 * explicitly wake up the NIC if:
196 	 * 1. shadow registers aren't enabled
197 	 * 2. there is a chance that the NIC is asleep
198 	 */
199 	if (!trans->cfg->base_params->shadow_reg_enable &&
200 	    test_bit(STATUS_TPOWER_PMI, &trans->status)) {
201 		reg = iwl_read32(trans, CSR_UCODE_DRV_GP1);
202 
203 		if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) {
204 			IWL_DEBUG_INFO(trans, "Rx queue requesting wakeup, GP1 = 0x%x\n",
205 				       reg);
206 			iwl_set_bit(trans, CSR_GP_CNTRL,
207 				    BIT(trans->cfg->csr->flag_mac_access_req));
208 			rxq->need_update = true;
209 			return;
210 		}
211 	}
212 
213 	rxq->write_actual = round_down(rxq->write, 8);
214 	if (trans->cfg->device_family >= IWL_DEVICE_FAMILY_22560)
215 		iwl_write32(trans, HBUS_TARG_WRPTR,
216 			    (rxq->write_actual |
217 			     ((FIRST_RX_QUEUE + rxq->id) << 16)));
218 	else if (trans->cfg->mq_rx_supported)
219 		iwl_write32(trans, RFH_Q_FRBDCB_WIDX_TRG(rxq->id),
220 			    rxq->write_actual);
221 	else
222 		iwl_write32(trans, FH_RSCSR_CHNL0_WPTR, rxq->write_actual);
223 }
224 
225 static void iwl_pcie_rxq_check_wrptr(struct iwl_trans *trans)
226 {
227 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
228 	int i;
229 
230 	for (i = 0; i < trans->num_rx_queues; i++) {
231 		struct iwl_rxq *rxq = &trans_pcie->rxq[i];
232 
233 		if (!rxq->need_update)
234 			continue;
235 		spin_lock(&rxq->lock);
236 		iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
237 		rxq->need_update = false;
238 		spin_unlock(&rxq->lock);
239 	}
240 }
241 
242 static void iwl_pcie_restock_bd(struct iwl_trans *trans,
243 				struct iwl_rxq *rxq,
244 				struct iwl_rx_mem_buffer *rxb)
245 {
246 	if (trans->cfg->device_family >= IWL_DEVICE_FAMILY_22560) {
247 		struct iwl_rx_transfer_desc *bd = rxq->bd;
248 
249 		bd[rxq->write].type_n_size =
250 			cpu_to_le32((IWL_RX_TD_TYPE & IWL_RX_TD_TYPE_MSK) |
251 			((IWL_RX_TD_SIZE_2K >> 8) & IWL_RX_TD_SIZE_MSK));
252 		bd[rxq->write].addr = cpu_to_le64(rxb->page_dma);
253 		bd[rxq->write].rbid = cpu_to_le16(rxb->vid);
254 	} else {
255 		__le64 *bd = rxq->bd;
256 
257 		bd[rxq->write] = cpu_to_le64(rxb->page_dma | rxb->vid);
258 	}
259 }
260 
261 /*
262  * iwl_pcie_rxmq_restock - restock implementation for multi-queue rx
263  */
264 static void iwl_pcie_rxmq_restock(struct iwl_trans *trans,
265 				  struct iwl_rxq *rxq)
266 {
267 	struct iwl_rx_mem_buffer *rxb;
268 
269 	/*
270 	 * If the device isn't enabled - no need to try to add buffers...
271 	 * This can happen when we stop the device and still have an interrupt
272 	 * pending. We stop the APM before we sync the interrupts because we
273 	 * have to (see comment there). On the other hand, since the APM is
274 	 * stopped, we cannot access the HW (in particular not prph).
275 	 * So don't try to restock if the APM has been already stopped.
276 	 */
277 	if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
278 		return;
279 
280 	spin_lock(&rxq->lock);
281 	while (rxq->free_count) {
282 		/* Get next free Rx buffer, remove from free list */
283 		rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
284 				       list);
285 		list_del(&rxb->list);
286 		rxb->invalid = false;
287 		/* 12 first bits are expected to be empty */
288 		WARN_ON(rxb->page_dma & DMA_BIT_MASK(12));
289 		/* Point to Rx buffer via next RBD in circular buffer */
290 		iwl_pcie_restock_bd(trans, rxq, rxb);
291 		rxq->write = (rxq->write + 1) & MQ_RX_TABLE_MASK;
292 		rxq->free_count--;
293 	}
294 	spin_unlock(&rxq->lock);
295 
296 	/*
297 	 * If we've added more space for the firmware to place data, tell it.
298 	 * Increment device's write pointer in multiples of 8.
299 	 */
300 	if (rxq->write_actual != (rxq->write & ~0x7)) {
301 		spin_lock(&rxq->lock);
302 		iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
303 		spin_unlock(&rxq->lock);
304 	}
305 }
306 
307 /*
308  * iwl_pcie_rxsq_restock - restock implementation for single queue rx
309  */
310 static void iwl_pcie_rxsq_restock(struct iwl_trans *trans,
311 				  struct iwl_rxq *rxq)
312 {
313 	struct iwl_rx_mem_buffer *rxb;
314 
315 	/*
316 	 * If the device isn't enabled - not need to try to add buffers...
317 	 * This can happen when we stop the device and still have an interrupt
318 	 * pending. We stop the APM before we sync the interrupts because we
319 	 * have to (see comment there). On the other hand, since the APM is
320 	 * stopped, we cannot access the HW (in particular not prph).
321 	 * So don't try to restock if the APM has been already stopped.
322 	 */
323 	if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
324 		return;
325 
326 	spin_lock(&rxq->lock);
327 	while ((iwl_rxq_space(rxq) > 0) && (rxq->free_count)) {
328 		__le32 *bd = (__le32 *)rxq->bd;
329 		/* The overwritten rxb must be a used one */
330 		rxb = rxq->queue[rxq->write];
331 		BUG_ON(rxb && rxb->page);
332 
333 		/* Get next free Rx buffer, remove from free list */
334 		rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
335 				       list);
336 		list_del(&rxb->list);
337 		rxb->invalid = false;
338 
339 		/* Point to Rx buffer via next RBD in circular buffer */
340 		bd[rxq->write] = iwl_pcie_dma_addr2rbd_ptr(rxb->page_dma);
341 		rxq->queue[rxq->write] = rxb;
342 		rxq->write = (rxq->write + 1) & RX_QUEUE_MASK;
343 		rxq->free_count--;
344 	}
345 	spin_unlock(&rxq->lock);
346 
347 	/* If we've added more space for the firmware to place data, tell it.
348 	 * Increment device's write pointer in multiples of 8. */
349 	if (rxq->write_actual != (rxq->write & ~0x7)) {
350 		spin_lock(&rxq->lock);
351 		iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
352 		spin_unlock(&rxq->lock);
353 	}
354 }
355 
356 /*
357  * iwl_pcie_rxq_restock - refill RX queue from pre-allocated pool
358  *
359  * If there are slots in the RX queue that need to be restocked,
360  * and we have free pre-allocated buffers, fill the ranks as much
361  * as we can, pulling from rx_free.
362  *
363  * This moves the 'write' index forward to catch up with 'processed', and
364  * also updates the memory address in the firmware to reference the new
365  * target buffer.
366  */
367 static
368 void iwl_pcie_rxq_restock(struct iwl_trans *trans, struct iwl_rxq *rxq)
369 {
370 	if (trans->cfg->mq_rx_supported)
371 		iwl_pcie_rxmq_restock(trans, rxq);
372 	else
373 		iwl_pcie_rxsq_restock(trans, rxq);
374 }
375 
376 /*
377  * iwl_pcie_rx_alloc_page - allocates and returns a page.
378  *
379  */
380 static struct page *iwl_pcie_rx_alloc_page(struct iwl_trans *trans,
381 					   gfp_t priority)
382 {
383 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
384 	struct page *page;
385 	gfp_t gfp_mask = priority;
386 
387 	if (trans_pcie->rx_page_order > 0)
388 		gfp_mask |= __GFP_COMP;
389 
390 	/* Alloc a new receive buffer */
391 	page = alloc_pages(gfp_mask, trans_pcie->rx_page_order);
392 	if (!page) {
393 		if (net_ratelimit())
394 			IWL_DEBUG_INFO(trans, "alloc_pages failed, order: %d\n",
395 				       trans_pcie->rx_page_order);
396 		/*
397 		 * Issue an error if we don't have enough pre-allocated
398 		  * buffers.
399 `		 */
400 		if (!(gfp_mask & __GFP_NOWARN) && net_ratelimit())
401 			IWL_CRIT(trans,
402 				 "Failed to alloc_pages\n");
403 		return NULL;
404 	}
405 	return page;
406 }
407 
408 /*
409  * iwl_pcie_rxq_alloc_rbs - allocate a page for each used RBD
410  *
411  * A used RBD is an Rx buffer that has been given to the stack. To use it again
412  * a page must be allocated and the RBD must point to the page. This function
413  * doesn't change the HW pointer but handles the list of pages that is used by
414  * iwl_pcie_rxq_restock. The latter function will update the HW to use the newly
415  * allocated buffers.
