1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /*
3  * Copyright (C) 2003-2014, 2018-2022 Intel Corporation
4  * Copyright (C) 2013-2015 Intel Mobile Communications GmbH
5  * Copyright (C) 2016-2017 Intel Deutschland GmbH
6  */
7 #include <linux/sched.h>
8 #include <linux/wait.h>
9 #include <linux/gfp.h>
10 
11 #include "iwl-prph.h"
12 #include "iwl-io.h"
13 #include "internal.h"
14 #include "iwl-op-mode.h"
15 #include "iwl-context-info-gen3.h"
16 
17 /******************************************************************************
18  *
19  * RX path functions
20  *
21  ******************************************************************************/
22 
23 /*
24  * Rx theory of operation
25  *
26  * Driver allocates a circular buffer of Receive Buffer Descriptors (RBDs),
27  * each of which point to Receive Buffers to be filled by the NIC.  These get
28  * used not only for Rx frames, but for any command response or notification
29  * from the NIC.  The driver and NIC manage the Rx buffers by means
30  * of indexes into the circular buffer.
31  *
32  * Rx Queue Indexes
33  * The host/firmware share two index registers for managing the Rx buffers.
34  *
35  * The READ index maps to the first position that the firmware may be writing
36  * to -- the driver can read up to (but not including) this position and get
37  * good data.
38  * The READ index is managed by the firmware once the card is enabled.
39  *
40  * The WRITE index maps to the last position the driver has read from -- the
41  * position preceding WRITE is the last slot the firmware can place a packet.
42  *
43  * The queue is empty (no good data) if WRITE = READ - 1, and is full if
44  * WRITE = READ.
45  *
46  * During initialization, the host sets up the READ queue position to the first
47  * INDEX position, and WRITE to the last (READ - 1 wrapped)
48  *
49  * When the firmware places a packet in a buffer, it will advance the READ index
50  * and fire the RX interrupt.  The driver can then query the READ index and
51  * process as many packets as possible, moving the WRITE index forward as it
52  * resets the Rx queue buffers with new memory.
53  *
54  * The management in the driver is as follows:
55  * + A list of pre-allocated RBDs is stored in iwl->rxq->rx_free.
56  *   When the interrupt handler is called, the request is processed.
57  *   The page is either stolen - transferred to the upper layer
58  *   or reused - added immediately to the iwl->rxq->rx_free list.
59  * + When the page is stolen - the driver updates the matching queue's used
60  *   count, detaches the RBD and transfers it to the queue used list.
61  *   When there are two used RBDs - they are transferred to the allocator empty
62  *   list. Work is then scheduled for the allocator to start allocating
63  *   eight buffers.
64  *   When there are another 6 used RBDs - they are transferred to the allocator
65  *   empty list and the driver tries to claim the pre-allocated buffers and
66  *   add them to iwl->rxq->rx_free. If it fails - it continues to claim them
67  *   until ready.
68  *   When there are 8+ buffers in the free list - either from allocation or from
69  *   8 reused unstolen pages - restock is called to update the FW and indexes.
70  * + In order to make sure the allocator always has RBDs to use for allocation
71  *   the allocator has initial pool in the size of num_queues*(8-2) - the
72  *   maximum missing RBDs per allocation request (request posted with 2
73  *    empty RBDs, there is no guarantee when the other 6 RBDs are supplied).
74  *   The queues supplies the recycle of the rest of the RBDs.
75  * + A received packet is processed and handed to the kernel network stack,
76  *   detached from the iwl->rxq.  The driver 'processed' index is updated.
77  * + If there are no allocated buffers in iwl->rxq->rx_free,
78  *   the READ INDEX is not incremented and iwl->status(RX_STALLED) is set.
79  *   If there were enough free buffers and RX_STALLED is set it is cleared.
80  *
81  *
82  * Driver sequence:
83  *
84  * iwl_rxq_alloc()            Allocates rx_free
85  * iwl_pcie_rx_replenish()    Replenishes rx_free list from rx_used, and calls
86  *                            iwl_pcie_rxq_restock.
87  *                            Used only during initialization.
88  * iwl_pcie_rxq_restock()     Moves available buffers from rx_free into Rx
89  *                            queue, updates firmware pointers, and updates
90  *                            the WRITE index.
91  * iwl_pcie_rx_allocator()     Background work for allocating pages.
92  *
93  * -- enable interrupts --
94  * ISR - iwl_rx()             Detach iwl_rx_mem_buffers from pool up to the
95  *                            READ INDEX, detaching the SKB from the pool.
96  *                            Moves the packet buffer from queue to rx_used.
97  *                            Posts and claims requests to the allocator.
98  *                            Calls iwl_pcie_rxq_restock to refill any empty
99  *                            slots.
100  *
101  * RBD life-cycle:
102  *
103  * Init:
104  * rxq.pool -> rxq.rx_used -> rxq.rx_free -> rxq.queue
105  *
106  * Regular Receive interrupt:
107  * Page Stolen:
108  * rxq.queue -> rxq.rx_used -> allocator.rbd_empty ->
109  * allocator.rbd_allocated -> rxq.rx_free -> rxq.queue
110  * Page not Stolen:
111  * rxq.queue -> rxq.rx_free -> rxq.queue
112  * ...
113  *
114  */
115 
116 /*
117  * iwl_rxq_space - Return number of free slots available in queue.
118  */
119 static int iwl_rxq_space(const struct iwl_rxq *rxq)
120 {
121 	/* Make sure rx queue size is a power of 2 */
122 	WARN_ON(rxq->queue_size & (rxq->queue_size - 1));
123 
124 	/*
125 	 * There can be up to (RX_QUEUE_SIZE - 1) free slots, to avoid ambiguity
126 	 * between empty and completely full queues.
127 	 * The following is equivalent to modulo by RX_QUEUE_SIZE and is well
128 	 * defined for negative dividends.
129 	 */
130 	return (rxq->read - rxq->write - 1) & (rxq->queue_size - 1);
131 }
132 
133 /*
134  * iwl_dma_addr2rbd_ptr - convert a DMA address to a uCode read buffer ptr
135  */
136 static inline __le32 iwl_pcie_dma_addr2rbd_ptr(dma_addr_t dma_addr)
137 {
138 	return cpu_to_le32((u32)(dma_addr >> 8));
139 }
140 
141 /*
142  * iwl_pcie_rx_stop - stops the Rx DMA
143  */
144 int iwl_pcie_rx_stop(struct iwl_trans *trans)
145 {
146 	if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
147 		/* TODO: remove this once fw does it */
148 		iwl_write_umac_prph(trans, RFH_RXF_DMA_CFG_GEN3, 0);
149 		return iwl_poll_umac_prph_bit(trans, RFH_GEN_STATUS_GEN3,
150 					      RXF_DMA_IDLE, RXF_DMA_IDLE, 1000);
151 	} else if (trans->trans_cfg->mq_rx_supported) {
152 		iwl_write_prph(trans, RFH_RXF_DMA_CFG, 0);
153 		return iwl_poll_prph_bit(trans, RFH_GEN_STATUS,
154 					   RXF_DMA_IDLE, RXF_DMA_IDLE, 1000);
155 	} else {
156 		iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
157 		return iwl_poll_direct_bit(trans, FH_MEM_RSSR_RX_STATUS_REG,
158 					   FH_RSSR_CHNL0_RX_STATUS_CHNL_IDLE,
159 					   1000);
160 	}
161 }
162 
163 /*
164  * iwl_pcie_rxq_inc_wr_ptr - Update the write pointer for the RX queue
165  */
166 static void iwl_pcie_rxq_inc_wr_ptr(struct iwl_trans *trans,
167 				    struct iwl_rxq *rxq)
168 {
169 	u32 reg;
170 
171 	lockdep_assert_held(&rxq->lock);
172 
173 	/*
174 	 * explicitly wake up the NIC if:
175 	 * 1. shadow registers aren't enabled
176 	 * 2. there is a chance that the NIC is asleep
177 	 */
178 	if (!trans->trans_cfg->base_params->shadow_reg_enable &&
179 	    test_bit(STATUS_TPOWER_PMI, &trans->status)) {
180 		reg = iwl_read32(trans, CSR_UCODE_DRV_GP1);
181 
182 		if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) {
183 			IWL_DEBUG_INFO(trans, "Rx queue requesting wakeup, GP1 = 0x%x\n",
184 				       reg);
185 			iwl_set_bit(trans, CSR_GP_CNTRL,
186 				    CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
187 			rxq->need_update = true;
188 			return;
189 		}
190 	}
191 
192 	rxq->write_actual = round_down(rxq->write, 8);
193 	if (trans->trans_cfg->mq_rx_supported)
194 		iwl_write32(trans, RFH_Q_FRBDCB_WIDX_TRG(rxq->id),
195 			    rxq->write_actual);
196 	else
197 		iwl_write32(trans, FH_RSCSR_CHNL0_WPTR, rxq->write_actual);
198 }
199 
200 static void iwl_pcie_rxq_check_wrptr(struct iwl_trans *trans)
201 {
202 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
203 	int i;
204 
205 	for (i = 0; i < trans->num_rx_queues; i++) {
206 		struct iwl_rxq *rxq = &trans_pcie->rxq[i];
207 
208 		if (!rxq->need_update)
209 			continue;
210 		spin_lock_bh(&rxq->lock);
211 		iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
212 		rxq->need_update = false;
213 		spin_unlock_bh(&rxq->lock);
214 	}
215 }
216 
217 static void iwl_pcie_restock_bd(struct iwl_trans *trans,
218 				struct iwl_rxq *rxq,
219 				struct iwl_rx_mem_buffer *rxb)
220 {
221 	if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
222 		struct iwl_rx_transfer_desc *bd = rxq->bd;
223 
224 		BUILD_BUG_ON(sizeof(*bd) != 2 * sizeof(u64));
225 
226 		bd[rxq->write].addr = cpu_to_le64(rxb->page_dma);
227 		bd[rxq->write].rbid = cpu_to_le16(rxb->vid);
228 	} else {
229 		__le64 *bd = rxq->bd;
230 
231 		bd[rxq->write] = cpu_to_le64(rxb->page_dma | rxb->vid);
232 	}
233 
234 	IWL_DEBUG_RX(trans, "Assigned virtual RB ID %u to queue %d index %d\n",
235 		     (u32)rxb->vid, rxq->id, rxq->write);
236 }
237 
238 /*
239  * iwl_pcie_rxmq_restock - restock implementation for multi-queue rx
240  */
241 static void iwl_pcie_rxmq_restock(struct iwl_trans *trans,
242 				  struct iwl_rxq *rxq)
243 {
244 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
245 	struct iwl_rx_mem_buffer *rxb;
246 
247 	/*
248 	 * If the device isn't enabled - no need to try to add buffers...
249 	 * This can happen when we stop the device and still have an interrupt
250 	 * pending. We stop the APM before we sync the interrupts because we
251 	 * have to (see comment there). On the other hand, since the APM is
252 	 * stopped, we cannot access the HW (in particular not prph).
253 	 * So don't try to restock if the APM has been already stopped.
254 	 */
255 	if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
256 		return;
257 
258 	spin_lock_bh(&rxq->lock);
259 	while (rxq->free_count) {
260 		/* Get next free Rx buffer, remove from free list */
261 		rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
262 				       list);
263 		list_del(&rxb->list);
264 		rxb->invalid = false;
265 		/* some low bits are expected to be unset (depending on hw) */
266 		WARN_ON(rxb->page_dma & trans_pcie->supported_dma_mask);
267 		/* Point to Rx buffer via next RBD in circular buffer */
268 		iwl_pcie_restock_bd(trans, rxq, rxb);
269 		rxq->write = (rxq->write + 1) & (rxq->queue_size - 1);
270 		rxq->free_count--;
271 	}
272 	spin_unlock_bh(&rxq->lock);
273 
274 	/*
275 	 * If we've added more space for the firmware to place data, tell it.
276 	 * Increment device's write pointer in multiples of 8.
277 	 */
278 	if (rxq->write_actual != (rxq->write & ~0x7)) {
279 		spin_lock_bh(&rxq->lock);
280 		iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
281 		spin_unlock_bh(&rxq->lock);
282 	}
283 }
284 
285 /*
286  * iwl_pcie_rxsq_restock - restock implementation for single queue rx
287  */
288 static void iwl_pcie_rxsq_restock(struct iwl_trans *trans,
289 				  struct iwl_rxq *rxq)
290 {
291 	struct iwl_rx_mem_buffer *rxb;
292 
293 	/*
294 	 * If the device isn't enabled - not need to try to add buffers...
295 	 * This can happen when we stop the device and still have an interrupt
296 	 * pending. We stop the APM before we sync the interrupts because we
297 	 * have to (see comment there). On the other hand, since the APM is
298 	 * stopped, we cannot access the HW (in particular not prph).
