1 /******************************************************************************
2  *
3  * This file is provided under a dual BSD/GPLv2 license.  When using or
4  * redistributing this file, you may do so under either license.
5  *
6  * GPL LICENSE SUMMARY
7  *
8  * Copyright(c) 2003 - 2014 Intel Corporation. All rights reserved.
9  * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
10  * Copyright(c) 2016 - 2017 Intel Deutschland GmbH
11  * Copyright(c) 2018 - 2019 Intel Corporation
12  *
13  * This program is free software; you can redistribute it and/or modify it
14  * under the terms of version 2 of the GNU General Public License as
15  * published by the Free Software Foundation.
16  *
17  * This program is distributed in the hope that it will be useful, but WITHOUT
18  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
19  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
20  * more details.
21  *
22  * The full GNU General Public License is included in this distribution in the
23  * file called COPYING.
24  *
25  * Contact Information:
26  *  Intel Linux Wireless <linuxwifi@intel.com>
27  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
28  *
29  * BSD LICENSE
30  *
31  * Copyright(c) 2003 - 2014 Intel Corporation. All rights reserved.
32  * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
33  * Copyright(c) 2016 - 2017 Intel Deutschland GmbH
34  * Copyright(c) 2018 - 2019 Intel Corporation
35  * All rights reserved.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  *
41  *  * Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  *  * Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in
45  *    the documentation and/or other materials provided with the
46  *    distribution.
47  *  * Neither the name Intel Corporation nor the names of its
48  *    contributors may be used to endorse or promote products derived
49  *    from this software without specific prior written permission.
50  *
51  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
52  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
53  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
54  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
55  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
56  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
57  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
58  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
59  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
60  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
61  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
62  *
63  *****************************************************************************/
64 #include <linux/sched.h>
65 #include <linux/wait.h>
66 #include <linux/gfp.h>
67 
68 #include "iwl-prph.h"
69 #include "iwl-io.h"
70 #include "internal.h"
71 #include "iwl-op-mode.h"
72 #include "iwl-context-info-gen3.h"
73 
74 /******************************************************************************
75  *
76  * RX path functions
77  *
78  ******************************************************************************/
79 
80 /*
81  * Rx theory of operation
82  *
83  * Driver allocates a circular buffer of Receive Buffer Descriptors (RBDs),
84  * each of which point to Receive Buffers to be filled by the NIC.  These get
85  * used not only for Rx frames, but for any command response or notification
86  * from the NIC.  The driver and NIC manage the Rx buffers by means
87  * of indexes into the circular buffer.
88  *
89  * Rx Queue Indexes
90  * The host/firmware share two index registers for managing the Rx buffers.
91  *
92  * The READ index maps to the first position that the firmware may be writing
93  * to -- the driver can read up to (but not including) this position and get
94  * good data.
95  * The READ index is managed by the firmware once the card is enabled.
96  *
97  * The WRITE index maps to the last position the driver has read from -- the
98  * position preceding WRITE is the last slot the firmware can place a packet.
99  *
100  * The queue is empty (no good data) if WRITE = READ - 1, and is full if
101  * WRITE = READ.
102  *
103  * During initialization, the host sets up the READ queue position to the first
104  * INDEX position, and WRITE to the last (READ - 1 wrapped)
105  *
106  * When the firmware places a packet in a buffer, it will advance the READ index
107  * and fire the RX interrupt.  The driver can then query the READ index and
108  * process as many packets as possible, moving the WRITE index forward as it
109  * resets the Rx queue buffers with new memory.
110  *
111  * The management in the driver is as follows:
112  * + A list of pre-allocated RBDs is stored in iwl->rxq->rx_free.
113  *   When the interrupt handler is called, the request is processed.
114  *   The page is either stolen - transferred to the upper layer
115  *   or reused - added immediately to the iwl->rxq->rx_free list.
116  * + When the page is stolen - the driver updates the matching queue's used
117  *   count, detaches the RBD and transfers it to the queue used list.
118  *   When there are two used RBDs - they are transferred to the allocator empty
119  *   list. Work is then scheduled for the allocator to start allocating
120  *   eight buffers.
121  *   When there are another 6 used RBDs - they are transferred to the allocator
122  *   empty list and the driver tries to claim the pre-allocated buffers and
123  *   add them to iwl->rxq->rx_free. If it fails - it continues to claim them
124  *   until ready.
125  *   When there are 8+ buffers in the free list - either from allocation or from
126  *   8 reused unstolen pages - restock is called to update the FW and indexes.
127  * + In order to make sure the allocator always has RBDs to use for allocation
128  *   the allocator has initial pool in the size of num_queues*(8-2) - the
129  *   maximum missing RBDs per allocation request (request posted with 2
130  *    empty RBDs, there is no guarantee when the other 6 RBDs are supplied).
131  *   The queues supplies the recycle of the rest of the RBDs.
132  * + A received packet is processed and handed to the kernel network stack,
133  *   detached from the iwl->rxq.  The driver 'processed' index is updated.
134  * + If there are no allocated buffers in iwl->rxq->rx_free,
135  *   the READ INDEX is not incremented and iwl->status(RX_STALLED) is set.
136  *   If there were enough free buffers and RX_STALLED is set it is cleared.
137  *
138  *
139  * Driver sequence:
140  *
141  * iwl_rxq_alloc()            Allocates rx_free
142  * iwl_pcie_rx_replenish()    Replenishes rx_free list from rx_used, and calls
143  *                            iwl_pcie_rxq_restock.
144  *                            Used only during initialization.
145  * iwl_pcie_rxq_restock()     Moves available buffers from rx_free into Rx
146  *                            queue, updates firmware pointers, and updates
147  *                            the WRITE index.
148  * iwl_pcie_rx_allocator()     Background work for allocating pages.
149  *
150  * -- enable interrupts --
151  * ISR - iwl_rx()             Detach iwl_rx_mem_buffers from pool up to the
152  *                            READ INDEX, detaching the SKB from the pool.
153  *                            Moves the packet buffer from queue to rx_used.
154  *                            Posts and claims requests to the allocator.
155  *                            Calls iwl_pcie_rxq_restock to refill any empty
156  *                            slots.
157  *
158  * RBD life-cycle:
159  *
160  * Init:
161  * rxq.pool -> rxq.rx_used -> rxq.rx_free -> rxq.queue
162  *
163  * Regular Receive interrupt:
164  * Page Stolen:
165  * rxq.queue -> rxq.rx_used -> allocator.rbd_empty ->
166  * allocator.rbd_allocated -> rxq.rx_free -> rxq.queue
167  * Page not Stolen:
168  * rxq.queue -> rxq.rx_free -> rxq.queue
169  * ...
170  *
171  */
172 
173 /*
174  * iwl_rxq_space - Return number of free slots available in queue.
175  */
176 static int iwl_rxq_space(const struct iwl_rxq *rxq)
177 {
178 	/* Make sure rx queue size is a power of 2 */
179 	WARN_ON(rxq->queue_size & (rxq->queue_size - 1));
180 
181 	/*
182 	 * There can be up to (RX_QUEUE_SIZE - 1) free slots, to avoid ambiguity
183 	 * between empty and completely full queues.
184 	 * The following is equivalent to modulo by RX_QUEUE_SIZE and is well
185 	 * defined for negative dividends.
186 	 */
187 	return (rxq->read - rxq->write - 1) & (rxq->queue_size - 1);
188 }
189 
190 /*
191  * iwl_dma_addr2rbd_ptr - convert a DMA address to a uCode read buffer ptr
192  */
193 static inline __le32 iwl_pcie_dma_addr2rbd_ptr(dma_addr_t dma_addr)
194 {
195 	return cpu_to_le32((u32)(dma_addr >> 8));
196 }
197 
198 /*
199  * iwl_pcie_rx_stop - stops the Rx DMA
200  */
201 int iwl_pcie_rx_stop(struct iwl_trans *trans)
202 {
203 	if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
204 		/* TODO: remove this once fw does it */
205 		iwl_write_umac_prph(trans, RFH_RXF_DMA_CFG_GEN3, 0);
206 		return iwl_poll_umac_prph_bit(trans, RFH_GEN_STATUS_GEN3,
207 					      RXF_DMA_IDLE, RXF_DMA_IDLE, 1000);
208 	} else if (trans->trans_cfg->mq_rx_supported) {
209 		iwl_write_prph(trans, RFH_RXF_DMA_CFG, 0);
210 		return iwl_poll_prph_bit(trans, RFH_GEN_STATUS,
211 					   RXF_DMA_IDLE, RXF_DMA_IDLE, 1000);
212 	} else {
213 		iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
214 		return iwl_poll_direct_bit(trans, FH_MEM_RSSR_RX_STATUS_REG,
215 					   FH_RSSR_CHNL0_RX_STATUS_CHNL_IDLE,
216 					   1000);
217 	}
218 }
219 
220 /*
221  * iwl_pcie_rxq_inc_wr_ptr - Update the write pointer for the RX queue
222  */
223 static void iwl_pcie_rxq_inc_wr_ptr(struct iwl_trans *trans,
224 				    struct iwl_rxq *rxq)
225 {
226 	u32 reg;
227 
228 	lockdep_assert_held(&rxq->lock);
229 
230 	/*
231 	 * explicitly wake up the NIC if:
232 	 * 1. shadow registers aren't enabled
233 	 * 2. there is a chance that the NIC is asleep
234 	 */
235 	if (!trans->trans_cfg->base_params->shadow_reg_enable &&
236 	    test_bit(STATUS_TPOWER_PMI, &trans->status)) {
237 		reg = iwl_read32(trans, CSR_UCODE_DRV_GP1);
238 
239 		if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) {
240 			IWL_DEBUG_INFO(trans, "Rx queue requesting wakeup, GP1 = 0x%x\n",
241 				       reg);
242 			iwl_set_bit(trans, CSR_GP_CNTRL,
243 				    CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
244 			rxq->need_update = true;
245 			return;
246 		}
247 	}
248 
249 	rxq->write_actual = round_down(rxq->write, 8);
250 	if (trans->trans_cfg->mq_rx_supported)
251 		iwl_write32(trans, RFH_Q_FRBDCB_WIDX_TRG(rxq->id),
252 			    rxq->write_actual);
253 	else
254 		iwl_write32(trans, FH_RSCSR_CHNL0_WPTR, rxq->write_actual);
255 }
256 
257 static void iwl_pcie_rxq_check_wrptr(struct iwl_trans *trans)
258 {
259 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
260 	int i;
261 
262 	for (i = 0; i < trans->num_rx_queues; i++) {
263 		struct iwl_rxq *rxq = &trans_pcie->rxq[i];
264 
265 		if (!rxq->need_update)
266 			continue;
267 		spin_lock(&rxq->lock);
268 		iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
269 		rxq->need_update = false;
270 		spin_unlock(&rxq->lock);
271 	}
272 }
273 
274 static void iwl_pcie_restock_bd(struct iwl_trans *trans,
275 				struct iwl_rxq *rxq,
276 				struct iwl_rx_mem_buffer *rxb)
277 {
278 	if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
279 		struct iwl_rx_transfer_desc *bd = rxq->bd;
280 
281 		BUILD_BUG_ON(sizeof(*bd) != 2 * sizeof(u64));
282 
283 		bd[rxq->write].addr = cpu_to_le64(rxb->page_dma);
284 		bd[rxq->write].rbid = cpu_to_le16(rxb->vid);
285 	} else {
286 		__le64 *bd = rxq->bd;
287 
288 		bd[rxq->write] = cpu_to_le64(rxb->page_dma | rxb->vid);
289 	}
290 
291 	IWL_DEBUG_RX(trans, "Assigned virtual RB ID %u to queue %d index %d\n",
292 		     (u32)rxb->vid, rxq->id, rxq->write);
293 }
294 
295 /*
296  * iwl_pcie_rxmq_restock - restock implementation for multi-queue rx
297  */
298 static void iwl_pcie_rxmq_restock(struct iwl_trans *trans,
299 				  struct iwl_rxq *rxq)
300 {
301 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
302 	struct iwl_rx_mem_buffer *rxb;
303 
304 	/*
305 	 * If the device isn't enabled - no need to try to add buffers...