416  */
417 void iwl_pcie_rxq_alloc_rbs(struct iwl_trans *trans, gfp_t priority,
418 			    struct iwl_rxq *rxq)
419 {
420 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
421 	struct iwl_rx_mem_buffer *rxb;
422 	struct page *page;
423 
424 	while (1) {
425 		spin_lock(&rxq->lock);
426 		if (list_empty(&rxq->rx_used)) {
427 			spin_unlock(&rxq->lock);
428 			return;
429 		}
430 		spin_unlock(&rxq->lock);
431 
432 		/* Alloc a new receive buffer */
433 		page = iwl_pcie_rx_alloc_page(trans, priority);
434 		if (!page)
435 			return;
436 
437 		spin_lock(&rxq->lock);
438 
439 		if (list_empty(&rxq->rx_used)) {
440 			spin_unlock(&rxq->lock);
441 			__free_pages(page, trans_pcie->rx_page_order);
442 			return;
443 		}
444 		rxb = list_first_entry(&rxq->rx_used, struct iwl_rx_mem_buffer,
445 				       list);
446 		list_del(&rxb->list);
447 		spin_unlock(&rxq->lock);
448 
449 		BUG_ON(rxb->page);
450 		rxb->page = page;
451 		/* Get physical address of the RB */
452 		rxb->page_dma =
453 			dma_map_page(trans->dev, page, 0,
454 				     PAGE_SIZE << trans_pcie->rx_page_order,
455 				     DMA_FROM_DEVICE);
456 		if (dma_mapping_error(trans->dev, rxb->page_dma)) {
457 			rxb->page = NULL;
458 			spin_lock(&rxq->lock);
459 			list_add(&rxb->list, &rxq->rx_used);
460 			spin_unlock(&rxq->lock);
461 			__free_pages(page, trans_pcie->rx_page_order);
462 			return;
463 		}
464 
465 		spin_lock(&rxq->lock);
466 
467 		list_add_tail(&rxb->list, &rxq->rx_free);
468 		rxq->free_count++;
469 
470 		spin_unlock(&rxq->lock);
471 	}
472 }
473 
474 void iwl_pcie_free_rbs_pool(struct iwl_trans *trans)
475 {
476 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
477 	int i;
478 
479 	for (i = 0; i < RX_POOL_SIZE; i++) {
480 		if (!trans_pcie->rx_pool[i].page)
481 			continue;
482 		dma_unmap_page(trans->dev, trans_pcie->rx_pool[i].page_dma,
483 			       PAGE_SIZE << trans_pcie->rx_page_order,
484 			       DMA_FROM_DEVICE);
485 		__free_pages(trans_pcie->rx_pool[i].page,
486 			     trans_pcie->rx_page_order);
487 		trans_pcie->rx_pool[i].page = NULL;
488 	}
489 }
490 
491 /*
492  * iwl_pcie_rx_allocator - Allocates pages in the background for RX queues
493  *
494  * Allocates for each received request 8 pages
495  * Called as a scheduled work item.
496  */
497 static void iwl_pcie_rx_allocator(struct iwl_trans *trans)
498 {
499 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
500 	struct iwl_rb_allocator *rba = &trans_pcie->rba;
501 	struct list_head local_empty;
502 	int pending = atomic_xchg(&rba->req_pending, 0);
503 
504 	IWL_DEBUG_RX(trans, "Pending allocation requests = %d\n", pending);
505 
506 	/* If we were scheduled - there is at least one request */
507 	spin_lock(&rba->lock);
508 	/* swap out the rba->rbd_empty to a local list */
509 	list_replace_init(&rba->rbd_empty, &local_empty);
510 	spin_unlock(&rba->lock);
511 
512 	while (pending) {
513 		int i;
514 		LIST_HEAD(local_allocated);
515 		gfp_t gfp_mask = GFP_KERNEL;
516 
517 		/* Do not post a warning if there are only a few requests */
518 		if (pending < RX_PENDING_WATERMARK)
519 			gfp_mask |= __GFP_NOWARN;
520 
521 		for (i = 0; i < RX_CLAIM_REQ_ALLOC;) {
522 			struct iwl_rx_mem_buffer *rxb;
523 			struct page *page;
524 
525 			/* List should never be empty - each reused RBD is
526 			 * returned to the list, and initial pool covers any
527 			 * possible gap between the time the page is allocated
528 			 * to the time the RBD is added.
529 			 */
530 			BUG_ON(list_empty(&local_empty));
531 			/* Get the first rxb from the rbd list */
532 			rxb = list_first_entry(&local_empty,
533 					       struct iwl_rx_mem_buffer, list);
534 			BUG_ON(rxb->page);
535 
536 			/* Alloc a new receive buffer */
537 			page = iwl_pcie_rx_alloc_page(trans, gfp_mask);
538 			if (!page)
539 				continue;
540 			rxb->page = page;
541 
542 			/* Get physical address of the RB */
543 			rxb->page_dma = dma_map_page(trans->dev, page, 0,
544 					PAGE_SIZE << trans_pcie->rx_page_order,
545 					DMA_FROM_DEVICE);
546 			if (dma_mapping_error(trans->dev, rxb->page_dma)) {
547 				rxb->page = NULL;
548 				__free_pages(page, trans_pcie->rx_page_order);
549 				continue;
550 			}
551 
552 			/* move the allocated entry to the out list */
553 			list_move(&rxb->list, &local_allocated);
554 			i++;
555 		}
556 
557 		pending--;
558 		if (!pending) {
559 			pending = atomic_xchg(&rba->req_pending, 0);
560 			IWL_DEBUG_RX(trans,
561 				     "Pending allocation requests = %d\n",
562 				     pending);
563 		}
564 
565 		spin_lock(&rba->lock);
566 		/* add the allocated rbds to the allocator allocated list */
567 		list_splice_tail(&local_allocated, &rba->rbd_allocated);
568 		/* get more empty RBDs for current pending requests */
569 		list_splice_tail_init(&rba->rbd_empty, &local_empty);
570 		spin_unlock(&rba->lock);
571 
572 		atomic_inc(&rba->req_ready);
573 	}
574 
575 	spin_lock(&rba->lock);
576 	/* return unused rbds to the allocator empty list */
577 	list_splice_tail(&local_empty, &rba->rbd_empty);
578 	spin_unlock(&rba->lock);
579 }
580 
581 /*
582  * iwl_pcie_rx_allocator_get - returns the pre-allocated pages
583 .*
584 .* Called by queue when the queue posted allocation request and
585  * has freed 8 RBDs in order to restock itself.
586  * This function directly moves the allocated RBs to the queue's ownership
587  * and updates the relevant counters.
588  */
589 static void iwl_pcie_rx_allocator_get(struct iwl_trans *trans,
590 				      struct iwl_rxq *rxq)
591 {
592 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
593 	struct iwl_rb_allocator *rba = &trans_pcie->rba;
594 	int i;
595 
596 	lockdep_assert_held(&rxq->lock);
597 
598 	/*
599 	 * atomic_dec_if_positive returns req_ready - 1 for any scenario.
600 	 * If req_ready is 0 atomic_dec_if_positive will return -1 and this
601 	 * function will return early, as there are no ready requests.
602 	 * atomic_dec_if_positive will perofrm the *actual* decrement only if
603 	 * req_ready > 0, i.e. - there are ready requests and the function
604 	 * hands one request to the caller.
605 	 */
606 	if (atomic_dec_if_positive(&rba->req_ready) < 0)
607 		return;
608 
609 	spin_lock(&rba->lock);
610 	for (i = 0; i < RX_CLAIM_REQ_ALLOC; i++) {
611 		/* Get next free Rx buffer, remove it from free list */
612 		struct iwl_rx_mem_buffer *rxb =
613 			list_first_entry(&rba->rbd_allocated,
614 					 struct iwl_rx_mem_buffer, list);
615 
616 		list_move(&rxb->list, &rxq->rx_free);
617 	}
618 	spin_unlock(&rba->lock);
619 
620 	rxq->used_count -= RX_CLAIM_REQ_ALLOC;
621 	rxq->free_count += RX_CLAIM_REQ_ALLOC;
622 }
623 
624 void iwl_pcie_rx_allocator_work(struct work_struct *data)
625 {
626 	struct iwl_rb_allocator *rba_p =
627 		container_of(data, struct iwl_rb_allocator, rx_alloc);
628 	struct iwl_trans_pcie *trans_pcie =
629 		container_of(rba_p, struct iwl_trans_pcie, rba);
630 
631 	iwl_pcie_rx_allocator(trans_pcie->trans);
632 }
633 
634 static int iwl_pcie_free_bd_size(struct iwl_trans *trans, bool use_rx_td)
635 {
636 	struct iwl_rx_transfer_desc *rx_td;
637 
638 	if (use_rx_td)
639 		return sizeof(*rx_td);
640 	else
641 		return trans->cfg->mq_rx_supported ? sizeof(__le64) :
642 			sizeof(__le32);
643 }
644 
645 static void iwl_pcie_free_rxq_dma(struct iwl_trans *trans,
646 				  struct iwl_rxq *rxq)
647 {
648 	struct device *dev = trans->dev;
649 	bool use_rx_td = (trans->cfg->device_family >=
650 			  IWL_DEVICE_FAMILY_22560);
651 	int free_size = iwl_pcie_free_bd_size(trans, use_rx_td);
652 
653 	if (rxq->bd)
654 		dma_free_coherent(trans->dev,
655 				  free_size * rxq->queue_size,
656 				  rxq->bd, rxq->bd_dma);
657 	rxq->bd_dma = 0;
658 	rxq->bd = NULL;
659 
660 	if (rxq->rb_stts)
661 		dma_free_coherent(trans->dev,
662 				  use_rx_td ? sizeof(__le16) :
663 				  sizeof(struct iwl_rb_status),
664 				  rxq->rb_stts, rxq->rb_stts_dma);
665 	rxq->rb_stts_dma = 0;
666 	rxq->rb_stts = NULL;
667 
668 	if (rxq->used_bd)
669 		dma_free_coherent(trans->dev,
670 				  (use_rx_td ? sizeof(*rxq->cd) :
671 				   sizeof(__le32)) * rxq->queue_size,
672 				  rxq->used_bd, rxq->used_bd_dma);
673 	rxq->used_bd_dma = 0;
674 	rxq->used_bd = NULL;
675 
676 	if (trans->cfg->device_family < IWL_DEVICE_FAMILY_22560)
677 		return;
678 
679 	if (rxq->tr_tail)
680 		dma_free_coherent(dev, sizeof(__le16),
681 				  rxq->tr_tail, rxq->tr_tail_dma);
682 	rxq->tr_tail_dma = 0;
683 	rxq->tr_tail = NULL;
684 
685 	if (rxq->cr_tail)
686 		dma_free_coherent(dev, sizeof(__le16),
687 				  rxq->cr_tail, rxq->cr_tail_dma);
688 	rxq->cr_tail_dma = 0;
689 	rxq->cr_tail = NULL;
690 }
691 
692 static int iwl_pcie_alloc_rxq_dma(struct iwl_trans *trans,
693 				  struct iwl_rxq *rxq)
694 {
695 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
696 	struct device *dev = trans->dev;
697 	int i;
698 	int free_size;
699 	bool use_rx_td = (trans->cfg->device_family >=
700 			  IWL_DEVICE_FAMILY_22560);
701 
702 	spin_lock_init(&rxq->lock);
703 	if (trans->cfg->mq_rx_supported)
704 		rxq->queue_size = MQ_RX_TABLE_SIZE;
705 	else
706 		rxq->queue_size = RX_QUEUE_SIZE;
707 
708 	free_size = iwl_pcie_free_bd_size(trans, use_rx_td);
709 
710 	/*
711 	 * Allocate the circular buffer of Read Buffer Descriptors
712 	 * (RBDs)
713 	 */
714 	rxq->bd = dma_zalloc_coherent(dev,
715 				      free_size * rxq->queue_size,
716 				      &rxq->bd_dma, GFP_KERNEL);
717 	if (!rxq->bd)
718 		goto err;
719 
720 	if (trans->cfg->mq_rx_supported) {
721 		rxq->used_bd = dma_zalloc_coherent(dev,
722 						   (use_rx_td ?