299 	 * So don't try to restock if the APM has been already stopped.
300 	 */
301 	if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
302 		return;
303 
304 	spin_lock_bh(&rxq->lock);
305 	while ((iwl_rxq_space(rxq) > 0) && (rxq->free_count)) {
306 		__le32 *bd = (__le32 *)rxq->bd;
307 		/* The overwritten rxb must be a used one */
308 		rxb = rxq->queue[rxq->write];
309 		BUG_ON(rxb && rxb->page);
310 
311 		/* Get next free Rx buffer, remove from free list */
312 		rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
313 				       list);
314 		list_del(&rxb->list);
315 		rxb->invalid = false;
316 
317 		/* Point to Rx buffer via next RBD in circular buffer */
318 		bd[rxq->write] = iwl_pcie_dma_addr2rbd_ptr(rxb->page_dma);
319 		rxq->queue[rxq->write] = rxb;
320 		rxq->write = (rxq->write + 1) & RX_QUEUE_MASK;
321 		rxq->free_count--;
322 	}
323 	spin_unlock_bh(&rxq->lock);
324 
325 	/* If we've added more space for the firmware to place data, tell it.
326 	 * Increment device's write pointer in multiples of 8. */
327 	if (rxq->write_actual != (rxq->write & ~0x7)) {
328 		spin_lock_bh(&rxq->lock);
329 		iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
330 		spin_unlock_bh(&rxq->lock);
331 	}
332 }
333 
334 /*
335  * iwl_pcie_rxq_restock - refill RX queue from pre-allocated pool
336  *
337  * If there are slots in the RX queue that need to be restocked,
338  * and we have free pre-allocated buffers, fill the ranks as much
339  * as we can, pulling from rx_free.
340  *
341  * This moves the 'write' index forward to catch up with 'processed', and
342  * also updates the memory address in the firmware to reference the new
343  * target buffer.
344  */
345 static
346 void iwl_pcie_rxq_restock(struct iwl_trans *trans, struct iwl_rxq *rxq)
347 {
348 	if (trans->trans_cfg->mq_rx_supported)
349 		iwl_pcie_rxmq_restock(trans, rxq);
350 	else
351 		iwl_pcie_rxsq_restock(trans, rxq);
352 }
353 
354 /*
355  * iwl_pcie_rx_alloc_page - allocates and returns a page.
356  *
357  */
358 static struct page *iwl_pcie_rx_alloc_page(struct iwl_trans *trans,
359 					   u32 *offset, gfp_t priority)
360 {
361 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
362 	unsigned int rbsize = iwl_trans_get_rb_size(trans_pcie->rx_buf_size);
363 	unsigned int allocsize = PAGE_SIZE << trans_pcie->rx_page_order;
364 	struct page *page;
365 	gfp_t gfp_mask = priority;
366 
367 	if (trans_pcie->rx_page_order > 0)
368 		gfp_mask |= __GFP_COMP;
369 
370 	if (trans_pcie->alloc_page) {
371 		spin_lock_bh(&trans_pcie->alloc_page_lock);
372 		/* recheck */
373 		if (trans_pcie->alloc_page) {
374 			*offset = trans_pcie->alloc_page_used;
375 			page = trans_pcie->alloc_page;
376 			trans_pcie->alloc_page_used += rbsize;
377 			if (trans_pcie->alloc_page_used >= allocsize)
378 				trans_pcie->alloc_page = NULL;
379 			else
380 				get_page(page);
381 			spin_unlock_bh(&trans_pcie->alloc_page_lock);
382 			return page;
383 		}
384 		spin_unlock_bh(&trans_pcie->alloc_page_lock);
385 	}
386 
387 	/* Alloc a new receive buffer */
388 	page = alloc_pages(gfp_mask, trans_pcie->rx_page_order);
389 	if (!page) {
390 		if (net_ratelimit())
391 			IWL_DEBUG_INFO(trans, "alloc_pages failed, order: %d\n",
392 				       trans_pcie->rx_page_order);
393 		/*
394 		 * Issue an error if we don't have enough pre-allocated
395 		  * buffers.
396 		 */
397 		if (!(gfp_mask & __GFP_NOWARN) && net_ratelimit())
398 			IWL_CRIT(trans,
399 				 "Failed to alloc_pages\n");
400 		return NULL;
401 	}
402 
403 	if (2 * rbsize <= allocsize) {
404 		spin_lock_bh(&trans_pcie->alloc_page_lock);
405 		if (!trans_pcie->alloc_page) {
406 			get_page(page);
407 			trans_pcie->alloc_page = page;
408 			trans_pcie->alloc_page_used = rbsize;
409 		}
410 		spin_unlock_bh(&trans_pcie->alloc_page_lock);
411 	}
412 
413 	*offset = 0;
414 	return page;
415 }
416 
417 /*
418  * iwl_pcie_rxq_alloc_rbs - allocate a page for each used RBD
419  *
420  * A used RBD is an Rx buffer that has been given to the stack. To use it again
421  * a page must be allocated and the RBD must point to the page. This function
422  * doesn't change the HW pointer but handles the list of pages that is used by
423  * iwl_pcie_rxq_restock. The latter function will update the HW to use the newly
424  * allocated buffers.
425  */
426 void iwl_pcie_rxq_alloc_rbs(struct iwl_trans *trans, gfp_t priority,
427 			    struct iwl_rxq *rxq)
428 {
429 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
430 	struct iwl_rx_mem_buffer *rxb;
431 	struct page *page;
432 
433 	while (1) {
434 		unsigned int offset;
435 
436 		spin_lock_bh(&rxq->lock);
437 		if (list_empty(&rxq->rx_used)) {
438 			spin_unlock_bh(&rxq->lock);
439 			return;
440 		}
441 		spin_unlock_bh(&rxq->lock);
442 
443 		page = iwl_pcie_rx_alloc_page(trans, &offset, priority);
444 		if (!page)
445 			return;
446 
447 		spin_lock_bh(&rxq->lock);
448 
449 		if (list_empty(&rxq->rx_used)) {
450 			spin_unlock_bh(&rxq->lock);
451 			__free_pages(page, trans_pcie->rx_page_order);
452 			return;
453 		}
454 		rxb = list_first_entry(&rxq->rx_used, struct iwl_rx_mem_buffer,
455 				       list);
456 		list_del(&rxb->list);
457 		spin_unlock_bh(&rxq->lock);
458 
459 		BUG_ON(rxb->page);
460 		rxb->page = page;
461 		rxb->offset = offset;
462 		/* Get physical address of the RB */
463 		rxb->page_dma =
464 			dma_map_page(trans->dev, page, rxb->offset,
465 				     trans_pcie->rx_buf_bytes,
466 				     DMA_FROM_DEVICE);
467 		if (dma_mapping_error(trans->dev, rxb->page_dma)) {
468 			rxb->page = NULL;
469 			spin_lock_bh(&rxq->lock);
470 			list_add(&rxb->list, &rxq->rx_used);
471 			spin_unlock_bh(&rxq->lock);
472 			__free_pages(page, trans_pcie->rx_page_order);
473 			return;
474 		}
475 
476 		spin_lock_bh(&rxq->lock);
477 
478 		list_add_tail(&rxb->list, &rxq->rx_free);
479 		rxq->free_count++;
480 
481 		spin_unlock_bh(&rxq->lock);
482 	}
483 }
484 
485 void iwl_pcie_free_rbs_pool(struct iwl_trans *trans)
486 {
487 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
488 	int i;
489 
490 	if (!trans_pcie->rx_pool)
491 		return;
492 
493 	for (i = 0; i < RX_POOL_SIZE(trans_pcie->num_rx_bufs); i++) {
494 		if (!trans_pcie->rx_pool[i].page)
495 			continue;
496 		dma_unmap_page(trans->dev, trans_pcie->rx_pool[i].page_dma,
497 			       trans_pcie->rx_buf_bytes, DMA_FROM_DEVICE);
498 		__free_pages(trans_pcie->rx_pool[i].page,
499 			     trans_pcie->rx_page_order);
500 		trans_pcie->rx_pool[i].page = NULL;
501 	}
502 }
503 
504 /*
505  * iwl_pcie_rx_allocator - Allocates pages in the background for RX queues
506  *
507  * Allocates for each received request 8 pages
508  * Called as a scheduled work item.
509  */
510 static void iwl_pcie_rx_allocator(struct iwl_trans *trans)
511 {
512 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
513 	struct iwl_rb_allocator *rba = &trans_pcie->rba;
514 	struct list_head local_empty;
515 	int pending = atomic_read(&rba->req_pending);
516 
517 	IWL_DEBUG_TPT(trans, "Pending allocation requests = %d\n", pending);
518 
519 	/* If we were scheduled - there is at least one request */
520 	spin_lock_bh(&rba->lock);
521 	/* swap out the rba->rbd_empty to a local list */
522 	list_replace_init(&rba->rbd_empty, &local_empty);
523 	spin_unlock_bh(&rba->lock);
524 
525 	while (pending) {
526 		int i;
527 		LIST_HEAD(local_allocated);
528 		gfp_t gfp_mask = GFP_KERNEL;
529 
530 		/* Do not post a warning if there are only a few requests */
531 		if (pending < RX_PENDING_WATERMARK)
532 			gfp_mask |= __GFP_NOWARN;
533 
534 		for (i = 0; i < RX_CLAIM_REQ_ALLOC;) {
535 			struct iwl_rx_mem_buffer *rxb;
536 			struct page *page;
537 
538 			/* List should never be empty - each reused RBD is
539 			 * returned to the list, and initial pool covers any
540 			 * possible gap between the time the page is allocated
541 			 * to the time the RBD is added.
542 			 */
543 			BUG_ON(list_empty(&local_empty));
544 			/* Get the first rxb from the rbd list */
545 			rxb = list_first_entry(&local_empty,
546 					       struct iwl_rx_mem_buffer, list);
547 			BUG_ON(rxb->page);
548 
549 			/* Alloc a new receive buffer */
550 			page = iwl_pcie_rx_alloc_page(trans, &rxb->offset,
551 						      gfp_mask);
552 			if (!page)
553 				continue;
554 			rxb->page = page;
555 
556 			/* Get physical address of the RB */
557 			rxb->page_dma = dma_map_page(trans->dev, page,
558 						     rxb->offset,
559 						     trans_pcie->rx_buf_bytes,
560 						     DMA_FROM_DEVICE);
561 			if (dma_mapping_error(trans->dev, rxb->page_dma)) {
562 				rxb->page = NULL;
563 				__free_pages(page, trans_pcie->rx_page_order);
564 				continue;
565 			}
566 
567 			/* move the allocated entry to the out list */
568 			list_move(&rxb->list, &local_allocated);
569 			i++;
570 		}
571 
572 		atomic_dec(&rba->req_pending);
573 		pending--;
574 
575 		if (!pending) {
576 			pending = atomic_read(&rba->req_pending);
577 			if (pending)
578 				IWL_DEBUG_TPT(trans,
579 					      "Got more pending allocation requests = %d\n",
580 					      pending);
581 		}
582 
583 		spin_lock_bh(&rba->lock);
584 		/* add the allocated rbds to the allocator allocated list */
585 		list_splice_tail(&local_allocated, &rba->rbd_allocated);
586 		/* get more empty RBDs for current pending requests */
587 		list_splice_tail_init(&rba->rbd_empty, &local_empty);
588 		spin_unlock_bh(&rba->lock);
589 
590 		atomic_inc(&rba->req_ready);
591 
592 	}
593 
594 	spin_lock_bh(&rba->lock);
595 	/* return unused rbds to the allocator empty list */
596 	list_splice_tail(&local_empty, &rba->rbd_empty);
597 	spin_unlock_bh(&rba->lock);
598 
599 	IWL_DEBUG_TPT(trans, "%s, exit.\n", __func__);
600 }
601 
602 /*
603  * iwl_pcie_rx_allocator_get - returns the pre-allocated pages
604 .*
605 .* Called by queue when the queue posted allocation request and
606  * has freed 8 RBDs in order to restock itself.
607  * This function directly moves the allocated RBs to the queue's ownership
608  * and updates the relevant counters.
609  */
610 static void iwl_pcie_rx_allocator_get(struct iwl_trans *trans,
611 				      struct iwl_rxq *rxq)
612 {
613 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
614 	struct iwl_rb_allocator *rba = &trans_pcie->rba;
615 	int i;
616 
617 	lockdep_assert_held(&rxq->lock);
618 
619 	/*
620 	 * atomic_dec_if_positive returns req_ready - 1 for any scenario.
621 	 * If req_ready is 0 atomic_dec_if_positive will return -1 and this
622 	 * function will return early, as there are no ready requests.