306 	 * This can happen when we stop the device and still have an interrupt
307 	 * pending. We stop the APM before we sync the interrupts because we
308 	 * have to (see comment there). On the other hand, since the APM is
309 	 * stopped, we cannot access the HW (in particular not prph).
310 	 * So don't try to restock if the APM has been already stopped.
311 	 */
312 	if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
313 		return;
314 
315 	spin_lock(&rxq->lock);
316 	while (rxq->free_count) {
317 		/* Get next free Rx buffer, remove from free list */
318 		rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
319 				       list);
320 		list_del(&rxb->list);
321 		rxb->invalid = false;
322 		/* some low bits are expected to be unset (depending on hw) */
323 		WARN_ON(rxb->page_dma & trans_pcie->supported_dma_mask);
324 		/* Point to Rx buffer via next RBD in circular buffer */
325 		iwl_pcie_restock_bd(trans, rxq, rxb);
326 		rxq->write = (rxq->write + 1) & (rxq->queue_size - 1);
327 		rxq->free_count--;
328 	}
329 	spin_unlock(&rxq->lock);
330 
331 	/*
332 	 * If we've added more space for the firmware to place data, tell it.
333 	 * Increment device's write pointer in multiples of 8.
334 	 */
335 	if (rxq->write_actual != (rxq->write & ~0x7)) {
336 		spin_lock(&rxq->lock);
337 		iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
338 		spin_unlock(&rxq->lock);
339 	}
340 }
341 
342 /*
343  * iwl_pcie_rxsq_restock - restock implementation for single queue rx
344  */
345 static void iwl_pcie_rxsq_restock(struct iwl_trans *trans,
346 				  struct iwl_rxq *rxq)
347 {
348 	struct iwl_rx_mem_buffer *rxb;
349 
350 	/*
351 	 * If the device isn't enabled - not need to try to add buffers...
352 	 * This can happen when we stop the device and still have an interrupt
353 	 * pending. We stop the APM before we sync the interrupts because we
354 	 * have to (see comment there). On the other hand, since the APM is
355 	 * stopped, we cannot access the HW (in particular not prph).
356 	 * So don't try to restock if the APM has been already stopped.
357 	 */
358 	if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
359 		return;
360 
361 	spin_lock(&rxq->lock);
362 	while ((iwl_rxq_space(rxq) > 0) && (rxq->free_count)) {
363 		__le32 *bd = (__le32 *)rxq->bd;
364 		/* The overwritten rxb must be a used one */
365 		rxb = rxq->queue[rxq->write];
366 		BUG_ON(rxb && rxb->page);
367 
368 		/* Get next free Rx buffer, remove from free list */
369 		rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
370 				       list);
371 		list_del(&rxb->list);
372 		rxb->invalid = false;
373 
374 		/* Point to Rx buffer via next RBD in circular buffer */
375 		bd[rxq->write] = iwl_pcie_dma_addr2rbd_ptr(rxb->page_dma);
376 		rxq->queue[rxq->write] = rxb;
377 		rxq->write = (rxq->write + 1) & RX_QUEUE_MASK;
378 		rxq->free_count--;
379 	}
380 	spin_unlock(&rxq->lock);
381 
382 	/* If we've added more space for the firmware to place data, tell it.
383 	 * Increment device's write pointer in multiples of 8. */
384 	if (rxq->write_actual != (rxq->write & ~0x7)) {
385 		spin_lock(&rxq->lock);
386 		iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
387 		spin_unlock(&rxq->lock);
388 	}
389 }
390 
391 /*
392  * iwl_pcie_rxq_restock - refill RX queue from pre-allocated pool
393  *
394  * If there are slots in the RX queue that need to be restocked,
395  * and we have free pre-allocated buffers, fill the ranks as much
396  * as we can, pulling from rx_free.
397  *
398  * This moves the 'write' index forward to catch up with 'processed', and
399  * also updates the memory address in the firmware to reference the new
400  * target buffer.
401  */
402 static
403 void iwl_pcie_rxq_restock(struct iwl_trans *trans, struct iwl_rxq *rxq)
404 {
405 	if (trans->trans_cfg->mq_rx_supported)
406 		iwl_pcie_rxmq_restock(trans, rxq);
407 	else
408 		iwl_pcie_rxsq_restock(trans, rxq);
409 }
410 
411 /*
412  * iwl_pcie_rx_alloc_page - allocates and returns a page.
413  *
414  */
415 static struct page *iwl_pcie_rx_alloc_page(struct iwl_trans *trans,
416 					   u32 *offset, gfp_t priority)
417 {
418 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
419 	unsigned int rbsize = iwl_trans_get_rb_size(trans_pcie->rx_buf_size);
420 	unsigned int allocsize = PAGE_SIZE << trans_pcie->rx_page_order;
421 	struct page *page;
422 	gfp_t gfp_mask = priority;
423 
424 	if (trans_pcie->rx_page_order > 0)
425 		gfp_mask |= __GFP_COMP;
426 
427 	if (trans_pcie->alloc_page) {
428 		spin_lock_bh(&trans_pcie->alloc_page_lock);
429 		/* recheck */
430 		if (trans_pcie->alloc_page) {
431 			*offset = trans_pcie->alloc_page_used;
432 			page = trans_pcie->alloc_page;
433 			trans_pcie->alloc_page_used += rbsize;
434 			if (trans_pcie->alloc_page_used >= allocsize)
435 				trans_pcie->alloc_page = NULL;
436 			else
437 				get_page(page);
438 			spin_unlock_bh(&trans_pcie->alloc_page_lock);
439 			return page;
440 		}
441 		spin_unlock_bh(&trans_pcie->alloc_page_lock);
442 	}
443 
444 	/* Alloc a new receive buffer */
445 	page = alloc_pages(gfp_mask, trans_pcie->rx_page_order);
446 	if (!page) {
447 		if (net_ratelimit())
448 			IWL_DEBUG_INFO(trans, "alloc_pages failed, order: %d\n",
449 				       trans_pcie->rx_page_order);
450 		/*
451 		 * Issue an error if we don't have enough pre-allocated
452 		  * buffers.
453 		 */
454 		if (!(gfp_mask & __GFP_NOWARN) && net_ratelimit())
455 			IWL_CRIT(trans,
456 				 "Failed to alloc_pages\n");
457 		return NULL;
458 	}
459 
460 	if (2 * rbsize <= allocsize) {
461 		spin_lock_bh(&trans_pcie->alloc_page_lock);
462 		if (!trans_pcie->alloc_page) {
463 			get_page(page);
464 			trans_pcie->alloc_page = page;
465 			trans_pcie->alloc_page_used = rbsize;
466 		}
467 		spin_unlock_bh(&trans_pcie->alloc_page_lock);
468 	}
469 
470 	*offset = 0;
471 	return page;
472 }
473 
474 /*
475  * iwl_pcie_rxq_alloc_rbs - allocate a page for each used RBD
476  *
477  * A used RBD is an Rx buffer that has been given to the stack. To use it again
478  * a page must be allocated and the RBD must point to the page. This function
479  * doesn't change the HW pointer but handles the list of pages that is used by
480  * iwl_pcie_rxq_restock. The latter function will update the HW to use the newly
481  * allocated buffers.
482  */
483 void iwl_pcie_rxq_alloc_rbs(struct iwl_trans *trans, gfp_t priority,
484 			    struct iwl_rxq *rxq)
485 {
486 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
487 	struct iwl_rx_mem_buffer *rxb;
488 	struct page *page;
489 
490 	while (1) {
491 		unsigned int offset;
492 
493 		spin_lock(&rxq->lock);
494 		if (list_empty(&rxq->rx_used)) {
495 			spin_unlock(&rxq->lock);
496 			return;
497 		}
498 		spin_unlock(&rxq->lock);
499 
500 		page = iwl_pcie_rx_alloc_page(trans, &offset, priority);
501 		if (!page)
502 			return;
503 
504 		spin_lock(&rxq->lock);
505 
506 		if (list_empty(&rxq->rx_used)) {
507 			spin_unlock(&rxq->lock);
508 			__free_pages(page, trans_pcie->rx_page_order);
509 			return;
510 		}
511 		rxb = list_first_entry(&rxq->rx_used, struct iwl_rx_mem_buffer,
512 				       list);
513 		list_del(&rxb->list);
514 		spin_unlock(&rxq->lock);
515 
516 		BUG_ON(rxb->page);
517 		rxb->page = page;
518 		rxb->offset = offset;
519 		/* Get physical address of the RB */
520 		rxb->page_dma =
521 			dma_map_page(trans->dev, page, rxb->offset,
522 				     trans_pcie->rx_buf_bytes,
523 				     DMA_FROM_DEVICE);
524 		if (dma_mapping_error(trans->dev, rxb->page_dma)) {
525 			rxb->page = NULL;
526 			spin_lock(&rxq->lock);
527 			list_add(&rxb->list, &rxq->rx_used);
528 			spin_unlock(&rxq->lock);
529 			__free_pages(page, trans_pcie->rx_page_order);
530 			return;
531 		}
532 
533 		spin_lock(&rxq->lock);
534 
535 		list_add_tail(&rxb->list, &rxq->rx_free);
536 		rxq->free_count++;
537 
538 		spin_unlock(&rxq->lock);
539 	}
540 }
541 
542 void iwl_pcie_free_rbs_pool(struct iwl_trans *trans)
543 {
544 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
545 	int i;
546 
547 	for (i = 0; i < RX_POOL_SIZE(trans_pcie->num_rx_bufs); i++) {
548 		if (!trans_pcie->rx_pool[i].page)
549 			continue;
550 		dma_unmap_page(trans->dev, trans_pcie->rx_pool[i].page_dma,
551 			       trans_pcie->rx_buf_bytes, DMA_FROM_DEVICE);
552 		__free_pages(trans_pcie->rx_pool[i].page,
553 			     trans_pcie->rx_page_order);
554 		trans_pcie->rx_pool[i].page = NULL;
555 	}
556 }
557 
558 /*
559  * iwl_pcie_rx_allocator - Allocates pages in the background for RX queues
560  *
561  * Allocates for each received request 8 pages
562  * Called as a scheduled work item.
563  */
564 static void iwl_pcie_rx_allocator(struct iwl_trans *trans)
565 {
566 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
567 	struct iwl_rb_allocator *rba = &trans_pcie->rba;
568 	struct list_head local_empty;
569 	int pending = atomic_read(&rba->req_pending);
570 
571 	IWL_DEBUG_TPT(trans, "Pending allocation requests = %d\n", pending);
572 
573 	/* If we were scheduled - there is at least one request */
574 	spin_lock(&rba->lock);
575 	/* swap out the rba->rbd_empty to a local list */
576 	list_replace_init(&rba->rbd_empty, &local_empty);
577 	spin_unlock(&rba->lock);
578 
579 	while (pending) {
580 		int i;
581 		LIST_HEAD(local_allocated);
582 		gfp_t gfp_mask = GFP_KERNEL;
583 
584 		/* Do not post a warning if there are only a few requests */
585 		if (pending < RX_PENDING_WATERMARK)
586 			gfp_mask |= __GFP_NOWARN;
587 
588 		for (i = 0; i < RX_CLAIM_REQ_ALLOC;) {
589 			struct iwl_rx_mem_buffer *rxb;
590 			struct page *page;
591 
592 			/* List should never be empty - each reused RBD is
593 			 * returned to the list, and initial pool covers any
594 			 * possible gap between the time the page is allocated
595 			 * to the time the RBD is added.
