1 /****************************************************************************** 2 * 3 * This file is provided under a dual BSD/GPLv2 license. When using or 4 * redistributing this file, you may do so under either license. 5 * 6 * GPL LICENSE SUMMARY 7 * 8 * Copyright(c) 2003 - 2014 Intel Corporation. All rights reserved. 9 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH 10 * Copyright(c) 2016 - 2017 Intel Deutschland GmbH 11 * Copyright(c) 2018 - 2019 Intel Corporation 12 * 13 * This program is free software; you can redistribute it and/or modify it 14 * under the terms of version 2 of the GNU General Public License as 15 * published by the Free Software Foundation. 16 * 17 * This program is distributed in the hope that it will be useful, but WITHOUT 18 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 19 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 20 * more details. 21 * 22 * The full GNU General Public License is included in this distribution in the 23 * file called COPYING. 24 * 25 * Contact Information: 26 * Intel Linux Wireless <linuxwifi@intel.com> 27 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 28 * 29 * BSD LICENSE 30 * 31 * Copyright(c) 2003 - 2014 Intel Corporation. All rights reserved. 32 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH 33 * Copyright(c) 2016 - 2017 Intel Deutschland GmbH 34 * Copyright(c) 2018 - 2019 Intel Corporation 35 * All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 41 * * Redistributions of source code must retain the above copyright 42 * notice, this list of conditions and the following disclaimer. 43 * * Redistributions in binary form must reproduce the above copyright 44 * notice, this list of conditions and the following disclaimer in 45 * the documentation and/or other materials provided with the 46 * distribution. 47 * * Neither the name Intel Corporation nor the names of its 48 * contributors may be used to endorse or promote products derived 49 * from this software without specific prior written permission. 50 * 51 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 52 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 53 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 54 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 55 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 56 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 57 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 58 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 59 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 60 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 61 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 62 * 63 *****************************************************************************/ 64 #include <linux/sched.h> 65 #include <linux/wait.h> 66 #include <linux/gfp.h> 67 68 #include "iwl-prph.h" 69 #include "iwl-io.h" 70 #include "internal.h" 71 #include "iwl-op-mode.h" 72 #include "iwl-context-info-gen3.h" 73 74 /****************************************************************************** 75 * 76 * RX path functions 77 * 78 ******************************************************************************/ 79 80 /* 81 * Rx theory of operation 82 * 83 * Driver allocates a circular buffer of Receive Buffer Descriptors (RBDs), 84 * each of which point to Receive Buffers to be filled by the NIC. These get 85 * used not only for Rx frames, but for any command response or notification 86 * from the NIC. The driver and NIC manage the Rx buffers by means 87 * of indexes into the circular buffer. 88 * 89 * Rx Queue Indexes 90 * The host/firmware share two index registers for managing the Rx buffers. 91 * 92 * The READ index maps to the first position that the firmware may be writing 93 * to -- the driver can read up to (but not including) this position and get 94 * good data. 95 * The READ index is managed by the firmware once the card is enabled. 96 * 97 * The WRITE index maps to the last position the driver has read from -- the 98 * position preceding WRITE is the last slot the firmware can place a packet. 99 * 100 * The queue is empty (no good data) if WRITE = READ - 1, and is full if 101 * WRITE = READ. 102 * 103 * During initialization, the host sets up the READ queue position to the first 104 * INDEX position, and WRITE to the last (READ - 1 wrapped) 105 * 106 * When the firmware places a packet in a buffer, it will advance the READ index 107 * and fire the RX interrupt. The driver can then query the READ index and 108 * process as many packets as possible, moving the WRITE index forward as it 109 * resets the Rx queue buffers with new memory. 110 * 111 * The management in the driver is as follows: 112 * + A list of pre-allocated RBDs is stored in iwl->rxq->rx_free. 113 * When the interrupt handler is called, the request is processed. 114 * The page is either stolen - transferred to the upper layer 115 * or reused - added immediately to the iwl->rxq->rx_free list. 116 * + When the page is stolen - the driver updates the matching queue's used 117 * count, detaches the RBD and transfers it to the queue used list. 118 * When there are two used RBDs - they are transferred to the allocator empty 119 * list. Work is then scheduled for the allocator to start allocating 120 * eight buffers. 121 * When there are another 6 used RBDs - they are transferred to the allocator 122 * empty list and the driver tries to claim the pre-allocated buffers and 123 * add them to iwl->rxq->rx_free. If it fails - it continues to claim them 124 * until ready. 125 * When there are 8+ buffers in the free list - either from allocation or from 126 * 8 reused unstolen pages - restock is called to update the FW and indexes. 127 * + In order to make sure the allocator always has RBDs to use for allocation 128 * the allocator has initial pool in the size of num_queues*(8-2) - the 129 * maximum missing RBDs per allocation request (request posted with 2 130 * empty RBDs, there is no guarantee when the other 6 RBDs are supplied). 131 * The queues supplies the recycle of the rest of the RBDs. 132 * + A received packet is processed and handed to the kernel network stack, 133 * detached from the iwl->rxq. The driver 'processed' index is updated. 134 * + If there are no allocated buffers in iwl->rxq->rx_free, 135 * the READ INDEX is not incremented and iwl->status(RX_STALLED) is set. 136 * If there were enough free buffers and RX_STALLED is set it is cleared. 137 * 138 * 139 * Driver sequence: 140 * 141 * iwl_rxq_alloc() Allocates rx_free 142 * iwl_pcie_rx_replenish() Replenishes rx_free list from rx_used, and calls 143 * iwl_pcie_rxq_restock. 144 * Used only during initialization. 145 * iwl_pcie_rxq_restock() Moves available buffers from rx_free into Rx 146 * queue, updates firmware pointers, and updates 147 * the WRITE index. 148 * iwl_pcie_rx_allocator() Background work for allocating pages. 149 * 150 * -- enable interrupts -- 151 * ISR - iwl_rx() Detach iwl_rx_mem_buffers from pool up to the 152 * READ INDEX, detaching the SKB from the pool. 153 * Moves the packet buffer from queue to rx_used. 154 * Posts and claims requests to the allocator. 155 * Calls iwl_pcie_rxq_restock to refill any empty 156 * slots. 157 * 158 * RBD life-cycle: 159 * 160 * Init: 161 * rxq.pool -> rxq.rx_used -> rxq.rx_free -> rxq.queue 162 * 163 * Regular Receive interrupt: 164 * Page Stolen: 165 * rxq.queue -> rxq.rx_used -> allocator.rbd_empty -> 166 * allocator.rbd_allocated -> rxq.rx_free -> rxq.queue 167 * Page not Stolen: 168 * rxq.queue -> rxq.rx_free -> rxq.queue 169 * ... 170 * 171 */ 172 173 /* 174 * iwl_rxq_space - Return number of free slots available in queue. 175 */ 176 static int iwl_rxq_space(const struct iwl_rxq *rxq) 177 { 178 /* Make sure rx queue size is a power of 2 */ 179 WARN_ON(rxq->queue_size & (rxq->queue_size - 1)); 180 181 /* 182 * There can be up to (RX_QUEUE_SIZE - 1) free slots, to avoid ambiguity 183 * between empty and completely full queues. 184 * The following is equivalent to modulo by RX_QUEUE_SIZE and is well 185 * defined for negative dividends. 