1 /******************************************************************************
2  *
3  * Copyright(c) 2003 - 2014 Intel Corporation. All rights reserved.
4  * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
5  * Copyright(c) 2016 Intel Deutschland GmbH
6  *
7  * Portions of this file are derived from the ipw3945 project, as well
8  * as portions of the ieee80211 subsystem header files.
9  *
10  * This program is free software; you can redistribute it and/or modify it
11  * under the terms of version 2 of the GNU General Public License as
12  * published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope that it will be useful, but WITHOUT
15  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
17  * more details.
18  *
19  * You should have received a copy of the GNU General Public License along with
20  * this program; if not, write to the Free Software Foundation, Inc.,
21  * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
22  *
23  * The full GNU General Public License is included in this distribution in the
24  * file called LICENSE.
25  *
26  * Contact Information:
27  *  Intel Linux Wireless <linuxwifi@intel.com>
28  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
29  *
30  *****************************************************************************/
31 #include <linux/sched.h>
32 #include <linux/wait.h>
33 #include <linux/gfp.h>
34 
35 #include "iwl-prph.h"
36 #include "iwl-io.h"
37 #include "internal.h"
38 #include "iwl-op-mode.h"
39 
40 /******************************************************************************
41  *
42  * RX path functions
43  *
44  ******************************************************************************/
45 
46 /*
47  * Rx theory of operation
48  *
49  * Driver allocates a circular buffer of Receive Buffer Descriptors (RBDs),
50  * each of which point to Receive Buffers to be filled by the NIC.  These get
51  * used not only for Rx frames, but for any command response or notification
52  * from the NIC.  The driver and NIC manage the Rx buffers by means
53  * of indexes into the circular buffer.
54  *
55  * Rx Queue Indexes
56  * The host/firmware share two index registers for managing the Rx buffers.
57  *
58  * The READ index maps to the first position that the firmware may be writing
59  * to -- the driver can read up to (but not including) this position and get
60  * good data.
61  * The READ index is managed by the firmware once the card is enabled.
62  *
63  * The WRITE index maps to the last position the driver has read from -- the
64  * position preceding WRITE is the last slot the firmware can place a packet.
65  *
66  * The queue is empty (no good data) if WRITE = READ - 1, and is full if
67  * WRITE = READ.
68  *
69  * During initialization, the host sets up the READ queue position to the first
70  * INDEX position, and WRITE to the last (READ - 1 wrapped)
71  *
72  * When the firmware places a packet in a buffer, it will advance the READ index
73  * and fire the RX interrupt.  The driver can then query the READ index and
74  * process as many packets as possible, moving the WRITE index forward as it
75  * resets the Rx queue buffers with new memory.
76  *
77  * The management in the driver is as follows:
78  * + A list of pre-allocated RBDs is stored in iwl->rxq->rx_free.
79  *   When the interrupt handler is called, the request is processed.
80  *   The page is either stolen - transferred to the upper layer
81  *   or reused - added immediately to the iwl->rxq->rx_free list.
82  * + When the page is stolen - the driver updates the matching queue's used
83  *   count, detaches the RBD and transfers it to the queue used list.
84  *   When there are two used RBDs - they are transferred to the allocator empty
85  *   list. Work is then scheduled for the allocator to start allocating
86  *   eight buffers.
87  *   When there are another 6 used RBDs - they are transferred to the allocator
88  *   empty list and the driver tries to claim the pre-allocated buffers and
89  *   add them to iwl->rxq->rx_free. If it fails - it continues to claim them
90  *   until ready.
91  *   When there are 8+ buffers in the free list - either from allocation or from
92  *   8 reused unstolen pages - restock is called to update the FW and indexes.
93  * + In order to make sure the allocator always has RBDs to use for allocation
94  *   the allocator has initial pool in the size of num_queues*(8-2) - the
95  *   maximum missing RBDs per allocation request (request posted with 2
96  *    empty RBDs, there is no guarantee when the other 6 RBDs are supplied).
97  *   The queues supplies the recycle of the rest of the RBDs.
98  * + A received packet is processed and handed to the kernel network stack,
99  *   detached from the iwl->rxq.  The driver 'processed' index is updated.