596 			 */
597 			BUG_ON(list_empty(&local_empty));
598 			/* Get the first rxb from the rbd list */
599 			rxb = list_first_entry(&local_empty,
600 					       struct iwl_rx_mem_buffer, list);
601 			BUG_ON(rxb->page);
602 
603 			/* Alloc a new receive buffer */
604 			page = iwl_pcie_rx_alloc_page(trans, &rxb->offset,
605 						      gfp_mask);
606 			if (!page)
607 				continue;
608 			rxb->page = page;
609 
610 			/* Get physical address of the RB */
611 			rxb->page_dma = dma_map_page(trans->dev, page,
612 						     rxb->offset,
613 						     trans_pcie->rx_buf_bytes,
614 						     DMA_FROM_DEVICE);
615 			if (dma_mapping_error(trans->dev, rxb->page_dma)) {
616 				rxb->page = NULL;
617 				__free_pages(page, trans_pcie->rx_page_order);
618 				continue;
619 			}
620 
621 			/* move the allocated entry to the out list */
622 			list_move(&rxb->list, &local_allocated);
623 			i++;
624 		}
625 
626 		atomic_dec(&rba->req_pending);
627 		pending--;
628 
629 		if (!pending) {
630 			pending = atomic_read(&rba->req_pending);
631 			if (pending)
632 				IWL_DEBUG_TPT(trans,
633 					      "Got more pending allocation requests = %d\n",
634 					      pending);
635 		}
636 
637 		spin_lock(&rba->lock);
638 		/* add the allocated rbds to the allocator allocated list */
639 		list_splice_tail(&local_allocated, &rba->rbd_allocated);
640 		/* get more empty RBDs for current pending requests */
641 		list_splice_tail_init(&rba->rbd_empty, &local_empty);
642 		spin_unlock(&rba->lock);
643 
644 		atomic_inc(&rba->req_ready);
645 
646 	}
647 
648 	spin_lock(&rba->lock);
649 	/* return unused rbds to the allocator empty list */
650 	list_splice_tail(&local_empty, &rba->rbd_empty);
651 	spin_unlock(&rba->lock);
652 
653 	IWL_DEBUG_TPT(trans, "%s, exit.\n", __func__);
654 }
655 
656 /*
657  * iwl_pcie_rx_allocator_get - returns the pre-allocated pages
658 .*
659 .* Called by queue when the queue posted allocation request and
660  * has freed 8 RBDs in order to restock itself.
661  * This function directly moves the allocated RBs to the queue's ownership
662  * and updates the relevant counters.
663  */
664 static void iwl_pcie_rx_allocator_get(struct iwl_trans *trans,
665 				      struct iwl_rxq *rxq)
666 {
667 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
668 	struct iwl_rb_allocator *rba = &trans_pcie->rba;
669 	int i;
670 
671 	lockdep_assert_held(&rxq->lock);
672 
673 	/*
674 	 * atomic_dec_if_positive returns req_ready - 1 for any scenario.
675 	 * If req_ready is 0 atomic_dec_if_positive will return -1 and this
676 	 * function will return early, as there are no ready requests.
677 	 * atomic_dec_if_positive will perofrm the *actual* decrement only if
678 	 * req_ready > 0, i.e. - there are ready requests and the function
679 	 * hands one request to the caller.
680 	 */
681 	if (atomic_dec_if_positive(&rba->req_ready) < 0)
682 		return;
683 
684 	spin_lock(&rba->lock);
685 	for (i = 0; i < RX_CLAIM_REQ_ALLOC; i++) {
686 		/* Get next free Rx buffer, remove it from free list */
687 		struct iwl_rx_mem_buffer *rxb =
688 			list_first_entry(&rba->rbd_allocated,
689 					 struct iwl_rx_mem_buffer, list);
690 
691 		list_move(&rxb->list, &rxq->rx_free);
692 	}
693 	spin_unlock(&rba->lock);
694 
695 	rxq->used_count -= RX_CLAIM_REQ_ALLOC;
696 	rxq->free_count += RX_CLAIM_REQ_ALLOC;
697 }
698 
699 void iwl_pcie_rx_allocator_work(struct work_struct *data)
700 {
701 	struct iwl_rb_allocator *rba_p =
702 		container_of(data, struct iwl_rb_allocator, rx_alloc);
703 	struct iwl_trans_pcie *trans_pcie =
704 		container_of(rba_p, struct iwl_trans_pcie, rba);
705 
706 	iwl_pcie_rx_allocator(trans_pcie->trans);
707 }
708 
709 static int iwl_pcie_free_bd_size(struct iwl_trans *trans, bool use_rx_td)
710 {
711 	struct iwl_rx_transfer_desc *rx_td;
712 
713 	if (use_rx_td)
714 		return sizeof(*rx_td);
715 	else
716 		return trans->trans_cfg->mq_rx_supported ? sizeof(__le64) :
717 			sizeof(__le32);
718 }
719 
720 static void iwl_pcie_free_rxq_dma(struct iwl_trans *trans,
721 				  struct iwl_rxq *rxq)
722 {
723 	struct device *dev = trans->dev;
724 	bool use_rx_td = (trans->trans_cfg->device_family >=
725 			  IWL_DEVICE_FAMILY_AX210);
726 	int free_size = iwl_pcie_free_bd_size(trans, use_rx_td);
727 
728 	if (rxq->bd)
729 		dma_free_coherent(trans->dev,
730 				  free_size * rxq->queue_size,
731 				  rxq->bd, rxq->bd_dma);
732 	rxq->bd_dma = 0;
733 	rxq->bd = NULL;
734 
735 	rxq->rb_stts_dma = 0;
736 	rxq->rb_stts = NULL;
737 
738 	if (rxq->used_bd)
739 		dma_free_coherent(trans->dev,
740 				  (use_rx_td ? sizeof(*rxq->cd) :
741 				   sizeof(__le32)) * rxq->queue_size,
742 				  rxq->used_bd, rxq->used_bd_dma);
743 	rxq->used_bd_dma = 0;
744 	rxq->used_bd = NULL;
745 
746 	if (trans->trans_cfg->device_family < IWL_DEVICE_FAMILY_AX210)
747 		return;
748 
749 	if (rxq->tr_tail)
750 		dma_free_coherent(dev, sizeof(__le16),
751 				  rxq->tr_tail, rxq->tr_tail_dma);
752 	rxq->tr_tail_dma = 0;
753 	rxq->tr_tail = NULL;
754 
755 	if (rxq->cr_tail)
756 		dma_free_coherent(dev, sizeof(__le16),
757 				  rxq->cr_tail, rxq->cr_tail_dma);
758 	rxq->cr_tail_dma = 0;
759 	rxq->cr_tail = NULL;
760 }
761 
762 static int iwl_pcie_alloc_rxq_dma(struct iwl_trans *trans,
763 				  struct iwl_rxq *rxq)
764 {
765 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
766 	struct device *dev = trans->dev;
767 	int i;
768 	int free_size;
769 	bool use_rx_td = (trans->trans_cfg->device_family >=
770 			  IWL_DEVICE_FAMILY_AX210);
771 	size_t rb_stts_size = use_rx_td ? sizeof(__le16) :
772 			      sizeof(struct iwl_rb_status);
773 
774 	spin_lock_init(&rxq->lock);
775 	if (trans->trans_cfg->mq_rx_supported)
776 		rxq->queue_size = trans->cfg->num_rbds;
777 	else
778 		rxq->queue_size = RX_QUEUE_SIZE;
779 
780 	free_size = iwl_pcie_free_bd_size(trans, use_rx_td);
781 
782 	/*
783 	 * Allocate the circular buffer of Read Buffer Descriptors
784 	 * (RBDs)
785 	 */
786 	rxq->bd = dma_alloc_coherent(dev, free_size * rxq->queue_size,
787 				     &rxq->bd_dma, GFP_KERNEL);
788 	if (!rxq->bd)
789 		goto err;
790 
791 	if (trans->trans_cfg->mq_rx_supported) {
792 		rxq->used_bd = dma_alloc_coherent(dev,
793 						  (use_rx_td ? sizeof(*rxq->cd) : sizeof(__le32)) * rxq->queue_size,
794 						  &rxq->used_bd_dma,
795 						  GFP_KERNEL);
796 		if (!rxq->used_bd)
797 			goto err;
798 	}
799 
800 	rxq->rb_stts = trans_pcie->base_rb_stts + rxq->id * rb_stts_size;
801 	rxq->rb_stts_dma =
802 		trans_pcie->base_rb_stts_dma + rxq->id * rb_stts_size;
803 
804 	if (!use_rx_td)
805 		return 0;
806 
807 	/* Allocate the driver's pointer to TR tail */
808 	rxq->tr_tail = dma_alloc_coherent(dev, sizeof(__le16),
809 					  &rxq->tr_tail_dma, GFP_KERNEL);
810 	if (!rxq->tr_tail)
811 		goto err;
812 
813 	/* Allocate the driver's pointer to CR tail */
814 	rxq->cr_tail = dma_alloc_coherent(dev, sizeof(__le16),
815 					  &rxq->cr_tail_dma, GFP_KERNEL);
816 	if (!rxq->cr_tail)
817 		goto err;
818 
819 	return 0;
820 
821 err:
822 	for (i = 0; i < trans->num_rx_queues; i++) {
823 		struct iwl_rxq *rxq = &trans_pcie->rxq[i];
824 
825 		iwl_pcie_free_rxq_dma(trans, rxq);
826 	}
827 
828 	return -ENOMEM;
829 }
830 
831 static int iwl_pcie_rx_alloc(struct iwl_trans *trans)
832 {
833 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
834 	struct iwl_rb_allocator *rba = &trans_pcie->rba;
835 	int i, ret;
836 	size_t rb_stts_size = trans->trans_cfg->device_family >=
837 				IWL_DEVICE_FAMILY_AX210 ?
838 			      sizeof(__le16) : sizeof(struct iwl_rb_status);
839 
840 	if (WARN_ON(trans_pcie->rxq))
841 		return -EINVAL;
842 
843 	trans_pcie->rxq = kcalloc(trans->num_rx_queues, sizeof(struct iwl_rxq),
844 				  GFP_KERNEL);
845 	trans_pcie->rx_pool = kcalloc(RX_POOL_SIZE(trans_pcie->num_rx_bufs),
846 				      sizeof(trans_pcie->rx_pool[0]),
847 				      GFP_KERNEL);
848 	trans_pcie->global_table =
849 		kcalloc(RX_POOL_SIZE(trans_pcie->num_rx_bufs),
850 			sizeof(trans_pcie->global_table[0]),
851 			GFP_KERNEL);
852 	if (!trans_pcie->rxq || !trans_pcie->rx_pool ||
853 	    !trans_pcie->global_table) {
854 		ret = -ENOMEM;
855 		goto err;
856 	}
857 
858 	spin_lock_init(&rba->lock);
859 
860 	/*
861 	 * Allocate the driver's pointer to receive buffer status.
862 	 * Allocate for all queues continuously (HW requirement).