623 	 * atomic_dec_if_positive will perofrm the *actual* decrement only if
624 	 * req_ready > 0, i.e. - there are ready requests and the function
625 	 * hands one request to the caller.
626 	 */
627 	if (atomic_dec_if_positive(&rba->req_ready) < 0)
628 		return;
629 
630 	spin_lock(&rba->lock);
631 	for (i = 0; i < RX_CLAIM_REQ_ALLOC; i++) {
632 		/* Get next free Rx buffer, remove it from free list */
633 		struct iwl_rx_mem_buffer *rxb =
634 			list_first_entry(&rba->rbd_allocated,
635 					 struct iwl_rx_mem_buffer, list);
636 
637 		list_move(&rxb->list, &rxq->rx_free);
638 	}
639 	spin_unlock(&rba->lock);
640 
641 	rxq->used_count -= RX_CLAIM_REQ_ALLOC;
642 	rxq->free_count += RX_CLAIM_REQ_ALLOC;
643 }
644 
645 void iwl_pcie_rx_allocator_work(struct work_struct *data)
646 {
647 	struct iwl_rb_allocator *rba_p =
648 		container_of(data, struct iwl_rb_allocator, rx_alloc);
649 	struct iwl_trans_pcie *trans_pcie =
650 		container_of(rba_p, struct iwl_trans_pcie, rba);
651 
652 	iwl_pcie_rx_allocator(trans_pcie->trans);
653 }
654 
655 static int iwl_pcie_free_bd_size(struct iwl_trans *trans)
656 {
657 	if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210)
658 		return sizeof(struct iwl_rx_transfer_desc);
659 
660 	return trans->trans_cfg->mq_rx_supported ?
661 			sizeof(__le64) : sizeof(__le32);
662 }
663 
664 static int iwl_pcie_used_bd_size(struct iwl_trans *trans)
665 {
666 	if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_BZ)
667 		return sizeof(struct iwl_rx_completion_desc_bz);
668 
669 	if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210)
670 		return sizeof(struct iwl_rx_completion_desc);
671 
672 	return sizeof(__le32);
673 }
674 
675 static void iwl_pcie_free_rxq_dma(struct iwl_trans *trans,
676 				  struct iwl_rxq *rxq)
677 {
678 	int free_size = iwl_pcie_free_bd_size(trans);
679 
680 	if (rxq->bd)
681 		dma_free_coherent(trans->dev,
682 				  free_size * rxq->queue_size,
683 				  rxq->bd, rxq->bd_dma);
684 	rxq->bd_dma = 0;
685 	rxq->bd = NULL;
686 
687 	rxq->rb_stts_dma = 0;
688 	rxq->rb_stts = NULL;
689 
690 	if (rxq->used_bd)
691 		dma_free_coherent(trans->dev,
692 				  iwl_pcie_used_bd_size(trans) *
693 					rxq->queue_size,
694 				  rxq->used_bd, rxq->used_bd_dma);
695 	rxq->used_bd_dma = 0;
696 	rxq->used_bd = NULL;
697 }
698 
699 static int iwl_pcie_alloc_rxq_dma(struct iwl_trans *trans,
700 				  struct iwl_rxq *rxq)
701 {
702 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
703 	struct device *dev = trans->dev;
704 	int i;
705 	int free_size;
706 	bool use_rx_td = (trans->trans_cfg->device_family >=
707 			  IWL_DEVICE_FAMILY_AX210);
708 	size_t rb_stts_size = use_rx_td ? sizeof(__le16) :
709 			      sizeof(struct iwl_rb_status);
710 
711 	spin_lock_init(&rxq->lock);
712 	if (trans->trans_cfg->mq_rx_supported)
713 		rxq->queue_size = trans->cfg->num_rbds;
714 	else
715 		rxq->queue_size = RX_QUEUE_SIZE;
716 
717 	free_size = iwl_pcie_free_bd_size(trans);
718 
719 	/*
720 	 * Allocate the circular buffer of Read Buffer Descriptors
721 	 * (RBDs)
722 	 */
723 	rxq->bd = dma_alloc_coherent(dev, free_size * rxq->queue_size,
724 				     &rxq->bd_dma, GFP_KERNEL);
725 	if (!rxq->bd)
726 		goto err;
727 
728 	if (trans->trans_cfg->mq_rx_supported) {
729 		rxq->used_bd = dma_alloc_coherent(dev,
730 						  iwl_pcie_used_bd_size(trans) *
731 							rxq->queue_size,
732 						  &rxq->used_bd_dma,
733 						  GFP_KERNEL);
734 		if (!rxq->used_bd)
735 			goto err;
736 	}
737 
738 	rxq->rb_stts = (u8 *)trans_pcie->base_rb_stts + rxq->id * rb_stts_size;
739 	rxq->rb_stts_dma =
740 		trans_pcie->base_rb_stts_dma + rxq->id * rb_stts_size;
741 
742 	return 0;
743 
744 err:
745 	for (i = 0; i < trans->num_rx_queues; i++) {
746 		struct iwl_rxq *rxq = &trans_pcie->rxq[i];
747 
748 		iwl_pcie_free_rxq_dma(trans, rxq);
749 	}
750 
751 	return -ENOMEM;
752 }
753 
754 static int iwl_pcie_rx_alloc(struct iwl_trans *trans)
755 {
756 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
757 	struct iwl_rb_allocator *rba = &trans_pcie->rba;
758 	int i, ret;
759 	size_t rb_stts_size = trans->trans_cfg->device_family >=
760 				IWL_DEVICE_FAMILY_AX210 ?
761 			      sizeof(__le16) : sizeof(struct iwl_rb_status);
762 
763 	if (WARN_ON(trans_pcie->rxq))
764 		return -EINVAL;
765 
766 	trans_pcie->rxq = kcalloc(trans->num_rx_queues, sizeof(struct iwl_rxq),
767 				  GFP_KERNEL);
768 	trans_pcie->rx_pool = kcalloc(RX_POOL_SIZE(trans_pcie->num_rx_bufs),
769 				      sizeof(trans_pcie->rx_pool[0]),
770 				      GFP_KERNEL);
771 	trans_pcie->global_table =
772 		kcalloc(RX_POOL_SIZE(trans_pcie->num_rx_bufs),
773 			sizeof(trans_pcie->global_table[0]),
774 			GFP_KERNEL);
775 	if (!trans_pcie->rxq || !trans_pcie->rx_pool ||
776 	    !trans_pcie->global_table) {
777 		ret = -ENOMEM;
778 		goto err;
779 	}
780 
781 	spin_lock_init(&rba->lock);
782 
783 	/*
784 	 * Allocate the driver's pointer to receive buffer status.
785 	 * Allocate for all queues continuously (HW requirement).
786 	 */
787 	trans_pcie->base_rb_stts =
788 			dma_alloc_coherent(trans->dev,
789 					   rb_stts_size * trans->num_rx_queues,
790 					   &trans_pcie->base_rb_stts_dma,
791 					   GFP_KERNEL);
792 	if (!trans_pcie->base_rb_stts) {
793 		ret = -ENOMEM;
794 		goto err;
795 	}
796 
797 	for (i = 0; i < trans->num_rx_queues; i++) {
798 		struct iwl_rxq *rxq = &trans_pcie->rxq[i];
799 
800 		rxq->id = i;
801 		ret = iwl_pcie_alloc_rxq_dma(trans, rxq);
802 		if (ret)
803 			goto err;
804 	}
805 	return 0;
806 
807 err:
808 	if (trans_pcie->base_rb_stts) {
809 		dma_free_coherent(trans->dev,
810 				  rb_stts_size * trans->num_rx_queues,
811 				  trans_pcie->base_rb_stts,
812 				  trans_pcie->base_rb_stts_dma);
813 		trans_pcie->base_rb_stts = NULL;
814 		trans_pcie->base_rb_stts_dma = 0;
815 	}
816 	kfree(trans_pcie->rx_pool);
817 	trans_pcie->rx_pool = NULL;
818 	kfree(trans_pcie->global_table);
819 	trans_pcie->global_table = NULL;
820 	kfree(trans_pcie->rxq);
821 	trans_pcie->rxq = NULL;
822 
823 	return ret;
824 }
825 
826 static void iwl_pcie_rx_hw_init(struct iwl_trans *trans, struct iwl_rxq *rxq)
827 {
828 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
829 	u32 rb_size;
830 	const u32 rfdnlog = RX_QUEUE_SIZE_LOG; /* 256 RBDs */
831 
832 	switch (trans_pcie->rx_buf_size) {
833 	case IWL_AMSDU_4K:
834 		rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
835 		break;
836 	case IWL_AMSDU_8K:
837 		rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_8K;
838 		break;
839 	case IWL_AMSDU_12K:
840 		rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_12K;
841 		break;
842 	default:
843 		WARN_ON(1);
844 		rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
845 	}
846 
847 	if (!iwl_trans_grab_nic_access(trans))
848 		return;
849 
850 	/* Stop Rx DMA */
851 	iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
852 	/* reset and flush pointers */
853 	iwl_write32(trans, FH_MEM_RCSR_CHNL0_RBDCB_WPTR, 0);
854 	iwl_write32(trans, FH_MEM_RCSR_CHNL0_FLUSH_RB_REQ, 0);
855 	iwl_write32(trans, FH_RSCSR_CHNL0_RDPTR, 0);
856 
857 	/* Reset driver's Rx queue write index */
858 	iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0);
859 
860 	/* Tell device where to find RBD circular buffer in DRAM */
861 	iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_BASE_REG,
862 		    (u32)(rxq->bd_dma >> 8));
863 
864 	/* Tell device where in DRAM to update its Rx status */
865 	iwl_write32(trans, FH_RSCSR_CHNL0_STTS_WPTR_REG,
866 		    rxq->rb_stts_dma >> 4);
867 
868 	/* Enable Rx DMA
869 	 * FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY is set because of HW bug in
870 	 *      the credit mechanism in 5000 HW RX FIFO
871 	 * Direct rx interrupts to hosts
872 	 * Rx buffer size 4 or 8k or 12k
873 	 * RB timeout 0x10
874 	 * 256 RBDs
875 	 */
876 	iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG,
877 		    FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL |
878 		    FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY |
879 		    FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL |
880 		    rb_size |
881 		    (RX_RB_TIMEOUT << FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS) |
882 		    (rfdnlog << FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS));
883 
884 	iwl_trans_release_nic_access(trans);
885 
886 	/* Set interrupt coalescing timer to default (2048 usecs) */
887 	iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
888 
889 	/* W/A for interrupt coalescing bug in 7260 and 3160 */
890 	if (trans->cfg->host_interrupt_operation_mode)
891 		iwl_set_bit(trans, CSR_INT_COALESCING, IWL_HOST_INT_OPER_MODE);
892 }
893 
894 static void iwl_pcie_rx_mq_hw_init(struct iwl_trans *trans)
895 {
896 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
897 	u32 rb_size, enabled = 0;
898 	int i;
899 
900 	switch (trans_pcie->rx_buf_size) {
901 	case IWL_AMSDU_2K:
902 		rb_size = RFH_RXF_DMA_RB_SIZE_2K;
903 		break;
904 	case IWL_AMSDU_4K:
905 		rb_size = RFH_RXF_DMA_RB_SIZE_4K;
906 		break;
907 	case IWL_AMSDU_8K:
908 		rb_size = RFH_RXF_DMA_RB_SIZE_8K;
909 		break;
910 	case IWL_AMSDU_12K:
911 		rb_size = RFH_RXF_DMA_RB_SIZE_12K;
912 		break;
913 	default:
914 		WARN_ON(1);
915 		rb_size = RFH_RXF_DMA_RB_SIZE_4K;
916 	}
917 
918 	if (!iwl_trans_grab_nic_access(trans))
919 		return;
920 
921 	/* Stop Rx DMA */
922 	iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG, 0);
923 	/* disable free amd used rx queue operation */
924 	iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, 0);
925 
926 	for (i = 0; i < trans->num_rx_queues; i++) {
927 		/* Tell device where to find RBD free table in DRAM */
928 		iwl_write_prph64_no_grab(trans,
929 					 RFH_Q_FRBDCB_BA_LSB(i),
930 					 trans_pcie->rxq[i].bd_dma);
931 		/* Tell device where to find RBD used table in DRAM */
932 		iwl_write_prph64_no_grab(trans,
933 					 RFH_Q_URBDCB_BA_LSB(i),
934 					 trans_pcie->rxq[i].used_bd_dma);
935 		/* Tell device where in DRAM to update its Rx status */
936 		iwl_write_prph64_no_grab(trans,
937 					 RFH_Q_URBD_STTS_WPTR_LSB(i),
938 					 trans_pcie->rxq[i].rb_stts_dma);
939 		/* Reset device indice tables */
940 		iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_WIDX(i), 0);
941 		iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_RIDX(i), 0);
942 		iwl_write_prph_no_grab(trans, RFH_Q_URBDCB_WIDX(i), 0);
943 
944 		enabled |= BIT(i) | BIT(i + 16);
945 	}
946 
947 	/*
948 	 * Enable Rx DMA
949 	 * Rx buffer size 4 or 8k or 12k
950 	 * Min RB size 4 or 8
951 	 * Drop frames that exceed RB size
952 	 * 512 RBDs
953 	 */
954 	iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG,
955 			       RFH_DMA_EN_ENABLE_VAL | rb_size |
956 			       RFH_RXF_DMA_MIN_RB_4_8 |
957 			       RFH_RXF_DMA_DROP_TOO_LARGE_MASK |
958 			       RFH_RXF_DMA_RBDCB_SIZE_512);
959 
960 	/*
961 	 * Activate DMA snooping.