723 						   sizeof(*rxq->cd) :
724 						   sizeof(__le32)) *
725 						   rxq->queue_size,
726 						   &rxq->used_bd_dma,
727 						   GFP_KERNEL);
728 		if (!rxq->used_bd)
729 			goto err;
730 	}
731 
732 	/* Allocate the driver's pointer to receive buffer status */
733 	rxq->rb_stts = dma_zalloc_coherent(dev, use_rx_td ?
734 					   sizeof(__le16) :
735 					   sizeof(struct iwl_rb_status),
736 					   &rxq->rb_stts_dma,
737 					   GFP_KERNEL);
738 	if (!rxq->rb_stts)
739 		goto err;
740 
741 	if (!use_rx_td)
742 		return 0;
743 
744 	/* Allocate the driver's pointer to TR tail */
745 	rxq->tr_tail = dma_zalloc_coherent(dev, sizeof(__le16),
746 					   &rxq->tr_tail_dma,
747 					   GFP_KERNEL);
748 	if (!rxq->tr_tail)
749 		goto err;
750 
751 	/* Allocate the driver's pointer to CR tail */
752 	rxq->cr_tail = dma_zalloc_coherent(dev, sizeof(__le16),
753 					   &rxq->cr_tail_dma,
754 					   GFP_KERNEL);
755 	if (!rxq->cr_tail)
756 		goto err;
757 	/*
758 	 * W/A 22560 device step Z0 must be non zero bug
759 	 * TODO: remove this when stop supporting Z0
760 	 */
761 	*rxq->cr_tail = cpu_to_le16(500);
762 
763 	return 0;
764 
765 err:
766 	for (i = 0; i < trans->num_rx_queues; i++) {
767 		struct iwl_rxq *rxq = &trans_pcie->rxq[i];
768 
769 		iwl_pcie_free_rxq_dma(trans, rxq);
770 	}
771 	kfree(trans_pcie->rxq);
772 
773 	return -ENOMEM;
774 }
775 
776 int iwl_pcie_rx_alloc(struct iwl_trans *trans)
777 {
778 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
779 	struct iwl_rb_allocator *rba = &trans_pcie->rba;
780 	int i, ret;
781 
782 	if (WARN_ON(trans_pcie->rxq))
783 		return -EINVAL;
784 
785 	trans_pcie->rxq = kcalloc(trans->num_rx_queues, sizeof(struct iwl_rxq),
786 				  GFP_KERNEL);
787 	if (!trans_pcie->rxq)
788 		return -EINVAL;
789 
790 	spin_lock_init(&rba->lock);
791 
792 	for (i = 0; i < trans->num_rx_queues; i++) {
793 		struct iwl_rxq *rxq = &trans_pcie->rxq[i];
794 
795 		ret = iwl_pcie_alloc_rxq_dma(trans, rxq);
796 		if (ret)
797 			return ret;
798 	}
799 	return 0;
800 }
801 
802 static void iwl_pcie_rx_hw_init(struct iwl_trans *trans, struct iwl_rxq *rxq)
803 {
804 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
805 	u32 rb_size;
806 	unsigned long flags;
807 	const u32 rfdnlog = RX_QUEUE_SIZE_LOG; /* 256 RBDs */
808 
809 	switch (trans_pcie->rx_buf_size) {
810 	case IWL_AMSDU_4K:
811 		rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
812 		break;
813 	case IWL_AMSDU_8K:
814 		rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_8K;
815 		break;
816 	case IWL_AMSDU_12K:
817 		rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_12K;
818 		break;
819 	default:
820 		WARN_ON(1);
821 		rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
822 	}
823 
824 	if (!iwl_trans_grab_nic_access(trans, &flags))
825 		return;
826 
827 	/* Stop Rx DMA */
828 	iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
829 	/* reset and flush pointers */
830 	iwl_write32(trans, FH_MEM_RCSR_CHNL0_RBDCB_WPTR, 0);
831 	iwl_write32(trans, FH_MEM_RCSR_CHNL0_FLUSH_RB_REQ, 0);
832 	iwl_write32(trans, FH_RSCSR_CHNL0_RDPTR, 0);
833 
834 	/* Reset driver's Rx queue write index */
835 	iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0);
836 
837 	/* Tell device where to find RBD circular buffer in DRAM */
838 	iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_BASE_REG,
839 		    (u32)(rxq->bd_dma >> 8));
840 
841 	/* Tell device where in DRAM to update its Rx status */
842 	iwl_write32(trans, FH_RSCSR_CHNL0_STTS_WPTR_REG,
843 		    rxq->rb_stts_dma >> 4);
844 
845 	/* Enable Rx DMA
846 	 * FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY is set because of HW bug in
847 	 *      the credit mechanism in 5000 HW RX FIFO
848 	 * Direct rx interrupts to hosts
849 	 * Rx buffer size 4 or 8k or 12k
850 	 * RB timeout 0x10
851 	 * 256 RBDs
852 	 */
853 	iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG,
854 		    FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL |
855 		    FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY |
856 		    FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL |
857 		    rb_size |
858 		    (RX_RB_TIMEOUT << FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS) |
859 		    (rfdnlog << FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS));
860 
861 	iwl_trans_release_nic_access(trans, &flags);
862 
863 	/* Set interrupt coalescing timer to default (2048 usecs) */
864 	iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
865 
866 	/* W/A for interrupt coalescing bug in 7260 and 3160 */
867 	if (trans->cfg->host_interrupt_operation_mode)
868 		iwl_set_bit(trans, CSR_INT_COALESCING, IWL_HOST_INT_OPER_MODE);
869 }
870 
871 void iwl_pcie_enable_rx_wake(struct iwl_trans *trans, bool enable)
872 {
873 	if (trans->cfg->device_family != IWL_DEVICE_FAMILY_9000)
874 		return;
875 
876 	if (CSR_HW_REV_STEP(trans->hw_rev) != SILICON_A_STEP)
877 		return;
878 
879 	if (!trans->cfg->integrated)
880 		return;
881 
882 	/*
883 	 * Turn on the chicken-bits that cause MAC wakeup for RX-related
884 	 * values.
885 	 * This costs some power, but needed for W/A 9000 integrated A-step
886 	 * bug where shadow registers are not in the retention list and their
887 	 * value is lost when NIC powers down
888 	 */
889 	iwl_set_bit(trans, CSR_MAC_SHADOW_REG_CTRL,
890 		    CSR_MAC_SHADOW_REG_CTRL_RX_WAKE);
891 	iwl_set_bit(trans, CSR_MAC_SHADOW_REG_CTL2,
892 		    CSR_MAC_SHADOW_REG_CTL2_RX_WAKE);
893 }
894 
895 static void iwl_pcie_rx_mq_hw_init(struct iwl_trans *trans)
896 {
897 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
898 	u32 rb_size, enabled = 0;
899 	unsigned long flags;
900 	int i;
901 
902 	switch (trans_pcie->rx_buf_size) {
903 	case IWL_AMSDU_2K:
904 		rb_size = RFH_RXF_DMA_RB_SIZE_2K;
905 		break;
906 	case IWL_AMSDU_4K:
907 		rb_size = RFH_RXF_DMA_RB_SIZE_4K;
908 		break;
909 	case IWL_AMSDU_8K:
910 		rb_size = RFH_RXF_DMA_RB_SIZE_8K;
911 		break;
912 	case IWL_AMSDU_12K:
913 		rb_size = RFH_RXF_DMA_RB_SIZE_12K;
914 		break;
915 	default:
916 		WARN_ON(1);
917 		rb_size = RFH_RXF_DMA_RB_SIZE_4K;
918 	}
919 
920 	if (!iwl_trans_grab_nic_access(trans, &flags))
921 		return;
922 
923 	/* Stop Rx DMA */
924 	iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG, 0);
925 	/* disable free amd used rx queue operation */
926 	iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, 0);
927 
928 	for (i = 0; i < trans->num_rx_queues; i++) {
929 		/* Tell device where to find RBD free table in DRAM */
930 		iwl_write_prph64_no_grab(trans,
931 					 RFH_Q_FRBDCB_BA_LSB(i),
932 					 trans_pcie->rxq[i].bd_dma);
933 		/* Tell device where to find RBD used table in DRAM */
934 		iwl_write_prph64_no_grab(trans,
935 					 RFH_Q_URBDCB_BA_LSB(i),
936 					 trans_pcie->rxq[i].used_bd_dma);
937 		/* Tell device where in DRAM to update its Rx status */
938 		iwl_write_prph64_no_grab(trans,
939 					 RFH_Q_URBD_STTS_WPTR_LSB(i),
940 					 trans_pcie->rxq[i].rb_stts_dma);
941 		/* Reset device indice tables */
942 		iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_WIDX(i), 0);
943 		iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_RIDX(i), 0);
944 		iwl_write_prph_no_grab(trans, RFH_Q_URBDCB_WIDX(i), 0);
945 
946 		enabled |= BIT(i) | BIT(i + 16);
947 	}
948 
949 	/*
950 	 * Enable Rx DMA
951 	 * Rx buffer size 4 or 8k or 12k
952 	 * Min RB size 4 or 8
953 	 * Drop frames that exceed RB size
954 	 * 512 RBDs
955 	 */
956 	iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG,
957 			       RFH_DMA_EN_ENABLE_VAL | rb_size |
958 			       RFH_RXF_DMA_MIN_RB_4_8 |
959 			       RFH_RXF_DMA_DROP_TOO_LARGE_MASK |
960 			       RFH_RXF_DMA_RBDCB_SIZE_512);
961 
962 	/*
963 	 * Activate DMA snooping.
964 	 * Set RX DMA chunk size to 64B for IOSF and 128B for PCIe
965 	 * Default queue is 0
966 	 */
967 	iwl_write_prph_no_grab(trans, RFH_GEN_CFG,
968 			       RFH_GEN_CFG_RFH_DMA_SNOOP |
969 			       RFH_GEN_CFG_VAL(DEFAULT_RXQ_NUM, 0) |
970 			       RFH_GEN_CFG_SERVICE_DMA_SNOOP |
971 			       RFH_GEN_CFG_VAL(RB_CHUNK_SIZE,
972 					       trans->cfg->integrated ?