863 	 */
864 	trans_pcie->base_rb_stts =
865 			dma_alloc_coherent(trans->dev,
866 					   rb_stts_size * trans->num_rx_queues,
867 					   &trans_pcie->base_rb_stts_dma,
868 					   GFP_KERNEL);
869 	if (!trans_pcie->base_rb_stts) {
870 		ret = -ENOMEM;
871 		goto err;
872 	}
873 
874 	for (i = 0; i < trans->num_rx_queues; i++) {
875 		struct iwl_rxq *rxq = &trans_pcie->rxq[i];
876 
877 		rxq->id = i;
878 		ret = iwl_pcie_alloc_rxq_dma(trans, rxq);
879 		if (ret)
880 			goto err;
881 	}
882 	return 0;
883 
884 err:
885 	if (trans_pcie->base_rb_stts) {
886 		dma_free_coherent(trans->dev,
887 				  rb_stts_size * trans->num_rx_queues,
888 				  trans_pcie->base_rb_stts,
889 				  trans_pcie->base_rb_stts_dma);
890 		trans_pcie->base_rb_stts = NULL;
891 		trans_pcie->base_rb_stts_dma = 0;
892 	}
893 	kfree(trans_pcie->rx_pool);
894 	kfree(trans_pcie->global_table);
895 	kfree(trans_pcie->rxq);
896 
897 	return ret;
898 }
899 
900 static void iwl_pcie_rx_hw_init(struct iwl_trans *trans, struct iwl_rxq *rxq)
901 {
902 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
903 	u32 rb_size;
904 	unsigned long flags;
905 	const u32 rfdnlog = RX_QUEUE_SIZE_LOG; /* 256 RBDs */
906 
907 	switch (trans_pcie->rx_buf_size) {
908 	case IWL_AMSDU_4K:
909 		rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
910 		break;
911 	case IWL_AMSDU_8K:
912 		rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_8K;
913 		break;
914 	case IWL_AMSDU_12K:
915 		rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_12K;
916 		break;
917 	default:
918 		WARN_ON(1);
919 		rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
920 	}
921 
922 	if (!iwl_trans_grab_nic_access(trans, &flags))
923 		return;
924 
925 	/* Stop Rx DMA */
926 	iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
927 	/* reset and flush pointers */
928 	iwl_write32(trans, FH_MEM_RCSR_CHNL0_RBDCB_WPTR, 0);
929 	iwl_write32(trans, FH_MEM_RCSR_CHNL0_FLUSH_RB_REQ, 0);
930 	iwl_write32(trans, FH_RSCSR_CHNL0_RDPTR, 0);
931 
932 	/* Reset driver's Rx queue write index */
933 	iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0);
934 
935 	/* Tell device where to find RBD circular buffer in DRAM */
936 	iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_BASE_REG,
937 		    (u32)(rxq->bd_dma >> 8));
938 
939 	/* Tell device where in DRAM to update its Rx status */
940 	iwl_write32(trans, FH_RSCSR_CHNL0_STTS_WPTR_REG,
941 		    rxq->rb_stts_dma >> 4);
942 
943 	/* Enable Rx DMA
944 	 * FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY is set because of HW bug in
945 	 *      the credit mechanism in 5000 HW RX FIFO
946 	 * Direct rx interrupts to hosts
947 	 * Rx buffer size 4 or 8k or 12k
948 	 * RB timeout 0x10
949 	 * 256 RBDs
950 	 */
951 	iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG,
952 		    FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL |
953 		    FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY |
954 		    FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL |
955 		    rb_size |
956 		    (RX_RB_TIMEOUT << FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS) |
957 		    (rfdnlog << FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS));
958 
959 	iwl_trans_release_nic_access(trans, &flags);
960 
961 	/* Set interrupt coalescing timer to default (2048 usecs) */
962 	iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
963 
964 	/* W/A for interrupt coalescing bug in 7260 and 3160 */
965 	if (trans->cfg->host_interrupt_operation_mode)
966 		iwl_set_bit(trans, CSR_INT_COALESCING, IWL_HOST_INT_OPER_MODE);
967 }
968 
969 static void iwl_pcie_rx_mq_hw_init(struct iwl_trans *trans)
970 {
971 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
972 	u32 rb_size, enabled = 0;
973 	unsigned long flags;
974 	int i;
975 
976 	switch (trans_pcie->rx_buf_size) {
977 	case IWL_AMSDU_2K:
978 		rb_size = RFH_RXF_DMA_RB_SIZE_2K;
979 		break;
980 	case IWL_AMSDU_4K:
981 		rb_size = RFH_RXF_DMA_RB_SIZE_4K;
982 		break;
983 	case IWL_AMSDU_8K:
984 		rb_size = RFH_RXF_DMA_RB_SIZE_8K;
985 		break;
986 	case IWL_AMSDU_12K:
987 		rb_size = RFH_RXF_DMA_RB_SIZE_12K;
988 		break;
989 	default:
990 		WARN_ON(1);
991 		rb_size = RFH_RXF_DMA_RB_SIZE_4K;
992 	}
993 
994 	if (!iwl_trans_grab_nic_access(trans, &flags))
995 		return;
996 
997 	/* Stop Rx DMA */
998 	iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG, 0);
999 	/* disable free amd used rx queue operation */
1000 	iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, 0);
1001 
1002 	for (i = 0; i < trans->num_rx_queues; i++) {
1003 		/* Tell device where to find RBD free table in DRAM */
1004 		iwl_write_prph64_no_grab(trans,
1005 					 RFH_Q_FRBDCB_BA_LSB(i),
1006 					 trans_pcie->rxq[i].bd_dma);
1007 		/* Tell device where to find RBD used table in DRAM */
1008 		iwl_write_prph64_no_grab(trans,
1009 					 RFH_Q_URBDCB_BA_LSB(i),
1010 					 trans_pcie->rxq[i].used_bd_dma);
1011 		/* Tell device where in DRAM to update its Rx status */
1012 		iwl_write_prph64_no_grab(trans,
1013 					 RFH_Q_URBD_STTS_WPTR_LSB(i),
1014 					 trans_pcie->rxq[i].rb_stts_dma);
1015 		/* Reset device indice tables */
1016 		iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_WIDX(i), 0);
1017 		iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_RIDX(i), 0);
1018 		iwl_write_prph_no_grab(trans, RFH_Q_URBDCB_WIDX(i), 0);
1019 
1020 		enabled |= BIT(i) | BIT(i + 16);
1021 	}
1022 
1023 	/*
1024 	 * Enable Rx DMA
1025 	 * Rx buffer size 4 or 8k or 12k
1026 	 * Min RB size 4 or 8
1027 	 * Drop frames that exceed RB size
1028 	 * 512 RBDs
1029 	 */
1030 	iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG,
1031 			       RFH_DMA_EN_ENABLE_VAL | rb_size |
1032 			       RFH_RXF_DMA_MIN_RB_4_8 |
1033 			       RFH_RXF_DMA_DROP_TOO_LARGE_MASK |
1034 			       RFH_RXF_DMA_RBDCB_SIZE_512);
1035 
1036 	/*
1037 	 * Activate DMA snooping.
1038 	 * Set RX DMA chunk size to 64B for IOSF and 128B for PCIe
1039 	 * Default queue is 0
1040 	 */
1041 	iwl_write_prph_no_grab(trans, RFH_GEN_CFG,
1042 			       RFH_GEN_CFG_RFH_DMA_SNOOP |
1043 			       RFH_GEN_CFG_VAL(DEFAULT_RXQ_NUM, 0) |
1044 			       RFH_GEN_CFG_SERVICE_DMA_SNOOP |
1045 			       RFH_GEN_CFG_VAL(RB_CHUNK_SIZE,
1046 					       trans->cfg->integrated ?
1047 					       RFH_GEN_CFG_RB_CHUNK_SIZE_64 :
1048 					       RFH_GEN_CFG_RB_CHUNK_SIZE_128));
1049 	/* Enable the relevant rx queues */
1050 	iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, enabled);
1051 
1052 	iwl_trans_release_nic_access(trans, &flags);
1053 
1054 	/* Set interrupt coalescing timer to default (2048 usecs) */
1055 	iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
1056 }
1057 
1058 void iwl_pcie_rx_init_rxb_lists(struct iwl_rxq *rxq)
1059 {
1060 	lockdep_assert_held(&rxq->lock);
1061 
1062 	INIT_LIST_HEAD(&rxq->rx_free);
1063 	INIT_LIST_HEAD(&rxq->rx_used);
1064 	rxq->free_count = 0;
1065 	rxq->used_count = 0;
1066 }
1067 
1068 int iwl_pcie_dummy_napi_poll(struct napi_struct *napi, int budget)
1069 {
1070 	WARN_ON(1);
1071 	return 0;
1072 }
1073 
1074 static int _iwl_pcie_rx_init(struct iwl_trans *trans)
1075 {
1076 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1077 	struct iwl_rxq *def_rxq;
1078 	struct iwl_rb_allocator *rba = &trans_pcie->rba;
1079 	int i, err, queue_size, allocator_pool_size, num_alloc;
1080 
1081 	if (!trans_pcie->rxq) {
1082 		err = iwl_pcie_rx_alloc(trans);
1083 		if (err)
1084 			return err;
1085 	}
1086 	def_rxq = trans_pcie->rxq;
1087 
1088 	cancel_work_sync(&rba->rx_alloc);
1089 
1090 	spin_lock(&rba->lock);
1091 	atomic_set(&rba->req_pending, 0);
1092 	atomic_set(&rba->req_ready, 0);
1093 	INIT_LIST_HEAD(&rba->rbd_allocated);
1094 	INIT_LIST_HEAD(&rba->rbd_empty);
1095 	spin_unlock(&rba->lock);
1096 
1097 	/* free all first - we might be reconfigured for a different size */
1098 	iwl_pcie_free_rbs_pool(trans);
1099 
1100 	for (i = 0; i < RX_QUEUE_SIZE; i++)
1101 		def_rxq->queue[i] = NULL;
1102 
1103 	for (i = 0; i < trans->num_rx_queues; i++) {
1104 		struct iwl_rxq *rxq = &trans_pcie->rxq[i];
1105 
1106 		spin_lock(&rxq->lock);
1107 		/*
1108 		 * Set read write pointer to reflect that we have processed
1109 		 * and used all buffers, but have not restocked the Rx queue
1110 		 * with fresh buffers
1111 		 */
1112 		rxq->read = 0;
1113 		rxq->write = 0;
1114 		rxq->write_actual = 0;
1115 		memset(rxq->rb_stts, 0,
1116 		       (trans->trans_cfg->device_family >=
1117 			IWL_DEVICE_FAMILY_AX210) ?
1118 		       sizeof(__le16) : sizeof(struct iwl_rb_status));
1119 
1120 		iwl_pcie_rx_init_rxb_lists(rxq);
1121 
1122 		if (!rxq->napi.poll)
1123 			netif_napi_add(&trans_pcie->napi_dev, &rxq->napi,
1124 				       iwl_pcie_dummy_napi_poll, 64);
1125 
1126 		spin_unlock(&rxq->lock);
1127 	}
1128 
1129 	/* move the pool to the default queue and allocator ownerships */
1130 	queue_size = trans->trans_cfg->mq_rx_supported ?
1131 			trans_pcie->num_rx_bufs - 1 : RX_QUEUE_SIZE;
1132 	allocator_pool_size = trans->num_rx_queues *
1133 		(RX_CLAIM_REQ_ALLOC - RX_POST_REQ_ALLOC);
1134 	num_alloc = queue_size + allocator_pool_size;
1135 
1136 	for (i = 0; i < num_alloc; i++) {
1137 		struct iwl_rx_mem_buffer *rxb = &trans_pcie->rx_pool[i];
1138 
1139 		if (i < allocator_pool_size)
1140 			list_add(&rxb->list, &rba->rbd_empty);
1141 		else
1142 			list_add(&rxb->list, &def_rxq->rx_used);
1143 		trans_pcie->global_table[i] = rxb;
1144 		rxb->vid = (u16)(i + 1);
1145 		rxb->invalid = true;
1146 	}
1147 
1148 	iwl_pcie_rxq_alloc_rbs(trans, GFP_KERNEL, def_rxq);
1149 
1150 	return 0;
1151 }
1152 
1153 int iwl_pcie_rx_init(struct iwl_trans *trans)
1154 {
1155 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1156 	int ret = _iwl_pcie_rx_init(trans);
1157 
1158 	if (ret)
1159 		return ret;
1160 
1161 	if (trans->trans_cfg->mq_rx_supported)
1162 		iwl_pcie_rx_mq_hw_init(trans);
1163 	else
1164 		iwl_pcie_rx_hw_init(trans, trans_pcie->rxq);
1165 
1166 	iwl_pcie_rxq_restock(trans, trans_pcie->rxq);
1167 
1168 	spin_lock(&trans_pcie->rxq->lock);
1169 	iwl_pcie_rxq_inc_wr_ptr(trans, trans_pcie->rxq);
1170 	spin_unlock(&trans_pcie->rxq->lock);
1171 
1172 	return 0;
1173 }
1174 
1175 int iwl_pcie_gen2_rx_init(struct iwl_trans *trans)
1176 {
1177 	/* Set interrupt coalescing timer to default (2048 usecs) */
1178 	iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
1179 
1180 	/*
1181 	 * We don't configure the RFH.
1182 	 * Restock will be done at alive, after firmware configured the RFH.