186 */ 187 return (rxq->read - rxq->write - 1) & (rxq->queue_size - 1); 188 } 189 190 /* 191 * iwl_dma_addr2rbd_ptr - convert a DMA address to a uCode read buffer ptr 192 */ 193 static inline __le32 iwl_pcie_dma_addr2rbd_ptr(dma_addr_t dma_addr) 194 { 195 return cpu_to_le32((u32)(dma_addr >> 8)); 196 } 197 198 /* 199 * iwl_pcie_rx_stop - stops the Rx DMA 200 */ 201 int iwl_pcie_rx_stop(struct iwl_trans *trans) 202 { 203 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) { 204 /* TODO: remove this once fw does it */ 205 iwl_write_umac_prph(trans, RFH_RXF_DMA_CFG_GEN3, 0); 206 return iwl_poll_umac_prph_bit(trans, RFH_GEN_STATUS_GEN3, 207 RXF_DMA_IDLE, RXF_DMA_IDLE, 1000); 208 } else if (trans->trans_cfg->mq_rx_supported) { 209 iwl_write_prph(trans, RFH_RXF_DMA_CFG, 0); 210 return iwl_poll_prph_bit(trans, RFH_GEN_STATUS, 211 RXF_DMA_IDLE, RXF_DMA_IDLE, 1000); 212 } else { 213 iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0); 214 return iwl_poll_direct_bit(trans, FH_MEM_RSSR_RX_STATUS_REG, 215 FH_RSSR_CHNL0_RX_STATUS_CHNL_IDLE, 216 1000); 217 } 218 } 219 220 /* 221 * iwl_pcie_rxq_inc_wr_ptr - Update the write pointer for the RX queue 222 */ 223 static void iwl_pcie_rxq_inc_wr_ptr(struct iwl_trans *trans, 224 struct iwl_rxq *rxq) 225 { 226 u32 reg; 227 228 lockdep_assert_held(&rxq->lock); 229 230 /* 231 * explicitly wake up the NIC if: 232 * 1. shadow registers aren't enabled 233 * 2. there is a chance that the NIC is asleep 234 */ 235 if (!trans->trans_cfg->base_params->shadow_reg_enable && 236 test_bit(STATUS_TPOWER_PMI, &trans->status)) { 237 reg = iwl_read32(trans, CSR_UCODE_DRV_GP1); 238 239 if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) { 240 IWL_DEBUG_INFO(trans, "Rx queue requesting wakeup, GP1 = 0x%x\n", 241 reg); 242 iwl_set_bit(trans, CSR_GP_CNTRL, 243 CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ); 244 rxq->need_update = true; 245 return; 246 } 247 } 248 249 rxq->write_actual = round_down(rxq->write, 8); 250 if (trans->trans_cfg->mq_rx_supported) 251 iwl_write32(trans, RFH_Q_FRBDCB_WIDX_TRG(rxq->id), 252 rxq->write_actual); 253 else 254 iwl_write32(trans, FH_RSCSR_CHNL0_WPTR, rxq->write_actual); 255 } 256 257 static void iwl_pcie_rxq_check_wrptr(struct iwl_trans *trans) 258 { 259 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 260 int i; 261 262 for (i = 0; i < trans->num_rx_queues; i++) { 263 struct iwl_rxq *rxq = &trans_pcie->rxq[i]; 264 265 if (!rxq->need_update) 266 continue; 267 spin_lock(&rxq->lock); 268 iwl_pcie_rxq_inc_wr_ptr(trans, rxq); 269 rxq->need_update = false; 270 spin_unlock(&rxq->lock); 271 } 272 } 273 274 static void iwl_pcie_restock_bd(struct iwl_trans *trans, 275 struct iwl_rxq *rxq, 276 struct iwl_rx_mem_buffer *rxb) 277 { 278 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) { 279 struct iwl_rx_transfer_desc *bd = rxq->bd; 280 281 BUILD_BUG_ON(sizeof(*bd) != 2 * sizeof(u64)); 282 283 bd[rxq->write].addr = cpu_to_le64(rxb->page_dma); 284 bd[rxq->write].rbid = cpu_to_le16(rxb->vid); 285 } else { 286 __le64 *bd = rxq->bd; 287 288 bd[rxq->write] = cpu_to_le64(rxb->page_dma | rxb->vid); 289 } 290 291 IWL_DEBUG_RX(trans, "Assigned virtual RB ID %u to queue %d index %d\n", 292 (u32)rxb->vid, rxq->id, rxq->write); 293 } 294 295 /* 296 * iwl_pcie_rxmq_restock - restock implementation for multi-queue rx 297 */ 298 static void iwl_pcie_rxmq_restock(struct iwl_trans *trans, 299 struct iwl_rxq *rxq) 300 { 301 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 302 struct iwl_rx_mem_buffer *rxb; 303 304 /* 305 * If the device isn't enabled - no need to try to add buffers... 306 * This can happen when we stop the device and still have an interrupt 307 * pending. We stop the APM before we sync the interrupts because we 308 * have to (see comment there). On the other hand, since the APM is 309 * stopped, we cannot access the HW (in particular not prph). 310 * So don't try to restock if the APM has been already stopped. 311 */ 312 if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status)) 313 return; 314 315 spin_lock(&rxq->lock); 316 while (rxq->free_count) { 317 /* Get next free Rx buffer, remove from free list */ 318 rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer, 319 list); 320 list_del(&rxb->list); 321 rxb->invalid = false; 322 /* some low bits are expected to be unset (depending on hw) */ 323 WARN_ON(rxb->page_dma & trans_pcie->supported_dma_mask); 324 /* Point to Rx buffer via next RBD in circular buffer */ 325 iwl_pcie_restock_bd(trans, rxq, rxb); 326 rxq->write = (rxq->write + 1) & (rxq->queue_size - 1); 327 rxq->free_count--; 328 } 329 spin_unlock(&rxq->lock); 330 331 /* 332 * If we've added more space for the firmware to place data, tell it. 333 * Increment device's write pointer in multiples of 8. 334 */ 335 if (rxq->write_actual != (rxq->write & ~0x7)) { 336 spin_lock(&rxq->lock); 337 iwl_pcie_rxq_inc_wr_ptr(trans, rxq); 338 spin_unlock(&rxq->lock); 339 } 340 } 341 342 /* 343 * iwl_pcie_rxsq_restock - restock implementation for single queue rx 344 */ 345 static void iwl_pcie_rxsq_restock(struct iwl_trans *trans, 346 struct iwl_rxq *rxq) 347 { 348 struct iwl_rx_mem_buffer *rxb; 349 350 /* 351 * If the device isn't enabled - not need to try to add buffers... 352 * This can happen when we stop the device and still have an interrupt 353 * pending. We stop the APM before we sync the interrupts because we 354 * have to (see comment there). On the other hand, since the APM is 355 * stopped, we cannot access the HW (in particular not prph). 356 * So don't try to restock if the APM has been already stopped. 357 */ 358 if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status)) 359 return; 360 361 spin_lock(&rxq->lock); 362 while ((iwl_rxq_space(rxq) > 0) && (rxq->free_count)) { 363 __le32 *bd = (__le32 *)rxq->bd; 364 /* The overwritten rxb must be a used one */ 365 rxb = rxq->queue[rxq->write]; 366 BUG_ON(rxb && rxb->page); 367 368 /* Get next free Rx buffer, remove from free list */ 369 rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer, 370 list); 371 list_del(&rxb->list); 372 rxb->invalid = false; 373 374 /* Point to Rx buffer via next RBD in circular buffer */ 375 bd[rxq->write] = iwl_pcie_dma_addr2rbd_ptr(rxb->page_dma); 376 rxq->queue[rxq->write] = rxb; 377 rxq->write = (rxq->write + 1) & RX_QUEUE_MASK; 378 rxq->free_count--; 379 } 380 spin_unlock(&rxq->lock); 381 382 /* If we've added more space for the firmware to place data, tell it. 383 * Increment device's write pointer in multiples of 8. */ 384 if (rxq->write_actual != (rxq->write & ~0x7)) { 385 spin_lock(&rxq->lock); 386 iwl_pcie_rxq_inc_wr_ptr(trans, rxq); 387 spin_unlock(&rxq->lock); 388 } 389 } 390 391 /* 392 * iwl_pcie_rxq_restock - refill RX queue from pre-allocated pool 393 * 394 * If there are slots in the RX queue that need to be restocked, 395 * and we have free pre-allocated buffers, fill the ranks as much 396 * as we can, pulling from rx_free. 397 * 398 * This moves the 'write' index forward to catch up with 'processed', and 399 * also updates the memory address in the firmware to reference the new 400 * target buffer. 401 */ 402 static 403 void iwl_pcie_rxq_restock(struct iwl_trans *trans, struct iwl_rxq *rxq) 404 { 405 if (trans->trans_cfg->mq_rx_supported) 406 iwl_pcie_rxmq_restock(trans, rxq); 407 else 408 iwl_pcie_rxsq_restock(trans, rxq); 409 } 410 411 /* 412 * iwl_pcie_rx_alloc_page - allocates and returns a page. 413 * 414 */ 415 static struct page *iwl_pcie_rx_alloc_page(struct iwl_trans *trans, 416 u32 *offset, gfp_t priority) 417 { 418 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 419 unsigned int rbsize = iwl_trans_get_rb_size(trans_pcie->rx_buf_size); 420 unsigned int allocsize = PAGE_SIZE << trans_pcie->rx_page_order; 421 struct page *page; 422 gfp_t gfp_mask = priority; 423 424 if (trans_pcie->rx_page_order > 0) 425 gfp_mask |= __GFP_COMP; 426 427 if (trans_pcie->alloc_page) { 428 spin_lock_bh(&trans_pcie->alloc_page_lock); 429 /* recheck */ 430 if (trans_pcie->alloc_page) { 431 *offset = trans_pcie->alloc_page_used; 432 page = trans_pcie->alloc_page; 433 trans_pcie->alloc_page_used += rbsize; 434 if (trans_pcie->alloc_page_used >= allocsize) 435 trans_pcie->alloc_page = NULL; 436 else 437 get_page(page); 438 spin_unlock_bh(&trans_pcie->alloc_page_lock); 439 return page; 440 } 441 spin_unlock_bh(&trans_pcie->alloc_page_lock); 442 } 443 444 /* Alloc a new receive buffer */ 445 page = alloc_pages(gfp_mask, trans_pcie->rx_page_order); 446 if (!page) { 447 if (net_ratelimit()) 448 IWL_DEBUG_INFO(trans, "alloc_pages failed, order: %d\n", 449 trans_pcie->rx_page_order); 450 /* 451 * Issue an error if we don't have enough pre-allocated 452 * buffers. 453 */ 454 if (!(gfp_mask & __GFP_NOWARN) && net_ratelimit()) 455 IWL_CRIT(trans, 456 "Failed to alloc_pages\n"); 457 return NULL; 458 } 459 460 if (2 * rbsize <= allocsize) { 461 spin_lock_bh(&trans_pcie->alloc_page_lock); 462 if (!trans_pcie->alloc_page) { 463 get_page(page); 464 trans_pcie->alloc_page = page; 465 trans_pcie->alloc_page_used = rbsize; 466 } 467 spin_unlock_bh(&trans_pcie->alloc_page_lock); 468 } 469 470 *offset = 0; 471 return page; 472 } 473 474 /* 475 * iwl_pcie_rxq_alloc_rbs - allocate a page for each used RBD 476 * 477 * A used RBD is an Rx buffer that has been given to the stack. To use it again 478 * a page must be allocated and the RBD must point to the page. This function 479 * doesn't change the HW pointer but handles the list of pages that is used by 480 * iwl_pcie_rxq_restock. The latter function will update the HW to use the newly 481 * allocated buffers. 