100  * + If there are no allocated buffers in iwl->rxq->rx_free,
101  *   the READ INDEX is not incremented and iwl->status(RX_STALLED) is set.
102  *   If there were enough free buffers and RX_STALLED is set it is cleared.
103  *
104  *
105  * Driver sequence:
106  *
107  * iwl_rxq_alloc()            Allocates rx_free
108  * iwl_pcie_rx_replenish()    Replenishes rx_free list from rx_used, and calls
109  *                            iwl_pcie_rxq_restock.
110  *                            Used only during initialization.
111  * iwl_pcie_rxq_restock()     Moves available buffers from rx_free into Rx
112  *                            queue, updates firmware pointers, and updates
113  *                            the WRITE index.
114  * iwl_pcie_rx_allocator()     Background work for allocating pages.
115  *
116  * -- enable interrupts --
117  * ISR - iwl_rx()             Detach iwl_rx_mem_buffers from pool up to the
118  *                            READ INDEX, detaching the SKB from the pool.
119  *                            Moves the packet buffer from queue to rx_used.
120  *                            Posts and claims requests to the allocator.
121  *                            Calls iwl_pcie_rxq_restock to refill any empty
122  *                            slots.
123  *
124  * RBD life-cycle:
125  *
126  * Init:
127  * rxq.pool -> rxq.rx_used -> rxq.rx_free -> rxq.queue
128  *
129  * Regular Receive interrupt:
130  * Page Stolen:
131  * rxq.queue -> rxq.rx_used -> allocator.rbd_empty ->
132  * allocator.rbd_allocated -> rxq.rx_free -> rxq.queue
133  * Page not Stolen:
134  * rxq.queue -> rxq.rx_free -> rxq.queue
135  * ...
136  *
137  */
138 
139 /*
140  * iwl_rxq_space - Return number of free slots available in queue.
141  */
142 static int iwl_rxq_space(const struct iwl_rxq *rxq)
143 {
144 	/* Make sure rx queue size is a power of 2 */
145 	WARN_ON(rxq->queue_size & (rxq->queue_size - 1));
146 
147 	/*
148 	 * There can be up to (RX_QUEUE_SIZE - 1) free slots, to avoid ambiguity
149 	 * between empty and completely full queues.
150 	 * The following is equivalent to modulo by RX_QUEUE_SIZE and is well
151 	 * defined for negative dividends.
152 	 */
153 	return (rxq->read - rxq->write - 1) & (rxq->queue_size - 1);
154 }
155 
156 /*
157  * iwl_dma_addr2rbd_ptr - convert a DMA address to a uCode read buffer ptr
158  */
159 static inline __le32 iwl_pcie_dma_addr2rbd_ptr(dma_addr_t dma_addr)
160 {
161 	return cpu_to_le32((u32)(dma_addr >> 8));
162 }
163 
164 static void iwl_pcie_write_prph_64_no_grab(struct iwl_trans *trans, u64 ofs,
165 					   u64 val)
166 {
167 	iwl_write_prph_no_grab(trans, ofs, val & 0xffffffff);
168 	iwl_write_prph_no_grab(trans, ofs + 4, val >> 32);
169 }
170 
171 /*
172  * iwl_pcie_rx_stop - stops the Rx DMA
173  */
174 int iwl_pcie_rx_stop(struct iwl_trans *trans)
175 {
176 	iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
177 	return iwl_poll_direct_bit(trans, FH_MEM_RSSR_RX_STATUS_REG,
178 				   FH_RSSR_CHNL0_RX_STATUS_CHNL_IDLE, 1000);
179 }
180 
181 /*
182  * iwl_pcie_rxq_inc_wr_ptr - Update the write pointer for the RX queue
183  */
184 static void iwl_pcie_rxq_inc_wr_ptr(struct iwl_trans *trans,
185 				    struct iwl_rxq *rxq)
186 {
187 	u32 reg;
188 
189 	lockdep_assert_held(&rxq->lock);
190 
191 	/*
192 	 * explicitly wake up the NIC if:
193 	 * 1. shadow registers aren't enabled
194 	 * 2. there is a chance that the NIC is asleep
195 	 */
196 	if (!trans->cfg->base_params->shadow_reg_enable &&
197 	    test_bit(STATUS_TPOWER_PMI, &trans->status)) {
198 		reg = iwl_read32(trans, CSR_UCODE_DRV_GP1);
199 
200 		if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) {
201 			IWL_DEBUG_INFO(trans, "Rx queue requesting wakeup, GP1 = 0x%x\n",
202 				       reg);
203 			iwl_set_bit(trans, CSR_GP_CNTRL,
204 				    CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
205 			rxq->need_update = true;
206 			return;
207 		}
208 	}
209 
210 	rxq->write_actual = round_down(rxq->write, 8);
211 	if (trans->cfg->mq_rx_supported)
212 		iwl_write32(trans, RFH_Q_FRBDCB_WIDX_TRG(rxq->id),
213 			    rxq->write_actual);
214 	/*
215 	 * write to FH_RSCSR_CHNL0_WPTR register even in MQ as a W/A to
216 	 * hardware shadow registers bug - writing to RFH_Q_FRBDCB_WIDX will
217 	 * not wake the NIC.