1183 	 */
1184 	return _iwl_pcie_rx_init(trans);
1185 }
1186 
1187 void iwl_pcie_rx_free(struct iwl_trans *trans)
1188 {
1189 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1190 	struct iwl_rb_allocator *rba = &trans_pcie->rba;
1191 	int i;
1192 	size_t rb_stts_size = trans->trans_cfg->device_family >=
1193 				IWL_DEVICE_FAMILY_AX210 ?
1194 			      sizeof(__le16) : sizeof(struct iwl_rb_status);
1195 
1196 	/*
1197 	 * if rxq is NULL, it means that nothing has been allocated,
1198 	 * exit now
1199 	 */
1200 	if (!trans_pcie->rxq) {
1201 		IWL_DEBUG_INFO(trans, "Free NULL rx context\n");
1202 		return;
1203 	}
1204 
1205 	cancel_work_sync(&rba->rx_alloc);
1206 
1207 	iwl_pcie_free_rbs_pool(trans);
1208 
1209 	if (trans_pcie->base_rb_stts) {
1210 		dma_free_coherent(trans->dev,
1211 				  rb_stts_size * trans->num_rx_queues,
1212 				  trans_pcie->base_rb_stts,
1213 				  trans_pcie->base_rb_stts_dma);
1214 		trans_pcie->base_rb_stts = NULL;
1215 		trans_pcie->base_rb_stts_dma = 0;
1216 	}
1217 
1218 	for (i = 0; i < trans->num_rx_queues; i++) {
1219 		struct iwl_rxq *rxq = &trans_pcie->rxq[i];
1220 
1221 		iwl_pcie_free_rxq_dma(trans, rxq);
1222 
1223 		if (rxq->napi.poll)
1224 			netif_napi_del(&rxq->napi);
1225 	}
1226 	kfree(trans_pcie->rx_pool);
1227 	kfree(trans_pcie->global_table);
1228 	kfree(trans_pcie->rxq);
1229 
1230 	if (trans_pcie->alloc_page)
1231 		__free_pages(trans_pcie->alloc_page, trans_pcie->rx_page_order);
1232 }
1233 
1234 static void iwl_pcie_rx_move_to_allocator(struct iwl_rxq *rxq,
1235 					  struct iwl_rb_allocator *rba)
1236 {
1237 	spin_lock(&rba->lock);
1238 	list_splice_tail_init(&rxq->rx_used, &rba->rbd_empty);
1239 	spin_unlock(&rba->lock);
1240 }
1241 
1242 /*
1243  * iwl_pcie_rx_reuse_rbd - Recycle used RBDs
1244  *
1245  * Called when a RBD can be reused. The RBD is transferred to the allocator.
1246  * When there are 2 empty RBDs - a request for allocation is posted
1247  */
1248 static void iwl_pcie_rx_reuse_rbd(struct iwl_trans *trans,
1249 				  struct iwl_rx_mem_buffer *rxb,
1250 				  struct iwl_rxq *rxq, bool emergency)
1251 {
1252 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1253 	struct iwl_rb_allocator *rba = &trans_pcie->rba;
1254 
1255 	/* Move the RBD to the used list, will be moved to allocator in batches
1256 	 * before claiming or posting a request*/
1257 	list_add_tail(&rxb->list, &rxq->rx_used);
1258 
1259 	if (unlikely(emergency))
1260 		return;
1261 
1262 	/* Count the allocator owned RBDs */
1263 	rxq->used_count++;
1264 
1265 	/* If we have RX_POST_REQ_ALLOC new released rx buffers -
1266 	 * issue a request for allocator. Modulo RX_CLAIM_REQ_ALLOC is
1267 	 * used for the case we failed to claim RX_CLAIM_REQ_ALLOC,
1268 	 * after but we still need to post another request.
1269 	 */
1270 	if ((rxq->used_count % RX_CLAIM_REQ_ALLOC) == RX_POST_REQ_ALLOC) {
1271 		/* Move the 2 RBDs to the allocator ownership.
1272 		 Allocator has another 6 from pool for the request completion*/
1273 		iwl_pcie_rx_move_to_allocator(rxq, rba);
1274 
1275 		atomic_inc(&rba->req_pending);
1276 		queue_work(rba->alloc_wq, &rba->rx_alloc);
1277 	}
1278 }
1279 
1280 static void iwl_pcie_rx_handle_rb(struct iwl_trans *trans,
1281 				struct iwl_rxq *rxq,
1282 				struct iwl_rx_mem_buffer *rxb,
1283 				bool emergency,
1284 				int i)
1285 {
1286 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1287 	struct iwl_txq *txq = trans_pcie->txq[trans_pcie->cmd_queue];
1288 	bool page_stolen = false;
1289 	int max_len = trans_pcie->rx_buf_bytes;
1290 	u32 offset = 0;
1291 
1292 	if (WARN_ON(!rxb))
1293 		return;
1294 
1295 	dma_unmap_page(trans->dev, rxb->page_dma, max_len, DMA_FROM_DEVICE);
1296 
1297 	while (offset + sizeof(u32) + sizeof(struct iwl_cmd_header) < max_len) {
1298 		struct iwl_rx_packet *pkt;
1299 		u16 sequence;
1300 		bool reclaim;
1301 		int index, cmd_index, len;
1302 		struct iwl_rx_cmd_buffer rxcb = {
1303 			._offset = rxb->offset + offset,
1304 			._rx_page_order = trans_pcie->rx_page_order,
1305 			._page = rxb->page,
1306 			._page_stolen = false,
1307 			.truesize = max_len,
1308 		};
1309 
1310 		pkt = rxb_addr(&rxcb);
1311 
1312 		if (pkt->len_n_flags == cpu_to_le32(FH_RSCSR_FRAME_INVALID)) {
1313 			IWL_DEBUG_RX(trans,
1314 				     "Q %d: RB end marker at offset %d\n",
1315 				     rxq->id, offset);
1316 			break;
1317 		}
1318 
1319 		WARN((le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_RXQ_MASK) >>
1320 			FH_RSCSR_RXQ_POS != rxq->id,
1321 		     "frame on invalid queue - is on %d and indicates %d\n",
1322 		     rxq->id,
1323 		     (le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_RXQ_MASK) >>
1324 			FH_RSCSR_RXQ_POS);
1325 
1326 		IWL_DEBUG_RX(trans,
1327 			     "Q %d: cmd at offset %d: %s (%.2x.%2x, seq 0x%x)\n",
1328 			     rxq->id, offset,
1329 			     iwl_get_cmd_string(trans,
1330 						iwl_cmd_id(pkt->hdr.cmd,
1331 							   pkt->hdr.group_id,
1332 							   0)),
1333 			     pkt->hdr.group_id, pkt->hdr.cmd,
1334 			     le16_to_cpu(pkt->hdr.sequence));
1335 
1336 		len = iwl_rx_packet_len(pkt);
1337 		len += sizeof(u32); /* account for status word */
1338 		trace_iwlwifi_dev_rx(trans->dev, trans, pkt, len);
1339 		trace_iwlwifi_dev_rx_data(trans->dev, trans, pkt, len);
1340 
1341 		/* Reclaim a command buffer only if this packet is a response
1342 		 *   to a (driver-originated) command.
1343 		 * If the packet (e.g. Rx frame) originated from uCode,
1344 		 *   there is no command buffer to reclaim.
1345 		 * Ucode should set SEQ_RX_FRAME bit if ucode-originated,
1346 		 *   but apparently a few don't get set; catch them here. */
1347 		reclaim = !(pkt->hdr.sequence & SEQ_RX_FRAME);
1348 		if (reclaim && !pkt->hdr.group_id) {
1349 			int i;
1350 
1351 			for (i = 0; i < trans_pcie->n_no_reclaim_cmds; i++) {
1352 				if (trans_pcie->no_reclaim_cmds[i] ==
1353 							pkt->hdr.cmd) {
1354 					reclaim = false;
1355 					break;
1356 				}
1357 			}
1358 		}
1359 
1360 		sequence = le16_to_cpu(pkt->hdr.sequence);
1361 		index = SEQ_TO_INDEX(sequence);
1362 		cmd_index = iwl_pcie_get_cmd_index(txq, index);
1363 
1364 		if (rxq->id == trans_pcie->def_rx_queue)
1365 			iwl_op_mode_rx(trans->op_mode, &rxq->napi,
1366 				       &rxcb);
1367 		else
1368 			iwl_op_mode_rx_rss(trans->op_mode, &rxq->napi,
1369 					   &rxcb, rxq->id);
1370 
1371 		if (reclaim) {
1372 			kzfree(txq->entries[cmd_index].free_buf);
1373 			txq->entries[cmd_index].free_buf = NULL;
1374 		}
1375 
1376 		/*
1377 		 * After here, we should always check rxcb._page_stolen,
1378 		 * if it is true then one of the handlers took the page.
1379 		 */
1380 
1381 		if (reclaim) {
1382 			/* Invoke any callbacks, transfer the buffer to caller,
1383 			 * and fire off the (possibly) blocking
1384 			 * iwl_trans_send_cmd()
1385 			 * as we reclaim the driver command queue */
1386 			if (!rxcb._page_stolen)
1387 				iwl_pcie_hcmd_complete(trans, &rxcb);
1388 			else
1389 				IWL_WARN(trans, "Claim null rxb?\n");
1390 		}
1391 
1392 		page_stolen |= rxcb._page_stolen;
1393 		if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210)
1394 			break;
1395 		offset += ALIGN(len, FH_RSCSR_FRAME_ALIGN);
1396 	}
1397 
1398 	/* page was stolen from us -- free our reference */
1399 	if (page_stolen) {
1400 		__free_pages(rxb->page, trans_pcie->rx_page_order);
1401 		rxb->page = NULL;
1402 	}
1403 
1404 	/* Reuse the page if possible. For notification packets and
1405 	 * SKBs that fail to Rx correctly, add them back into the
1406 	 * rx_free list for reuse later. */
1407 	if (rxb->page != NULL) {
1408 		rxb->page_dma =
1409 			dma_map_page(trans->dev, rxb->page, rxb->offset,
1410 				     trans_pcie->rx_buf_bytes,
1411 				     DMA_FROM_DEVICE);
1412 		if (dma_mapping_error(trans->dev, rxb->page_dma)) {
1413 			/*
1414 			 * free the page(s) as well to not break
1415 			 * the invariant that the items on the used
1416 			 * list have no page(s)
1417 			 */
1418 			__free_pages(rxb->page, trans_pcie->rx_page_order);
1419 			rxb->page = NULL;
1420 			iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency);
1421 		} else {
1422 			list_add_tail(&rxb->list, &rxq->rx_free);
1423 			rxq->free_count++;
1424 		}
1425 	} else
1426 		iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency);
1427 }
1428 
1429 static struct iwl_rx_mem_buffer *iwl_pcie_get_rxb(struct iwl_trans *trans,
1430 						  struct iwl_rxq *rxq, int i)
1431 {
1432 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1433 	struct iwl_rx_mem_buffer *rxb;
1434 	u16 vid;
1435 
1436 	BUILD_BUG_ON(sizeof(struct iwl_rx_completion_desc) != 32);
1437 
1438 	if (!trans->trans_cfg->mq_rx_supported) {
1439 		rxb = rxq->queue[i];
1440 		rxq->queue[i] = NULL;
1441 		return rxb;
1442 	}
1443 
1444 	if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210)
1445 		vid = le16_to_cpu(rxq->cd[i].rbid);
1446 	else
1447 		vid = le32_to_cpu(rxq->bd_32[i]) & 0x0FFF; /* 12-bit VID */
1448 
1449 	if (!vid || vid > RX_POOL_SIZE(trans_pcie->num_rx_bufs))
1450 		goto out_err;
1451 
1452 	rxb = trans_pcie->global_table[vid - 1];
1453 	if (rxb->invalid)
1454 		goto out_err;
1455 
1456 	IWL_DEBUG_RX(trans, "Got virtual RB ID %u\n", (u32)rxb->vid);
1457 
1458 	rxb->invalid = true;
1459 
1460 	return rxb;
1461 
1462 out_err:
1463 	WARN(1, "Invalid rxb from HW %u\n", (u32)vid);
1464 	iwl_force_nmi(trans);
1465 	return NULL;
1466 }
1467 
1468 /*
1469  * iwl_pcie_rx_handle - Main entry function for receiving responses from fw
1470  */
1471 static void iwl_pcie_rx_handle(struct iwl_trans *trans, int queue)
1472 {
1473 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1474 	struct napi_struct *napi;
1475 	struct iwl_rxq *rxq;
1476 	u32 r, i, count = 0;
1477 	bool emergency = false;
1478 
1479 	if (WARN_ON_ONCE(!trans_pcie->rxq || !trans_pcie->rxq[queue].bd))
1480 		return;
1481 
1482 	rxq = &trans_pcie->rxq[queue];
1483 
1484 restart:
1485 	spin_lock(&rxq->lock);
1486 	/* uCode's read index (stored in shared DRAM) indicates the last Rx
1487 	 * buffer that the driver may process (last buffer filled by ucode). */
1488 	r = le16_to_cpu(iwl_get_closed_rb_stts(trans, rxq)) & 0x0FFF;
1489 	i = rxq->read;
1490 
1491 	/* W/A 9000 device step A0 wrap-around bug */
1492 	r &= (rxq->queue_size - 1);
1493 
1494 	/* Rx interrupt, but nothing sent from uCode */
1495 	if (i == r)
1496 		IWL_DEBUG_RX(trans, "Q %d: HW = SW = %d\n", rxq->id, r);
1497 
1498 	while (i != r) {
1499 		struct iwl_rb_allocator *rba = &trans_pcie->rba;
1500 		struct iwl_rx_mem_buffer *rxb;
1501 		/* number of RBDs still waiting for page allocation */
1502 		u32 rb_pending_alloc =
1503 			atomic_read(&trans_pcie->rba.req_pending) *
1504 			RX_CLAIM_REQ_ALLOC;
1505 
1506 		if (unlikely(rb_pending_alloc >= rxq->queue_size / 2 &&
1507 			     !emergency)) {
1508 			iwl_pcie_rx_move_to_allocator(rxq, rba);
1509 			emergency = true;
1510 			IWL_DEBUG_TPT(trans,
1511 				      "RX path is in emergency. Pending allocations %d\n",
1512 				      rb_pending_alloc);
1513 		}
1514 
1515 		IWL_DEBUG_RX(trans, "Q %d: HW = %d, SW = %d\n", rxq->id, r, i);
1516 
1517 		rxb = iwl_pcie_get_rxb(trans, rxq, i);
1518 		if (!rxb)
1519 			goto out;
1520 
1521 		iwl_pcie_rx_handle_rb(trans, rxq, rxb, emergency, i);
1522 
1523 		i = (i + 1) & (rxq->queue_size - 1);
1524 
1525 		/*
1526 		 * If we have RX_CLAIM_REQ_ALLOC released rx buffers -
1527 		 * try to claim the pre-allocated buffers from the allocator.