973 					       RFH_GEN_CFG_RB_CHUNK_SIZE_64 :
974 					       RFH_GEN_CFG_RB_CHUNK_SIZE_128));
975 	/* Enable the relevant rx queues */
976 	iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, enabled);
977 
978 	iwl_trans_release_nic_access(trans, &flags);
979 
980 	/* Set interrupt coalescing timer to default (2048 usecs) */
981 	iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
982 
983 	iwl_pcie_enable_rx_wake(trans, true);
984 }
985 
986 void iwl_pcie_rx_init_rxb_lists(struct iwl_rxq *rxq)
987 {
988 	lockdep_assert_held(&rxq->lock);
989 
990 	INIT_LIST_HEAD(&rxq->rx_free);
991 	INIT_LIST_HEAD(&rxq->rx_used);
992 	rxq->free_count = 0;
993 	rxq->used_count = 0;
994 }
995 
996 int iwl_pcie_dummy_napi_poll(struct napi_struct *napi, int budget)
997 {
998 	WARN_ON(1);
999 	return 0;
1000 }
1001 
1002 int _iwl_pcie_rx_init(struct iwl_trans *trans)
1003 {
1004 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1005 	struct iwl_rxq *def_rxq;
1006 	struct iwl_rb_allocator *rba = &trans_pcie->rba;
1007 	int i, err, queue_size, allocator_pool_size, num_alloc;
1008 
1009 	if (!trans_pcie->rxq) {
1010 		err = iwl_pcie_rx_alloc(trans);
1011 		if (err)
1012 			return err;
1013 	}
1014 	def_rxq = trans_pcie->rxq;
1015 
1016 	cancel_work_sync(&rba->rx_alloc);
1017 
1018 	spin_lock(&rba->lock);
1019 	atomic_set(&rba->req_pending, 0);
1020 	atomic_set(&rba->req_ready, 0);
1021 	INIT_LIST_HEAD(&rba->rbd_allocated);
1022 	INIT_LIST_HEAD(&rba->rbd_empty);
1023 	spin_unlock(&rba->lock);
1024 
1025 	/* free all first - we might be reconfigured for a different size */
1026 	iwl_pcie_free_rbs_pool(trans);
1027 
1028 	for (i = 0; i < RX_QUEUE_SIZE; i++)
1029 		def_rxq->queue[i] = NULL;
1030 
1031 	for (i = 0; i < trans->num_rx_queues; i++) {
1032 		struct iwl_rxq *rxq = &trans_pcie->rxq[i];
1033 
1034 		rxq->id = i;
1035 
1036 		spin_lock(&rxq->lock);
1037 		/*
1038 		 * Set read write pointer to reflect that we have processed
1039 		 * and used all buffers, but have not restocked the Rx queue
1040 		 * with fresh buffers
1041 		 */
1042 		rxq->read = 0;
1043 		rxq->write = 0;
1044 		rxq->write_actual = 0;
1045 		memset(rxq->rb_stts, 0,
1046 		       (trans->cfg->device_family >= IWL_DEVICE_FAMILY_22560) ?
1047 		       sizeof(__le16) : sizeof(struct iwl_rb_status));
1048 
1049 		iwl_pcie_rx_init_rxb_lists(rxq);
1050 
1051 		if (!rxq->napi.poll)
1052 			netif_napi_add(&trans_pcie->napi_dev, &rxq->napi,
1053 				       iwl_pcie_dummy_napi_poll, 64);
1054 
1055 		spin_unlock(&rxq->lock);
1056 	}
1057 
1058 	/* move the pool to the default queue and allocator ownerships */
1059 	queue_size = trans->cfg->mq_rx_supported ?
1060 		     MQ_RX_NUM_RBDS : RX_QUEUE_SIZE;
1061 	allocator_pool_size = trans->num_rx_queues *
1062 		(RX_CLAIM_REQ_ALLOC - RX_POST_REQ_ALLOC);
1063 	num_alloc = queue_size + allocator_pool_size;
1064 	BUILD_BUG_ON(ARRAY_SIZE(trans_pcie->global_table) !=
1065 		     ARRAY_SIZE(trans_pcie->rx_pool));
1066 	for (i = 0; i < num_alloc; i++) {
1067 		struct iwl_rx_mem_buffer *rxb = &trans_pcie->rx_pool[i];
1068 
1069 		if (i < allocator_pool_size)
1070 			list_add(&rxb->list, &rba->rbd_empty);
1071 		else
1072 			list_add(&rxb->list, &def_rxq->rx_used);
1073 		trans_pcie->global_table[i] = rxb;
1074 		rxb->vid = (u16)(i + 1);
1075 		rxb->invalid = true;
1076 	}
1077 
1078 	iwl_pcie_rxq_alloc_rbs(trans, GFP_KERNEL, def_rxq);
1079 
1080 	return 0;
1081 }
1082 
1083 int iwl_pcie_rx_init(struct iwl_trans *trans)
1084 {
1085 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1086 	int ret = _iwl_pcie_rx_init(trans);
1087 
1088 	if (ret)
1089 		return ret;
1090 
1091 	if (trans->cfg->mq_rx_supported)
1092 		iwl_pcie_rx_mq_hw_init(trans);
1093 	else
1094 		iwl_pcie_rx_hw_init(trans, trans_pcie->rxq);
1095 
1096 	iwl_pcie_rxq_restock(trans, trans_pcie->rxq);
1097 
1098 	spin_lock(&trans_pcie->rxq->lock);
1099 	iwl_pcie_rxq_inc_wr_ptr(trans, trans_pcie->rxq);
1100 	spin_unlock(&trans_pcie->rxq->lock);
1101 
1102 	return 0;
1103 }
1104 
1105 int iwl_pcie_gen2_rx_init(struct iwl_trans *trans)
1106 {
1107 	/* Set interrupt coalescing timer to default (2048 usecs) */
1108 	iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
1109 
1110 	/*
1111 	 * We don't configure the RFH.
1112 	 * Restock will be done at alive, after firmware configured the RFH.
1113 	 */
1114 	return _iwl_pcie_rx_init(trans);
1115 }
1116 
1117 void iwl_pcie_rx_free(struct iwl_trans *trans)
1118 {
1119 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1120 	struct iwl_rb_allocator *rba = &trans_pcie->rba;
1121 	int i;
1122 
1123 	/*
1124 	 * if rxq is NULL, it means that nothing has been allocated,
1125 	 * exit now
1126 	 */
1127 	if (!trans_pcie->rxq) {
1128 		IWL_DEBUG_INFO(trans, "Free NULL rx context\n");
1129 		return;
1130 	}
1131 
1132 	cancel_work_sync(&rba->rx_alloc);
1133 
1134 	iwl_pcie_free_rbs_pool(trans);
1135 
1136 	for (i = 0; i < trans->num_rx_queues; i++) {
1137 		struct iwl_rxq *rxq = &trans_pcie->rxq[i];
1138 
1139 		iwl_pcie_free_rxq_dma(trans, rxq);
1140 
1141 		if (rxq->napi.poll)
1142 			netif_napi_del(&rxq->napi);
1143 	}
1144 	kfree(trans_pcie->rxq);
1145 }
1146 
1147 static void iwl_pcie_rx_move_to_allocator(struct iwl_rxq *rxq,
1148 					  struct iwl_rb_allocator *rba)
1149 {
1150 	spin_lock(&rba->lock);
1151 	list_splice_tail_init(&rxq->rx_used, &rba->rbd_empty);
1152 	spin_unlock(&rba->lock);
1153 }
1154 
1155 /*
1156  * iwl_pcie_rx_reuse_rbd - Recycle used RBDs
1157  *
1158  * Called when a RBD can be reused. The RBD is transferred to the allocator.
1159  * When there are 2 empty RBDs - a request for allocation is posted
1160  */
1161 static void iwl_pcie_rx_reuse_rbd(struct iwl_trans *trans,
1162 				  struct iwl_rx_mem_buffer *rxb,
1163 				  struct iwl_rxq *rxq, bool emergency)
1164 {
1165 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1166 	struct iwl_rb_allocator *rba = &trans_pcie->rba;
1167 
1168 	/* Move the RBD to the used list, will be moved to allocator in batches
1169 	 * before claiming or posting a request*/
1170 	list_add_tail(&rxb->list, &rxq->rx_used);
1171 
1172 	if (unlikely(emergency))
1173 		return;
1174 
1175 	/* Count the allocator owned RBDs */
1176 	rxq->used_count++;
1177 
1178 	/* If we have RX_POST_REQ_ALLOC new released rx buffers -
1179 	 * issue a request for allocator. Modulo RX_CLAIM_REQ_ALLOC is
1180 	 * used for the case we failed to claim RX_CLAIM_REQ_ALLOC,
1181 	 * after but we still need to post another request.
1182 	 */
1183 	if ((rxq->used_count % RX_CLAIM_REQ_ALLOC) == RX_POST_REQ_ALLOC) {
1184 		/* Move the 2 RBDs to the allocator ownership.