482 */ 483 void iwl_pcie_rxq_alloc_rbs(struct iwl_trans *trans, gfp_t priority, 484 struct iwl_rxq *rxq) 485 { 486 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 487 struct iwl_rx_mem_buffer *rxb; 488 struct page *page; 489 490 while (1) { 491 unsigned int offset; 492 493 spin_lock(&rxq->lock); 494 if (list_empty(&rxq->rx_used)) { 495 spin_unlock(&rxq->lock); 496 return; 497 } 498 spin_unlock(&rxq->lock); 499 500 page = iwl_pcie_rx_alloc_page(trans, &offset, priority); 501 if (!page) 502 return; 503 504 spin_lock(&rxq->lock); 505 506 if (list_empty(&rxq->rx_used)) { 507 spin_unlock(&rxq->lock); 508 __free_pages(page, trans_pcie->rx_page_order); 509 return; 510 } 511 rxb = list_first_entry(&rxq->rx_used, struct iwl_rx_mem_buffer, 512 list); 513 list_del(&rxb->list); 514 spin_unlock(&rxq->lock); 515 516 BUG_ON(rxb->page); 517 rxb->page = page; 518 rxb->offset = offset; 519 /* Get physical address of the RB */ 520 rxb->page_dma = 521 dma_map_page(trans->dev, page, rxb->offset, 522 trans_pcie->rx_buf_bytes, 523 DMA_FROM_DEVICE); 524 if (dma_mapping_error(trans->dev, rxb->page_dma)) { 525 rxb->page = NULL; 526 spin_lock(&rxq->lock); 527 list_add(&rxb->list, &rxq->rx_used); 528 spin_unlock(&rxq->lock); 529 __free_pages(page, trans_pcie->rx_page_order); 530 return; 531 } 532 533 spin_lock(&rxq->lock); 534 535 list_add_tail(&rxb->list, &rxq->rx_free); 536 rxq->free_count++; 537 538 spin_unlock(&rxq->lock); 539 } 540 } 541 542 void iwl_pcie_free_rbs_pool(struct iwl_trans *trans) 543 { 544 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 545 int i; 546 547 for (i = 0; i < RX_POOL_SIZE(trans_pcie->num_rx_bufs); i++) { 548 if (!trans_pcie->rx_pool[i].page) 549 continue; 550 dma_unmap_page(trans->dev, trans_pcie->rx_pool[i].page_dma, 551 trans_pcie->rx_buf_bytes, DMA_FROM_DEVICE); 552 __free_pages(trans_pcie->rx_pool[i].page, 553 trans_pcie->rx_page_order); 554 trans_pcie->rx_pool[i].page = NULL; 555 } 556 } 557 558 /* 559 * iwl_pcie_rx_allocator - Allocates pages in the background for RX queues 560 * 561 * Allocates for each received request 8 pages 562 * Called as a scheduled work item. 563 */ 564 static void iwl_pcie_rx_allocator(struct iwl_trans *trans) 565 { 566 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 567 struct iwl_rb_allocator *rba = &trans_pcie->rba; 568 struct list_head local_empty; 569 int pending = atomic_read(&rba->req_pending); 570 571 IWL_DEBUG_TPT(trans, "Pending allocation requests = %d\n", pending); 572 573 /* If we were scheduled - there is at least one request */ 574 spin_lock(&rba->lock); 575 /* swap out the rba->rbd_empty to a local list */ 576 list_replace_init(&rba->rbd_empty, &local_empty); 577 spin_unlock(&rba->lock); 578 579 while (pending) { 580 int i; 581 LIST_HEAD(local_allocated); 582 gfp_t gfp_mask = GFP_KERNEL; 583 584 /* Do not post a warning if there are only a few requests */ 585 if (pending < RX_PENDING_WATERMARK) 586 gfp_mask |= __GFP_NOWARN; 587 588 for (i = 0; i < RX_CLAIM_REQ_ALLOC;) { 589 struct iwl_rx_mem_buffer *rxb; 590 struct page *page; 591 592 /* List should never be empty - each reused RBD is 593 * returned to the list, and initial pool covers any 594 * possible gap between the time the page is allocated 595 * to the time the RBD is added. 596 */ 597 BUG_ON(list_empty(&local_empty)); 598 /* Get the first rxb from the rbd list */ 599 rxb = list_first_entry(&local_empty, 600 struct iwl_rx_mem_buffer, list); 601 BUG_ON(rxb->page); 602 603 /* Alloc a new receive buffer */ 604 page = iwl_pcie_rx_alloc_page(trans, &rxb->offset, 605 gfp_mask); 606 if (!page) 607 continue; 608 rxb->page = page; 609 610 /* Get physical address of the RB */ 611 rxb->page_dma = dma_map_page(trans->dev, page, 612 rxb->offset, 613 trans_pcie->rx_buf_bytes, 614 DMA_FROM_DEVICE); 615 if (dma_mapping_error(trans->dev, rxb->page_dma)) { 616 rxb->page = NULL; 617 __free_pages(page, trans_pcie->rx_page_order); 618 continue; 619 } 620 621 /* move the allocated entry to the out list */ 622 list_move(&rxb->list, &local_allocated); 623 i++; 624 } 625 626 atomic_dec(&rba->req_pending); 627 pending--; 628 629 if (!pending) { 630 pending = atomic_read(&rba->req_pending); 631 if (pending) 632 IWL_DEBUG_TPT(trans, 633 "Got more pending allocation requests = %d\n", 634 pending); 635 } 636 637 spin_lock(&rba->lock); 638 /* add the allocated rbds to the allocator allocated list */ 639 list_splice_tail(&local_allocated, &rba->rbd_allocated); 640 /* get more empty RBDs for current pending requests */ 641 list_splice_tail_init(&rba->rbd_empty, &local_empty); 642 spin_unlock(&rba->lock); 643 644 atomic_inc(&rba->req_ready); 645 646 } 647 648 spin_lock(&rba->lock); 649 /* return unused rbds to the allocator empty list */ 650 list_splice_tail(&local_empty, &rba->rbd_empty); 651 spin_unlock(&rba->lock); 652 653 IWL_DEBUG_TPT(trans, "%s, exit.\n", __func__); 654 } 655 656 /* 657 * iwl_pcie_rx_allocator_get - returns the pre-allocated pages 658 .* 659 .* Called by queue when the queue posted allocation request and 660 * has freed 8 RBDs in order to restock itself. 661 * This function directly moves the allocated RBs to the queue's ownership 662 * and updates the relevant counters. 663 */ 664 static void iwl_pcie_rx_allocator_get(struct iwl_trans *trans, 665 struct iwl_rxq *rxq) 666 { 667 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 668 struct iwl_rb_allocator *rba = &trans_pcie->rba; 669 int i; 670 671 lockdep_assert_held(&rxq->lock); 672 673 /* 674 * atomic_dec_if_positive returns req_ready - 1 for any scenario. 675 * If req_ready is 0 atomic_dec_if_positive will return -1 and this 676 * function will return early, as there are no ready requests. 677 * atomic_dec_if_positive will perofrm the *actual* decrement only if 678 * req_ready > 0, i.e. - there are ready requests and the function 679 * hands one request to the caller. 680 */ 681 if (atomic_dec_if_positive(&rba->req_ready) < 0) 682 return; 683 684 spin_lock(&rba->lock); 685 for (i = 0; i < RX_CLAIM_REQ_ALLOC; i++) { 686 /* Get next free Rx buffer, remove it from free list */ 687 struct iwl_rx_mem_buffer *rxb = 688 list_first_entry(&rba->rbd_allocated, 689 struct iwl_rx_mem_buffer, list); 690 691 list_move(&rxb->list, &rxq->rx_free); 692 } 693 spin_unlock(&rba->lock); 694 695 rxq->used_count -= RX_CLAIM_REQ_ALLOC; 696 rxq->free_count += RX_CLAIM_REQ_ALLOC; 697 } 698 699 void iwl_pcie_rx_allocator_work(struct work_struct *data) 700 { 701 struct iwl_rb_allocator *rba_p = 702 container_of(data, struct iwl_rb_allocator, rx_alloc); 703 struct iwl_trans_pcie *trans_pcie = 704 container_of(rba_p, struct iwl_trans_pcie, rba); 705 706 iwl_pcie_rx_allocator(trans_pcie->trans); 707 } 708 709 static int iwl_pcie_free_bd_size(struct iwl_trans *trans, bool use_rx_td) 710 { 711 struct iwl_rx_transfer_desc *rx_td; 712 713 if (use_rx_td) 714 return sizeof(*rx_td); 715 else 716 return trans->trans_cfg->mq_rx_supported ? sizeof(__le64) : 717 sizeof(__le32); 718 } 719 720 static void iwl_pcie_free_rxq_dma(struct iwl_trans *trans, 721 struct iwl_rxq *rxq) 722 { 723 struct device *dev = trans->dev; 724 bool use_rx_td = (trans->trans_cfg->device_family >= 725 IWL_DEVICE_FAMILY_AX210); 726 int free_size = iwl_pcie_free_bd_size(trans, use_rx_td); 727 728 if (rxq->bd) 729 dma_free_coherent(trans->dev, 730 free_size * rxq->queue_size, 731 rxq->bd, rxq->bd_dma); 732 rxq->bd_dma = 0; 733 rxq->bd = NULL; 734 735 rxq->rb_stts_dma = 0; 736 rxq->rb_stts = NULL; 737 738 if (rxq->used_bd) 739 dma_free_coherent(trans->dev, 740 (use_rx_td ? sizeof(*rxq->cd) : 741 sizeof(__le32)) * rxq->queue_size, 742 rxq->used_bd, rxq->used_bd_dma); 743 rxq->used_bd_dma = 0; 744 rxq->used_bd = NULL; 745 746 if (trans->trans_cfg->device_family < IWL_DEVICE_FAMILY_AX210) 747 return; 748 749 if (rxq->tr_tail) 750 dma_free_coherent(dev, sizeof(__le16), 751 rxq->tr_tail, rxq->tr_tail_dma); 752 rxq->tr_tail_dma = 0; 753 rxq->tr_tail = NULL; 754 755 if (rxq->cr_tail) 756 dma_free_coherent(dev, sizeof(__le16), 757 rxq->cr_tail, rxq->cr_tail_dma); 758 rxq->cr_tail_dma = 0; 759 rxq->cr_tail = NULL; 760 } 761 762 static int iwl_pcie_alloc_rxq_dma(struct iwl_trans *trans, 763 struct iwl_rxq *rxq) 764 { 765 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 766 struct device *dev = trans->dev; 767 int i; 768 int free_size; 769 bool use_rx_td = (trans->trans_cfg->device_family >= 770 IWL_DEVICE_FAMILY_AX210); 771 size_t rb_stts_size = use_rx_td ? sizeof(__le16) : 772 sizeof(struct iwl_rb_status); 773 774 spin_lock_init(&rxq->lock); 775 if (trans->trans_cfg->mq_rx_supported) 776 rxq->queue_size = trans->cfg->num_rbds; 777 else 778 rxq->queue_size = RX_QUEUE_SIZE; 779 780 free_size = iwl_pcie_free_bd_size(trans, use_rx_td); 781 782 /* 783 * Allocate the circular buffer of Read Buffer Descriptors 784 * (RBDs) 785 */ 786 rxq->bd = dma_alloc_coherent(dev, free_size * rxq->queue_size, 787 &rxq->bd_dma, GFP_KERNEL); 788 if (!rxq->bd) 789 goto err; 790 791 if (trans->trans_cfg->mq_rx_supported) { 792 rxq->used_bd = dma_alloc_coherent(dev, 793 (use_rx_td ? sizeof(*rxq->cd) : sizeof(__le32)) * rxq->queue_size, 794 &rxq->used_bd_dma, 795 GFP_KERNEL); 796 if (!rxq->used_bd) 797 goto err; 798 } 799 800 rxq->rb_stts = trans_pcie->base_rb_stts + rxq->id * rb_stts_size; 801 rxq->rb_stts_dma = 802 trans_pcie->base_rb_stts_dma + rxq->id * rb_stts_size; 803 804 if (!use_rx_td) 805 return 0; 806 807 /* Allocate the driver's pointer to TR tail */ 808 rxq->tr_tail = dma_alloc_coherent(dev, sizeof(__le16), 809 &rxq->tr_tail_dma, GFP_KERNEL); 810 if (!rxq->tr_tail) 811 goto err; 812 813 /* Allocate the driver's pointer to CR tail */ 814 rxq->cr_tail = dma_alloc_coherent(dev, sizeof(__le16), 815 &rxq->cr_tail_dma, GFP_KERNEL); 816 if (!rxq->cr_tail) 817 goto err; 818 819 return 0; 820 821 err: 822 for (i = 0; i < trans->num_rx_queues; i++) { 823 struct iwl_rxq *rxq = &trans_pcie->rxq[i]; 824 825 iwl_pcie_free_rxq_dma(trans, rxq); 826 } 827 828 return -ENOMEM; 829 } 830 831 static int iwl_pcie_rx_alloc(struct iwl_trans *trans) 832 { 833 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 834 struct iwl_rb_allocator *rba = &trans_pcie->rba; 835 int i, ret; 836 size_t rb_stts_size = trans->trans_cfg->device_family >= 837 IWL_DEVICE_FAMILY_AX210 ? 