962 	 * Set RX DMA chunk size to 64B for IOSF and 128B for PCIe
963 	 * Default queue is 0
964 	 */
965 	iwl_write_prph_no_grab(trans, RFH_GEN_CFG,
966 			       RFH_GEN_CFG_RFH_DMA_SNOOP |
967 			       RFH_GEN_CFG_VAL(DEFAULT_RXQ_NUM, 0) |
968 			       RFH_GEN_CFG_SERVICE_DMA_SNOOP |
969 			       RFH_GEN_CFG_VAL(RB_CHUNK_SIZE,
970 					       trans->trans_cfg->integrated ?
971 					       RFH_GEN_CFG_RB_CHUNK_SIZE_64 :
972 					       RFH_GEN_CFG_RB_CHUNK_SIZE_128));
973 	/* Enable the relevant rx queues */
974 	iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, enabled);
975 
976 	iwl_trans_release_nic_access(trans);
977 
978 	/* Set interrupt coalescing timer to default (2048 usecs) */
979 	iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
980 }
981 
982 void iwl_pcie_rx_init_rxb_lists(struct iwl_rxq *rxq)
983 {
984 	lockdep_assert_held(&rxq->lock);
985 
986 	INIT_LIST_HEAD(&rxq->rx_free);
987 	INIT_LIST_HEAD(&rxq->rx_used);
988 	rxq->free_count = 0;
989 	rxq->used_count = 0;
990 }
991 
992 static int iwl_pcie_rx_handle(struct iwl_trans *trans, int queue, int budget);
993 
994 static int iwl_pcie_napi_poll(struct napi_struct *napi, int budget)
995 {
996 	struct iwl_rxq *rxq = container_of(napi, struct iwl_rxq, napi);
997 	struct iwl_trans_pcie *trans_pcie;
998 	struct iwl_trans *trans;
999 	int ret;
1000 
1001 	trans_pcie = container_of(napi->dev, struct iwl_trans_pcie, napi_dev);
1002 	trans = trans_pcie->trans;
1003 
1004 	ret = iwl_pcie_rx_handle(trans, rxq->id, budget);
1005 
1006 	IWL_DEBUG_ISR(trans, "[%d] handled %d, budget %d\n",
1007 		      rxq->id, ret, budget);
1008 
1009 	if (ret < budget) {
1010 		spin_lock(&trans_pcie->irq_lock);
1011 		if (test_bit(STATUS_INT_ENABLED, &trans->status))
1012 			_iwl_enable_interrupts(trans);
1013 		spin_unlock(&trans_pcie->irq_lock);
1014 
1015 		napi_complete_done(&rxq->napi, ret);
1016 	}
1017 
1018 	return ret;
1019 }
1020 
1021 static int iwl_pcie_napi_poll_msix(struct napi_struct *napi, int budget)
1022 {
1023 	struct iwl_rxq *rxq = container_of(napi, struct iwl_rxq, napi);
1024 	struct iwl_trans_pcie *trans_pcie;
1025 	struct iwl_trans *trans;
1026 	int ret;
1027 
1028 	trans_pcie = container_of(napi->dev, struct iwl_trans_pcie, napi_dev);
1029 	trans = trans_pcie->trans;
1030 
1031 	ret = iwl_pcie_rx_handle(trans, rxq->id, budget);
1032 	IWL_DEBUG_ISR(trans, "[%d] handled %d, budget %d\n", rxq->id, ret,
1033 		      budget);
1034 
1035 	if (ret < budget) {
1036 		int irq_line = rxq->id;
1037 
1038 		/* FIRST_RSS is shared with line 0 */
1039 		if (trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS &&
1040 		    rxq->id == 1)
1041 			irq_line = 0;
1042 
1043 		spin_lock(&trans_pcie->irq_lock);
1044 		iwl_pcie_clear_irq(trans, irq_line);
1045 		spin_unlock(&trans_pcie->irq_lock);
1046 
1047 		napi_complete_done(&rxq->napi, ret);
1048 	}
1049 
1050 	return ret;
1051 }
1052 
1053 static int _iwl_pcie_rx_init(struct iwl_trans *trans)
1054 {
1055 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1056 	struct iwl_rxq *def_rxq;
1057 	struct iwl_rb_allocator *rba = &trans_pcie->rba;
1058 	int i, err, queue_size, allocator_pool_size, num_alloc;
1059 
1060 	if (!trans_pcie->rxq) {
1061 		err = iwl_pcie_rx_alloc(trans);
1062 		if (err)
1063 			return err;
1064 	}
1065 	def_rxq = trans_pcie->rxq;
1066 
1067 	cancel_work_sync(&rba->rx_alloc);
1068 
1069 	spin_lock_bh(&rba->lock);
1070 	atomic_set(&rba->req_pending, 0);
1071 	atomic_set(&rba->req_ready, 0);
1072 	INIT_LIST_HEAD(&rba->rbd_allocated);
1073 	INIT_LIST_HEAD(&rba->rbd_empty);
1074 	spin_unlock_bh(&rba->lock);
1075 
1076 	/* free all first - we overwrite everything here */
1077 	iwl_pcie_free_rbs_pool(trans);
1078 
1079 	for (i = 0; i < RX_QUEUE_SIZE; i++)
1080 		def_rxq->queue[i] = NULL;
1081 
1082 	for (i = 0; i < trans->num_rx_queues; i++) {
1083 		struct iwl_rxq *rxq = &trans_pcie->rxq[i];
1084 
1085 		spin_lock_bh(&rxq->lock);
1086 		/*
1087 		 * Set read write pointer to reflect that we have processed
1088 		 * and used all buffers, but have not restocked the Rx queue
1089 		 * with fresh buffers
1090 		 */
1091 		rxq->read = 0;
1092 		rxq->write = 0;
1093 		rxq->write_actual = 0;
1094 		memset(rxq->rb_stts, 0,
1095 		       (trans->trans_cfg->device_family >=
1096 			IWL_DEVICE_FAMILY_AX210) ?
1097 		       sizeof(__le16) : sizeof(struct iwl_rb_status));
1098 
1099 		iwl_pcie_rx_init_rxb_lists(rxq);
1100 
1101 		spin_unlock_bh(&rxq->lock);
1102 
1103 		if (!rxq->napi.poll) {
1104 			int (*poll)(struct napi_struct *, int) = iwl_pcie_napi_poll;
1105 
1106 			if (trans_pcie->msix_enabled)
1107 				poll = iwl_pcie_napi_poll_msix;
1108 
1109 			netif_napi_add(&trans_pcie->napi_dev, &rxq->napi,
1110 				       poll, NAPI_POLL_WEIGHT);
1111 			napi_enable(&rxq->napi);
1112 		}
1113 
1114 	}
1115 
1116 	/* move the pool to the default queue and allocator ownerships */
1117 	queue_size = trans->trans_cfg->mq_rx_supported ?
1118 			trans_pcie->num_rx_bufs - 1 : RX_QUEUE_SIZE;
1119 	allocator_pool_size = trans->num_rx_queues *
1120 		(RX_CLAIM_REQ_ALLOC - RX_POST_REQ_ALLOC);
1121 	num_alloc = queue_size + allocator_pool_size;
1122 
1123 	for (i = 0; i < num_alloc; i++) {
1124 		struct iwl_rx_mem_buffer *rxb = &trans_pcie->rx_pool[i];
1125 
1126 		if (i < allocator_pool_size)
1127 			list_add(&rxb->list, &rba->rbd_empty);
1128 		else
1129 			list_add(&rxb->list, &def_rxq->rx_used);
1130 		trans_pcie->global_table[i] = rxb;
1131 		rxb->vid = (u16)(i + 1);
1132 		rxb->invalid = true;
1133 	}
1134 
1135 	iwl_pcie_rxq_alloc_rbs(trans, GFP_KERNEL, def_rxq);
1136 
1137 	return 0;
1138 }
1139 
1140 int iwl_pcie_rx_init(struct iwl_trans *trans)
1141 {
1142 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1143 	int ret = _iwl_pcie_rx_init(trans);
1144 
1145 	if (ret)
1146 		return ret;
1147 
1148 	if (trans->trans_cfg->mq_rx_supported)
1149 		iwl_pcie_rx_mq_hw_init(trans);
1150 	else
1151 		iwl_pcie_rx_hw_init(trans, trans_pcie->rxq);
1152 
1153 	iwl_pcie_rxq_restock(trans, trans_pcie->rxq);
1154 
1155 	spin_lock_bh(&trans_pcie->rxq->lock);
1156 	iwl_pcie_rxq_inc_wr_ptr(trans, trans_pcie->rxq);
1157 	spin_unlock_bh(&trans_pcie->rxq->lock);
1158 
1159 	return 0;
1160 }
1161 
1162 int iwl_pcie_gen2_rx_init(struct iwl_trans *trans)
1163 {
1164 	/* Set interrupt coalescing timer to default (2048 usecs) */
1165 	iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
1166 
1167 	/*
1168 	 * We don't configure the RFH.
1169 	 * Restock will be done at alive, after firmware configured the RFH.
1170 	 */
1171 	return _iwl_pcie_rx_init(trans);
1172 }
1173 
1174 void iwl_pcie_rx_free(struct iwl_trans *trans)
1175 {
1176 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1177 	struct iwl_rb_allocator *rba = &trans_pcie->rba;
1178 	int i;
1179 	size_t rb_stts_size = trans->trans_cfg->device_family >=
1180 				IWL_DEVICE_FAMILY_AX210 ?
1181 			      sizeof(__le16) : sizeof(struct iwl_rb_status);
1182 
1183 	/*
1184 	 * if rxq is NULL, it means that nothing has been allocated,
1185 	 * exit now
1186 	 */
1187 	if (!trans_pcie->rxq) {
1188 		IWL_DEBUG_INFO(trans, "Free NULL rx context\n");
1189 		return;
1190 	}
1191 
1192 	cancel_work_sync(&rba->rx_alloc);
1193 
1194 	iwl_pcie_free_rbs_pool(trans);
1195 
1196 	if (trans_pcie->base_rb_stts) {
1197 		dma_free_coherent(trans->dev,
1198 				  rb_stts_size * trans->num_rx_queues,
1199 				  trans_pcie->base_rb_stts,
1200 				  trans_pcie->base_rb_stts_dma);
1201 		trans_pcie->base_rb_stts = NULL;
1202 		trans_pcie->base_rb_stts_dma = 0;
1203 	}
1204 
1205 	for (i = 0; i < trans->num_rx_queues; i++) {
1206 		struct iwl_rxq *rxq = &trans_pcie->rxq[i];
1207 
1208 		iwl_pcie_free_rxq_dma(trans, rxq);
1209 
1210 		if (rxq->napi.poll) {
1211 			napi_disable(&rxq->napi);
1212 			netif_napi_del(&rxq->napi);
1213 		}
1214 	}
1215 	kfree(trans_pcie->rx_pool);
1216 	kfree(trans_pcie->global_table);
1217 	kfree(trans_pcie->rxq);
1218 
1219 	if (trans_pcie->alloc_page)
1220 		__free_pages(trans_pcie->alloc_page, trans_pcie->rx_page_order);
1221 }
1222 
1223 static void iwl_pcie_rx_move_to_allocator(struct iwl_rxq *rxq,
1224 					  struct iwl_rb_allocator *rba)
1225 {
1226 	spin_lock(&rba->lock);
1227 	list_splice_tail_init(&rxq->rx_used, &rba->rbd_empty);
1228 	spin_unlock(&rba->lock);
1229 }
1230 
1231 /*
1232  * iwl_pcie_rx_reuse_rbd - Recycle used RBDs
1233  *
1234  * Called when a RBD can be reused. The RBD is transferred to the allocator.