1528 		 * If not ready - will try to reclaim next time.
1529 		 * There is no need to reschedule work - allocator exits only
1530 		 * on success
1531 		 */
1532 		if (rxq->used_count >= RX_CLAIM_REQ_ALLOC)
1533 			iwl_pcie_rx_allocator_get(trans, rxq);
1534 
1535 		if (rxq->used_count % RX_CLAIM_REQ_ALLOC == 0 && !emergency) {
1536 			/* Add the remaining empty RBDs for allocator use */
1537 			iwl_pcie_rx_move_to_allocator(rxq, rba);
1538 		} else if (emergency) {
1539 			count++;
1540 			if (count == 8) {
1541 				count = 0;
1542 				if (rb_pending_alloc < rxq->queue_size / 3) {
1543 					IWL_DEBUG_TPT(trans,
1544 						      "RX path exited emergency. Pending allocations %d\n",
1545 						      rb_pending_alloc);
1546 					emergency = false;
1547 				}
1548 
1549 				rxq->read = i;
1550 				spin_unlock(&rxq->lock);
1551 				iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq);
1552 				iwl_pcie_rxq_restock(trans, rxq);
1553 				goto restart;
1554 			}
1555 		}
1556 	}
1557 out:
1558 	/* Backtrack one entry */
1559 	rxq->read = i;
1560 	/* update cr tail with the rxq read pointer */
1561 	if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210)
1562 		*rxq->cr_tail = cpu_to_le16(r);
1563 	spin_unlock(&rxq->lock);
1564 
1565 	/*
1566 	 * handle a case where in emergency there are some unallocated RBDs.
1567 	 * those RBDs are in the used list, but are not tracked by the queue's
1568 	 * used_count which counts allocator owned RBDs.
1569 	 * unallocated emergency RBDs must be allocated on exit, otherwise
1570 	 * when called again the function may not be in emergency mode and
1571 	 * they will be handed to the allocator with no tracking in the RBD
1572 	 * allocator counters, which will lead to them never being claimed back
1573 	 * by the queue.
1574 	 * by allocating them here, they are now in the queue free list, and
1575 	 * will be restocked by the next call of iwl_pcie_rxq_restock.
1576 	 */
1577 	if (unlikely(emergency && count))
1578 		iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq);
1579 
1580 	napi = &rxq->napi;
1581 	if (napi->poll) {
1582 		napi_gro_flush(napi, false);
1583 
1584 		if (napi->rx_count) {
1585 			netif_receive_skb_list(&napi->rx_list);
1586 			INIT_LIST_HEAD(&napi->rx_list);
1587 			napi->rx_count = 0;
1588 		}
1589 	}
1590 
1591 	iwl_pcie_rxq_restock(trans, rxq);
1592 }
1593 
1594 static struct iwl_trans_pcie *iwl_pcie_get_trans_pcie(struct msix_entry *entry)
1595 {
1596 	u8 queue = entry->entry;
1597 	struct msix_entry *entries = entry - queue;
1598 
1599 	return container_of(entries, struct iwl_trans_pcie, msix_entries[0]);
1600 }
1601 
1602 /*
1603  * iwl_pcie_rx_msix_handle - Main entry function for receiving responses from fw
1604  * This interrupt handler should be used with RSS queue only.
1605  */
1606 irqreturn_t iwl_pcie_irq_rx_msix_handler(int irq, void *dev_id)
1607 {
1608 	struct msix_entry *entry = dev_id;
1609 	struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry);
1610 	struct iwl_trans *trans = trans_pcie->trans;
1611 
1612 	trace_iwlwifi_dev_irq_msix(trans->dev, entry, false, 0, 0);
1613 
1614 	if (WARN_ON(entry->entry >= trans->num_rx_queues))
1615 		return IRQ_NONE;
1616 
1617 	lock_map_acquire(&trans->sync_cmd_lockdep_map);
1618 
1619 	local_bh_disable();
1620 	iwl_pcie_rx_handle(trans, entry->entry);
1621 	local_bh_enable();
1622 
1623 	iwl_pcie_clear_irq(trans, entry);
1624 
1625 	lock_map_release(&trans->sync_cmd_lockdep_map);
1626 
1627 	return IRQ_HANDLED;
1628 }
1629 
1630 /*
1631  * iwl_pcie_irq_handle_error - called for HW or SW error interrupt from card
1632  */
1633 static void iwl_pcie_irq_handle_error(struct iwl_trans *trans)
1634 {
1635 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1636 	int i;
1637 
1638 	/* W/A for WiFi/WiMAX coex and WiMAX own the RF */
1639 	if (trans->cfg->internal_wimax_coex &&
1640 	    !trans->cfg->apmg_not_supported &&
1641 	    (!(iwl_read_prph(trans, APMG_CLK_CTRL_REG) &
1642 			     APMS_CLK_VAL_MRB_FUNC_MODE) ||
1643 	     (iwl_read_prph(trans, APMG_PS_CTRL_REG) &
1644 			    APMG_PS_CTRL_VAL_RESET_REQ))) {
1645 		clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
1646 		iwl_op_mode_wimax_active(trans->op_mode);
1647 		wake_up(&trans_pcie->wait_command_queue);
1648 		return;
1649 	}
1650 
1651 	for (i = 0; i < trans->trans_cfg->base_params->num_of_queues; i++) {
1652 		if (!trans_pcie->txq[i])
1653 			continue;
1654 		del_timer(&trans_pcie->txq[i]->stuck_timer);
1655 	}
1656 
1657 	/* The STATUS_FW_ERROR bit is set in this function. This must happen
1658 	 * before we wake up the command caller, to ensure a proper cleanup. */
1659 	iwl_trans_fw_error(trans);
1660 
1661 	clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
1662 	wake_up(&trans_pcie->wait_command_queue);
1663 }
1664 
1665 static u32 iwl_pcie_int_cause_non_ict(struct iwl_trans *trans)
1666 {
1667 	u32 inta;
1668 
1669 	lockdep_assert_held(&IWL_TRANS_GET_PCIE_TRANS(trans)->irq_lock);
1670 
1671 	trace_iwlwifi_dev_irq(trans->dev);
1672 
1673 	/* Discover which interrupts are active/pending */
1674 	inta = iwl_read32(trans, CSR_INT);
1675 
1676 	/* the thread will service interrupts and re-enable them */
1677 	return inta;
1678 }
1679 
1680 /* a device (PCI-E) page is 4096 bytes long */
1681 #define ICT_SHIFT	12
1682 #define ICT_SIZE	(1 << ICT_SHIFT)
1683 #define ICT_COUNT	(ICT_SIZE / sizeof(u32))
1684 
1685 /* interrupt handler using ict table, with this interrupt driver will
1686  * stop using INTA register to get device's interrupt, reading this register
1687  * is expensive, device will write interrupts in ICT dram table, increment
1688  * index then will fire interrupt to driver, driver will OR all ICT table
1689  * entries from current index up to table entry with 0 value. the result is
1690  * the interrupt we need to service, driver will set the entries back to 0 and
1691  * set index.
1692  */
1693 static u32 iwl_pcie_int_cause_ict(struct iwl_trans *trans)
1694 {
1695 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1696 	u32 inta;
1697 	u32 val = 0;
1698 	u32 read;
1699 
1700 	trace_iwlwifi_dev_irq(trans->dev);
1701 
1702 	/* Ignore interrupt if there's nothing in NIC to service.
1703 	 * This may be due to IRQ shared with another device,
1704 	 * or due to sporadic interrupts thrown from our NIC. */
1705 	read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
1706 	trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index, read);
1707 	if (!read)
1708 		return 0;
1709 
1710 	/*
1711 	 * Collect all entries up to the first 0, starting from ict_index;
1712 	 * note we already read at ict_index.
1713 	 */
1714 	do {
1715 		val |= read;
1716 		IWL_DEBUG_ISR(trans, "ICT index %d value 0x%08X\n",
1717 				trans_pcie->ict_index, read);
1718 		trans_pcie->ict_tbl[trans_pcie->ict_index] = 0;
1719 		trans_pcie->ict_index =
1720 			((trans_pcie->ict_index + 1) & (ICT_COUNT - 1));
1721 
1722 		read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
1723 		trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index,
1724 					   read);
1725 	} while (read);
1726 
1727 	/* We should not get this value, just ignore it. */
1728 	if (val == 0xffffffff)
1729 		val = 0;
1730 
1731 	/*
1732 	 * this is a w/a for a h/w bug. the h/w bug may cause the Rx bit
1733 	 * (bit 15 before shifting it to 31) to clear when using interrupt
1734 	 * coalescing. fortunately, bits 18 and 19 stay set when this happens
1735 	 * so we use them to decide on the real state of the Rx bit.
1736 	 * In order words, bit 15 is set if bit 18 or bit 19 are set.