838 sizeof(__le16) : sizeof(struct iwl_rb_status); 839 840 if (WARN_ON(trans_pcie->rxq)) 841 return -EINVAL; 842 843 trans_pcie->rxq = kcalloc(trans->num_rx_queues, sizeof(struct iwl_rxq), 844 GFP_KERNEL); 845 trans_pcie->rx_pool = kcalloc(RX_POOL_SIZE(trans_pcie->num_rx_bufs), 846 sizeof(trans_pcie->rx_pool[0]), 847 GFP_KERNEL); 848 trans_pcie->global_table = 849 kcalloc(RX_POOL_SIZE(trans_pcie->num_rx_bufs), 850 sizeof(trans_pcie->global_table[0]), 851 GFP_KERNEL); 852 if (!trans_pcie->rxq || !trans_pcie->rx_pool || 853 !trans_pcie->global_table) { 854 ret = -ENOMEM; 855 goto err; 856 } 857 858 spin_lock_init(&rba->lock); 859 860 /* 861 * Allocate the driver's pointer to receive buffer status. 862 * Allocate for all queues continuously (HW requirement). 863 */ 864 trans_pcie->base_rb_stts = 865 dma_alloc_coherent(trans->dev, 866 rb_stts_size * trans->num_rx_queues, 867 &trans_pcie->base_rb_stts_dma, 868 GFP_KERNEL); 869 if (!trans_pcie->base_rb_stts) { 870 ret = -ENOMEM; 871 goto err; 872 } 873 874 for (i = 0; i < trans->num_rx_queues; i++) { 875 struct iwl_rxq *rxq = &trans_pcie->rxq[i]; 876 877 rxq->id = i; 878 ret = iwl_pcie_alloc_rxq_dma(trans, rxq); 879 if (ret) 880 goto err; 881 } 882 return 0; 883 884 err: 885 if (trans_pcie->base_rb_stts) { 886 dma_free_coherent(trans->dev, 887 rb_stts_size * trans->num_rx_queues, 888 trans_pcie->base_rb_stts, 889 trans_pcie->base_rb_stts_dma); 890 trans_pcie->base_rb_stts = NULL; 891 trans_pcie->base_rb_stts_dma = 0; 892 } 893 kfree(trans_pcie->rx_pool); 894 kfree(trans_pcie->global_table); 895 kfree(trans_pcie->rxq); 896 897 return ret; 898 } 899 900 static void iwl_pcie_rx_hw_init(struct iwl_trans *trans, struct iwl_rxq *rxq) 901 { 902 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 903 u32 rb_size; 904 unsigned long flags; 905 const u32 rfdnlog = RX_QUEUE_SIZE_LOG; /* 256 RBDs */ 906 907 switch (trans_pcie->rx_buf_size) { 908 case IWL_AMSDU_4K: 909 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K; 910 break; 911 case IWL_AMSDU_8K: 912 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_8K; 913 break; 914 case IWL_AMSDU_12K: 915 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_12K; 916 break; 917 default: 918 WARN_ON(1); 919 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K; 920 } 921 922 if (!iwl_trans_grab_nic_access(trans, &flags)) 923 return; 924 925 /* Stop Rx DMA */ 926 iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0); 927 /* reset and flush pointers */ 928 iwl_write32(trans, FH_MEM_RCSR_CHNL0_RBDCB_WPTR, 0); 929 iwl_write32(trans, FH_MEM_RCSR_CHNL0_FLUSH_RB_REQ, 0); 930 iwl_write32(trans, FH_RSCSR_CHNL0_RDPTR, 0); 931 932 /* Reset driver's Rx queue write index */ 933 iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0); 934 935 /* Tell device where to find RBD circular buffer in DRAM */ 936 iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_BASE_REG, 937 (u32)(rxq->bd_dma >> 8)); 938 939 /* Tell device where in DRAM to update its Rx status */ 940 iwl_write32(trans, FH_RSCSR_CHNL0_STTS_WPTR_REG, 941 rxq->rb_stts_dma >> 4); 942 943 /* Enable Rx DMA 944 * FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY is set because of HW bug in 945 * the credit mechanism in 5000 HW RX FIFO 946 * Direct rx interrupts to hosts 947 * Rx buffer size 4 or 8k or 12k 948 * RB timeout 0x10 949 * 256 RBDs 950 */ 951 iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 952 FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL | 953 FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY | 954 FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL | 955 rb_size | 956 (RX_RB_TIMEOUT << FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS) | 957 (rfdnlog << FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS)); 958 959 iwl_trans_release_nic_access(trans, &flags); 960 961 /* Set interrupt coalescing timer to default (2048 usecs) */ 962 iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF); 963 964 /* W/A for interrupt coalescing bug in 7260 and 3160 */ 965 if (trans->cfg->host_interrupt_operation_mode) 966 iwl_set_bit(trans, CSR_INT_COALESCING, IWL_HOST_INT_OPER_MODE); 967 } 968 969 static void iwl_pcie_rx_mq_hw_init(struct iwl_trans *trans) 970 { 971 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 972 u32 rb_size, enabled = 0; 973 unsigned long flags; 974 int i; 975 976 switch (trans_pcie->rx_buf_size) { 977 case IWL_AMSDU_2K: 978 rb_size = RFH_RXF_DMA_RB_SIZE_2K; 979 break; 980 case IWL_AMSDU_4K: 981 rb_size = RFH_RXF_DMA_RB_SIZE_4K; 982 break; 983 case IWL_AMSDU_8K: 984 rb_size = RFH_RXF_DMA_RB_SIZE_8K; 985 break; 986 case IWL_AMSDU_12K: 987 rb_size = RFH_RXF_DMA_RB_SIZE_12K; 988 break; 989 default: 990 WARN_ON(1); 991 rb_size = RFH_RXF_DMA_RB_SIZE_4K; 992 } 993 994 if (!iwl_trans_grab_nic_access(trans, &flags)) 995 return; 996 997 /* Stop Rx DMA */ 998 iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG, 0); 999 /* disable free amd used rx queue operation */ 1000 iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, 0); 1001 1002 for (i = 0; i < trans->num_rx_queues; i++) { 1003 /* Tell device where to find RBD free table in DRAM */ 1004 iwl_write_prph64_no_grab(trans, 1005 RFH_Q_FRBDCB_BA_LSB(i), 1006 trans_pcie->rxq[i].bd_dma); 1007 /* Tell device where to find RBD used table in DRAM */ 1008 iwl_write_prph64_no_grab(trans, 1009 RFH_Q_URBDCB_BA_LSB(i), 1010 trans_pcie->rxq[i].used_bd_dma); 1011 /* Tell device where in DRAM to update its Rx status */ 1012 iwl_write_prph64_no_grab(trans, 1013 RFH_Q_URBD_STTS_WPTR_LSB(i), 1014 trans_pcie->rxq[i].rb_stts_dma); 1015 /* Reset device indice tables */ 1016 iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_WIDX(i), 0); 1017 iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_RIDX(i), 0); 1018 iwl_write_prph_no_grab(trans, RFH_Q_URBDCB_WIDX(i), 0); 1019 1020 enabled |= BIT(i) | BIT(i + 16); 1021 } 1022 1023 /* 1024 * Enable Rx DMA 1025 * Rx buffer size 4 or 8k or 12k 1026 * Min RB size 4 or 8 1027 * Drop frames that exceed RB size 1028 * 512 RBDs 1029 */ 1030 iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG, 1031 RFH_DMA_EN_ENABLE_VAL | rb_size | 1032 RFH_RXF_DMA_MIN_RB_4_8 | 1033 RFH_RXF_DMA_DROP_TOO_LARGE_MASK | 1034 RFH_RXF_DMA_RBDCB_SIZE_512); 1035 1036 /* 1037 * Activate DMA snooping. 1038 * Set RX DMA chunk size to 64B for IOSF and 128B for PCIe 1039 * Default queue is 0 1040 */ 1041 iwl_write_prph_no_grab(trans, RFH_GEN_CFG, 1042 RFH_GEN_CFG_RFH_DMA_SNOOP | 1043 RFH_GEN_CFG_VAL(DEFAULT_RXQ_NUM, 0) | 1044 RFH_GEN_CFG_SERVICE_DMA_SNOOP | 1045 RFH_GEN_CFG_VAL(RB_CHUNK_SIZE, 1046 trans->cfg->integrated ? 1047 RFH_GEN_CFG_RB_CHUNK_SIZE_64 : 1048 RFH_GEN_CFG_RB_CHUNK_SIZE_128)); 1049 /* Enable the relevant rx queues */ 1050 iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, enabled); 1051 1052 iwl_trans_release_nic_access(trans, &flags); 1053 1054 /* Set interrupt coalescing timer to default (2048 usecs) */ 1055 iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF); 1056 } 1057 1058 void iwl_pcie_rx_init_rxb_lists(struct iwl_rxq *rxq) 1059 { 1060 lockdep_assert_held(&rxq->lock); 1061 1062 INIT_LIST_HEAD(&rxq->rx_free); 1063 INIT_LIST_HEAD(&rxq->rx_used); 1064 rxq->free_count = 0; 1065 rxq->used_count = 0; 1066 } 1067 1068 int iwl_pcie_dummy_napi_poll(struct napi_struct *napi, int budget) 1069 { 1070 WARN_ON(1); 1071 return 0; 1072 } 1073 1074 static int _iwl_pcie_rx_init(struct iwl_trans *trans) 1075 { 1076 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1077 struct iwl_rxq *def_rxq; 1078 struct iwl_rb_allocator *rba = &trans_pcie->rba; 1079 int i, err, queue_size, allocator_pool_size, num_alloc; 1080 1081 if (!trans_pcie->rxq) { 1082 err = iwl_pcie_rx_alloc(trans); 1083 if (err) 1084 return err; 1085 } 1086 def_rxq = trans_pcie->rxq; 1087 1088 cancel_work_sync(&rba->rx_alloc); 1089 1090 spin_lock(&rba->lock); 1091 atomic_set(&rba->req_pending, 0); 1092 atomic_set(&rba->req_ready, 0); 1093 INIT_LIST_HEAD(&rba->rbd_allocated); 1094 INIT_LIST_HEAD(&rba->rbd_empty); 1095 spin_unlock(&rba->lock); 1096 1097 /* free all first - we might be reconfigured for a different size */ 1098 iwl_pcie_free_rbs_pool(trans); 1099 1100 for (i = 0; i < RX_QUEUE_SIZE; i++) 1101 def_rxq->queue[i] = NULL; 1102 1103 for (i = 0; i < trans->num_rx_queues; i++) { 1104 struct iwl_rxq *rxq = &trans_pcie->rxq[i]; 1105 1106 spin_lock(&rxq->lock); 1107 /* 1108 * Set read write pointer to reflect that we have processed 1109 * and used all buffers, but have not restocked the Rx queue 1110 * with fresh buffers 1111 */ 1112 rxq->read = 0; 1113 rxq->write = 0; 1114 rxq->write_actual = 0; 1115 memset(rxq->rb_stts, 0, 1116 (trans->trans_cfg->device_family >= 1117 IWL_DEVICE_FAMILY_AX210) ? 1118 sizeof(__le16) : sizeof(struct iwl_rb_status)); 1119 1120 iwl_pcie_rx_init_rxb_lists(rxq); 1121 1122 if (!rxq->napi.poll) 1123 netif_napi_add(&trans_pcie->napi_dev, &rxq->napi, 1124 iwl_pcie_dummy_napi_poll, 64); 1125 1126 spin_unlock(&rxq->lock); 1127 } 1128 1129 /* move the pool to the default queue and allocator ownerships */ 1130 queue_size = trans->trans_cfg->mq_rx_supported ? 