1235  * When there are 2 empty RBDs - a request for allocation is posted
1236  */
1237 static void iwl_pcie_rx_reuse_rbd(struct iwl_trans *trans,
1238 				  struct iwl_rx_mem_buffer *rxb,
1239 				  struct iwl_rxq *rxq, bool emergency)
1240 {
1241 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1242 	struct iwl_rb_allocator *rba = &trans_pcie->rba;
1243 
1244 	/* Move the RBD to the used list, will be moved to allocator in batches
1245 	 * before claiming or posting a request*/
1246 	list_add_tail(&rxb->list, &rxq->rx_used);
1247 
1248 	if (unlikely(emergency))
1249 		return;
1250 
1251 	/* Count the allocator owned RBDs */
1252 	rxq->used_count++;
1253 
1254 	/* If we have RX_POST_REQ_ALLOC new released rx buffers -
1255 	 * issue a request for allocator. Modulo RX_CLAIM_REQ_ALLOC is
1256 	 * used for the case we failed to claim RX_CLAIM_REQ_ALLOC,
1257 	 * after but we still need to post another request.
1258 	 */
1259 	if ((rxq->used_count % RX_CLAIM_REQ_ALLOC) == RX_POST_REQ_ALLOC) {
1260 		/* Move the 2 RBDs to the allocator ownership.
1261 		 Allocator has another 6 from pool for the request completion*/
1262 		iwl_pcie_rx_move_to_allocator(rxq, rba);
1263 
1264 		atomic_inc(&rba->req_pending);
1265 		queue_work(rba->alloc_wq, &rba->rx_alloc);
1266 	}
1267 }
1268 
1269 static void iwl_pcie_rx_handle_rb(struct iwl_trans *trans,
1270 				struct iwl_rxq *rxq,
1271 				struct iwl_rx_mem_buffer *rxb,
1272 				bool emergency,
1273 				int i)
1274 {
1275 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1276 	struct iwl_txq *txq = trans->txqs.txq[trans->txqs.cmd.q_id];
1277 	bool page_stolen = false;
1278 	int max_len = trans_pcie->rx_buf_bytes;
1279 	u32 offset = 0;
1280 
1281 	if (WARN_ON(!rxb))
1282 		return;
1283 
1284 	dma_unmap_page(trans->dev, rxb->page_dma, max_len, DMA_FROM_DEVICE);
1285 
1286 	while (offset + sizeof(u32) + sizeof(struct iwl_cmd_header) < max_len) {
1287 		struct iwl_rx_packet *pkt;
1288 		bool reclaim;
1289 		int len;
1290 		struct iwl_rx_cmd_buffer rxcb = {
1291 			._offset = rxb->offset + offset,
1292 			._rx_page_order = trans_pcie->rx_page_order,
1293 			._page = rxb->page,
1294 			._page_stolen = false,
1295 			.truesize = max_len,
1296 		};
1297 
1298 		pkt = rxb_addr(&rxcb);
1299 
1300 		if (pkt->len_n_flags == cpu_to_le32(FH_RSCSR_FRAME_INVALID)) {
1301 			IWL_DEBUG_RX(trans,
1302 				     "Q %d: RB end marker at offset %d\n",
1303 				     rxq->id, offset);
1304 			break;
1305 		}
1306 
1307 		WARN((le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_RXQ_MASK) >>
1308 			FH_RSCSR_RXQ_POS != rxq->id,
1309 		     "frame on invalid queue - is on %d and indicates %d\n",
1310 		     rxq->id,
1311 		     (le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_RXQ_MASK) >>
1312 			FH_RSCSR_RXQ_POS);
1313 
1314 		IWL_DEBUG_RX(trans,
1315 			     "Q %d: cmd at offset %d: %s (%.2x.%2x, seq 0x%x)\n",
1316 			     rxq->id, offset,
1317 			     iwl_get_cmd_string(trans,
1318 						WIDE_ID(pkt->hdr.group_id, pkt->hdr.cmd)),
1319 			     pkt->hdr.group_id, pkt->hdr.cmd,
1320 			     le16_to_cpu(pkt->hdr.sequence));
1321 
1322 		len = iwl_rx_packet_len(pkt);
1323 		len += sizeof(u32); /* account for status word */
1324 
1325 		offset += ALIGN(len, FH_RSCSR_FRAME_ALIGN);
1326 
1327 		/* check that what the device tells us made sense */
1328 		if (len < sizeof(*pkt) || offset > max_len)
1329 			break;
1330 
1331 		trace_iwlwifi_dev_rx(trans->dev, trans, pkt, len);
1332 		trace_iwlwifi_dev_rx_data(trans->dev, trans, pkt, len);
1333 
1334 		/* Reclaim a command buffer only if this packet is a response
1335 		 *   to a (driver-originated) command.
1336 		 * If the packet (e.g. Rx frame) originated from uCode,
1337 		 *   there is no command buffer to reclaim.
1338 		 * Ucode should set SEQ_RX_FRAME bit if ucode-originated,
1339 		 *   but apparently a few don't get set; catch them here. */
1340 		reclaim = !(pkt->hdr.sequence & SEQ_RX_FRAME);
1341 		if (reclaim && !pkt->hdr.group_id) {
1342 			int i;
1343 
1344 			for (i = 0; i < trans_pcie->n_no_reclaim_cmds; i++) {
1345 				if (trans_pcie->no_reclaim_cmds[i] ==
1346 							pkt->hdr.cmd) {
1347 					reclaim = false;
1348 					break;
1349 				}
1350 			}
1351 		}
1352 
1353 		if (rxq->id == trans_pcie->def_rx_queue)
1354 			iwl_op_mode_rx(trans->op_mode, &rxq->napi,
1355 				       &rxcb);
1356 		else
1357 			iwl_op_mode_rx_rss(trans->op_mode, &rxq->napi,
1358 					   &rxcb, rxq->id);
1359 
1360 		/*
1361 		 * After here, we should always check rxcb._page_stolen,
1362 		 * if it is true then one of the handlers took the page.
1363 		 */
1364 
1365 		if (reclaim) {
1366 			u16 sequence = le16_to_cpu(pkt->hdr.sequence);
1367 			int index = SEQ_TO_INDEX(sequence);
1368 			int cmd_index = iwl_txq_get_cmd_index(txq, index);
1369 
1370 			kfree_sensitive(txq->entries[cmd_index].free_buf);
1371 			txq->entries[cmd_index].free_buf = NULL;
1372 
1373 			/* Invoke any callbacks, transfer the buffer to caller,
1374 			 * and fire off the (possibly) blocking
1375 			 * iwl_trans_send_cmd()
1376 			 * as we reclaim the driver command queue */
1377 			if (!rxcb._page_stolen)
1378 				iwl_pcie_hcmd_complete(trans, &rxcb);
1379 			else
1380 				IWL_WARN(trans, "Claim null rxb?\n");
1381 		}
1382 
1383 		page_stolen |= rxcb._page_stolen;
1384 		if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210)
1385 			break;
1386 	}
1387 
1388 	/* page was stolen from us -- free our reference */
1389 	if (page_stolen) {
1390 		__free_pages(rxb->page, trans_pcie->rx_page_order);
1391 		rxb->page = NULL;
1392 	}
1393 
1394 	/* Reuse the page if possible. For notification packets and
1395 	 * SKBs that fail to Rx correctly, add them back into the
1396 	 * rx_free list for reuse later. */
1397 	if (rxb->page != NULL) {
1398 		rxb->page_dma =
1399 			dma_map_page(trans->dev, rxb->page, rxb->offset,
1400 				     trans_pcie->rx_buf_bytes,
1401 				     DMA_FROM_DEVICE);
1402 		if (dma_mapping_error(trans->dev, rxb->page_dma)) {
1403 			/*
1404 			 * free the page(s) as well to not break
1405 			 * the invariant that the items on the used
1406 			 * list have no page(s)
1407 			 */
1408 			__free_pages(rxb->page, trans_pcie->rx_page_order);
1409 			rxb->page = NULL;
1410 			iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency);
1411 		} else {
1412 			list_add_tail(&rxb->list, &rxq->rx_free);
1413 			rxq->free_count++;
1414 		}
1415 	} else
1416 		iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency);
1417 }
1418 
1419 static struct iwl_rx_mem_buffer *iwl_pcie_get_rxb(struct iwl_trans *trans,
1420 						  struct iwl_rxq *rxq, int i,
1421 						  bool *join)
1422 {
1423 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1424 	struct iwl_rx_mem_buffer *rxb;
1425 	u16 vid;
1426 
1427 	BUILD_BUG_ON(sizeof(struct iwl_rx_completion_desc) != 32);
1428 	BUILD_BUG_ON(sizeof(struct iwl_rx_completion_desc_bz) != 4);
1429 
1430 	if (!trans->trans_cfg->mq_rx_supported) {
1431 		rxb = rxq->queue[i];
1432 		rxq->queue[i] = NULL;
1433 		return rxb;
1434 	}
1435 
1436 	if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_BZ) {
1437 		struct iwl_rx_completion_desc_bz *cd = rxq->used_bd;
1438 
1439 		vid = le16_to_cpu(cd[i].rbid);
1440 		*join = cd[i].flags & IWL_RX_CD_FLAGS_FRAGMENTED;
1441 	} else if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
1442 		struct iwl_rx_completion_desc *cd = rxq->used_bd;
1443 
1444 		vid = le16_to_cpu(cd[i].rbid);
1445 		*join = cd[i].flags & IWL_RX_CD_FLAGS_FRAGMENTED;
1446 	} else {
1447 		__le32 *cd = rxq->used_bd;
1448 
1449 		vid = le32_to_cpu(cd[i]) & 0x0FFF; /* 12-bit VID */
1450 	}
1451 
1452 	if (!vid || vid > RX_POOL_SIZE(trans_pcie->num_rx_bufs))
1453 		goto out_err;
1454 
1455 	rxb = trans_pcie->global_table[vid - 1];
1456 	if (rxb->invalid)
1457 		goto out_err;
1458 
1459 	IWL_DEBUG_RX(trans, "Got virtual RB ID %u\n", (u32)rxb->vid);
1460 
1461 	rxb->invalid = true;
1462 
1463 	return rxb;
1464 
1465 out_err:
1466 	WARN(1, "Invalid rxb from HW %u\n", (u32)vid);
1467 	iwl_force_nmi(trans);
1468 	return NULL;
1469 }
1470 
1471 /*
1472  * iwl_pcie_rx_handle - Main entry function for receiving responses from fw
1473  */
1474 static int iwl_pcie_rx_handle(struct iwl_trans *trans, int queue, int budget)
1475 {
1476 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1477 	struct iwl_rxq *rxq;
1478 	u32 r, i, count = 0, handled = 0;
1479 	bool emergency = false;
1480 
1481 	if (WARN_ON_ONCE(!trans_pcie->rxq || !trans_pcie->rxq[queue].bd))
1482 		return budget;
1483 
1484 	rxq = &trans_pcie->rxq[queue];
1485 
1486 restart:
1487 	spin_lock(&rxq->lock);
1488 	/* uCode's read index (stored in shared DRAM) indicates the last Rx
1489 	 * buffer that the driver may process (last buffer filled by ucode). */
1490 	r = le16_to_cpu(iwl_get_closed_rb_stts(trans, rxq)) & 0x0FFF;
1491 	i = rxq->read;
1492 
1493 	/* W/A 9000 device step A0 wrap-around bug */
1494 	r &= (rxq->queue_size - 1);
1495 
1496 	/* Rx interrupt, but nothing sent from uCode */
1497 	if (i == r)
1498 		IWL_DEBUG_RX(trans, "Q %d: HW = SW = %d\n", rxq->id, r);
1499 
1500 	while (i != r && ++handled < budget) {
1501 		struct iwl_rb_allocator *rba = &trans_pcie->rba;
1502 		struct iwl_rx_mem_buffer *rxb;
1503 		/* number of RBDs still waiting for page allocation */
1504 		u32 rb_pending_alloc =
1505 			atomic_read(&trans_pcie->rba.req_pending) *
1506 			RX_CLAIM_REQ_ALLOC;
1507 		bool join = false;
1508 
1509 		if (unlikely(rb_pending_alloc >= rxq->queue_size / 2 &&
1510 			     !emergency)) {
1511 			iwl_pcie_rx_move_to_allocator(rxq, rba);
1512 			emergency = true;
1513 			IWL_DEBUG_TPT(trans,
1514 				      "RX path is in emergency. Pending allocations %d\n",
1515 				      rb_pending_alloc);
1516 		}
1517 
1518 		IWL_DEBUG_RX(trans, "Q %d: HW = %d, SW = %d\n", rxq->id, r, i);
1519 
1520 		rxb = iwl_pcie_get_rxb(trans, rxq, i, &join);
1521 		if (!rxb)
1522 			goto out;
1523 
1524 		if (unlikely(join || rxq->next_rb_is_fragment)) {
1525 			rxq->next_rb_is_fragment = join;
1526 			/*
1527 			 * We can only get a multi-RB in the following cases:
1528 			 *  - firmware issue, sending a too big notification
1529 			 *  - sniffer mode with a large A-MSDU
1530 			 *  - large MTU frames (>2k)
1531 			 * since the multi-RB functionality is limited to newer
1532 			 * hardware that cannot put multiple entries into a
1533 			 * single RB.