218 	 */
219 	iwl_write32(trans, FH_RSCSR_CHNL0_WPTR, rxq->write_actual);
220 }
221 
222 static void iwl_pcie_rxq_check_wrptr(struct iwl_trans *trans)
223 {
224 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
225 	int i;
226 
227 	for (i = 0; i < trans->num_rx_queues; i++) {
228 		struct iwl_rxq *rxq = &trans_pcie->rxq[i];
229 
230 		if (!rxq->need_update)
231 			continue;
232 		spin_lock(&rxq->lock);
233 		iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
234 		rxq->need_update = false;
235 		spin_unlock(&rxq->lock);
236 	}
237 }
238 
239 /*
240  * iwl_pcie_rxq_mq_restock - restock implementation for multi-queue rx
241  */
242 static void iwl_pcie_rxq_mq_restock(struct iwl_trans *trans,
243 				    struct iwl_rxq *rxq)
244 {
245 	struct iwl_rx_mem_buffer *rxb;
246 
247 	/*
248 	 * If the device isn't enabled - no need to try to add buffers...
249 	 * This can happen when we stop the device and still have an interrupt
250 	 * pending. We stop the APM before we sync the interrupts because we
251 	 * have to (see comment there). On the other hand, since the APM is
252 	 * stopped, we cannot access the HW (in particular not prph).
253 	 * So don't try to restock if the APM has been already stopped.
254 	 */
255 	if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
256 		return;
257 
258 	spin_lock(&rxq->lock);
259 	while (rxq->free_count) {
260 		__le64 *bd = (__le64 *)rxq->bd;
261 
262 		/* Get next free Rx buffer, remove from free list */
263 		rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
264 				       list);
265 		list_del(&rxb->list);
266 
267 		/* 12 first bits are expected to be empty */
268 		WARN_ON(rxb->page_dma & DMA_BIT_MASK(12));
269 		/* Point to Rx buffer via next RBD in circular buffer */
270 		bd[rxq->write] = cpu_to_le64(rxb->page_dma | rxb->vid);
271 		rxq->write = (rxq->write + 1) & MQ_RX_TABLE_MASK;
272 		rxq->free_count--;
273 	}
274 	spin_unlock(&rxq->lock);
275 
276 	/*
277 	 * If we've added more space for the firmware to place data, tell it.
278 	 * Increment device's write pointer in multiples of 8.
279 	 */
280 	if (rxq->write_actual != (rxq->write & ~0x7)) {
281 		spin_lock(&rxq->lock);
282 		iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
283 		spin_unlock(&rxq->lock);
284 	}
285 }
286 
287 /*
288  * iwl_pcie_rxq_sq_restock - restock implementation for single queue rx
289  */
290 static void iwl_pcie_rxq_sq_restock(struct iwl_trans *trans,
291 				    struct iwl_rxq *rxq)
292 {
293 	struct iwl_rx_mem_buffer *rxb;
294 
295 	/*
296 	 * If the device isn't enabled - not need to try to add buffers...
297 	 * This can happen when we stop the device and still have an interrupt
298 	 * pending. We stop the APM before we sync the interrupts because we
299 	 * have to (see comment there). On the other hand, since the APM is
300 	 * stopped, we cannot access the HW (in particular not prph).