1131 trans_pcie->num_rx_bufs - 1 : RX_QUEUE_SIZE; 1132 allocator_pool_size = trans->num_rx_queues * 1133 (RX_CLAIM_REQ_ALLOC - RX_POST_REQ_ALLOC); 1134 num_alloc = queue_size + allocator_pool_size; 1135 1136 for (i = 0; i < num_alloc; i++) { 1137 struct iwl_rx_mem_buffer *rxb = &trans_pcie->rx_pool[i]; 1138 1139 if (i < allocator_pool_size) 1140 list_add(&rxb->list, &rba->rbd_empty); 1141 else 1142 list_add(&rxb->list, &def_rxq->rx_used); 1143 trans_pcie->global_table[i] = rxb; 1144 rxb->vid = (u16)(i + 1); 1145 rxb->invalid = true; 1146 } 1147 1148 iwl_pcie_rxq_alloc_rbs(trans, GFP_KERNEL, def_rxq); 1149 1150 return 0; 1151 } 1152 1153 int iwl_pcie_rx_init(struct iwl_trans *trans) 1154 { 1155 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1156 int ret = _iwl_pcie_rx_init(trans); 1157 1158 if (ret) 1159 return ret; 1160 1161 if (trans->trans_cfg->mq_rx_supported) 1162 iwl_pcie_rx_mq_hw_init(trans); 1163 else 1164 iwl_pcie_rx_hw_init(trans, trans_pcie->rxq); 1165 1166 iwl_pcie_rxq_restock(trans, trans_pcie->rxq); 1167 1168 spin_lock(&trans_pcie->rxq->lock); 1169 iwl_pcie_rxq_inc_wr_ptr(trans, trans_pcie->rxq); 1170 spin_unlock(&trans_pcie->rxq->lock); 1171 1172 return 0; 1173 } 1174 1175 int iwl_pcie_gen2_rx_init(struct iwl_trans *trans) 1176 { 1177 /* Set interrupt coalescing timer to default (2048 usecs) */ 1178 iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF); 1179 1180 /* 1181 * We don't configure the RFH. 1182 * Restock will be done at alive, after firmware configured the RFH. 1183 */ 1184 return _iwl_pcie_rx_init(trans); 1185 } 1186 1187 void iwl_pcie_rx_free(struct iwl_trans *trans) 1188 { 1189 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1190 struct iwl_rb_allocator *rba = &trans_pcie->rba; 1191 int i; 1192 size_t rb_stts_size = trans->trans_cfg->device_family >= 1193 IWL_DEVICE_FAMILY_AX210 ? 1194 sizeof(__le16) : sizeof(struct iwl_rb_status); 1195 1196 /* 1197 * if rxq is NULL, it means that nothing has been allocated, 1198 * exit now 1199 */ 1200 if (!trans_pcie->rxq) { 1201 IWL_DEBUG_INFO(trans, "Free NULL rx context\n"); 1202 return; 1203 } 1204 1205 cancel_work_sync(&rba->rx_alloc); 1206 1207 iwl_pcie_free_rbs_pool(trans); 1208 1209 if (trans_pcie->base_rb_stts) { 1210 dma_free_coherent(trans->dev, 1211 rb_stts_size * trans->num_rx_queues, 1212 trans_pcie->base_rb_stts, 1213 trans_pcie->base_rb_stts_dma); 1214 trans_pcie->base_rb_stts = NULL; 1215 trans_pcie->base_rb_stts_dma = 0; 1216 } 1217 1218 for (i = 0; i < trans->num_rx_queues; i++) { 1219 struct iwl_rxq *rxq = &trans_pcie->rxq[i]; 1220 1221 iwl_pcie_free_rxq_dma(trans, rxq); 1222 1223 if (rxq->napi.poll) 1224 netif_napi_del(&rxq->napi); 1225 } 1226 kfree(trans_pcie->rx_pool); 1227 kfree(trans_pcie->global_table); 1228 kfree(trans_pcie->rxq); 1229 1230 if (trans_pcie->alloc_page) 1231 __free_pages(trans_pcie->alloc_page, trans_pcie->rx_page_order); 1232 } 1233 1234 static void iwl_pcie_rx_move_to_allocator(struct iwl_rxq *rxq, 1235 struct iwl_rb_allocator *rba) 1236 { 1237 spin_lock(&rba->lock); 1238 list_splice_tail_init(&rxq->rx_used, &rba->rbd_empty); 1239 spin_unlock(&rba->lock); 1240 } 1241 1242 /* 1243 * iwl_pcie_rx_reuse_rbd - Recycle used RBDs 1244 * 1245 * Called when a RBD can be reused. The RBD is transferred to the allocator. 1246 * When there are 2 empty RBDs - a request for allocation is posted 1247 */ 1248 static void iwl_pcie_rx_reuse_rbd(struct iwl_trans *trans, 1249 struct iwl_rx_mem_buffer *rxb, 1250 struct iwl_rxq *rxq, bool emergency) 1251 { 1252 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1253 struct iwl_rb_allocator *rba = &trans_pcie->rba; 1254 1255 /* Move the RBD to the used list, will be moved to allocator in batches 1256 * before claiming or posting a request*/ 1257 list_add_tail(&rxb->list, &rxq->rx_used); 1258 1259 if (unlikely(emergency)) 1260 return; 1261 1262 /* Count the allocator owned RBDs */ 1263 rxq->used_count++; 1264 1265 /* If we have RX_POST_REQ_ALLOC new released rx buffers - 1266 * issue a request for allocator. Modulo RX_CLAIM_REQ_ALLOC is 1267 * used for the case we failed to claim RX_CLAIM_REQ_ALLOC, 1268 * after but we still need to post another request. 1269 */ 1270 if ((rxq->used_count % RX_CLAIM_REQ_ALLOC) == RX_POST_REQ_ALLOC) { 1271 /* Move the 2 RBDs to the allocator ownership. 1272 Allocator has another 6 from pool for the request completion*/ 1273 iwl_pcie_rx_move_to_allocator(rxq, rba); 1274 1275 atomic_inc(&rba->req_pending); 1276 queue_work(rba->alloc_wq, &rba->rx_alloc); 1277 } 1278 } 1279 1280 static void iwl_pcie_rx_handle_rb(struct iwl_trans *trans, 1281 struct iwl_rxq *rxq, 1282 struct iwl_rx_mem_buffer *rxb, 1283 bool emergency, 1284 int i) 1285 { 1286 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1287 struct iwl_txq *txq = trans_pcie->txq[trans_pcie->cmd_queue]; 1288 bool page_stolen = false; 1289 int max_len = trans_pcie->rx_buf_bytes; 1290 u32 offset = 0; 1291 1292 if (WARN_ON(!rxb)) 1293 return; 1294 1295 dma_unmap_page(trans->dev, rxb->page_dma, max_len, DMA_FROM_DEVICE); 1296 1297 while (offset + sizeof(u32) + sizeof(struct iwl_cmd_header) < max_len) { 1298 struct iwl_rx_packet *pkt; 1299 u16 sequence; 1300 bool reclaim; 1301 int index, cmd_index, len; 1302 struct iwl_rx_cmd_buffer rxcb = { 1303 ._offset = rxb->offset + offset, 1304 ._rx_page_order = trans_pcie->rx_page_order, 1305 ._page = rxb->page, 1306 ._page_stolen = false, 1307 .truesize = max_len, 1308 }; 1309 1310 pkt = rxb_addr(&rxcb); 1311 1312 if (pkt->len_n_flags == cpu_to_le32(FH_RSCSR_FRAME_INVALID)) { 1313 IWL_DEBUG_RX(trans, 1314 "Q %d: RB end marker at offset %d\n", 1315 rxq->id, offset); 1316 break; 1317 } 1318 1319 WARN((le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_RXQ_MASK) >> 1320 FH_RSCSR_RXQ_POS != rxq->id, 1321 "frame on invalid queue - is on %d and indicates %d\n", 1322 rxq->id, 1323 (le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_RXQ_MASK) >> 1324 FH_RSCSR_RXQ_POS); 1325 1326 IWL_DEBUG_RX(trans, 1327 "Q %d: cmd at offset %d: %s (%.2x.%2x, seq 0x%x)\n", 1328 rxq->id, offset, 1329 iwl_get_cmd_string(trans, 1330 iwl_cmd_id(pkt->hdr.cmd, 1331 pkt->hdr.group_id, 1332 0)), 1333 pkt->hdr.group_id, pkt->hdr.cmd, 1334 le16_to_cpu(pkt->hdr.sequence)); 1335 1336 len = iwl_rx_packet_len(pkt); 1337 len += sizeof(u32); /* account for status word */ 1338 trace_iwlwifi_dev_rx(trans->dev, trans, pkt, len); 1339 trace_iwlwifi_dev_rx_data(trans->dev, trans, pkt, len); 1340 1341 /* Reclaim a command buffer only if this packet is a response 1342 * to a (driver-originated) command. 1343 * If the packet (e.g. Rx frame) originated from uCode, 1344 * there is no command buffer to reclaim. 1345 * Ucode should set SEQ_RX_FRAME bit if ucode-originated, 1346 * but apparently a few don't get set; catch them here. */ 1347 reclaim = !(pkt->hdr.sequence & SEQ_RX_FRAME); 1348 if (reclaim && !pkt->hdr.group_id) { 1349 int i; 1350 1351 for (i = 0; i < trans_pcie->n_no_reclaim_cmds; i++) { 1352 if (trans_pcie->no_reclaim_cmds[i] == 1353 pkt->hdr.cmd) { 1354 reclaim = false; 1355 break; 1356 } 1357 } 1358 } 1359 1360 sequence = le16_to_cpu(pkt->hdr.sequence); 1361 index = SEQ_TO_INDEX(sequence); 1362 cmd_index = iwl_pcie_get_cmd_index(txq, index); 1363 1364 if (rxq->id == trans_pcie->def_rx_queue) 1365 iwl_op_mode_rx(trans->op_mode, &rxq->napi, 1366 &rxcb); 1367 else 1368 iwl_op_mode_rx_rss(trans->op_mode, &rxq->napi, 1369 &rxcb, rxq->id); 1370 1371 if (reclaim) { 1372 kzfree(txq->entries[cmd_index].free_buf); 1373 txq->entries[cmd_index].free_buf = NULL; 1374 } 1375 1376 /* 1377 * After here, we should always check rxcb._page_stolen, 1378 * if it is true then one of the handlers took the page. 1379 */ 1380 1381 if (reclaim) { 1382 /* Invoke any callbacks, transfer the buffer to caller, 1383 * and fire off the (possibly) blocking 1384 * iwl_trans_send_cmd() 1385 * as we reclaim the driver command queue */ 1386 if (!rxcb._page_stolen) 1387 iwl_pcie_hcmd_complete(trans, &rxcb); 1388 else 1389 IWL_WARN(trans, "Claim null rxb?\n"); 1390 } 1391 1392 page_stolen |= rxcb._page_stolen; 1393 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) 1394 break; 1395 offset += ALIGN(len, FH_RSCSR_FRAME_ALIGN); 1396 } 1397 1398 /* page was stolen from us -- free our reference */ 1399 if (page_stolen) { 1400 __free_pages(rxb->page, trans_pcie->rx_page_order); 1401 rxb->page = NULL; 1402 } 1403 1404 /* Reuse the page if possible. For notification packets and 1405 * SKBs that fail to Rx correctly, add them back into the 1406 * rx_free list for reuse later. */ 1407 if (rxb->page != NULL) { 1408 rxb->page_dma = 1409 dma_map_page(trans->dev, rxb->page, rxb->offset, 1410 trans_pcie->rx_buf_bytes, 1411 DMA_FROM_DEVICE); 1412 if (dma_mapping_error(trans->dev, rxb->page_dma)) { 1413 /* 1414 * free the page(s) as well to not break 1415 * the invariant that the items on the used 1416 * list have no page(s) 1417 */ 1418 __free_pages(rxb->page, trans_pcie->rx_page_order); 1419 rxb->page = NULL; 1420 iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency); 1421 } else { 1422 list_add_tail(&rxb->list, &rxq->rx_free); 1423 rxq->free_count++; 1424 } 1425 } else 1426 iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency); 1427 } 1428 1429 static struct iwl_rx_mem_buffer *iwl_pcie_get_rxb(struct iwl_trans *trans, 1430 struct iwl_rxq *rxq, int i) 1431 { 1432 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1433 struct iwl_rx_mem_buffer *rxb; 1434 u16 vid; 1435 1436 BUILD_BUG_ON(sizeof(struct iwl_rx_completion_desc) != 32); 1437 1438 if (!trans->trans_cfg->mq_rx_supported) { 