1185 		 Allocator has another 6 from pool for the request completion*/
1186 		iwl_pcie_rx_move_to_allocator(rxq, rba);
1187 
1188 		atomic_inc(&rba->req_pending);
1189 		queue_work(rba->alloc_wq, &rba->rx_alloc);
1190 	}
1191 }
1192 
1193 static void iwl_pcie_rx_handle_rb(struct iwl_trans *trans,
1194 				struct iwl_rxq *rxq,
1195 				struct iwl_rx_mem_buffer *rxb,
1196 				bool emergency,
1197 				int i)
1198 {
1199 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1200 	struct iwl_txq *txq = trans_pcie->txq[trans_pcie->cmd_queue];
1201 	bool page_stolen = false;
1202 	int max_len = PAGE_SIZE << trans_pcie->rx_page_order;
1203 	u32 offset = 0;
1204 
1205 	if (WARN_ON(!rxb))
1206 		return;
1207 
1208 	dma_unmap_page(trans->dev, rxb->page_dma, max_len, DMA_FROM_DEVICE);
1209 
1210 	while (offset + sizeof(u32) + sizeof(struct iwl_cmd_header) < max_len) {
1211 		struct iwl_rx_packet *pkt;
1212 		u16 sequence;
1213 		bool reclaim;
1214 		int index, cmd_index, len;
1215 		struct iwl_rx_cmd_buffer rxcb = {
1216 			._offset = offset,
1217 			._rx_page_order = trans_pcie->rx_page_order,
1218 			._page = rxb->page,
1219 			._page_stolen = false,
1220 			.truesize = max_len,
1221 		};
1222 
1223 		if (trans->cfg->device_family >= IWL_DEVICE_FAMILY_22560)
1224 			rxcb.status = rxq->cd[i].status;
1225 
1226 		pkt = rxb_addr(&rxcb);
1227 
1228 		if (pkt->len_n_flags == cpu_to_le32(FH_RSCSR_FRAME_INVALID)) {
1229 			IWL_DEBUG_RX(trans,
1230 				     "Q %d: RB end marker at offset %d\n",
1231 				     rxq->id, offset);
1232 			break;
1233 		}
1234 
1235 		WARN((le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_RXQ_MASK) >>
1236 			FH_RSCSR_RXQ_POS != rxq->id,
1237 		     "frame on invalid queue - is on %d and indicates %d\n",
1238 		     rxq->id,
1239 		     (le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_RXQ_MASK) >>
1240 			FH_RSCSR_RXQ_POS);
1241 
1242 		IWL_DEBUG_RX(trans,
1243 			     "Q %d: cmd at offset %d: %s (%.2x.%2x, seq 0x%x)\n",
1244 			     rxq->id, offset,
1245 			     iwl_get_cmd_string(trans,
1246 						iwl_cmd_id(pkt->hdr.cmd,
1247 							   pkt->hdr.group_id,
1248 							   0)),
1249 			     pkt->hdr.group_id, pkt->hdr.cmd,
1250 			     le16_to_cpu(pkt->hdr.sequence));
1251 
1252 		len = iwl_rx_packet_len(pkt);
1253 		len += sizeof(u32); /* account for status word */
1254 		trace_iwlwifi_dev_rx(trans->dev, trans, pkt, len);
1255 		trace_iwlwifi_dev_rx_data(trans->dev, trans, pkt, len);
1256 
1257 		/* Reclaim a command buffer only if this packet is a response
1258 		 *   to a (driver-originated) command.
1259 		 * If the packet (e.g. Rx frame) originated from uCode,
1260 		 *   there is no command buffer to reclaim.
1261 		 * Ucode should set SEQ_RX_FRAME bit if ucode-originated,
1262 		 *   but apparently a few don't get set; catch them here. */
1263 		reclaim = !(pkt->hdr.sequence & SEQ_RX_FRAME);
1264 		if (reclaim && !pkt->hdr.group_id) {
1265 			int i;
1266 
1267 			for (i = 0; i < trans_pcie->n_no_reclaim_cmds; i++) {
1268 				if (trans_pcie->no_reclaim_cmds[i] ==
1269 							pkt->hdr.cmd) {
1270 					reclaim = false;
1271 					break;
1272 				}
1273 			}
1274 		}
1275 
1276 		sequence = le16_to_cpu(pkt->hdr.sequence);
1277 		index = SEQ_TO_INDEX(sequence);
1278 		cmd_index = iwl_pcie_get_cmd_index(txq, index);
1279 
1280 		if (rxq->id == trans_pcie->def_rx_queue)
1281 			iwl_op_mode_rx(trans->op_mode, &rxq->napi,
1282 				       &rxcb);
1283 		else
1284 			iwl_op_mode_rx_rss(trans->op_mode, &rxq->napi,
1285 					   &rxcb, rxq->id);
1286 
1287 		if (reclaim) {
1288 			kzfree(txq->entries[cmd_index].free_buf);
1289 			txq->entries[cmd_index].free_buf = NULL;
1290 		}
1291 
1292 		/*
1293 		 * After here, we should always check rxcb._page_stolen,
1294 		 * if it is true then one of the handlers took the page.
1295 		 */
1296 
1297 		if (reclaim) {
1298 			/* Invoke any callbacks, transfer the buffer to caller,
1299 			 * and fire off the (possibly) blocking
1300 			 * iwl_trans_send_cmd()
1301 			 * as we reclaim the driver command queue */
1302 			if (!rxcb._page_stolen)
1303 				iwl_pcie_hcmd_complete(trans, &rxcb);
1304 			else
1305 				IWL_WARN(trans, "Claim null rxb?\n");
1306 		}
1307 
1308 		page_stolen |= rxcb._page_stolen;
1309 		if (trans->cfg->device_family >= IWL_DEVICE_FAMILY_22560)
1310 			break;
1311 		offset += ALIGN(len, FH_RSCSR_FRAME_ALIGN);
1312 	}
1313 
1314 	/* page was stolen from us -- free our reference */
1315 	if (page_stolen) {
1316 		__free_pages(rxb->page, trans_pcie->rx_page_order);
1317 		rxb->page = NULL;
1318 	}
1319 
1320 	/* Reuse the page if possible. For notification packets and
1321 	 * SKBs that fail to Rx correctly, add them back into the
1322 	 * rx_free list for reuse later. */
1323 	if (rxb->page != NULL) {
1324 		rxb->page_dma =
1325 			dma_map_page(trans->dev, rxb->page, 0,
1326 				     PAGE_SIZE << trans_pcie->rx_page_order,
1327 				     DMA_FROM_DEVICE);
1328 		if (dma_mapping_error(trans->dev, rxb->page_dma)) {
1329 			/*
1330 			 * free the page(s) as well to not break
1331 			 * the invariant that the items on the used
1332 			 * list have no page(s)
1333 			 */
1334 			__free_pages(rxb->page, trans_pcie->rx_page_order);
1335 			rxb->page = NULL;
1336 			iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency);
1337 		} else {
1338 			list_add_tail(&rxb->list, &rxq->rx_free);
1339 			rxq->free_count++;
1340 		}
1341 	} else
1342 		iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency);
1343 }
1344 
1345 static struct iwl_rx_mem_buffer *iwl_pcie_get_rxb(struct iwl_trans *trans,
1346 						  struct iwl_rxq *rxq, int i)
1347 {
1348 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1349 	struct iwl_rx_mem_buffer *rxb;
1350 	u16 vid;
1351 
1352 	if (!trans->cfg->mq_rx_supported) {
1353 		rxb = rxq->queue[i];
1354 		rxq->queue[i] = NULL;
1355 		return rxb;
1356 	}
1357 
1358 	/* used_bd is a 32/16 bit but only 12 are used to retrieve the vid */
1359 	if (trans->cfg->device_family >= IWL_DEVICE_FAMILY_22560)
1360 		vid = le16_to_cpu(rxq->cd[i].rbid) & 0x0FFF;
1361 	else
1362 		vid = le32_to_cpu(rxq->bd_32[i]) & 0x0FFF;
1363 
1364 	if (!vid || vid > ARRAY_SIZE(trans_pcie->global_table))
1365 		goto out_err;
1366 
1367 	rxb = trans_pcie->global_table[vid - 1];
1368 	if (rxb->invalid)
1369 		goto out_err;
1370 
1371 	if (trans->cfg->device_family >= IWL_DEVICE_FAMILY_22560)
1372 		rxb->size = le32_to_cpu(rxq->cd[i].size) & IWL_RX_CD_SIZE;
1373 
1374 	rxb->invalid = true;
1375 
1376 	return rxb;
1377 
1378 out_err:
1379 	WARN(1, "Invalid rxb from HW %u\n", (u32)vid);
1380 	iwl_force_nmi(trans);
1381 	return NULL;
1382 }
1383 
1384 /*
1385  * iwl_pcie_rx_handle - Main entry function for receiving responses from fw
1386  */
1387 static void iwl_pcie_rx_handle(struct iwl_trans *trans, int queue)
1388 {
1389 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1390 	struct iwl_rxq *rxq = &trans_pcie->rxq[queue];
1391 	u32 r, i, count = 0;
1392 	bool emergency = false;
1393 
1394 restart:
1395 	spin_lock(&rxq->lock);
1396 	/* uCode's read index (stored in shared DRAM) indicates the last Rx
1397 	 * buffer that the driver may process (last buffer filled by ucode). */
1398 	r = le16_to_cpu(iwl_get_closed_rb_stts(trans, rxq)) & 0x0FFF;
1399 	i = rxq->read;
1400 
1401 	/* W/A 9000 device step A0 wrap-around bug */
1402 	r &= (rxq->queue_size - 1);
1403 
1404 	/* Rx interrupt, but nothing sent from uCode */
1405 	if (i == r)
1406 		IWL_DEBUG_RX(trans, "Q %d: HW = SW = %d\n", rxq->id, r);
1407 
1408 	while (i != r) {
1409 		struct iwl_rb_allocator *rba = &trans_pcie->rba;
1410 		struct iwl_rx_mem_buffer *rxb;
1411 		/* number of RBDs still waiting for page allocation */
1412 		u32 rb_pending_alloc =
1413 			atomic_read(&trans_pcie->rba.req_pending) *
1414 			RX_CLAIM_REQ_ALLOC;
1415 
1416 		if (unlikely(rb_pending_alloc >= rxq->queue_size / 2 &&
1417 			     !emergency)) {
1418 			iwl_pcie_rx_move_to_allocator(rxq, rba);
1419 			emergency = true;
1420 		}
1421 
1422 		rxb = iwl_pcie_get_rxb(trans, rxq, i);
1423 		if (!rxb)
1424 			goto out;
1425 
1426 		IWL_DEBUG_RX(trans, "Q %d: HW = %d, SW = %d\n", rxq->id, r, i);
1427 		iwl_pcie_rx_handle_rb(trans, rxq, rxb, emergency, i);
1428 
1429 		i = (i + 1) & (rxq->queue_size - 1);
1430 
1431 		/*
1432 		 * If we have RX_CLAIM_REQ_ALLOC released rx buffers -
1433 		 * try to claim the pre-allocated buffers from the allocator.
1434 		 * If not ready - will try to reclaim next time.
1435 		 * There is no need to reschedule work - allocator exits only
1436 		 * on success
1437 		 */
1438 		if (rxq->used_count >= RX_CLAIM_REQ_ALLOC)
1439 			iwl_pcie_rx_allocator_get(trans, rxq);
1440 
1441 		if (rxq->used_count % RX_CLAIM_REQ_ALLOC == 0 && !emergency) {
1442 			/* Add the remaining empty RBDs for allocator use */
1443 			iwl_pcie_rx_move_to_allocator(rxq, rba);
1444 		} else if (emergency) {
1445 			count++;
1446 			if (count == 8) {
1447 				count = 0;
1448 				if (rb_pending_alloc < rxq->queue_size / 3)
1449 					emergency = false;
1450 
1451 				rxq->read = i;
1452 				spin_unlock(&rxq->lock);
1453 				iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq);
1454 				iwl_pcie_rxq_restock(trans, rxq);
1455 				goto restart;
1456 			}
1457 		}
1458 	}
1459 out:
1460 	/* Backtrack one entry */
1461 	rxq->read = i;
1462 	/* update cr tail with the rxq read pointer */
1463 	if (trans->cfg->device_family >= IWL_DEVICE_FAMILY_22560)
1464 		*rxq->cr_tail = cpu_to_le16(r);
1465 	spin_unlock(&rxq->lock);
1466 
1467 	/*
1468 	 * handle a case where in emergency there are some unallocated RBDs.