301 	 * So don't try to restock if the APM has been already stopped.
302 	 */
303 	if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
304 		return;
305 
306 	spin_lock(&rxq->lock);
307 	while ((iwl_rxq_space(rxq) > 0) && (rxq->free_count)) {
308 		__le32 *bd = (__le32 *)rxq->bd;
309 		/* The overwritten rxb must be a used one */
310 		rxb = rxq->queue[rxq->write];
311 		BUG_ON(rxb && rxb->page);
312 
313 		/* Get next free Rx buffer, remove from free list */
314 		rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
315 				       list);
316 		list_del(&rxb->list);
317 
318 		/* Point to Rx buffer via next RBD in circular buffer */
319 		bd[rxq->write] = iwl_pcie_dma_addr2rbd_ptr(rxb->page_dma);
320 		rxq->queue[rxq->write] = rxb;
321 		rxq->write = (rxq->write + 1) & RX_QUEUE_MASK;
322 		rxq->free_count--;
323 	}
324 	spin_unlock(&rxq->lock);
325 
326 	/* If we've added more space for the firmware to place data, tell it.
327 	 * Increment device's write pointer in multiples of 8. */
328 	if (rxq->write_actual != (rxq->write & ~0x7)) {
329 		spin_lock(&rxq->lock);
330 		iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
331 		spin_unlock(&rxq->lock);
332 	}
333 }
334 
335 /*
336  * iwl_pcie_rxq_restock - refill RX queue from pre-allocated pool
337  *
338  * If there are slots in the RX queue that need to be restocked,
339  * and we have free pre-allocated buffers, fill the ranks as much
340  * as we can, pulling from rx_free.
341  *
342  * This moves the 'write' index forward to catch up with 'processed', and
343  * also updates the memory address in the firmware to reference the new
344  * target buffer.
345  */
346 static
347 void iwl_pcie_rxq_restock(struct iwl_trans *trans, struct iwl_rxq *rxq)
348 {
349 	if (trans->cfg->mq_rx_supported)
350 		iwl_pcie_rxq_mq_restock(trans, rxq);
351 	else
352 		iwl_pcie_rxq_sq_restock(trans, rxq);
353 }
354 
355 /*
356  * iwl_pcie_rx_alloc_page - allocates and returns a page.
357  *
358  */
359 static struct page *iwl_pcie_rx_alloc_page(struct iwl_trans *trans,
360 					   gfp_t priority)
361 {
362 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
363 	struct page *page;
364 	gfp_t gfp_mask = priority;
365 
366 	if (trans_pcie->rx_page_order > 0)
367 		gfp_mask |= __GFP_COMP;
368 
369 	/* Alloc a new receive buffer */
370 	page = alloc_pages(gfp_mask, trans_pcie->rx_page_order);
371 	if (!page) {
372 		if (net_ratelimit())
373 			IWL_DEBUG_INFO(trans, "alloc_pages failed, order: %d\n",
374 				       trans_pcie->rx_page_order);
375 		/*
376 		 * Issue an error if we don't have enough pre-allocated
377 		  * buffers.
378 `		 */
379 		if (!(gfp_mask & __GFP_NOWARN) && net_ratelimit())
380 			IWL_CRIT(trans,
381 				 "Failed to alloc_pages\n");
382 		return NULL;
383 	}
384 	return page;
385 }
386 
387 /*
388  * iwl_pcie_rxq_alloc_rbs - allocate a page for each used RBD
389  *
390  * A used RBD is an Rx buffer that has been given to the stack. To use it again
391  * a page must be allocated and the RBD must point to the page. This function
392  * doesn't change the HW pointer but handles the list of pages that is used by
393  * iwl_pcie_rxq_restock. The latter function will update the HW to use the newly
394  * allocated buffers.