1439 rxb = rxq->queue[i]; 1440 rxq->queue[i] = NULL; 1441 return rxb; 1442 } 1443 1444 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) 1445 vid = le16_to_cpu(rxq->cd[i].rbid); 1446 else 1447 vid = le32_to_cpu(rxq->bd_32[i]) & 0x0FFF; /* 12-bit VID */ 1448 1449 if (!vid || vid > RX_POOL_SIZE(trans_pcie->num_rx_bufs)) 1450 goto out_err; 1451 1452 rxb = trans_pcie->global_table[vid - 1]; 1453 if (rxb->invalid) 1454 goto out_err; 1455 1456 IWL_DEBUG_RX(trans, "Got virtual RB ID %u\n", (u32)rxb->vid); 1457 1458 rxb->invalid = true; 1459 1460 return rxb; 1461 1462 out_err: 1463 WARN(1, "Invalid rxb from HW %u\n", (u32)vid); 1464 iwl_force_nmi(trans); 1465 return NULL; 1466 } 1467 1468 /* 1469 * iwl_pcie_rx_handle - Main entry function for receiving responses from fw 1470 */ 1471 static void iwl_pcie_rx_handle(struct iwl_trans *trans, int queue) 1472 { 1473 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1474 struct napi_struct *napi; 1475 struct iwl_rxq *rxq; 1476 u32 r, i, count = 0; 1477 bool emergency = false; 1478 1479 if (WARN_ON_ONCE(!trans_pcie->rxq || !trans_pcie->rxq[queue].bd)) 1480 return; 1481 1482 rxq = &trans_pcie->rxq[queue]; 1483 1484 restart: 1485 spin_lock(&rxq->lock); 1486 /* uCode's read index (stored in shared DRAM) indicates the last Rx 1487 * buffer that the driver may process (last buffer filled by ucode). */ 1488 r = le16_to_cpu(iwl_get_closed_rb_stts(trans, rxq)) & 0x0FFF; 1489 i = rxq->read; 1490 1491 /* W/A 9000 device step A0 wrap-around bug */ 1492 r &= (rxq->queue_size - 1); 1493 1494 /* Rx interrupt, but nothing sent from uCode */ 1495 if (i == r) 1496 IWL_DEBUG_RX(trans, "Q %d: HW = SW = %d\n", rxq->id, r); 1497 1498 while (i != r) { 1499 struct iwl_rb_allocator *rba = &trans_pcie->rba; 1500 struct iwl_rx_mem_buffer *rxb; 1501 /* number of RBDs still waiting for page allocation */ 1502 u32 rb_pending_alloc = 1503 atomic_read(&trans_pcie->rba.req_pending) * 1504 RX_CLAIM_REQ_ALLOC; 1505 1506 if (unlikely(rb_pending_alloc >= rxq->queue_size / 2 && 1507 !emergency)) { 1508 iwl_pcie_rx_move_to_allocator(rxq, rba); 1509 emergency = true; 1510 IWL_DEBUG_TPT(trans, 1511 "RX path is in emergency. Pending allocations %d\n", 1512 rb_pending_alloc); 1513 } 1514 1515 IWL_DEBUG_RX(trans, "Q %d: HW = %d, SW = %d\n", rxq->id, r, i); 1516 1517 rxb = iwl_pcie_get_rxb(trans, rxq, i); 1518 if (!rxb) 1519 goto out; 1520 1521 iwl_pcie_rx_handle_rb(trans, rxq, rxb, emergency, i); 1522 1523 i = (i + 1) & (rxq->queue_size - 1); 1524 1525 /* 1526 * If we have RX_CLAIM_REQ_ALLOC released rx buffers - 1527 * try to claim the pre-allocated buffers from the allocator. 1528 * If not ready - will try to reclaim next time. 1529 * There is no need to reschedule work - allocator exits only 1530 * on success 1531 */ 1532 if (rxq->used_count >= RX_CLAIM_REQ_ALLOC) 1533 iwl_pcie_rx_allocator_get(trans, rxq); 1534 1535 if (rxq->used_count % RX_CLAIM_REQ_ALLOC == 0 && !emergency) { 1536 /* Add the remaining empty RBDs for allocator use */ 1537 iwl_pcie_rx_move_to_allocator(rxq, rba); 1538 } else if (emergency) { 1539 count++; 1540 if (count == 8) { 1541 count = 0; 1542 if (rb_pending_alloc < rxq->queue_size / 3) { 1543 IWL_DEBUG_TPT(trans, 1544 "RX path exited emergency. Pending allocations %d\n", 1545 rb_pending_alloc); 1546 emergency = false; 1547 } 1548 1549 rxq->read = i; 1550 spin_unlock(&rxq->lock); 1551 iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq); 1552 iwl_pcie_rxq_restock(trans, rxq); 1553 goto restart; 1554 } 1555 } 1556 } 1557 out: 1558 /* Backtrack one entry */ 1559 rxq->read = i; 1560 /* update cr tail with the rxq read pointer */ 1561 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) 1562 *rxq->cr_tail = cpu_to_le16(r); 1563 spin_unlock(&rxq->lock); 1564 1565 /* 1566 * handle a case where in emergency there are some unallocated RBDs. 1567 * those RBDs are in the used list, but are not tracked by the queue's 1568 * used_count which counts allocator owned RBDs. 1569 * unallocated emergency RBDs must be allocated on exit, otherwise 1570 * when called again the function may not be in emergency mode and 1571 * they will be handed to the allocator with no tracking in the RBD 1572 * allocator counters, which will lead to them never being claimed back 1573 * by the queue. 1574 * by allocating them here, they are now in the queue free list, and 1575 * will be restocked by the next call of iwl_pcie_rxq_restock. 1576 */ 1577 if (unlikely(emergency && count)) 1578 iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq); 1579 1580 napi = &rxq->napi; 1581 if (napi->poll) { 1582 napi_gro_flush(napi, false); 1583 1584 if (napi->rx_count) { 1585 netif_receive_skb_list(&napi->rx_list); 1586 INIT_LIST_HEAD(&napi->rx_list); 1587 napi->rx_count = 0; 1588 } 1589 } 1590 1591 iwl_pcie_rxq_restock(trans, rxq); 1592 } 1593 1594 static struct iwl_trans_pcie *iwl_pcie_get_trans_pcie(struct msix_entry *entry) 1595 { 1596 u8 queue = entry->entry; 1597 struct msix_entry *entries = entry - queue; 1598 1599 return container_of(entries, struct iwl_trans_pcie, msix_entries[0]); 1600 } 1601 1602 /* 1603 * iwl_pcie_rx_msix_handle - Main entry function for receiving responses from fw 1604 * This interrupt handler should be used with RSS queue only. 1605 */ 1606 irqreturn_t iwl_pcie_irq_rx_msix_handler(int irq, void *dev_id) 1607 { 1608 struct msix_entry *entry = dev_id; 1609 struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry); 1610 struct iwl_trans *trans = trans_pcie->trans; 1611 1612 trace_iwlwifi_dev_irq_msix(trans->dev, entry, false, 0, 0); 1613 1614 if (WARN_ON(entry->entry >= trans->num_rx_queues)) 1615 return IRQ_NONE; 1616 1617 lock_map_acquire(&trans->sync_cmd_lockdep_map); 1618 1619 local_bh_disable(); 1620 iwl_pcie_rx_handle(trans, entry->entry); 1621 local_bh_enable(); 1622 1623 iwl_pcie_clear_irq(trans, entry); 1624 1625 lock_map_release(&trans->sync_cmd_lockdep_map); 1626 1627 return IRQ_HANDLED; 1628 } 1629 1630 /* 1631 * iwl_pcie_irq_handle_error - called for HW or SW error interrupt from card 1632 */ 1633 static void iwl_pcie_irq_handle_error(struct iwl_trans *trans) 1634 { 1635 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1636 int i; 1637 1638 /* W/A for WiFi/WiMAX coex and WiMAX own the RF */ 1639 if (trans->cfg->internal_wimax_coex && 1640 !trans->cfg->apmg_not_supported && 1641 (!(iwl_read_prph(trans, APMG_CLK_CTRL_REG) & 1642 APMS_CLK_VAL_MRB_FUNC_MODE) || 1643 (iwl_read_prph(trans, APMG_PS_CTRL_REG) & 1644 APMG_PS_CTRL_VAL_RESET_REQ))) { 1645 clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status); 1646 iwl_op_mode_wimax_active(trans->op_mode); 1647 wake_up(&trans_pcie->wait_command_queue); 1648 return; 1649 } 1650 1651 for (i = 0; i < trans->trans_cfg->base_params->num_of_queues; i++) { 1652 if (!trans_pcie->txq[i]) 1653 continue; 1654 del_timer(&trans_pcie->txq[i]->stuck_timer); 1655 } 1656 1657 /* The STATUS_FW_ERROR bit is set in this function. This must happen 1658 * before we wake up the command caller, to ensure a proper cleanup. */ 1659 iwl_trans_fw_error(trans); 1660 1661 clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status); 1662 wake_up(&trans_pcie->wait_command_queue); 1663 } 1664 1665 static u32 iwl_pcie_int_cause_non_ict(struct iwl_trans *trans) 1666 { 1667 u32 inta; 1668 1669 lockdep_assert_held(&IWL_TRANS_GET_PCIE_TRANS(trans)->irq_lock); 1670 1671 trace_iwlwifi_dev_irq(trans->dev); 1672 1673 /* Discover which interrupts are active/pending */ 1674 inta = iwl_read32(trans, CSR_INT); 1675 1676 /* the thread will service interrupts and re-enable them */ 1677 return inta; 1678 } 1679 1680 /* a device (PCI-E) page is 4096 bytes long */ 1681 #define ICT_SHIFT 12 1682 #define ICT_SIZE (1 << ICT_SHIFT) 1683 #define ICT_COUNT (ICT_SIZE / sizeof(u32)) 1684 1685 /* interrupt handler using ict table, with this interrupt driver will 1686 * stop using INTA register to get device's interrupt, reading this register 1687 * is expensive, device will write interrupts in ICT dram table, increment 1688 * index then will fire interrupt to driver, driver will OR all ICT table 1689 * entries from current index up to table entry with 0 value. the result is 1690 * the interrupt we need to service, driver will set the entries back to 0 and 1691 * set index. 1692 */ 1693 static u32 iwl_pcie_int_cause_ict(struct iwl_trans *trans) 1694 { 1695 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1696 u32 inta; 1697 u32 val = 0; 1698 u32 read; 1699 1700 trace_iwlwifi_dev_irq(trans->dev); 1701 1702 /* Ignore interrupt if there's nothing in NIC to service. 1703 * This may be due to IRQ shared with another device, 1704 * or due to sporadic interrupts thrown from our NIC. */ 1705 read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]); 1706 trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index, read); 1707 if (!read) 1708 return 0; 1709 1710 /* 1711 * Collect all entries up to the first 0, starting from ict_index; 1712 * note we already read at ict_index. 