1469 	 * those RBDs are in the used list, but are not tracked by the queue's
1470 	 * used_count which counts allocator owned RBDs.
1471 	 * unallocated emergency RBDs must be allocated on exit, otherwise
1472 	 * when called again the function may not be in emergency mode and
1473 	 * they will be handed to the allocator with no tracking in the RBD
1474 	 * allocator counters, which will lead to them never being claimed back
1475 	 * by the queue.
1476 	 * by allocating them here, they are now in the queue free list, and
1477 	 * will be restocked by the next call of iwl_pcie_rxq_restock.
1478 	 */
1479 	if (unlikely(emergency && count))
1480 		iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq);
1481 
1482 	if (rxq->napi.poll)
1483 		napi_gro_flush(&rxq->napi, false);
1484 
1485 	iwl_pcie_rxq_restock(trans, rxq);
1486 }
1487 
1488 static struct iwl_trans_pcie *iwl_pcie_get_trans_pcie(struct msix_entry *entry)
1489 {
1490 	u8 queue = entry->entry;
1491 	struct msix_entry *entries = entry - queue;
1492 
1493 	return container_of(entries, struct iwl_trans_pcie, msix_entries[0]);
1494 }
1495 
1496 /*
1497  * iwl_pcie_rx_msix_handle - Main entry function for receiving responses from fw
1498  * This interrupt handler should be used with RSS queue only.
1499  */
1500 irqreturn_t iwl_pcie_irq_rx_msix_handler(int irq, void *dev_id)
1501 {
1502 	struct msix_entry *entry = dev_id;
1503 	struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry);
1504 	struct iwl_trans *trans = trans_pcie->trans;
1505 
1506 	trace_iwlwifi_dev_irq_msix(trans->dev, entry, false, 0, 0);
1507 
1508 	if (WARN_ON(entry->entry >= trans->num_rx_queues))
1509 		return IRQ_NONE;
1510 
1511 	lock_map_acquire(&trans->sync_cmd_lockdep_map);
1512 
1513 	local_bh_disable();
1514 	iwl_pcie_rx_handle(trans, entry->entry);
1515 	local_bh_enable();
1516 
1517 	iwl_pcie_clear_irq(trans, entry);
1518 
1519 	lock_map_release(&trans->sync_cmd_lockdep_map);
1520 
1521 	return IRQ_HANDLED;
1522 }
1523 
1524 /*
1525  * iwl_pcie_irq_handle_error - called for HW or SW error interrupt from card
1526  */
1527 static void iwl_pcie_irq_handle_error(struct iwl_trans *trans)
1528 {
1529 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1530 	int i;
1531 
1532 	/* W/A for WiFi/WiMAX coex and WiMAX own the RF */
1533 	if (trans->cfg->internal_wimax_coex &&
1534 	    !trans->cfg->apmg_not_supported &&
1535 	    (!(iwl_read_prph(trans, APMG_CLK_CTRL_REG) &
1536 			     APMS_CLK_VAL_MRB_FUNC_MODE) ||
1537 	     (iwl_read_prph(trans, APMG_PS_CTRL_REG) &
1538 			    APMG_PS_CTRL_VAL_RESET_REQ))) {
1539 		clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
1540 		iwl_op_mode_wimax_active(trans->op_mode);
1541 		wake_up(&trans_pcie->wait_command_queue);
1542 		return;
1543 	}
1544 
1545 	for (i = 0; i < trans->cfg->base_params->num_of_queues; i++) {
1546 		if (!trans_pcie->txq[i])
1547 			continue;
1548 		del_timer(&trans_pcie->txq[i]->stuck_timer);
1549 	}
1550 
1551 	/* The STATUS_FW_ERROR bit is set in this function. This must happen
1552 	 * before we wake up the command caller, to ensure a proper cleanup. */
1553 	iwl_trans_fw_error(trans);
1554 
1555 	clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
1556 	wake_up(&trans_pcie->wait_command_queue);
1557 }
1558 
1559 static u32 iwl_pcie_int_cause_non_ict(struct iwl_trans *trans)
1560 {
1561 	u32 inta;
1562 
1563 	lockdep_assert_held(&IWL_TRANS_GET_PCIE_TRANS(trans)->irq_lock);
1564 
1565 	trace_iwlwifi_dev_irq(trans->dev);
1566 
1567 	/* Discover which interrupts are active/pending */
1568 	inta = iwl_read32(trans, CSR_INT);
1569 
1570 	/* the thread will service interrupts and re-enable them */
1571 	return inta;
1572 }
1573 
1574 /* a device (PCI-E) page is 4096 bytes long */
1575 #define ICT_SHIFT	12
1576 #define ICT_SIZE	(1 << ICT_SHIFT)
1577 #define ICT_COUNT	(ICT_SIZE / sizeof(u32))
1578 
1579 /* interrupt handler using ict table, with this interrupt driver will
1580  * stop using INTA register to get device's interrupt, reading this register
1581  * is expensive, device will write interrupts in ICT dram table, increment
1582  * index then will fire interrupt to driver, driver will OR all ICT table
1583  * entries from current index up to table entry with 0 value. the result is
1584  * the interrupt we need to service, driver will set the entries back to 0 and
1585  * set index.
1586  */
1587 static u32 iwl_pcie_int_cause_ict(struct iwl_trans *trans)
1588 {
1589 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1590 	u32 inta;
1591 	u32 val = 0;
1592 	u32 read;
1593 
1594 	trace_iwlwifi_dev_irq(trans->dev);
1595 
1596 	/* Ignore interrupt if there's nothing in NIC to service.
1597 	 * This may be due to IRQ shared with another device,
1598 	 * or due to sporadic interrupts thrown from our NIC. */
1599 	read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
1600 	trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index, read);
1601 	if (!read)
1602 		return 0;
1603 
1604 	/*
1605 	 * Collect all entries up to the first 0, starting from ict_index;
1606 	 * note we already read at ict_index.
1607 	 */
1608 	do {
1609 		val |= read;
1610 		IWL_DEBUG_ISR(trans, "ICT index %d value 0x%08X\n",
1611 				trans_pcie->ict_index, read);
1612 		trans_pcie->ict_tbl[trans_pcie->ict_index] = 0;
1613 		trans_pcie->ict_index =
1614 			((trans_pcie->ict_index + 1) & (ICT_COUNT - 1));
1615 
1616 		read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
1617 		trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index,
1618 					   read);
1619 	} while (read);
1620 
1621 	/* We should not get this value, just ignore it. */
1622 	if (val == 0xffffffff)
1623 		val = 0;
1624 
1625 	/*
1626 	 * this is a w/a for a h/w bug. the h/w bug may cause the Rx bit
1627 	 * (bit 15 before shifting it to 31) to clear when using interrupt
1628 	 * coalescing. fortunately, bits 18 and 19 stay set when this happens
1629 	 * so we use them to decide on the real state of the Rx bit.
1630 	 * In order words, bit 15 is set if bit 18 or bit 19 are set.
1631 	 */
1632 	if (val & 0xC0000)
1633 		val |= 0x8000;
1634 
1635 	inta = (0xff & val) | ((0xff00 & val) << 16);
1636 	return inta;
1637 }
1638 
1639 void iwl_pcie_handle_rfkill_irq(struct iwl_trans *trans)
1640 {
1641 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1642 	struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
1643 	bool hw_rfkill, prev, report;
1644 
1645 	mutex_lock(&trans_pcie->mutex);
1646 	prev = test_bit(STATUS_RFKILL_OPMODE, &trans->status);
1647 	hw_rfkill = iwl_is_rfkill_set(trans);
1648 	if (hw_rfkill) {
1649 		set_bit(STATUS_RFKILL_OPMODE, &trans->status);
1650 		set_bit(STATUS_RFKILL_HW, &trans->status);
1651 	}
1652 	if (trans_pcie->opmode_down)
1653 		report = hw_rfkill;
1654 	else
1655 		report = test_bit(STATUS_RFKILL_OPMODE, &trans->status);
1656 
1657 	IWL_WARN(trans, "RF_KILL bit toggled to %s.\n",
1658 		 hw_rfkill ? "disable radio" : "enable radio");
1659 
1660 	isr_stats->rfkill++;
1661 
1662 	if (prev != report)
1663 		iwl_trans_pcie_rf_kill(trans, report);
1664 	mutex_unlock(&trans_pcie->mutex);
1665 
1666 	if (hw_rfkill) {
1667 		if (test_and_clear_bit(STATUS_SYNC_HCMD_ACTIVE,
1668 				       &trans->status))
1669 			IWL_DEBUG_RF_KILL(trans,
1670 					  "Rfkill while SYNC HCMD in flight\n");
1671 		wake_up(&trans_pcie->wait_command_queue);
1672 	} else {
1673 		clear_bit(STATUS_RFKILL_HW, &trans->status);
1674 		if (trans_pcie->opmode_down)
1675 			clear_bit(STATUS_RFKILL_OPMODE, &trans->status);
1676 	}
1677 }
1678 
1679 irqreturn_t iwl_pcie_irq_handler(int irq, void *dev_id)
1680 {
1681 	struct iwl_trans *trans = dev_id;
1682 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1683 	struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
1684 	u32 inta = 0;
1685 	u32 handled = 0;
1686 
1687 	lock_map_acquire(&trans->sync_cmd_lockdep_map);
1688 
1689 	spin_lock(&trans_pcie->irq_lock);
1690 
1691 	/* dram interrupt table not set yet,
1692 	 * use legacy interrupt.