395  */
396 static void iwl_pcie_rxq_alloc_rbs(struct iwl_trans *trans, gfp_t priority,
397 				   struct iwl_rxq *rxq)
398 {
399 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
400 	struct iwl_rx_mem_buffer *rxb;
401 	struct page *page;
402 
403 	while (1) {
404 		spin_lock(&rxq->lock);
405 		if (list_empty(&rxq->rx_used)) {
406 			spin_unlock(&rxq->lock);
407 			return;
408 		}
409 		spin_unlock(&rxq->lock);
410 
411 		/* Alloc a new receive buffer */
412 		page = iwl_pcie_rx_alloc_page(trans, priority);
413 		if (!page)
414 			return;
415 
416 		spin_lock(&rxq->lock);
417 
418 		if (list_empty(&rxq->rx_used)) {
419 			spin_unlock(&rxq->lock);
420 			__free_pages(page, trans_pcie->rx_page_order);
421 			return;
422 		}
423 		rxb = list_first_entry(&rxq->rx_used, struct iwl_rx_mem_buffer,
424 				       list);
425 		list_del(&rxb->list);
426 		spin_unlock(&rxq->lock);
427 
428 		BUG_ON(rxb->page);
429 		rxb->page = page;
430 		/* Get physical address of the RB */
431 		rxb->page_dma =
432 			dma_map_page(trans->dev, page, 0,
433 				     PAGE_SIZE << trans_pcie->rx_page_order,
434 				     DMA_FROM_DEVICE);
435 		if (dma_mapping_error(trans->dev, rxb->page_dma)) {
436 			rxb->page = NULL;
437 			spin_lock(&rxq->lock);
438 			list_add(&rxb->list, &rxq->rx_used);
439 			spin_unlock(&rxq->lock);
440 			__free_pages(page, trans_pcie->rx_page_order);
441 			return;
442 		}
443 
444 		spin_lock(&rxq->lock);
445 
446 		list_add_tail(&rxb->list, &rxq->rx_free);
447 		rxq->free_count++;
448 
449 		spin_unlock(&rxq->lock);
450 	}
451 }
452 
453 static void iwl_pcie_free_rbs_pool(struct iwl_trans *trans)
454 {
455 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
456 	int i;
457 
458 	for (i = 0; i < RX_POOL_SIZE; i++) {
459 		if (!trans_pcie->rx_pool[i].page)
460 			continue;
461 		dma_unmap_page(trans->dev, trans_pcie->rx_pool[i].page_dma,
462 			       PAGE_SIZE << trans_pcie->rx_page_order,
463 			       DMA_FROM_DEVICE);
464 		__free_pages(trans_pcie->rx_pool[i].page,
465 			     trans_pcie->rx_page_order);
466 		trans_pcie->rx_pool[i].page = NULL;
467 	}
468 }
469 
470 /*
471  * iwl_pcie_rx_allocator - Allocates pages in the background for RX queues
472  *
473  * Allocates for each received request 8 pages
474  * Called as a scheduled work item.
475  */
476 static void iwl_pcie_rx_allocator(struct iwl_trans *trans)
477 {
478 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
479 	struct iwl_rb_allocator *rba = &trans_pcie->rba;
480 	struct list_head local_empty;
481 	int pending = atomic_xchg(&rba->req_pending, 0);
482 
483 	IWL_DEBUG_RX(trans, "Pending allocation requests = %d\n", pending);
484 
485 	/* If we were scheduled - there is at least one request */
486 	spin_lock(&rba->lock);
487 	/* swap out the rba->rbd_empty to a local list */
488 	list_replace_init(&rba->rbd_empty, &local_empty);
489 	spin_unlock(&rba->lock);
490 
491 	while (pending) {
492 		int i;
493 		struct list_head local_allocated;
494 		gfp_t gfp_mask = GFP_KERNEL;
495 
496 		/* Do not post a warning if there are only a few requests */
497 		if (pending < RX_PENDING_WATERMARK)
498 			gfp_mask |= __GFP_NOWARN;
499 
500 		INIT_LIST_HEAD(&local_allocated);
501 
502 		for (i = 0; i < RX_CLAIM_REQ_ALLOC;) {
503 			struct iwl_rx_mem_buffer *rxb;
504 			struct page *page;
505 
506 			/* List should never be empty - each reused RBD is
507 			 * returned to the list, and initial pool covers any
508 			 * possible gap between the time the page is allocated
509 			 * to the time the RBD is added.