1737 	 */
1738 	if (val & 0xC0000)
1739 		val |= 0x8000;
1740 
1741 	inta = (0xff & val) | ((0xff00 & val) << 16);
1742 	return inta;
1743 }
1744 
1745 void iwl_pcie_handle_rfkill_irq(struct iwl_trans *trans)
1746 {
1747 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1748 	struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
1749 	bool hw_rfkill, prev, report;
1750 
1751 	mutex_lock(&trans_pcie->mutex);
1752 	prev = test_bit(STATUS_RFKILL_OPMODE, &trans->status);
1753 	hw_rfkill = iwl_is_rfkill_set(trans);
1754 	if (hw_rfkill) {
1755 		set_bit(STATUS_RFKILL_OPMODE, &trans->status);
1756 		set_bit(STATUS_RFKILL_HW, &trans->status);
1757 	}
1758 	if (trans_pcie->opmode_down)
1759 		report = hw_rfkill;
1760 	else
1761 		report = test_bit(STATUS_RFKILL_OPMODE, &trans->status);
1762 
1763 	IWL_WARN(trans, "RF_KILL bit toggled to %s.\n",
1764 		 hw_rfkill ? "disable radio" : "enable radio");
1765 
1766 	isr_stats->rfkill++;
1767 
1768 	if (prev != report)
1769 		iwl_trans_pcie_rf_kill(trans, report);
1770 	mutex_unlock(&trans_pcie->mutex);
1771 
1772 	if (hw_rfkill) {
1773 		if (test_and_clear_bit(STATUS_SYNC_HCMD_ACTIVE,
1774 				       &trans->status))
1775 			IWL_DEBUG_RF_KILL(trans,
1776 					  "Rfkill while SYNC HCMD in flight\n");
1777 		wake_up(&trans_pcie->wait_command_queue);
1778 	} else {
1779 		clear_bit(STATUS_RFKILL_HW, &trans->status);
1780 		if (trans_pcie->opmode_down)
1781 			clear_bit(STATUS_RFKILL_OPMODE, &trans->status);
1782 	}
1783 }
1784 
1785 irqreturn_t iwl_pcie_irq_handler(int irq, void *dev_id)
1786 {
1787 	struct iwl_trans *trans = dev_id;
1788 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1789 	struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
1790 	u32 inta = 0;
1791 	u32 handled = 0;
1792 
1793 	lock_map_acquire(&trans->sync_cmd_lockdep_map);
1794 
1795 	spin_lock(&trans_pcie->irq_lock);
1796 
1797 	/* dram interrupt table not set yet,
1798 	 * use legacy interrupt.
1799 	 */
1800 	if (likely(trans_pcie->use_ict))
1801 		inta = iwl_pcie_int_cause_ict(trans);
1802 	else
1803 		inta = iwl_pcie_int_cause_non_ict(trans);
1804 
1805 	if (iwl_have_debug_level(IWL_DL_ISR)) {
1806 		IWL_DEBUG_ISR(trans,
1807 			      "ISR inta 0x%08x, enabled 0x%08x(sw), enabled(hw) 0x%08x, fh 0x%08x\n",
1808 			      inta, trans_pcie->inta_mask,
1809 			      iwl_read32(trans, CSR_INT_MASK),
1810 			      iwl_read32(trans, CSR_FH_INT_STATUS));
1811 		if (inta & (~trans_pcie->inta_mask))
1812 			IWL_DEBUG_ISR(trans,
1813 				      "We got a masked interrupt (0x%08x)\n",
1814 				      inta & (~trans_pcie->inta_mask));
1815 	}
1816 
1817 	inta &= trans_pcie->inta_mask;
1818 
1819 	/*
1820 	 * Ignore interrupt if there's nothing in NIC to service.
1821 	 * This may be due to IRQ shared with another device,
1822 	 * or due to sporadic interrupts thrown from our NIC.
1823 	 */
1824 	if (unlikely(!inta)) {
1825 		IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
1826 		/*
1827 		 * Re-enable interrupts here since we don't
1828 		 * have anything to service
1829 		 */
1830 		if (test_bit(STATUS_INT_ENABLED, &trans->status))
1831 			_iwl_enable_interrupts(trans);
1832 		spin_unlock(&trans_pcie->irq_lock);
1833 		lock_map_release(&trans->sync_cmd_lockdep_map);
1834 		return IRQ_NONE;
1835 	}
1836 
1837 	if (unlikely(inta == 0xFFFFFFFF || (inta & 0xFFFFFFF0) == 0xa5a5a5a0)) {
1838 		/*
1839 		 * Hardware disappeared. It might have
1840 		 * already raised an interrupt.
1841 		 */
1842 		IWL_WARN(trans, "HARDWARE GONE?? INTA == 0x%08x\n", inta);
1843 		spin_unlock(&trans_pcie->irq_lock);
1844 		goto out;
1845 	}
1846 
1847 	/* Ack/clear/reset pending uCode interrupts.
1848 	 * Note:  Some bits in CSR_INT are "OR" of bits in CSR_FH_INT_STATUS,
1849 	 */
1850 	/* There is a hardware bug in the interrupt mask function that some
1851 	 * interrupts (i.e. CSR_INT_BIT_SCD) can still be generated even if
1852 	 * they are disabled in the CSR_INT_MASK register. Furthermore the
1853 	 * ICT interrupt handling mechanism has another bug that might cause
1854 	 * these unmasked interrupts fail to be detected. We workaround the
1855 	 * hardware bugs here by ACKing all the possible interrupts so that
1856 	 * interrupt coalescing can still be achieved.
1857 	 */
1858 	iwl_write32(trans, CSR_INT, inta | ~trans_pcie->inta_mask);
1859 
1860 	if (iwl_have_debug_level(IWL_DL_ISR))
1861 		IWL_DEBUG_ISR(trans, "inta 0x%08x, enabled 0x%08x\n",
1862 			      inta, iwl_read32(trans, CSR_INT_MASK));
1863 
1864 	spin_unlock(&trans_pcie->irq_lock);
1865 
1866 	/* Now service all interrupt bits discovered above. */
1867 	if (inta & CSR_INT_BIT_HW_ERR) {
1868 		IWL_ERR(trans, "Hardware error detected.  Restarting.\n");
1869 
1870 		/* Tell the device to stop sending interrupts */
1871 		iwl_disable_interrupts(trans);
1872 
1873 		isr_stats->hw++;
1874 		iwl_pcie_irq_handle_error(trans);
1875 
1876 		handled |= CSR_INT_BIT_HW_ERR;
1877 
1878 		goto out;
1879 	}
1880 
1881 	/* NIC fires this, but we don't use it, redundant with WAKEUP */
1882 	if (inta & CSR_INT_BIT_SCD) {
1883 		IWL_DEBUG_ISR(trans,
1884 			      "Scheduler finished to transmit the frame/frames.\n");
1885 		isr_stats->sch++;
1886 	}
1887 
1888 	/* Alive notification via Rx interrupt will do the real work */
1889 	if (inta & CSR_INT_BIT_ALIVE) {
1890 		IWL_DEBUG_ISR(trans, "Alive interrupt\n");
1891 		isr_stats->alive++;
1892 		if (trans->trans_cfg->gen2) {
1893 			/*
1894 			 * We can restock, since firmware configured
1895 			 * the RFH
1896 			 */
1897 			iwl_pcie_rxmq_restock(trans, trans_pcie->rxq);
1898 		}
1899 
1900 		handled |= CSR_INT_BIT_ALIVE;
1901 	}
1902 
1903 	/* Safely ignore these bits for debug checks below */
1904 	inta &= ~(CSR_INT_BIT_SCD | CSR_INT_BIT_ALIVE);
1905 
1906 	/* HW RF KILL switch toggled */
1907 	if (inta & CSR_INT_BIT_RF_KILL) {
1908 		iwl_pcie_handle_rfkill_irq(trans);
1909 		handled |= CSR_INT_BIT_RF_KILL;
1910 	}
1911 
1912 	/* Chip got too hot and stopped itself */
1913 	if (inta & CSR_INT_BIT_CT_KILL) {
1914 		IWL_ERR(trans, "Microcode CT kill error detected.\n");
1915 		isr_stats->ctkill++;
1916 		handled |= CSR_INT_BIT_CT_KILL;
1917 	}
1918 
1919 	/* Error detected by uCode */
1920 	if (inta & CSR_INT_BIT_SW_ERR) {
1921 		IWL_ERR(trans, "Microcode SW error detected. "
1922 			" Restarting 0x%X.\n", inta);
1923 		isr_stats->sw++;
1924 		iwl_pcie_irq_handle_error(trans);
1925 		handled |= CSR_INT_BIT_SW_ERR;
1926 	}
1927 
1928 	/* uCode wakes up after power-down sleep */
1929 	if (inta & CSR_INT_BIT_WAKEUP) {
1930 		IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
1931 		iwl_pcie_rxq_check_wrptr(trans);
1932 		iwl_pcie_txq_check_wrptrs(trans);
1933 
1934 		isr_stats->wakeup++;
1935 
1936 		handled |= CSR_INT_BIT_WAKEUP;
1937 	}
1938 
1939 	/* All uCode command responses, including Tx command responses,
1940 	 * Rx "responses" (frame-received notification), and other
1941 	 * notifications from uCode come through here*/
1942 	if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX |
1943 		    CSR_INT_BIT_RX_PERIODIC)) {
1944 		IWL_DEBUG_ISR(trans, "Rx interrupt\n");
1945 		if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX)) {
1946 			handled |= (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX);
1947 			iwl_write32(trans, CSR_FH_INT_STATUS,
1948 					CSR_FH_INT_RX_MASK);
1949 		}
1950 		if (inta & CSR_INT_BIT_RX_PERIODIC) {
1951 			handled |= CSR_INT_BIT_RX_PERIODIC;
1952 			iwl_write32(trans,
1953 				CSR_INT, CSR_INT_BIT_RX_PERIODIC);
1954 		}
1955 		/* Sending RX interrupt require many steps to be done in the
1956 		 * the device:
1957 		 * 1- write interrupt to current index in ICT table.
1958 		 * 2- dma RX frame.
1959 		 * 3- update RX shared data to indicate last write index.
1960 		 * 4- send interrupt.
1961 		 * This could lead to RX race, driver could receive RX interrupt
1962 		 * but the shared data changes does not reflect this;
1963 		 * periodic interrupt will detect any dangling Rx activity.
1964 		 */
1965 
1966 		/* Disable periodic interrupt; we use it as just a one-shot. */
1967 		iwl_write8(trans, CSR_INT_PERIODIC_REG,
1968 			    CSR_INT_PERIODIC_DIS);
1969 
1970 		/*
1971 		 * Enable periodic interrupt in 8 msec only if we received
1972 		 * real RX interrupt (instead of just periodic int), to catch
1973 		 * any dangling Rx interrupt.  If it was just the periodic
1974 		 * interrupt, there was no dangling Rx activity, and no need
1975 		 * to extend the periodic interrupt; one-shot is enough.
1976 		 */
1977 		if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX))
1978 			iwl_write8(trans, CSR_INT_PERIODIC_REG,
1979 				   CSR_INT_PERIODIC_ENA);
1980 
1981 		isr_stats->rx++;
1982 
1983 		local_bh_disable();
1984 		iwl_pcie_rx_handle(trans, 0);
1985 		local_bh_enable();
1986 	}
1987 
1988 	/* This "Tx" DMA channel is used only for loading uCode */
1989 	if (inta & CSR_INT_BIT_FH_TX) {
1990 		iwl_write32(trans, CSR_FH_INT_STATUS, CSR_FH_INT_TX_MASK);
1991 		IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
1992 		isr_stats->tx++;
1993 		handled |= CSR_INT_BIT_FH_TX;
1994 		/* Wake up uCode load routine, now that load is complete */
1995 		trans_pcie->ucode_write_complete = true;
1996 		wake_up(&trans_pcie->ucode_write_waitq);
1997 	}
1998 
1999 	if (inta & ~handled) {
2000 		IWL_ERR(trans, "Unhandled INTA bits 0x%08x\n", inta & ~handled);
2001 		isr_stats->unhandled++;
2002 	}
2003 
2004 	if (inta & ~(trans_pcie->inta_mask)) {
2005 		IWL_WARN(trans, "Disabled INTA bits 0x%08x were pending\n",
2006 			 inta & ~trans_pcie->inta_mask);
2007 	}
2008 
2009 	spin_lock(&trans_pcie->irq_lock);
2010 	/* only Re-enable all interrupt if disabled by irq */
2011 	if (test_bit(STATUS_INT_ENABLED, &trans->status))
2012 		_iwl_enable_interrupts(trans);
2013 	/* we are loading the firmware, enable FH_TX interrupt only */
2014 	else if (handled & CSR_INT_BIT_FH_TX)
2015 		iwl_enable_fw_load_int(trans);
2016 	/* Re-enable RF_KILL if it occurred */
2017 	else if (handled & CSR_INT_BIT_RF_KILL)
2018 		iwl_enable_rfkill_int(trans);
2019 	/* Re-enable the ALIVE / Rx interrupt if it occurred */
2020 	else if (handled & (CSR_INT_BIT_ALIVE | CSR_INT_BIT_FH_RX))
2021 		iwl_enable_fw_load_int_ctx_info(trans);
2022 	spin_unlock(&trans_pcie->irq_lock);
2023 
2024 out:
2025 	lock_map_release(&trans->sync_cmd_lockdep_map);
2026 	return IRQ_HANDLED;
2027 }
2028 
2029 /******************************************************************************
2030  *
2031  * ICT functions
2032  *
2033  ******************************************************************************/
2034 
2035 /* Free dram table */
2036 void iwl_pcie_free_ict(struct iwl_trans *trans)
2037 {
2038 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2039 
2040 	if (trans_pcie->ict_tbl) {
2041 		dma_free_coherent(trans->dev, ICT_SIZE,
2042 				  trans_pcie->ict_tbl,
2043 				  trans_pcie->ict_tbl_dma);
2044 		trans_pcie->ict_tbl = NULL;
2045 		trans_pcie->ict_tbl_dma = 0;
2046 	}
2047 }
2048 
2049 /*
2050  * allocate dram shared table, it is an aligned memory
2051  * block of ICT_SIZE.