1693 	 */
1694 	if (likely(trans_pcie->use_ict))
1695 		inta = iwl_pcie_int_cause_ict(trans);
1696 	else
1697 		inta = iwl_pcie_int_cause_non_ict(trans);
1698 
1699 	if (iwl_have_debug_level(IWL_DL_ISR)) {
1700 		IWL_DEBUG_ISR(trans,
1701 			      "ISR inta 0x%08x, enabled 0x%08x(sw), enabled(hw) 0x%08x, fh 0x%08x\n",
1702 			      inta, trans_pcie->inta_mask,
1703 			      iwl_read32(trans, CSR_INT_MASK),
1704 			      iwl_read32(trans, CSR_FH_INT_STATUS));
1705 		if (inta & (~trans_pcie->inta_mask))
1706 			IWL_DEBUG_ISR(trans,
1707 				      "We got a masked interrupt (0x%08x)\n",
1708 				      inta & (~trans_pcie->inta_mask));
1709 	}
1710 
1711 	inta &= trans_pcie->inta_mask;
1712 
1713 	/*
1714 	 * Ignore interrupt if there's nothing in NIC to service.
1715 	 * This may be due to IRQ shared with another device,
1716 	 * or due to sporadic interrupts thrown from our NIC.
1717 	 */
1718 	if (unlikely(!inta)) {
1719 		IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
1720 		/*
1721 		 * Re-enable interrupts here since we don't
1722 		 * have anything to service
1723 		 */
1724 		if (test_bit(STATUS_INT_ENABLED, &trans->status))
1725 			_iwl_enable_interrupts(trans);
1726 		spin_unlock(&trans_pcie->irq_lock);
1727 		lock_map_release(&trans->sync_cmd_lockdep_map);
1728 		return IRQ_NONE;
1729 	}
1730 
1731 	if (unlikely(inta == 0xFFFFFFFF || (inta & 0xFFFFFFF0) == 0xa5a5a5a0)) {
1732 		/*
1733 		 * Hardware disappeared. It might have
1734 		 * already raised an interrupt.
1735 		 */
1736 		IWL_WARN(trans, "HARDWARE GONE?? INTA == 0x%08x\n", inta);
1737 		spin_unlock(&trans_pcie->irq_lock);
1738 		goto out;
1739 	}
1740 
1741 	/* Ack/clear/reset pending uCode interrupts.
1742 	 * Note:  Some bits in CSR_INT are "OR" of bits in CSR_FH_INT_STATUS,
1743 	 */
1744 	/* There is a hardware bug in the interrupt mask function that some
1745 	 * interrupts (i.e. CSR_INT_BIT_SCD) can still be generated even if
1746 	 * they are disabled in the CSR_INT_MASK register. Furthermore the
1747 	 * ICT interrupt handling mechanism has another bug that might cause
1748 	 * these unmasked interrupts fail to be detected. We workaround the
1749 	 * hardware bugs here by ACKing all the possible interrupts so that
1750 	 * interrupt coalescing can still be achieved.
1751 	 */
1752 	iwl_write32(trans, CSR_INT, inta | ~trans_pcie->inta_mask);
1753 
1754 	if (iwl_have_debug_level(IWL_DL_ISR))
1755 		IWL_DEBUG_ISR(trans, "inta 0x%08x, enabled 0x%08x\n",
1756 			      inta, iwl_read32(trans, CSR_INT_MASK));
1757 
1758 	spin_unlock(&trans_pcie->irq_lock);
1759 
1760 	/* Now service all interrupt bits discovered above. */
1761 	if (inta & CSR_INT_BIT_HW_ERR) {
1762 		IWL_ERR(trans, "Hardware error detected.  Restarting.\n");
1763 
1764 		/* Tell the device to stop sending interrupts */
1765 		iwl_disable_interrupts(trans);
1766 
1767 		isr_stats->hw++;
1768 		iwl_pcie_irq_handle_error(trans);
1769 
1770 		handled |= CSR_INT_BIT_HW_ERR;
1771 
1772 		goto out;
1773 	}
1774 
1775 	if (iwl_have_debug_level(IWL_DL_ISR)) {
1776 		/* NIC fires this, but we don't use it, redundant with WAKEUP */
1777 		if (inta & CSR_INT_BIT_SCD) {
1778 			IWL_DEBUG_ISR(trans,
1779 				      "Scheduler finished to transmit the frame/frames.\n");
1780 			isr_stats->sch++;
1781 		}
1782 
1783 		/* Alive notification via Rx interrupt will do the real work */
1784 		if (inta & CSR_INT_BIT_ALIVE) {
1785 			IWL_DEBUG_ISR(trans, "Alive interrupt\n");
1786 			isr_stats->alive++;
1787 			if (trans->cfg->gen2) {
1788 				/*
1789 				 * We can restock, since firmware configured
1790 				 * the RFH
1791 				 */
1792 				iwl_pcie_rxmq_restock(trans, trans_pcie->rxq);
1793 			}
1794 		}
1795 	}
1796 
1797 	/* Safely ignore these bits for debug checks below */
1798 	inta &= ~(CSR_INT_BIT_SCD | CSR_INT_BIT_ALIVE);
1799 
1800 	/* HW RF KILL switch toggled */
1801 	if (inta & CSR_INT_BIT_RF_KILL) {
1802 		iwl_pcie_handle_rfkill_irq(trans);
1803 		handled |= CSR_INT_BIT_RF_KILL;
1804 	}
1805 
1806 	/* Chip got too hot and stopped itself */
1807 	if (inta & CSR_INT_BIT_CT_KILL) {
1808 		IWL_ERR(trans, "Microcode CT kill error detected.\n");
1809 		isr_stats->ctkill++;
1810 		handled |= CSR_INT_BIT_CT_KILL;
1811 	}
1812 
1813 	/* Error detected by uCode */
1814 	if (inta & CSR_INT_BIT_SW_ERR) {
1815 		IWL_ERR(trans, "Microcode SW error detected. "
1816 			" Restarting 0x%X.\n", inta);
1817 		isr_stats->sw++;
1818 		iwl_pcie_irq_handle_error(trans);
1819 		handled |= CSR_INT_BIT_SW_ERR;
1820 	}
1821 
1822 	/* uCode wakes up after power-down sleep */
1823 	if (inta & CSR_INT_BIT_WAKEUP) {
1824 		IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
1825 		iwl_pcie_rxq_check_wrptr(trans);
1826 		iwl_pcie_txq_check_wrptrs(trans);
1827 
1828 		isr_stats->wakeup++;
1829 
1830 		handled |= CSR_INT_BIT_WAKEUP;
1831 	}
1832 
1833 	/* All uCode command responses, including Tx command responses,
1834 	 * Rx "responses" (frame-received notification), and other
1835 	 * notifications from uCode come through here*/
1836 	if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX |
1837 		    CSR_INT_BIT_RX_PERIODIC)) {
1838 		IWL_DEBUG_ISR(trans, "Rx interrupt\n");
1839 		if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX)) {
1840 			handled |= (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX);
1841 			iwl_write32(trans, CSR_FH_INT_STATUS,
1842 					CSR_FH_INT_RX_MASK);
1843 		}
1844 		if (inta & CSR_INT_BIT_RX_PERIODIC) {
1845 			handled |= CSR_INT_BIT_RX_PERIODIC;
1846 			iwl_write32(trans,
1847 				CSR_INT, CSR_INT_BIT_RX_PERIODIC);
1848 		}
1849 		/* Sending RX interrupt require many steps to be done in the
1850 		 * the device:
1851 		 * 1- write interrupt to current index in ICT table.
1852 		 * 2- dma RX frame.
1853 		 * 3- update RX shared data to indicate last write index.
1854 		 * 4- send interrupt.
1855 		 * This could lead to RX race, driver could receive RX interrupt
1856 		 * but the shared data changes does not reflect this;
1857 		 * periodic interrupt will detect any dangling Rx activity.
1858 		 */
1859 
1860 		/* Disable periodic interrupt; we use it as just a one-shot. */
1861 		iwl_write8(trans, CSR_INT_PERIODIC_REG,
1862 			    CSR_INT_PERIODIC_DIS);
1863 
1864 		/*
1865 		 * Enable periodic interrupt in 8 msec only if we received
1866 		 * real RX interrupt (instead of just periodic int), to catch
1867 		 * any dangling Rx interrupt.  If it was just the periodic
1868 		 * interrupt, there was no dangling Rx activity, and no need
1869 		 * to extend the periodic interrupt; one-shot is enough.
1870 		 */
1871 		if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX))
1872 			iwl_write8(trans, CSR_INT_PERIODIC_REG,
1873 				   CSR_INT_PERIODIC_ENA);
1874 
1875 		isr_stats->rx++;
1876 
1877 		local_bh_disable();
1878 		iwl_pcie_rx_handle(trans, 0);
1879 		local_bh_enable();
1880 	}
1881 
1882 	/* This "Tx" DMA channel is used only for loading uCode */
1883 	if (inta & CSR_INT_BIT_FH_TX) {
1884 		iwl_write32(trans, CSR_FH_INT_STATUS, CSR_FH_INT_TX_MASK);
1885 		IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
1886 		isr_stats->tx++;
1887 		handled |= CSR_INT_BIT_FH_TX;
1888 		/* Wake up uCode load routine, now that load is complete */
1889 		trans_pcie->ucode_write_complete = true;
1890 		wake_up(&trans_pcie->ucode_write_waitq);
1891 	}
1892 
1893 	if (inta & ~handled) {
1894 		IWL_ERR(trans, "Unhandled INTA bits 0x%08x\n", inta & ~handled);
1895 		isr_stats->unhandled++;
1896 	}
1897 
1898 	if (inta & ~(trans_pcie->inta_mask)) {
1899 		IWL_WARN(trans, "Disabled INTA bits 0x%08x were pending\n",
1900 			 inta & ~trans_pcie->inta_mask);
1901 	}
1902 
1903 	spin_lock(&trans_pcie->irq_lock);
1904 	/* only Re-enable all interrupt if disabled by irq */
1905 	if (test_bit(STATUS_INT_ENABLED, &trans->status))
1906 		_iwl_enable_interrupts(trans);
1907 	/* we are loading the firmware, enable FH_TX interrupt only */
1908 	else if (handled & CSR_INT_BIT_FH_TX)
1909 		iwl_enable_fw_load_int(trans);
1910 	/* Re-enable RF_KILL if it occurred */
1911 	else if (handled & CSR_INT_BIT_RF_KILL)
1912 		iwl_enable_rfkill_int(trans);
1913 	spin_unlock(&trans_pcie->irq_lock);
1914 
1915 out:
1916 	lock_map_release(&trans->sync_cmd_lockdep_map);
1917 	return IRQ_HANDLED;
1918 }
1919 
1920 /******************************************************************************
1921  *
1922  * ICT functions
1923  *
1924  ******************************************************************************/
1925 
1926 /* Free dram table */
1927 void iwl_pcie_free_ict(struct iwl_trans *trans)
1928 {
1929 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1930 
1931 	if (trans_pcie->ict_tbl) {
1932 		dma_free_coherent(trans->dev, ICT_SIZE,
1933 				  trans_pcie->ict_tbl,
1934 				  trans_pcie->ict_tbl_dma);
1935 		trans_pcie->ict_tbl = NULL;
1936 		trans_pcie->ict_tbl_dma = 0;
1937 	}
1938 }
1939 
1940 /*
1941  * allocate dram shared table, it is an aligned memory
1942  * block of ICT_SIZE.