1713 */ 1714 do { 1715 val |= read; 1716 IWL_DEBUG_ISR(trans, "ICT index %d value 0x%08X\n", 1717 trans_pcie->ict_index, read); 1718 trans_pcie->ict_tbl[trans_pcie->ict_index] = 0; 1719 trans_pcie->ict_index = 1720 ((trans_pcie->ict_index + 1) & (ICT_COUNT - 1)); 1721 1722 read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]); 1723 trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index, 1724 read); 1725 } while (read); 1726 1727 /* We should not get this value, just ignore it. */ 1728 if (val == 0xffffffff) 1729 val = 0; 1730 1731 /* 1732 * this is a w/a for a h/w bug. the h/w bug may cause the Rx bit 1733 * (bit 15 before shifting it to 31) to clear when using interrupt 1734 * coalescing. fortunately, bits 18 and 19 stay set when this happens 1735 * so we use them to decide on the real state of the Rx bit. 1736 * In order words, bit 15 is set if bit 18 or bit 19 are set. 1737 */ 1738 if (val & 0xC0000) 1739 val |= 0x8000; 1740 1741 inta = (0xff & val) | ((0xff00 & val) << 16); 1742 return inta; 1743 } 1744 1745 void iwl_pcie_handle_rfkill_irq(struct iwl_trans *trans) 1746 { 1747 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1748 struct isr_statistics *isr_stats = &trans_pcie->isr_stats; 1749 bool hw_rfkill, prev, report; 1750 1751 mutex_lock(&trans_pcie->mutex); 1752 prev = test_bit(STATUS_RFKILL_OPMODE, &trans->status); 1753 hw_rfkill = iwl_is_rfkill_set(trans); 1754 if (hw_rfkill) { 1755 set_bit(STATUS_RFKILL_OPMODE, &trans->status); 1756 set_bit(STATUS_RFKILL_HW, &trans->status); 1757 } 1758 if (trans_pcie->opmode_down) 1759 report = hw_rfkill; 1760 else 1761 report = test_bit(STATUS_RFKILL_OPMODE, &trans->status); 1762 1763 IWL_WARN(trans, "RF_KILL bit toggled to %s.\n", 1764 hw_rfkill ? "disable radio" : "enable radio"); 1765 1766 isr_stats->rfkill++; 1767 1768 if (prev != report) 1769 iwl_trans_pcie_rf_kill(trans, report); 1770 mutex_unlock(&trans_pcie->mutex); 1771 1772 if (hw_rfkill) { 1773 if (test_and_clear_bit(STATUS_SYNC_HCMD_ACTIVE, 1774 &trans->status)) 1775 IWL_DEBUG_RF_KILL(trans, 1776 "Rfkill while SYNC HCMD in flight\n"); 1777 wake_up(&trans_pcie->wait_command_queue); 1778 } else { 1779 clear_bit(STATUS_RFKILL_HW, &trans->status); 1780 if (trans_pcie->opmode_down) 1781 clear_bit(STATUS_RFKILL_OPMODE, &trans->status); 1782 } 1783 } 1784 1785 irqreturn_t iwl_pcie_irq_handler(int irq, void *dev_id) 1786 { 1787 struct iwl_trans *trans = dev_id; 1788 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1789 struct isr_statistics *isr_stats = &trans_pcie->isr_stats; 1790 u32 inta = 0; 1791 u32 handled = 0; 1792 1793 lock_map_acquire(&trans->sync_cmd_lockdep_map); 1794 1795 spin_lock(&trans_pcie->irq_lock); 1796 1797 /* dram interrupt table not set yet, 1798 * use legacy interrupt. 1799 */ 1800 if (likely(trans_pcie->use_ict)) 1801 inta = iwl_pcie_int_cause_ict(trans); 1802 else 1803 inta = iwl_pcie_int_cause_non_ict(trans); 1804 1805 if (iwl_have_debug_level(IWL_DL_ISR)) { 1806 IWL_DEBUG_ISR(trans, 1807 "ISR inta 0x%08x, enabled 0x%08x(sw), enabled(hw) 0x%08x, fh 0x%08x\n", 1808 inta, trans_pcie->inta_mask, 1809 iwl_read32(trans, CSR_INT_MASK), 1810 iwl_read32(trans, CSR_FH_INT_STATUS)); 1811 if (inta & (~trans_pcie->inta_mask)) 1812 IWL_DEBUG_ISR(trans, 1813 "We got a masked interrupt (0x%08x)\n", 1814 inta & (~trans_pcie->inta_mask)); 1815 } 1816 1817 inta &= trans_pcie->inta_mask; 1818 1819 /* 1820 * Ignore interrupt if there's nothing in NIC to service. 1821 * This may be due to IRQ shared with another device, 1822 * or due to sporadic interrupts thrown from our NIC. 1823 */ 1824 if (unlikely(!inta)) { 1825 IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n"); 1826 /* 1827 * Re-enable interrupts here since we don't 1828 * have anything to service 1829 */ 1830 if (test_bit(STATUS_INT_ENABLED, &trans->status)) 1831 _iwl_enable_interrupts(trans); 1832 spin_unlock(&trans_pcie->irq_lock); 1833 lock_map_release(&trans->sync_cmd_lockdep_map); 1834 return IRQ_NONE; 1835 } 1836 1837 if (unlikely(inta == 0xFFFFFFFF || (inta & 0xFFFFFFF0) == 0xa5a5a5a0)) { 1838 /* 1839 * Hardware disappeared. It might have 1840 * already raised an interrupt. 1841 */ 1842 IWL_WARN(trans, "HARDWARE GONE?? INTA == 0x%08x\n", inta); 1843 spin_unlock(&trans_pcie->irq_lock); 1844 goto out; 1845 } 1846 1847 /* Ack/clear/reset pending uCode interrupts. 1848 * Note: Some bits in CSR_INT are "OR" of bits in CSR_FH_INT_STATUS, 1849 */ 1850 /* There is a hardware bug in the interrupt mask function that some 1851 * interrupts (i.e. CSR_INT_BIT_SCD) can still be generated even if 1852 * they are disabled in the CSR_INT_MASK register. Furthermore the 1853 * ICT interrupt handling mechanism has another bug that might cause 1854 * these unmasked interrupts fail to be detected. We workaround the 1855 * hardware bugs here by ACKing all the possible interrupts so that 1856 * interrupt coalescing can still be achieved. 1857 */ 1858 iwl_write32(trans, CSR_INT, inta | ~trans_pcie->inta_mask); 1859 1860 if (iwl_have_debug_level(IWL_DL_ISR)) 1861 IWL_DEBUG_ISR(trans, "inta 0x%08x, enabled 0x%08x\n", 1862 inta, iwl_read32(trans, CSR_INT_MASK)); 1863 1864 spin_unlock(&trans_pcie->irq_lock); 1865 1866 /* Now service all interrupt bits discovered above. */ 1867 if (inta & CSR_INT_BIT_HW_ERR) { 1868 IWL_ERR(trans, "Hardware error detected. Restarting.\n"); 1869 1870 /* Tell the device to stop sending interrupts */ 1871 iwl_disable_interrupts(trans); 1872 1873 isr_stats->hw++; 1874 iwl_pcie_irq_handle_error(trans); 1875 1876 handled |= CSR_INT_BIT_HW_ERR; 1877 1878 goto out; 1879 } 1880 1881 /* NIC fires this, but we don't use it, redundant with WAKEUP */ 1882 if (inta & CSR_INT_BIT_SCD) { 1883 IWL_DEBUG_ISR(trans, 1884 "Scheduler finished to transmit the frame/frames.\n"); 1885 isr_stats->sch++; 1886 } 1887 1888 /* Alive notification via Rx interrupt will do the real work */ 1889 if (inta & CSR_INT_BIT_ALIVE) { 1890 IWL_DEBUG_ISR(trans, "Alive interrupt\n"); 1891 isr_stats->alive++; 1892 if (trans->trans_cfg->gen2) { 1893 /* 1894 * We can restock, since firmware configured 1895 * the RFH 1896 */ 1897 iwl_pcie_rxmq_restock(trans, trans_pcie->rxq); 1898 } 1899 1900 handled |= CSR_INT_BIT_ALIVE; 1901 } 1902 1903 /* Safely ignore these bits for debug checks below */ 1904 inta &= ~(CSR_INT_BIT_SCD | CSR_INT_BIT_ALIVE); 1905 1906 /* HW RF KILL switch toggled */ 1907 if (inta & CSR_INT_BIT_RF_KILL) { 1908 iwl_pcie_handle_rfkill_irq(trans); 1909 handled |= CSR_INT_BIT_RF_KILL; 1910 } 1911 1912 /* Chip got too hot and stopped itself */ 1913 if (inta & CSR_INT_BIT_CT_KILL) { 1914 IWL_ERR(trans, "Microcode CT kill error detected.\n"); 1915 isr_stats->ctkill++; 1916 handled |= CSR_INT_BIT_CT_KILL; 1917 } 1918 1919 /* Error detected by uCode */ 1920 if (inta & CSR_INT_BIT_SW_ERR) { 1921 IWL_ERR(trans, "Microcode SW error detected. " 1922 " Restarting 0x%X.\n", inta); 1923 isr_stats->sw++; 1924 iwl_pcie_irq_handle_error(trans); 1925 handled |= CSR_INT_BIT_SW_ERR; 1926 } 1927 1928 /* uCode wakes up after power-down sleep */ 1929 if (inta & CSR_INT_BIT_WAKEUP) { 1930 IWL_DEBUG_ISR(trans, "Wakeup interrupt\n"); 1931 iwl_pcie_rxq_check_wrptr(trans); 1932 iwl_pcie_txq_check_wrptrs(trans); 1933 1934 isr_stats->wakeup++; 1935 1936 handled |= CSR_INT_BIT_WAKEUP; 1937 } 1938 1939 /* All uCode command responses, including Tx command responses, 1940 * Rx "responses" (frame-received notification), and other 1941 * notifications from uCode come through here*/ 1942 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX | 1943 CSR_INT_BIT_RX_PERIODIC)) { 1944 IWL_DEBUG_ISR(trans, "Rx interrupt\n"); 1945 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX)) { 1946 handled |= (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX); 1947 iwl_write32(trans, CSR_FH_INT_STATUS, 1948 CSR_FH_INT_RX_MASK); 1949 } 1950 if (inta & CSR_INT_BIT_RX_PERIODIC) { 1951 handled |= CSR_INT_BIT_RX_PERIODIC; 1952 iwl_write32(trans, 1953 CSR_INT, CSR_INT_BIT_RX_PERIODIC); 1954 } 1955 /* Sending RX interrupt require many steps to be done in the 1956 * the device: 1957 * 1- write interrupt to current index in ICT table. 1958 * 2- dma RX frame. 1959 * 3- update RX shared data to indicate last write index. 1960 * 4- send interrupt. 1961 * This could lead to RX race, driver could receive RX interrupt 1962 * but the shared data changes does not reflect this; 1963 * periodic interrupt will detect any dangling Rx activity. 1964 */ 1965 1966 /* Disable periodic interrupt; we use it as just a one-shot. */ 1967 iwl_write8(trans, CSR_INT_PERIODIC_REG, 1968 CSR_INT_PERIODIC_DIS); 1969 1970 /* 1971 * Enable periodic interrupt in 8 msec only if we received 1972 * real RX interrupt (instead of just periodic int), to catch 1973 * any dangling Rx interrupt. If it was just the periodic 1974 * interrupt, there was no dangling Rx activity, and no need 1975 * to extend the periodic interrupt; one-shot is enough. 