2052  * also reset all data related to ICT table interrupt.
2053  */
2054 int iwl_pcie_alloc_ict(struct iwl_trans *trans)
2055 {
2056 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2057 
2058 	trans_pcie->ict_tbl =
2059 		dma_alloc_coherent(trans->dev, ICT_SIZE,
2060 				   &trans_pcie->ict_tbl_dma, GFP_KERNEL);
2061 	if (!trans_pcie->ict_tbl)
2062 		return -ENOMEM;
2063 
2064 	/* just an API sanity check ... it is guaranteed to be aligned */
2065 	if (WARN_ON(trans_pcie->ict_tbl_dma & (ICT_SIZE - 1))) {
2066 		iwl_pcie_free_ict(trans);
2067 		return -EINVAL;
2068 	}
2069 
2070 	return 0;
2071 }
2072 
2073 /* Device is going up inform it about using ICT interrupt table,
2074  * also we need to tell the driver to start using ICT interrupt.
2075  */
2076 void iwl_pcie_reset_ict(struct iwl_trans *trans)
2077 {
2078 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2079 	u32 val;
2080 
2081 	if (!trans_pcie->ict_tbl)
2082 		return;
2083 
2084 	spin_lock(&trans_pcie->irq_lock);
2085 	_iwl_disable_interrupts(trans);
2086 
2087 	memset(trans_pcie->ict_tbl, 0, ICT_SIZE);
2088 
2089 	val = trans_pcie->ict_tbl_dma >> ICT_SHIFT;
2090 
2091 	val |= CSR_DRAM_INT_TBL_ENABLE |
2092 	       CSR_DRAM_INIT_TBL_WRAP_CHECK |
2093 	       CSR_DRAM_INIT_TBL_WRITE_POINTER;
2094 
2095 	IWL_DEBUG_ISR(trans, "CSR_DRAM_INT_TBL_REG =0x%x\n", val);
2096 
2097 	iwl_write32(trans, CSR_DRAM_INT_TBL_REG, val);
2098 	trans_pcie->use_ict = true;
2099 	trans_pcie->ict_index = 0;
2100 	iwl_write32(trans, CSR_INT, trans_pcie->inta_mask);
2101 	_iwl_enable_interrupts(trans);
2102 	spin_unlock(&trans_pcie->irq_lock);
2103 }
2104 
2105 /* Device is going down disable ict interrupt usage */
2106 void iwl_pcie_disable_ict(struct iwl_trans *trans)
2107 {
2108 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2109 
2110 	spin_lock(&trans_pcie->irq_lock);
2111 	trans_pcie->use_ict = false;
2112 	spin_unlock(&trans_pcie->irq_lock);
2113 }
2114 
2115 irqreturn_t iwl_pcie_isr(int irq, void *data)
2116 {
2117 	struct iwl_trans *trans = data;
2118 
2119 	if (!trans)
2120 		return IRQ_NONE;
2121 
2122 	/* Disable (but don't clear!) interrupts here to avoid
2123 	 * back-to-back ISRs and sporadic interrupts from our NIC.
2124 	 * If we have something to service, the tasklet will re-enable ints.
2125 	 * If we *don't* have something, we'll re-enable before leaving here.
2126 	 */
2127 	iwl_write32(trans, CSR_INT_MASK, 0x00000000);
2128 
2129 	return IRQ_WAKE_THREAD;
2130 }
2131 
2132 irqreturn_t iwl_pcie_msix_isr(int irq, void *data)
2133 {
2134 	return IRQ_WAKE_THREAD;
2135 }
2136 
2137 irqreturn_t iwl_pcie_irq_msix_handler(int irq, void *dev_id)
2138 {
2139 	struct msix_entry *entry = dev_id;
2140 	struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry);
2141 	struct iwl_trans *trans = trans_pcie->trans;
2142 	struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
2143 	u32 inta_fh, inta_hw;
2144 
2145 	lock_map_acquire(&trans->sync_cmd_lockdep_map);
2146 
2147 	spin_lock(&trans_pcie->irq_lock);
2148 	inta_fh = iwl_read32(trans, CSR_MSIX_FH_INT_CAUSES_AD);
2149 	inta_hw = iwl_read32(trans, CSR_MSIX_HW_INT_CAUSES_AD);
2150 	/*
2151 	 * Clear causes registers to avoid being handling the same cause.
2152 	 */
2153 	iwl_write32(trans, CSR_MSIX_FH_INT_CAUSES_AD, inta_fh);
2154 	iwl_write32(trans, CSR_MSIX_HW_INT_CAUSES_AD, inta_hw);
2155 	spin_unlock(&trans_pcie->irq_lock);
2156 
2157 	trace_iwlwifi_dev_irq_msix(trans->dev, entry, true, inta_fh, inta_hw);
2158 
2159 	if (unlikely(!(inta_fh | inta_hw))) {
2160 		IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
2161 		lock_map_release(&trans->sync_cmd_lockdep_map);
2162 		return IRQ_NONE;
2163 	}
2164 
2165 	if (iwl_have_debug_level(IWL_DL_ISR)) {
2166 		IWL_DEBUG_ISR(trans,
2167 			      "ISR inta_fh 0x%08x, enabled (sw) 0x%08x (hw) 0x%08x\n",
2168 			      inta_fh, trans_pcie->fh_mask,
2169 			      iwl_read32(trans, CSR_MSIX_FH_INT_MASK_AD));
2170 		if (inta_fh & ~trans_pcie->fh_mask)
2171 			IWL_DEBUG_ISR(trans,
2172 				      "We got a masked interrupt (0x%08x)\n",
2173 				      inta_fh & ~trans_pcie->fh_mask);
2174 	}
2175 
2176 	inta_fh &= trans_pcie->fh_mask;
2177 
2178 	if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_NON_RX) &&
2179 	    inta_fh & MSIX_FH_INT_CAUSES_Q0) {
2180 		local_bh_disable();
2181 		iwl_pcie_rx_handle(trans, 0);
2182 		local_bh_enable();
2183 	}
2184 
2185 	if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS) &&
2186 	    inta_fh & MSIX_FH_INT_CAUSES_Q1) {
2187 		local_bh_disable();
2188 		iwl_pcie_rx_handle(trans, 1);
2189 		local_bh_enable();
2190 	}
2191 
2192 	/* This "Tx" DMA channel is used only for loading uCode */
2193 	if (inta_fh & MSIX_FH_INT_CAUSES_D2S_CH0_NUM) {
2194 		IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
2195 		isr_stats->tx++;
2196 		/*
2197 		 * Wake up uCode load routine,
2198 		 * now that load is complete
2199 		 */
2200 		trans_pcie->ucode_write_complete = true;
2201 		wake_up(&trans_pcie->ucode_write_waitq);
2202 	}
2203 
2204 	/* Error detected by uCode */
2205 	if ((inta_fh & MSIX_FH_INT_CAUSES_FH_ERR) ||
2206 	    (inta_hw & MSIX_HW_INT_CAUSES_REG_SW_ERR)) {
2207 		IWL_ERR(trans,
2208 			"Microcode SW error detected. Restarting 0x%X.\n",
2209 			inta_fh);
2210 		isr_stats->sw++;
2211 		iwl_pcie_irq_handle_error(trans);
2212 	}
2213 
2214 	/* After checking FH register check HW register */
2215 	if (iwl_have_debug_level(IWL_DL_ISR)) {
2216 		IWL_DEBUG_ISR(trans,
2217 			      "ISR inta_hw 0x%08x, enabled (sw) 0x%08x (hw) 0x%08x\n",
2218 			      inta_hw, trans_pcie->hw_mask,
2219 			      iwl_read32(trans, CSR_MSIX_HW_INT_MASK_AD));
2220 		if (inta_hw & ~trans_pcie->hw_mask)
2221 			IWL_DEBUG_ISR(trans,
2222 				      "We got a masked interrupt 0x%08x\n",
2223 				      inta_hw & ~trans_pcie->hw_mask);
2224 	}
2225 
2226 	inta_hw &= trans_pcie->hw_mask;
2227 
2228 	/* Alive notification via Rx interrupt will do the real work */
2229 	if (inta_hw & MSIX_HW_INT_CAUSES_REG_ALIVE) {
2230 		IWL_DEBUG_ISR(trans, "Alive interrupt\n");
2231 		isr_stats->alive++;
2232 		if (trans->trans_cfg->gen2) {
2233 			/* We can restock, since firmware configured the RFH */
2234 			iwl_pcie_rxmq_restock(trans, trans_pcie->rxq);
2235 		}
2236 	}
2237 
2238 	if (inta_hw & MSIX_HW_INT_CAUSES_REG_WAKEUP) {
2239 		u32 sleep_notif =
2240 			le32_to_cpu(trans_pcie->prph_info->sleep_notif);
2241 		if (sleep_notif == IWL_D3_SLEEP_STATUS_SUSPEND ||
2242 		    sleep_notif == IWL_D3_SLEEP_STATUS_RESUME) {
2243 			IWL_DEBUG_ISR(trans,
2244 				      "Sx interrupt: sleep notification = 0x%x\n",
2245 				      sleep_notif);
2246 			trans_pcie->sx_complete = true;
2247 			wake_up(&trans_pcie->sx_waitq);
2248 		} else {
2249 			/* uCode wakes up after power-down sleep */
2250 			IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
2251 			iwl_pcie_rxq_check_wrptr(trans);
2252 			iwl_pcie_txq_check_wrptrs(trans);
2253 
2254 			isr_stats->wakeup++;
2255 		}
2256 	}
2257 
2258 	if (inta_hw & MSIX_HW_INT_CAUSES_REG_IML) {
2259 		/* Reflect IML transfer status */
2260 		int res = iwl_read32(trans, CSR_IML_RESP_ADDR);
2261 
2262 		IWL_DEBUG_ISR(trans, "IML transfer status: %d\n", res);
2263 		if (res == IWL_IMAGE_RESP_FAIL) {
2264 			isr_stats->sw++;
2265 			iwl_pcie_irq_handle_error(trans);
2266 		}
2267 	}
2268 
2269 	/* Chip got too hot and stopped itself */
2270 	if (inta_hw & MSIX_HW_INT_CAUSES_REG_CT_KILL) {
2271 		IWL_ERR(trans, "Microcode CT kill error detected.\n");
2272 		isr_stats->ctkill++;
2273 	}
2274 
2275 	/* HW RF KILL switch toggled */
2276 	if (inta_hw & MSIX_HW_INT_CAUSES_REG_RF_KILL)
2277 		iwl_pcie_handle_rfkill_irq(trans);
2278 
2279 	if (inta_hw & MSIX_HW_INT_CAUSES_REG_HW_ERR) {
2280 		IWL_ERR(trans,
2281 			"Hardware error detected. Restarting.\n");
2282 
2283 		isr_stats->hw++;
2284 		trans->dbg.hw_error = true;
2285 		iwl_pcie_irq_handle_error(trans);
2286 	}
2287 
2288 	iwl_pcie_clear_irq(trans, entry);
2289 
2290 	lock_map_release(&trans->sync_cmd_lockdep_map);
2291 
2292 	return IRQ_HANDLED;
2293 }
2294