1534 			 *
1535 			 * Right now, the higher layers aren't set up to deal
1536 			 * with that, so discard all of these.
1537 			 */
1538 			list_add_tail(&rxb->list, &rxq->rx_free);
1539 			rxq->free_count++;
1540 		} else {
1541 			iwl_pcie_rx_handle_rb(trans, rxq, rxb, emergency, i);
1542 		}
1543 
1544 		i = (i + 1) & (rxq->queue_size - 1);
1545 
1546 		/*
1547 		 * If we have RX_CLAIM_REQ_ALLOC released rx buffers -
1548 		 * try to claim the pre-allocated buffers from the allocator.
1549 		 * If not ready - will try to reclaim next time.
1550 		 * There is no need to reschedule work - allocator exits only
1551 		 * on success
1552 		 */
1553 		if (rxq->used_count >= RX_CLAIM_REQ_ALLOC)
1554 			iwl_pcie_rx_allocator_get(trans, rxq);
1555 
1556 		if (rxq->used_count % RX_CLAIM_REQ_ALLOC == 0 && !emergency) {
1557 			/* Add the remaining empty RBDs for allocator use */
1558 			iwl_pcie_rx_move_to_allocator(rxq, rba);
1559 		} else if (emergency) {
1560 			count++;
1561 			if (count == 8) {
1562 				count = 0;
1563 				if (rb_pending_alloc < rxq->queue_size / 3) {
1564 					IWL_DEBUG_TPT(trans,
1565 						      "RX path exited emergency. Pending allocations %d\n",
1566 						      rb_pending_alloc);
1567 					emergency = false;
1568 				}
1569 
1570 				rxq->read = i;
1571 				spin_unlock(&rxq->lock);
1572 				iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq);
1573 				iwl_pcie_rxq_restock(trans, rxq);
1574 				goto restart;
1575 			}
1576 		}
1577 	}
1578 out:
1579 	/* Backtrack one entry */
1580 	rxq->read = i;
1581 	spin_unlock(&rxq->lock);
1582 
1583 	/*
1584 	 * handle a case where in emergency there are some unallocated RBDs.
1585 	 * those RBDs are in the used list, but are not tracked by the queue's
1586 	 * used_count which counts allocator owned RBDs.
1587 	 * unallocated emergency RBDs must be allocated on exit, otherwise
1588 	 * when called again the function may not be in emergency mode and
1589 	 * they will be handed to the allocator with no tracking in the RBD
1590 	 * allocator counters, which will lead to them never being claimed back
1591 	 * by the queue.
1592 	 * by allocating them here, they are now in the queue free list, and
1593 	 * will be restocked by the next call of iwl_pcie_rxq_restock.
1594 	 */
1595 	if (unlikely(emergency && count))
1596 		iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq);
1597 
1598 	iwl_pcie_rxq_restock(trans, rxq);
1599 
1600 	return handled;
1601 }
1602 
1603 static struct iwl_trans_pcie *iwl_pcie_get_trans_pcie(struct msix_entry *entry)
1604 {
1605 	u8 queue = entry->entry;
1606 	struct msix_entry *entries = entry - queue;
1607 
1608 	return container_of(entries, struct iwl_trans_pcie, msix_entries[0]);
1609 }
1610 
1611 /*
1612  * iwl_pcie_rx_msix_handle - Main entry function for receiving responses from fw
1613  * This interrupt handler should be used with RSS queue only.
1614  */
1615 irqreturn_t iwl_pcie_irq_rx_msix_handler(int irq, void *dev_id)
1616 {
1617 	struct msix_entry *entry = dev_id;
1618 	struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry);
1619 	struct iwl_trans *trans = trans_pcie->trans;
1620 	struct iwl_rxq *rxq = &trans_pcie->rxq[entry->entry];
1621 
1622 	trace_iwlwifi_dev_irq_msix(trans->dev, entry, false, 0, 0);
1623 
1624 	if (WARN_ON(entry->entry >= trans->num_rx_queues))
1625 		return IRQ_NONE;
1626 
1627 	if (WARN_ONCE(!rxq,
1628 		      "[%d] Got MSI-X interrupt before we have Rx queues",
1629 		      entry->entry))
1630 		return IRQ_NONE;
1631 
1632 	lock_map_acquire(&trans->sync_cmd_lockdep_map);
1633 	IWL_DEBUG_ISR(trans, "[%d] Got interrupt\n", entry->entry);
1634 
1635 	local_bh_disable();
1636 	if (napi_schedule_prep(&rxq->napi))
1637 		__napi_schedule(&rxq->napi);
1638 	else
1639 		iwl_pcie_clear_irq(trans, entry->entry);
1640 	local_bh_enable();
1641 
1642 	lock_map_release(&trans->sync_cmd_lockdep_map);
1643 
1644 	return IRQ_HANDLED;
1645 }
1646 
1647 /*
1648  * iwl_pcie_irq_handle_error - called for HW or SW error interrupt from card
1649  */
1650 static void iwl_pcie_irq_handle_error(struct iwl_trans *trans)
1651 {
1652 	int i;
1653 
1654 	/* W/A for WiFi/WiMAX coex and WiMAX own the RF */
1655 	if (trans->cfg->internal_wimax_coex &&
1656 	    !trans->cfg->apmg_not_supported &&
1657 	    (!(iwl_read_prph(trans, APMG_CLK_CTRL_REG) &
1658 			     APMS_CLK_VAL_MRB_FUNC_MODE) ||
1659 	     (iwl_read_prph(trans, APMG_PS_CTRL_REG) &
1660 			    APMG_PS_CTRL_VAL_RESET_REQ))) {
1661 		clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
1662 		iwl_op_mode_wimax_active(trans->op_mode);
1663 		wake_up(&trans->wait_command_queue);
1664 		return;
1665 	}
1666 
1667 	for (i = 0; i < trans->trans_cfg->base_params->num_of_queues; i++) {
1668 		if (!trans->txqs.txq[i])
1669 			continue;
1670 		del_timer(&trans->txqs.txq[i]->stuck_timer);
1671 	}
1672 
1673 	/* The STATUS_FW_ERROR bit is set in this function. This must happen
1674 	 * before we wake up the command caller, to ensure a proper cleanup. */
1675 	iwl_trans_fw_error(trans, false);
1676 
1677 	clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
1678 	wake_up(&trans->wait_command_queue);
1679 }
1680 
1681 static u32 iwl_pcie_int_cause_non_ict(struct iwl_trans *trans)
1682 {
1683 	u32 inta;
1684 
1685 	lockdep_assert_held(&IWL_TRANS_GET_PCIE_TRANS(trans)->irq_lock);
1686 
1687 	trace_iwlwifi_dev_irq(trans->dev);
1688 
1689 	/* Discover which interrupts are active/pending */
1690 	inta = iwl_read32(trans, CSR_INT);
1691 
1692 	/* the thread will service interrupts and re-enable them */
1693 	return inta;
1694 }
1695 
1696 /* a device (PCI-E) page is 4096 bytes long */
1697 #define ICT_SHIFT	12
1698 #define ICT_SIZE	(1 << ICT_SHIFT)
1699 #define ICT_COUNT	(ICT_SIZE / sizeof(u32))
1700 
1701 /* interrupt handler using ict table, with this interrupt driver will
1702  * stop using INTA register to get device's interrupt, reading this register
1703  * is expensive, device will write interrupts in ICT dram table, increment
1704  * index then will fire interrupt to driver, driver will OR all ICT table
1705  * entries from current index up to table entry with 0 value. the result is
1706  * the interrupt we need to service, driver will set the entries back to 0 and
1707  * set index.
1708  */
1709 static u32 iwl_pcie_int_cause_ict(struct iwl_trans *trans)
1710 {
1711 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1712 	u32 inta;
1713 	u32 val = 0;
1714 	u32 read;
1715 
1716 	trace_iwlwifi_dev_irq(trans->dev);
1717 
1718 	/* Ignore interrupt if there's nothing in NIC to service.
1719 	 * This may be due to IRQ shared with another device,
1720 	 * or due to sporadic interrupts thrown from our NIC. */
1721 	read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
1722 	trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index, read);
1723 	if (!read)
1724 		return 0;
1725 
1726 	/*
1727 	 * Collect all entries up to the first 0, starting from ict_index;
1728 	 * note we already read at ict_index.
1729 	 */
1730 	do {
1731 		val |= read;
1732 		IWL_DEBUG_ISR(trans, "ICT index %d value 0x%08X\n",
1733 				trans_pcie->ict_index, read);
1734 		trans_pcie->ict_tbl[trans_pcie->ict_index] = 0;
1735 		trans_pcie->ict_index =
1736 			((trans_pcie->ict_index + 1) & (ICT_COUNT - 1));
1737 
1738 		read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
1739 		trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index,
1740 					   read);
1741 	} while (read);
1742 
1743 	/* We should not get this value, just ignore it. */
1744 	if (val == 0xffffffff)
1745 		val = 0;
1746 
1747 	/*
1748 	 * this is a w/a for a h/w bug. the h/w bug may cause the Rx bit
1749 	 * (bit 15 before shifting it to 31) to clear when using interrupt
1750 	 * coalescing. fortunately, bits 18 and 19 stay set when this happens
1751 	 * so we use them to decide on the real state of the Rx bit.
1752 	 * In order words, bit 15 is set if bit 18 or bit 19 are set.
1753 	 */
1754 	if (val & 0xC0000)
1755 		val |= 0x8000;
1756 
1757 	inta = (0xff & val) | ((0xff00 & val) << 16);
1758 	return inta;
1759 }
1760 
1761 void iwl_pcie_handle_rfkill_irq(struct iwl_trans *trans)
1762 {
1763 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1764 	struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
1765 	bool hw_rfkill, prev, report;
1766 
1767 	mutex_lock(&trans_pcie->mutex);
1768 	prev = test_bit(STATUS_RFKILL_OPMODE, &trans->status);
1769 	hw_rfkill = iwl_is_rfkill_set(trans);
1770 	if (hw_rfkill) {
1771 		set_bit(STATUS_RFKILL_OPMODE, &trans->status);
1772 		set_bit(STATUS_RFKILL_HW, &trans->status);
1773 	}
1774 	if (trans_pcie->opmode_down)
1775 		report = hw_rfkill;
1776 	else
1777 		report = test_bit(STATUS_RFKILL_OPMODE, &trans->status);
1778 
1779 	IWL_WARN(trans, "RF_KILL bit toggled to %s.\n",
1780 		 hw_rfkill ? "disable radio" : "enable radio");
1781 
1782 	isr_stats->rfkill++;
1783 
1784 	if (prev != report)
1785 		iwl_trans_pcie_rf_kill(trans, report);
1786 	mutex_unlock(&trans_pcie->mutex);
1787 
1788 	if (hw_rfkill) {
1789 		if (test_and_clear_bit(STATUS_SYNC_HCMD_ACTIVE,
1790 				       &trans->status))
1791 			IWL_DEBUG_RF_KILL(trans,
1792 					  "Rfkill while SYNC HCMD in flight\n");
1793 		wake_up(&trans->wait_command_queue);
1794 	} else {
1795 		clear_bit(STATUS_RFKILL_HW, &trans->status);
1796 		if (trans_pcie->opmode_down)
1797 			clear_bit(STATUS_RFKILL_OPMODE, &trans->status);
1798 	}
1799 }
1800 
1801 irqreturn_t iwl_pcie_irq_handler(int irq, void *dev_id)
1802 {
1803 	struct iwl_trans *trans = dev_id;
1804 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1805 	struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
1806 	u32 inta = 0;
1807 	u32 handled = 0;
1808 	bool polling = false;
1809 
1810 	lock_map_acquire(&trans->sync_cmd_lockdep_map);
1811 
1812 	spin_lock_bh(&trans_pcie->irq_lock);
1813 
1814 	/* dram interrupt table not set yet,
1815 	 * use legacy interrupt.