1976 */ 1977 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX)) 1978 iwl_write8(trans, CSR_INT_PERIODIC_REG, 1979 CSR_INT_PERIODIC_ENA); 1980 1981 isr_stats->rx++; 1982 1983 local_bh_disable(); 1984 iwl_pcie_rx_handle(trans, 0); 1985 local_bh_enable(); 1986 } 1987 1988 /* This "Tx" DMA channel is used only for loading uCode */ 1989 if (inta & CSR_INT_BIT_FH_TX) { 1990 iwl_write32(trans, CSR_FH_INT_STATUS, CSR_FH_INT_TX_MASK); 1991 IWL_DEBUG_ISR(trans, "uCode load interrupt\n"); 1992 isr_stats->tx++; 1993 handled |= CSR_INT_BIT_FH_TX; 1994 /* Wake up uCode load routine, now that load is complete */ 1995 trans_pcie->ucode_write_complete = true; 1996 wake_up(&trans_pcie->ucode_write_waitq); 1997 } 1998 1999 if (inta & ~handled) { 2000 IWL_ERR(trans, "Unhandled INTA bits 0x%08x\n", inta & ~handled); 2001 isr_stats->unhandled++; 2002 } 2003 2004 if (inta & ~(trans_pcie->inta_mask)) { 2005 IWL_WARN(trans, "Disabled INTA bits 0x%08x were pending\n", 2006 inta & ~trans_pcie->inta_mask); 2007 } 2008 2009 spin_lock(&trans_pcie->irq_lock); 2010 /* only Re-enable all interrupt if disabled by irq */ 2011 if (test_bit(STATUS_INT_ENABLED, &trans->status)) 2012 _iwl_enable_interrupts(trans); 2013 /* we are loading the firmware, enable FH_TX interrupt only */ 2014 else if (handled & CSR_INT_BIT_FH_TX) 2015 iwl_enable_fw_load_int(trans); 2016 /* Re-enable RF_KILL if it occurred */ 2017 else if (handled & CSR_INT_BIT_RF_KILL) 2018 iwl_enable_rfkill_int(trans); 2019 /* Re-enable the ALIVE / Rx interrupt if it occurred */ 2020 else if (handled & (CSR_INT_BIT_ALIVE | CSR_INT_BIT_FH_RX)) 2021 iwl_enable_fw_load_int_ctx_info(trans); 2022 spin_unlock(&trans_pcie->irq_lock); 2023 2024 out: 2025 lock_map_release(&trans->sync_cmd_lockdep_map); 2026 return IRQ_HANDLED; 2027 } 2028 2029 /****************************************************************************** 2030 * 2031 * ICT functions 2032 * 2033 ******************************************************************************/ 2034 2035 /* Free dram table */ 2036 void iwl_pcie_free_ict(struct iwl_trans *trans) 2037 { 2038 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 2039 2040 if (trans_pcie->ict_tbl) { 2041 dma_free_coherent(trans->dev, ICT_SIZE, 2042 trans_pcie->ict_tbl, 2043 trans_pcie->ict_tbl_dma); 2044 trans_pcie->ict_tbl = NULL; 2045 trans_pcie->ict_tbl_dma = 0; 2046 } 2047 } 2048 2049 /* 2050 * allocate dram shared table, it is an aligned memory 2051 * block of ICT_SIZE. 2052 * also reset all data related to ICT table interrupt. 2053 */ 2054 int iwl_pcie_alloc_ict(struct iwl_trans *trans) 2055 { 2056 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 2057 2058 trans_pcie->ict_tbl = 2059 dma_alloc_coherent(trans->dev, ICT_SIZE, 2060 &trans_pcie->ict_tbl_dma, GFP_KERNEL); 2061 if (!trans_pcie->ict_tbl) 2062 return -ENOMEM; 2063 2064 /* just an API sanity check ... it is guaranteed to be aligned */ 2065 if (WARN_ON(trans_pcie->ict_tbl_dma & (ICT_SIZE - 1))) { 2066 iwl_pcie_free_ict(trans); 2067 return -EINVAL; 2068 } 2069 2070 return 0; 2071 } 2072 2073 /* Device is going up inform it about using ICT interrupt table, 2074 * also we need to tell the driver to start using ICT interrupt. 2075 */ 2076 void iwl_pcie_reset_ict(struct iwl_trans *trans) 2077 { 2078 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 2079 u32 val; 2080 2081 if (!trans_pcie->ict_tbl) 2082 return; 2083 2084 spin_lock(&trans_pcie->irq_lock); 2085 _iwl_disable_interrupts(trans); 2086 2087 memset(trans_pcie->ict_tbl, 0, ICT_SIZE); 2088 2089 val = trans_pcie->ict_tbl_dma >> ICT_SHIFT; 2090 2091 val |= CSR_DRAM_INT_TBL_ENABLE | 2092 CSR_DRAM_INIT_TBL_WRAP_CHECK | 2093 CSR_DRAM_INIT_TBL_WRITE_POINTER; 2094 2095 IWL_DEBUG_ISR(trans, "CSR_DRAM_INT_TBL_REG =0x%x\n", val); 2096 2097 iwl_write32(trans, CSR_DRAM_INT_TBL_REG, val); 2098 trans_pcie->use_ict = true; 2099 trans_pcie->ict_index = 0; 2100 iwl_write32(trans, CSR_INT, trans_pcie->inta_mask); 2101 _iwl_enable_interrupts(trans); 2102 spin_unlock(&trans_pcie->irq_lock); 2103 } 2104 2105 /* Device is going down disable ict interrupt usage */ 2106 void iwl_pcie_disable_ict(struct iwl_trans *trans) 2107 { 2108 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 2109 2110 spin_lock(&trans_pcie->irq_lock); 2111 trans_pcie->use_ict = false; 2112 spin_unlock(&trans_pcie->irq_lock); 2113 } 2114 2115 irqreturn_t iwl_pcie_isr(int irq, void *data) 2116 { 2117 struct iwl_trans *trans = data; 2118 2119 if (!trans) 2120 return IRQ_NONE; 2121 2122 /* Disable (but don't clear!) interrupts here to avoid 2123 * back-to-back ISRs and sporadic interrupts from our NIC. 2124 * If we have something to service, the tasklet will re-enable ints. 2125 * If we *don't* have something, we'll re-enable before leaving here. 2126 */ 2127 iwl_write32(trans, CSR_INT_MASK, 0x00000000); 2128 2129 return IRQ_WAKE_THREAD; 2130 } 2131 2132 irqreturn_t iwl_pcie_msix_isr(int irq, void *data) 2133 { 2134 return IRQ_WAKE_THREAD; 2135 } 2136 2137 irqreturn_t iwl_pcie_irq_msix_handler(int irq, void *dev_id) 2138 { 2139 struct msix_entry *entry = dev_id; 2140 struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry); 2141 struct iwl_trans *trans = trans_pcie->trans; 2142 struct isr_statistics *isr_stats = &trans_pcie->isr_stats; 2143 u32 inta_fh, inta_hw; 2144 2145 lock_map_acquire(&trans->sync_cmd_lockdep_map); 2146 2147 spin_lock(&trans_pcie->irq_lock); 2148 inta_fh = iwl_read32(trans, CSR_MSIX_FH_INT_CAUSES_AD); 2149 inta_hw = iwl_read32(trans, CSR_MSIX_HW_INT_CAUSES_AD); 2150 /* 2151 * Clear causes registers to avoid being handling the same cause. 2152 */ 2153 iwl_write32(trans, CSR_MSIX_FH_INT_CAUSES_AD, inta_fh); 2154 iwl_write32(trans, CSR_MSIX_HW_INT_CAUSES_AD, inta_hw); 2155 spin_unlock(&trans_pcie->irq_lock); 2156 2157 trace_iwlwifi_dev_irq_msix(trans->dev, entry, true, inta_fh, inta_hw); 2158 2159 if (unlikely(!(inta_fh | inta_hw))) { 2160 IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n"); 2161 lock_map_release(&trans->sync_cmd_lockdep_map); 2162 return IRQ_NONE; 2163 } 2164 2165 if (iwl_have_debug_level(IWL_DL_ISR)) { 2166 IWL_DEBUG_ISR(trans, 2167 "ISR inta_fh 0x%08x, enabled (sw) 0x%08x (hw) 0x%08x\n", 2168 inta_fh, trans_pcie->fh_mask, 2169 iwl_read32(trans, CSR_MSIX_FH_INT_MASK_AD)); 2170 if (inta_fh & ~trans_pcie->fh_mask) 2171 IWL_DEBUG_ISR(trans, 2172 "We got a masked interrupt (0x%08x)\n", 2173 inta_fh & ~trans_pcie->fh_mask); 2174 } 2175 2176 inta_fh &= trans_pcie->fh_mask; 2177 2178 if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_NON_RX) && 2179 inta_fh & MSIX_FH_INT_CAUSES_Q0) { 2180 local_bh_disable(); 2181 iwl_pcie_rx_handle(trans, 0); 2182 local_bh_enable(); 2183 } 2184 2185 if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS) && 2186 inta_fh & MSIX_FH_INT_CAUSES_Q1) { 2187 local_bh_disable(); 2188 iwl_pcie_rx_handle(trans, 1); 2189 local_bh_enable(); 2190 } 2191 2192 /* This "Tx" DMA channel is used only for loading uCode */ 2193 if (inta_fh & MSIX_FH_INT_CAUSES_D2S_CH0_NUM) { 2194 IWL_DEBUG_ISR(trans, "uCode load interrupt\n"); 2195 isr_stats->tx++; 2196 /* 2197 * Wake up uCode load routine, 2198 * now that load is complete 2199 */ 2200 trans_pcie->ucode_write_complete = true; 2201 wake_up(&trans_pcie->ucode_write_waitq); 2202 } 2203 2204 /* Error detected by uCode */ 2205 if ((inta_fh & MSIX_FH_INT_CAUSES_FH_ERR) || 2206 (inta_hw & MSIX_HW_INT_CAUSES_REG_SW_ERR)) { 2207 IWL_ERR(trans, 2208 "Microcode SW error detected. Restarting 0x%X.\n", 2209 inta_fh); 2210 isr_stats->sw++; 2211 iwl_pcie_irq_handle_error(trans); 2212 } 2213 2214 /* After checking FH register check HW register */ 2215 if (iwl_have_debug_level(IWL_DL_ISR)) { 2216 IWL_DEBUG_ISR(trans, 2217 "ISR inta_hw 0x%08x, enabled (sw) 0x%08x (hw) 0x%08x\n", 2218 inta_hw, trans_pcie->hw_mask, 2219 iwl_read32(trans, CSR_MSIX_HW_INT_MASK_AD)); 2220 if (inta_hw & ~trans_pcie->hw_mask) 2221 IWL_DEBUG_ISR(trans, 2222 "We got a masked interrupt 0x%08x\n", 2223 inta_hw & ~trans_pcie->hw_mask); 2224 } 2225 2226 inta_hw &= trans_pcie->hw_mask; 2227 2228 /* Alive notification via Rx interrupt will do the real work */ 2229 if (inta_hw & MSIX_HW_INT_CAUSES_REG_ALIVE) { 2230 IWL_DEBUG_ISR(trans, "Alive interrupt\n"); 2231 isr_stats->alive++; 2232 if (trans->trans_cfg->gen2) { 2233 /* We can restock, since firmware configured the RFH */ 2234 iwl_pcie_rxmq_restock(trans, trans_pcie->rxq); 2235 } 2236 } 2237 2238 if (inta_hw & MSIX_HW_INT_CAUSES_REG_WAKEUP) { 2239 u32 sleep_notif = 2240 le32_to_cpu(trans_pcie->prph_info->sleep_notif); 2241 if (sleep_notif == IWL_D3_SLEEP_STATUS_SUSPEND || 2242 sleep_notif == IWL_D3_SLEEP_STATUS_RESUME) { 2243 IWL_DEBUG_ISR(trans, 2244 "Sx interrupt: sleep notification = 0x%x\n", 2245 sleep_notif); 2246 trans_pcie->sx_complete = true; 2247 wake_up(&trans_pcie->sx_waitq); 2248 } else { 2249 /* uCode wakes up after power-down sleep */ 2250 IWL_DEBUG_ISR(trans, "Wakeup interrupt\n"); 2251 iwl_pcie_rxq_check_wrptr(trans); 2252 iwl_pcie_txq_check_wrptrs(trans); 2253 2254 isr_stats->wakeup++; 2255 } 2256 } 2257 2258 if (inta_hw & MSIX_HW_INT_CAUSES_REG_IML) { 2259 /* Reflect IML transfer status */ 2260 int res = iwl_read32(trans, CSR_IML_RESP_ADDR); 2261 2262 IWL_DEBUG_ISR(trans, "IML transfer status: %d\n", res); 2263 if (res == IWL_IMAGE_RESP_FAIL) { 2264 isr_stats->sw++; 2265 iwl_pcie_irq_handle_error(trans); 2266 } 2267 } 2268 2269 /* Chip got too hot and stopped itself */ 2270 if (inta_hw & MSIX_HW_INT_CAUSES_REG_CT_KILL) { 2271 IWL_ERR(trans, "Microcode CT kill error detected.\n"); 2272 isr_stats->ctkill++; 2273 } 2274 2275 /* HW RF KILL switch toggled */ 2276 if (inta_hw & MSIX_HW_INT_CAUSES_REG_RF_KILL) 2277 iwl_pcie_handle_rfkill_irq(trans); 2278 2279 if (inta_hw & MSIX_HW_INT_CAUSES_REG_HW_ERR) { 2280 IWL_ERR(trans, 2281 "Hardware error detected. Restarting.\n"); 2282 2283 isr_stats->hw++; 2284 trans->dbg.hw_error = true; 2285 iwl_pcie_irq_handle_error(trans); 2286 } 2287 2288 iwl_pcie_clear_irq(trans, entry); 2289 2290 lock_map_release(&trans->sync_cmd_lockdep_map); 2291 2292 return IRQ_HANDLED; 2293 } 2294