1943  * also reset all data related to ICT table interrupt.
1944  */
1945 int iwl_pcie_alloc_ict(struct iwl_trans *trans)
1946 {
1947 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1948 
1949 	trans_pcie->ict_tbl =
1950 		dma_zalloc_coherent(trans->dev, ICT_SIZE,
1951 				   &trans_pcie->ict_tbl_dma,
1952 				   GFP_KERNEL);
1953 	if (!trans_pcie->ict_tbl)
1954 		return -ENOMEM;
1955 
1956 	/* just an API sanity check ... it is guaranteed to be aligned */
1957 	if (WARN_ON(trans_pcie->ict_tbl_dma & (ICT_SIZE - 1))) {
1958 		iwl_pcie_free_ict(trans);
1959 		return -EINVAL;
1960 	}
1961 
1962 	return 0;
1963 }
1964 
1965 /* Device is going up inform it about using ICT interrupt table,
1966  * also we need to tell the driver to start using ICT interrupt.
1967  */
1968 void iwl_pcie_reset_ict(struct iwl_trans *trans)
1969 {
1970 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1971 	u32 val;
1972 
1973 	if (!trans_pcie->ict_tbl)
1974 		return;
1975 
1976 	spin_lock(&trans_pcie->irq_lock);
1977 	_iwl_disable_interrupts(trans);
1978 
1979 	memset(trans_pcie->ict_tbl, 0, ICT_SIZE);
1980 
1981 	val = trans_pcie->ict_tbl_dma >> ICT_SHIFT;
1982 
1983 	val |= CSR_DRAM_INT_TBL_ENABLE |
1984 	       CSR_DRAM_INIT_TBL_WRAP_CHECK |
1985 	       CSR_DRAM_INIT_TBL_WRITE_POINTER;
1986 
1987 	IWL_DEBUG_ISR(trans, "CSR_DRAM_INT_TBL_REG =0x%x\n", val);
1988 
1989 	iwl_write32(trans, CSR_DRAM_INT_TBL_REG, val);
1990 	trans_pcie->use_ict = true;
1991 	trans_pcie->ict_index = 0;
1992 	iwl_write32(trans, CSR_INT, trans_pcie->inta_mask);
1993 	_iwl_enable_interrupts(trans);
1994 	spin_unlock(&trans_pcie->irq_lock);
1995 }
1996 
1997 /* Device is going down disable ict interrupt usage */
1998 void iwl_pcie_disable_ict(struct iwl_trans *trans)
1999 {
2000 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2001 
2002 	spin_lock(&trans_pcie->irq_lock);
2003 	trans_pcie->use_ict = false;
2004 	spin_unlock(&trans_pcie->irq_lock);
2005 }
2006 
2007 irqreturn_t iwl_pcie_isr(int irq, void *data)
2008 {
2009 	struct iwl_trans *trans = data;
2010 
2011 	if (!trans)
2012 		return IRQ_NONE;
2013 
2014 	/* Disable (but don't clear!) interrupts here to avoid
2015 	 * back-to-back ISRs and sporadic interrupts from our NIC.
2016 	 * If we have something to service, the tasklet will re-enable ints.
2017 	 * If we *don't* have something, we'll re-enable before leaving here.
2018 	 */
2019 	iwl_write32(trans, CSR_INT_MASK, 0x00000000);
2020 
2021 	return IRQ_WAKE_THREAD;
2022 }
2023 
2024 irqreturn_t iwl_pcie_msix_isr(int irq, void *data)
2025 {
2026 	return IRQ_WAKE_THREAD;
2027 }
2028 
2029 irqreturn_t iwl_pcie_irq_msix_handler(int irq, void *dev_id)
2030 {
2031 	struct msix_entry *entry = dev_id;
2032 	struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry);
2033 	struct iwl_trans *trans = trans_pcie->trans;
2034 	struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
2035 	u32 inta_fh, inta_hw;
2036 
2037 	lock_map_acquire(&trans->sync_cmd_lockdep_map);
2038 
2039 	spin_lock(&trans_pcie->irq_lock);
2040 	inta_fh = iwl_read32(trans, CSR_MSIX_FH_INT_CAUSES_AD);
2041 	inta_hw = iwl_read32(trans, CSR_MSIX_HW_INT_CAUSES_AD);
2042 	/*
2043 	 * Clear causes registers to avoid being handling the same cause.
2044 	 */
2045 	iwl_write32(trans, CSR_MSIX_FH_INT_CAUSES_AD, inta_fh);
2046 	iwl_write32(trans, CSR_MSIX_HW_INT_CAUSES_AD, inta_hw);
2047 	spin_unlock(&trans_pcie->irq_lock);
2048 
2049 	trace_iwlwifi_dev_irq_msix(trans->dev, entry, true, inta_fh, inta_hw);
2050 
2051 	if (unlikely(!(inta_fh | inta_hw))) {
2052 		IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
2053 		lock_map_release(&trans->sync_cmd_lockdep_map);
2054 		return IRQ_NONE;
2055 	}
2056 
2057 	if (iwl_have_debug_level(IWL_DL_ISR))
2058 		IWL_DEBUG_ISR(trans, "ISR inta_fh 0x%08x, enabled 0x%08x\n",
2059 			      inta_fh,
2060 			      iwl_read32(trans, CSR_MSIX_FH_INT_MASK_AD));
2061 
2062 	if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_NON_RX) &&
2063 	    inta_fh & MSIX_FH_INT_CAUSES_Q0) {
2064 		local_bh_disable();
2065 		iwl_pcie_rx_handle(trans, 0);
2066 		local_bh_enable();
2067 	}
2068 
2069 	if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS) &&
2070 	    inta_fh & MSIX_FH_INT_CAUSES_Q1) {
2071 		local_bh_disable();
2072 		iwl_pcie_rx_handle(trans, 1);
2073 		local_bh_enable();
2074 	}
2075 
2076 	/* This "Tx" DMA channel is used only for loading uCode */
2077 	if (inta_fh & MSIX_FH_INT_CAUSES_D2S_CH0_NUM) {
2078 		IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
2079 		isr_stats->tx++;
2080 		/*
2081 		 * Wake up uCode load routine,
2082 		 * now that load is complete
2083 		 */
2084 		trans_pcie->ucode_write_complete = true;
2085 		wake_up(&trans_pcie->ucode_write_waitq);
2086 	}
2087 
2088 	/* Error detected by uCode */
2089 	if ((inta_fh & MSIX_FH_INT_CAUSES_FH_ERR) ||
2090 	    (inta_hw & MSIX_HW_INT_CAUSES_REG_SW_ERR) ||
2091 	    (inta_hw & MSIX_HW_INT_CAUSES_REG_SW_ERR_V2)) {
2092 		IWL_ERR(trans,
2093 			"Microcode SW error detected. Restarting 0x%X.\n",
2094 			inta_fh);
2095 		isr_stats->sw++;
2096 		iwl_pcie_irq_handle_error(trans);
2097 	}
2098 
2099 	/* After checking FH register check HW register */
2100 	if (iwl_have_debug_level(IWL_DL_ISR))
2101 		IWL_DEBUG_ISR(trans,
2102 			      "ISR inta_hw 0x%08x, enabled 0x%08x\n",
2103 			      inta_hw,
2104 			      iwl_read32(trans, CSR_MSIX_HW_INT_MASK_AD));
2105 
2106 	/* Alive notification via Rx interrupt will do the real work */
2107 	if (inta_hw & MSIX_HW_INT_CAUSES_REG_ALIVE) {
2108 		IWL_DEBUG_ISR(trans, "Alive interrupt\n");
2109 		isr_stats->alive++;
2110 		if (trans->cfg->gen2) {
2111 			/* We can restock, since firmware configured the RFH */
2112 			iwl_pcie_rxmq_restock(trans, trans_pcie->rxq);
2113 		}
2114 	}
2115 
2116 	if (trans->cfg->device_family >= IWL_DEVICE_FAMILY_22560 &&
2117 	    inta_hw & MSIX_HW_INT_CAUSES_REG_IPC) {
2118 		/* Reflect IML transfer status */
2119 		int res = iwl_read32(trans, CSR_IML_RESP_ADDR);
2120 
2121 		IWL_DEBUG_ISR(trans, "IML transfer status: %d\n", res);
2122 		if (res == IWL_IMAGE_RESP_FAIL) {
2123 			isr_stats->sw++;
2124 			iwl_pcie_irq_handle_error(trans);
2125 		}
2126 	} else if (inta_hw & MSIX_HW_INT_CAUSES_REG_WAKEUP) {
2127 		/* uCode wakes up after power-down sleep */
2128 		IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
2129 		iwl_pcie_rxq_check_wrptr(trans);
2130 		iwl_pcie_txq_check_wrptrs(trans);
2131 
2132 		isr_stats->wakeup++;
2133 	}
2134 
2135 	/* Chip got too hot and stopped itself */
2136 	if (inta_hw & MSIX_HW_INT_CAUSES_REG_CT_KILL) {
2137 		IWL_ERR(trans, "Microcode CT kill error detected.\n");
2138 		isr_stats->ctkill++;
2139 	}
2140 
2141 	/* HW RF KILL switch toggled */
2142 	if (inta_hw & MSIX_HW_INT_CAUSES_REG_RF_KILL)
2143 		iwl_pcie_handle_rfkill_irq(trans);
2144 
2145 	if (inta_hw & MSIX_HW_INT_CAUSES_REG_HW_ERR) {
2146 		IWL_ERR(trans,
2147 			"Hardware error detected. Restarting.\n");
2148 
2149 		isr_stats->hw++;
2150 		iwl_pcie_irq_handle_error(trans);
2151 	}
2152 
2153 	iwl_pcie_clear_irq(trans, entry);
2154 
2155 	lock_map_release(&trans->sync_cmd_lockdep_map);
2156 
2157 	return IRQ_HANDLED;
2158 }
2159