1816 	 */
1817 	if (likely(trans_pcie->use_ict))
1818 		inta = iwl_pcie_int_cause_ict(trans);
1819 	else
1820 		inta = iwl_pcie_int_cause_non_ict(trans);
1821 
1822 	if (iwl_have_debug_level(IWL_DL_ISR)) {
1823 		IWL_DEBUG_ISR(trans,
1824 			      "ISR inta 0x%08x, enabled 0x%08x(sw), enabled(hw) 0x%08x, fh 0x%08x\n",
1825 			      inta, trans_pcie->inta_mask,
1826 			      iwl_read32(trans, CSR_INT_MASK),
1827 			      iwl_read32(trans, CSR_FH_INT_STATUS));
1828 		if (inta & (~trans_pcie->inta_mask))
1829 			IWL_DEBUG_ISR(trans,
1830 				      "We got a masked interrupt (0x%08x)\n",
1831 				      inta & (~trans_pcie->inta_mask));
1832 	}
1833 
1834 	inta &= trans_pcie->inta_mask;
1835 
1836 	/*
1837 	 * Ignore interrupt if there's nothing in NIC to service.
1838 	 * This may be due to IRQ shared with another device,
1839 	 * or due to sporadic interrupts thrown from our NIC.
1840 	 */
1841 	if (unlikely(!inta)) {
1842 		IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
1843 		/*
1844 		 * Re-enable interrupts here since we don't
1845 		 * have anything to service
1846 		 */
1847 		if (test_bit(STATUS_INT_ENABLED, &trans->status))
1848 			_iwl_enable_interrupts(trans);
1849 		spin_unlock_bh(&trans_pcie->irq_lock);
1850 		lock_map_release(&trans->sync_cmd_lockdep_map);
1851 		return IRQ_NONE;
1852 	}
1853 
1854 	if (unlikely(inta == 0xFFFFFFFF || (inta & 0xFFFFFFF0) == 0xa5a5a5a0)) {
1855 		/*
1856 		 * Hardware disappeared. It might have
1857 		 * already raised an interrupt.
1858 		 */
1859 		IWL_WARN(trans, "HARDWARE GONE?? INTA == 0x%08x\n", inta);
1860 		spin_unlock_bh(&trans_pcie->irq_lock);
1861 		goto out;
1862 	}
1863 
1864 	/* Ack/clear/reset pending uCode interrupts.
1865 	 * Note:  Some bits in CSR_INT are "OR" of bits in CSR_FH_INT_STATUS,
1866 	 */
1867 	/* There is a hardware bug in the interrupt mask function that some
1868 	 * interrupts (i.e. CSR_INT_BIT_SCD) can still be generated even if
1869 	 * they are disabled in the CSR_INT_MASK register. Furthermore the
1870 	 * ICT interrupt handling mechanism has another bug that might cause
1871 	 * these unmasked interrupts fail to be detected. We workaround the
1872 	 * hardware bugs here by ACKing all the possible interrupts so that
1873 	 * interrupt coalescing can still be achieved.
1874 	 */
1875 	iwl_write32(trans, CSR_INT, inta | ~trans_pcie->inta_mask);
1876 
1877 	if (iwl_have_debug_level(IWL_DL_ISR))
1878 		IWL_DEBUG_ISR(trans, "inta 0x%08x, enabled 0x%08x\n",
1879 			      inta, iwl_read32(trans, CSR_INT_MASK));
1880 
1881 	spin_unlock_bh(&trans_pcie->irq_lock);
1882 
1883 	/* Now service all interrupt bits discovered above. */
1884 	if (inta & CSR_INT_BIT_HW_ERR) {
1885 		IWL_ERR(trans, "Hardware error detected.  Restarting.\n");
1886 
1887 		/* Tell the device to stop sending interrupts */
1888 		iwl_disable_interrupts(trans);
1889 
1890 		isr_stats->hw++;
1891 		iwl_pcie_irq_handle_error(trans);
1892 
1893 		handled |= CSR_INT_BIT_HW_ERR;
1894 
1895 		goto out;
1896 	}
1897 
1898 	/* NIC fires this, but we don't use it, redundant with WAKEUP */
1899 	if (inta & CSR_INT_BIT_SCD) {
1900 		IWL_DEBUG_ISR(trans,
1901 			      "Scheduler finished to transmit the frame/frames.\n");
1902 		isr_stats->sch++;
1903 	}
1904 
1905 	/* Alive notification via Rx interrupt will do the real work */
1906 	if (inta & CSR_INT_BIT_ALIVE) {
1907 		IWL_DEBUG_ISR(trans, "Alive interrupt\n");
1908 		isr_stats->alive++;
1909 		if (trans->trans_cfg->gen2) {
1910 			/*
1911 			 * We can restock, since firmware configured
1912 			 * the RFH
1913 			 */
1914 			iwl_pcie_rxmq_restock(trans, trans_pcie->rxq);
1915 		}
1916 
1917 		handled |= CSR_INT_BIT_ALIVE;
1918 	}
1919 
1920 	/* Safely ignore these bits for debug checks below */
1921 	inta &= ~(CSR_INT_BIT_SCD | CSR_INT_BIT_ALIVE);
1922 
1923 	/* HW RF KILL switch toggled */
1924 	if (inta & CSR_INT_BIT_RF_KILL) {
1925 		iwl_pcie_handle_rfkill_irq(trans);
1926 		handled |= CSR_INT_BIT_RF_KILL;
1927 	}
1928 
1929 	/* Chip got too hot and stopped itself */
1930 	if (inta & CSR_INT_BIT_CT_KILL) {
1931 		IWL_ERR(trans, "Microcode CT kill error detected.\n");
1932 		isr_stats->ctkill++;
1933 		handled |= CSR_INT_BIT_CT_KILL;
1934 	}
1935 
1936 	/* Error detected by uCode */
1937 	if (inta & CSR_INT_BIT_SW_ERR) {
1938 		IWL_ERR(trans, "Microcode SW error detected. "
1939 			" Restarting 0x%X.\n", inta);
1940 		isr_stats->sw++;
1941 		iwl_pcie_irq_handle_error(trans);
1942 		handled |= CSR_INT_BIT_SW_ERR;
1943 	}
1944 
1945 	/* uCode wakes up after power-down sleep */
1946 	if (inta & CSR_INT_BIT_WAKEUP) {
1947 		IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
1948 		iwl_pcie_rxq_check_wrptr(trans);
1949 		iwl_pcie_txq_check_wrptrs(trans);
1950 
1951 		isr_stats->wakeup++;
1952 
1953 		handled |= CSR_INT_BIT_WAKEUP;
1954 	}
1955 
1956 	/* All uCode command responses, including Tx command responses,
1957 	 * Rx "responses" (frame-received notification), and other
1958 	 * notifications from uCode come through here*/
1959 	if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX |
1960 		    CSR_INT_BIT_RX_PERIODIC)) {
1961 		IWL_DEBUG_ISR(trans, "Rx interrupt\n");
1962 		if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX)) {
1963 			handled |= (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX);
1964 			iwl_write32(trans, CSR_FH_INT_STATUS,
1965 					CSR_FH_INT_RX_MASK);
1966 		}
1967 		if (inta & CSR_INT_BIT_RX_PERIODIC) {
1968 			handled |= CSR_INT_BIT_RX_PERIODIC;
1969 			iwl_write32(trans,
1970 				CSR_INT, CSR_INT_BIT_RX_PERIODIC);
1971 		}
1972 		/* Sending RX interrupt require many steps to be done in the
1973 		 * the device:
1974 		 * 1- write interrupt to current index in ICT table.
1975 		 * 2- dma RX frame.
1976 		 * 3- update RX shared data to indicate last write index.
1977 		 * 4- send interrupt.
1978 		 * This could lead to RX race, driver could receive RX interrupt
1979 		 * but the shared data changes does not reflect this;
1980 		 * periodic interrupt will detect any dangling Rx activity.
1981 		 */
1982 
1983 		/* Disable periodic interrupt; we use it as just a one-shot. */
1984 		iwl_write8(trans, CSR_INT_PERIODIC_REG,
1985 			    CSR_INT_PERIODIC_DIS);
1986 
1987 		/*
1988 		 * Enable periodic interrupt in 8 msec only if we received
1989 		 * real RX interrupt (instead of just periodic int), to catch
1990 		 * any dangling Rx interrupt.  If it was just the periodic
1991 		 * interrupt, there was no dangling Rx activity, and no need
1992 		 * to extend the periodic interrupt; one-shot is enough.
1993 		 */
1994 		if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX))
1995 			iwl_write8(trans, CSR_INT_PERIODIC_REG,
1996 				   CSR_INT_PERIODIC_ENA);
1997 
1998 		isr_stats->rx++;
1999 
2000 		local_bh_disable();
2001 		if (napi_schedule_prep(&trans_pcie->rxq[0].napi)) {
2002 			polling = true;
2003 			__napi_schedule(&trans_pcie->rxq[0].napi);
2004 		}
2005 		local_bh_enable();
2006 	}
2007 
2008 	/* This "Tx" DMA channel is used only for loading uCode */
2009 	if (inta & CSR_INT_BIT_FH_TX) {
2010 		iwl_write32(trans, CSR_FH_INT_STATUS, CSR_FH_INT_TX_MASK);
2011 		IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
2012 		isr_stats->tx++;
2013 		handled |= CSR_INT_BIT_FH_TX;
2014 		/* Wake up uCode load routine, now that load is complete */
2015 		trans_pcie->ucode_write_complete = true;
2016 		wake_up(&trans_pcie->ucode_write_waitq);
2017 		/* Wake up IMR write routine, now that write to SRAM is complete */
2018 		if (trans_pcie->imr_status == IMR_D2S_REQUESTED) {
2019 			trans_pcie->imr_status = IMR_D2S_COMPLETED;
2020 			wake_up(&trans_pcie->ucode_write_waitq);
2021 		}
2022 	}
2023 
2024 	if (inta & ~handled) {
2025 		IWL_ERR(trans, "Unhandled INTA bits 0x%08x\n", inta & ~handled);
2026 		isr_stats->unhandled++;
2027 	}
2028 
2029 	if (inta & ~(trans_pcie->inta_mask)) {
2030 		IWL_WARN(trans, "Disabled INTA bits 0x%08x were pending\n",
2031 			 inta & ~trans_pcie->inta_mask);
2032 	}
2033 
2034 	if (!polling) {
2035 		spin_lock_bh(&trans_pcie->irq_lock);
2036 		/* only Re-enable all interrupt if disabled by irq */
2037 		if (test_bit(STATUS_INT_ENABLED, &trans->status))
2038 			_iwl_enable_interrupts(trans);
2039 		/* we are loading the firmware, enable FH_TX interrupt only */
2040 		else if (handled & CSR_INT_BIT_FH_TX)
2041 			iwl_enable_fw_load_int(trans);
2042 		/* Re-enable RF_KILL if it occurred */
2043 		else if (handled & CSR_INT_BIT_RF_KILL)
2044 			iwl_enable_rfkill_int(trans);
2045 		/* Re-enable the ALIVE / Rx interrupt if it occurred */
2046 		else if (handled & (CSR_INT_BIT_ALIVE | CSR_INT_BIT_FH_RX))
2047 			iwl_enable_fw_load_int_ctx_info(trans);
2048 		spin_unlock_bh(&trans_pcie->irq_lock);
2049 	}
2050 
2051 out:
2052 	lock_map_release(&trans->sync_cmd_lockdep_map);
2053 	return IRQ_HANDLED;
2054 }
2055 
2056 /******************************************************************************
2057  *
2058  * ICT functions
2059  *
2060  ******************************************************************************/
2061 
2062 /* Free dram table */
2063 void iwl_pcie_free_ict(struct iwl_trans *trans)
2064 {
2065 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2066 
2067 	if (trans_pcie->ict_tbl) {
2068 		dma_free_coherent(trans->dev, ICT_SIZE,
2069 				  trans_pcie->ict_tbl,
2070 				  trans_pcie->ict_tbl_dma);
2071 		trans_pcie->ict_tbl = NULL;
2072 		trans_pcie->ict_tbl_dma = 0;
2073 	}
2074 }
2075 
2076 /*
2077  * allocate dram shared table, it is an aligned memory
2078  * block of ICT_SIZE.
2079  * also reset all data related to ICT table interrupt.
2080  */
2081 int iwl_pcie_alloc_ict(struct iwl_trans *trans)
2082 {
2083 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2084 
2085 	trans_pcie->ict_tbl =
2086 		dma_alloc_coherent(trans->dev, ICT_SIZE,
2087 				   &trans_pcie->ict_tbl_dma, GFP_KERNEL);
2088 	if (!trans_pcie->ict_tbl)
2089 		return -ENOMEM;
2090 
2091 	/* just an API sanity check ... it is guaranteed to be aligned */
2092 	if (WARN_ON(trans_pcie->ict_tbl_dma & (ICT_SIZE - 1))) {
2093 		iwl_pcie_free_ict(trans);
2094 		return -EINVAL;
2095 	}
2096 
2097 	return 0;
2098 }
2099 
2100 /* Device is going up inform it about using ICT interrupt table,
2101  * also we need to tell the driver to start using ICT interrupt.
2102  */
2103 void iwl_pcie_reset_ict(struct iwl_trans *trans)
2104 {
2105 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2106 	u32 val;
2107 
2108 	if (!trans_pcie->ict_tbl)
2109 		return;
2110 
2111 	spin_lock_bh(&trans_pcie->irq_lock);
2112 	_iwl_disable_interrupts(trans);
2113 
2114 	memset(trans_pcie->ict_tbl, 0, ICT_SIZE);
2115 
2116 	val = trans_pcie->ict_tbl_dma >> ICT_SHIFT;
2117 
2118 	val |= CSR_DRAM_INT_TBL_ENABLE |
2119 	       CSR_DRAM_INIT_TBL_WRAP_CHECK |
2120 	       CSR_DRAM_INIT_TBL_WRITE_POINTER;
2121 
2122 	IWL_DEBUG_ISR(trans, "CSR_DRAM_INT_TBL_REG =0x%x\n", val);
2123 
2124 	iwl_write32(trans, CSR_DRAM_INT_TBL_REG, val);
2125 	trans_pcie->use_ict = true;
2126 	trans_pcie->ict_index = 0;
2127 	iwl_write32(trans, CSR_INT, trans_pcie->inta_mask);
2128 	_iwl_enable_interrupts(trans);
2129 	spin_unlock_bh(&trans_pcie->irq_lock);
2130 }
2131 
2132 /* Device is going down disable ict interrupt usage */
2133 void iwl_pcie_disable_ict(struct iwl_trans *trans)
2134 {
2135 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2136 
2137 	spin_lock_bh(&trans_pcie->irq_lock);
2138 	trans_pcie->use_ict = false;
2139 	spin_unlock_bh(&trans_pcie->irq_lock);
2140 }
2141 
2142 irqreturn_t iwl_pcie_isr(int irq, void *data)
2143 {
2144 	struct iwl_trans *trans = data;
2145 
2146 	if (!trans)
2147 		return IRQ_NONE;
2148 
2149 	/* Disable (but don't clear!) interrupts here to avoid
2150 	 * back-to-back ISRs and sporadic interrupts from our NIC.
2151 	 * If we have something to service, the tasklet will re-enable ints.
2152 	 * If we *don't* have something, we'll re-enable before leaving here.
2153 	 */
2154 	iwl_write32(trans, CSR_INT_MASK, 0x00000000);
2155 
2156 	return IRQ_WAKE_THREAD;
2157 }
2158 
2159 irqreturn_t iwl_pcie_msix_isr(int irq, void *data)
2160 {
2161 	return IRQ_WAKE_THREAD;
2162 }
2163 
2164 irqreturn_t iwl_pcie_irq_msix_handler(int irq, void *dev_id)
2165 {
2166 	struct msix_entry *entry = dev_id;
2167 	struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry);
2168 	struct iwl_trans *trans = trans_pcie->trans;
2169 	struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
2170 	u32 inta_fh_msk = ~MSIX_FH_INT_CAUSES_DATA_QUEUE;
2171 	u32 inta_fh, inta_hw;
2172 	bool polling = false;
2173 	bool sw_err;
2174 
2175 	if (trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_NON_RX)
2176 		inta_fh_msk |= MSIX_FH_INT_CAUSES_Q0;
2177 
2178 	if (trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS)
2179 		inta_fh_msk |= MSIX_FH_INT_CAUSES_Q1;
2180 
2181 	lock_map_acquire(&trans->sync_cmd_lockdep_map);
2182 
2183 	spin_lock_bh(&trans_pcie->irq_lock);
2184 	inta_fh = iwl_read32(trans, CSR_MSIX_FH_INT_CAUSES_AD);
2185 	inta_hw = iwl_read32(trans, CSR_MSIX_HW_INT_CAUSES_AD);
2186 	/*
2187 	 * Clear causes registers to avoid being handling the same cause.
2188 	 */
2189 	iwl_write32(trans, CSR_MSIX_FH_INT_CAUSES_AD, inta_fh & inta_fh_msk);
2190 	iwl_write32(trans, CSR_MSIX_HW_INT_CAUSES_AD, inta_hw);
2191 	spin_unlock_bh(&trans_pcie->irq_lock);
2192 
2193 	trace_iwlwifi_dev_irq_msix(trans->dev, entry, true, inta_fh, inta_hw);
2194 
2195 	if (unlikely(!(inta_fh | inta_hw))) {
2196 		IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
2197 		lock_map_release(&trans->sync_cmd_lockdep_map);
2198 		return IRQ_NONE;
2199 	}
2200 
2201 	if (iwl_have_debug_level(IWL_DL_ISR)) {
2202 		IWL_DEBUG_ISR(trans,
2203 			      "ISR[%d] inta_fh 0x%08x, enabled (sw) 0x%08x (hw) 0x%08x\n",
2204 			      entry->entry, inta_fh, trans_pcie->fh_mask,
2205 			      iwl_read32(trans, CSR_MSIX_FH_INT_MASK_AD));
2206 		if (inta_fh & ~trans_pcie->fh_mask)
2207 			IWL_DEBUG_ISR(trans,
2208 				      "We got a masked interrupt (0x%08x)\n",
2209 				      inta_fh & ~trans_pcie->fh_mask);
2210 	}
2211 
2212 	inta_fh &= trans_pcie->fh_mask;
2213 
2214 	if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_NON_RX) &&
2215 	    inta_fh & MSIX_FH_INT_CAUSES_Q0) {
2216 		local_bh_disable();
2217 		if (napi_schedule_prep(&trans_pcie->rxq[0].napi)) {
2218 			polling = true;
2219 			__napi_schedule(&trans_pcie->rxq[0].napi);
2220 		}
2221 		local_bh_enable();
2222 	}
2223 
2224 	if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS) &&
2225 	    inta_fh & MSIX_FH_INT_CAUSES_Q1) {
2226 		local_bh_disable();
2227 		if (napi_schedule_prep(&trans_pcie->rxq[1].napi)) {
2228 			polling = true;
2229 			__napi_schedule(&trans_pcie->rxq[1].napi);
2230 		}
2231 		local_bh_enable();
2232 	}
2233 
2234 	/* This "Tx" DMA channel is used only for loading uCode */
2235 	if (inta_fh & MSIX_FH_INT_CAUSES_D2S_CH0_NUM &&
2236 	    trans_pcie->imr_status == IMR_D2S_REQUESTED) {
2237 		IWL_DEBUG_ISR(trans, "IMR Complete interrupt\n");
2238 		isr_stats->tx++;
2239 
2240 		/* Wake up IMR routine once write to SRAM is complete */
2241 		if (trans_pcie->imr_status == IMR_D2S_REQUESTED) {
2242 			trans_pcie->imr_status = IMR_D2S_COMPLETED;
2243 			wake_up(&trans_pcie->ucode_write_waitq);
2244 		}
2245 	} else if (inta_fh & MSIX_FH_INT_CAUSES_D2S_CH0_NUM) {
2246 		IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
2247 		isr_stats->tx++;
2248 		/*
2249 		 * Wake up uCode load routine,
2250 		 * now that load is complete
2251 		 */
2252 		trans_pcie->ucode_write_complete = true;
2253 		wake_up(&trans_pcie->ucode_write_waitq);
2254 
2255 		/* Wake up IMR routine once write to SRAM is complete */
2256 		if (trans_pcie->imr_status == IMR_D2S_REQUESTED) {
2257 			trans_pcie->imr_status = IMR_D2S_COMPLETED;
2258 			wake_up(&trans_pcie->ucode_write_waitq);
2259 		}
2260 	}
2261 
2262 	if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_BZ)
2263 		sw_err = inta_hw & MSIX_HW_INT_CAUSES_REG_SW_ERR_BZ;
2264 	else
2265 		sw_err = inta_hw & MSIX_HW_INT_CAUSES_REG_SW_ERR;
2266 
2267 	/* Error detected by uCode */
2268 	if ((inta_fh & MSIX_FH_INT_CAUSES_FH_ERR) || sw_err) {
2269 		IWL_ERR(trans,
2270 			"Microcode SW error detected. Restarting 0x%X.\n",
2271 			inta_fh);
2272 		isr_stats->sw++;
2273 		/* during FW reset flow report errors from there */
2274 		if (trans_pcie->imr_status == IMR_D2S_REQUESTED) {
2275 			trans_pcie->imr_status = IMR_D2S_ERROR;
2276 			wake_up(&trans_pcie->imr_waitq);
2277 		} else if (trans_pcie->fw_reset_state == FW_RESET_REQUESTED) {
2278 			trans_pcie->fw_reset_state = FW_RESET_ERROR;
2279 			wake_up(&trans_pcie->fw_reset_waitq);
2280 		} else {
2281 			iwl_pcie_irq_handle_error(trans);
2282 		}
2283 	}
2284 
2285 	/* After checking FH register check HW register */
2286 	if (iwl_have_debug_level(IWL_DL_ISR)) {
2287 		IWL_DEBUG_ISR(trans,
2288 			      "ISR[%d] inta_hw 0x%08x, enabled (sw) 0x%08x (hw) 0x%08x\n",
2289 			      entry->entry, inta_hw, trans_pcie->hw_mask,
2290 			      iwl_read32(trans, CSR_MSIX_HW_INT_MASK_AD));
2291 		if (inta_hw & ~trans_pcie->hw_mask)
2292 			IWL_DEBUG_ISR(trans,
2293 				      "We got a masked interrupt 0x%08x\n",
2294 				      inta_hw & ~trans_pcie->hw_mask);
2295 	}
2296 
2297 	inta_hw &= trans_pcie->hw_mask;
2298 
2299 	/* Alive notification via Rx interrupt will do the real work */
2300 	if (inta_hw & MSIX_HW_INT_CAUSES_REG_ALIVE) {
2301 		IWL_DEBUG_ISR(trans, "Alive interrupt\n");
2302 		isr_stats->alive++;
2303 		if (trans->trans_cfg->gen2) {
2304 			/* We can restock, since firmware configured the RFH */
2305 			iwl_pcie_rxmq_restock(trans, trans_pcie->rxq);
2306 		}
2307 	}
2308 
2309 	/*
2310 	 * In some rare cases when the HW is in a bad state, we may
2311 	 * get this interrupt too early, when prph_info is still NULL.
2312 	 * So make sure that it's not NULL to prevent crashing.
2313 	 */
2314 	if (inta_hw & MSIX_HW_INT_CAUSES_REG_WAKEUP && trans_pcie->prph_info) {
2315 		u32 sleep_notif =
2316 			le32_to_cpu(trans_pcie->prph_info->sleep_notif);
2317 		if (sleep_notif == IWL_D3_SLEEP_STATUS_SUSPEND ||
2318 		    sleep_notif == IWL_D3_SLEEP_STATUS_RESUME) {
2319 			IWL_DEBUG_ISR(trans,
2320 				      "Sx interrupt: sleep notification = 0x%x\n",
2321 				      sleep_notif);
2322 			trans_pcie->sx_complete = true;
2323 			wake_up(&trans_pcie->sx_waitq);
2324 		} else {
2325 			/* uCode wakes up after power-down sleep */
2326 			IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
2327 			iwl_pcie_rxq_check_wrptr(trans);
2328 			iwl_pcie_txq_check_wrptrs(trans);
2329 
2330 			isr_stats->wakeup++;
2331 		}
2332 	}
2333 
2334 	/* Chip got too hot and stopped itself */
2335 	if (inta_hw & MSIX_HW_INT_CAUSES_REG_CT_KILL) {
2336 		IWL_ERR(trans, "Microcode CT kill error detected.\n");
2337 		isr_stats->ctkill++;
2338 	}
2339 
2340 	/* HW RF KILL switch toggled */
2341 	if (inta_hw & MSIX_HW_INT_CAUSES_REG_RF_KILL)
2342 		iwl_pcie_handle_rfkill_irq(trans);
2343 
2344 	if (inta_hw & MSIX_HW_INT_CAUSES_REG_HW_ERR) {
2345 		IWL_ERR(trans,
2346 			"Hardware error detected. Restarting.\n");
2347 
2348 		isr_stats->hw++;
2349 		trans->dbg.hw_error = true;
2350 		iwl_pcie_irq_handle_error(trans);
2351 	}
2352 
2353 	if (inta_hw & MSIX_HW_INT_CAUSES_REG_RESET_DONE) {
2354 		IWL_DEBUG_ISR(trans, "Reset flow completed\n");
2355 		trans_pcie->fw_reset_state = FW_RESET_OK;
2356 		wake_up(&trans_pcie->fw_reset_waitq);
2357 	}
2358 
2359 	if (!polling)
2360 		iwl_pcie_clear_irq(trans, entry->entry);
2361 
2362 	lock_map_release(&trans->sync_cmd_lockdep_map);
2363 
2364 	return IRQ_HANDLED;
2365 }
2366