510 			 */
511 			BUG_ON(list_empty(&local_empty));
512 			/* Get the first rxb from the rbd list */
513 			rxb = list_first_entry(&local_empty,
514 					       struct iwl_rx_mem_buffer, list);
515 			BUG_ON(rxb->page);
516 
517 			/* Alloc a new receive buffer */
518 			page = iwl_pcie_rx_alloc_page(trans, gfp_mask);
519 			if (!page)
520 				continue;
521 			rxb->page = page;
522 
523 			/* Get physical address of the RB */
524 			rxb->page_dma = dma_map_page(trans->dev, page, 0,
525 					PAGE_SIZE << trans_pcie->rx_page_order,
526 					DMA_FROM_DEVICE);
527 			if (dma_mapping_error(trans->dev, rxb->page_dma)) {
528 				rxb->page = NULL;
529 				__free_pages(page, trans_pcie->rx_page_order);
530 				continue;
531 			}
532 
533 			/* move the allocated entry to the out list */
534 			list_move(&rxb->list, &local_allocated);
535 			i++;
536 		}
537 
538 		pending--;
539 		if (!pending) {
540 			pending = atomic_xchg(&rba->req_pending, 0);
541 			IWL_DEBUG_RX(trans,
542 				     "Pending allocation requests = %d\n",
543 				     pending);
544 		}
545 
546 		spin_lock(&rba->lock);
547 		/* add the allocated rbds to the allocator allocated list */
548 		list_splice_tail(&local_allocated, &rba->rbd_allocated);
549 		/* get more empty RBDs for current pending requests */
550 		list_splice_tail_init(&rba->rbd_empty, &local_empty);
551 		spin_unlock(&rba->lock);
552 
553 		atomic_inc(&rba->req_ready);
554 	}
555 
556 	spin_lock(&rba->lock);
557 	/* return unused rbds to the allocator empty list */
558 	list_splice_tail(&local_empty, &rba->rbd_empty);
559 	spin_unlock(&rba->lock);
560 }
561 
562 /*
563  * iwl_pcie_rx_allocator_get - returns the pre-allocated pages
564 .*
565 .* Called by queue when the queue posted allocation request and
566  * has freed 8 RBDs in order to restock itself.
567  * This function directly moves the allocated RBs to the queue's ownership
568  * and updates the relevant counters.
569  */
570 static void iwl_pcie_rx_allocator_get(struct iwl_trans *trans,
571 				      struct iwl_rxq *rxq)
572 {
573 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
574 	struct iwl_rb_allocator *rba = &trans_pcie->rba;
575 	int i;
576 
577 	lockdep_assert_held(&rxq->lock);
578 
579 	/*
580 	 * atomic_dec_if_positive returns req_ready - 1 for any scenario.
581 	 * If req_ready is 0 atomic_dec_if_positive will return -1 and this
582 	 * function will return early, as there are no ready requests.
583 	 * atomic_dec_if_positive will perofrm the *actual* decrement only if
584 	 * req_ready > 0, i.e. - there are ready requests and the function
585 	 * hands one request to the caller.
586 	 */
587 	if (atomic_dec_if_positive(&rba->req_ready) < 0)
588 		return;
589 
590 	spin_lock(&rba->lock);
591 	for (i = 0; i < RX_CLAIM_REQ_ALLOC; i++) {
592 		/* Get next free Rx buffer, remove it from free list */
593 		struct iwl_rx_mem_buffer *rxb =
594 			list_first_entry(&rba->rbd_allocated,
595 					 struct iwl_rx_mem_buffer, list);
596 
597 		list_move(&rxb->list, &rxq->rx_free);
598 	}
599 	spin_unlock(&rba->lock);
600 
601 	rxq->used_count -= RX_CLAIM_REQ_ALLOC;
602 	rxq->free_count += RX_CLAIM_REQ_ALLOC;
603 }
604 
605 static void iwl_pcie_rx_allocator_work(struct work_struct *data)
606 {
607 	struct iwl_rb_allocator *rba_p =
608 		container_of(data, struct iwl_rb_allocator, rx_alloc);
609 	struct iwl_trans_pcie *trans_pcie =
610 		container_of(rba_p, struct iwl_trans_pcie, rba);
611 
612 	iwl_pcie_rx_allocator(trans_pcie->trans);
613 }
614 
615 static int iwl_pcie_rx_alloc(struct iwl_trans *trans)
616 {
617 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
618 	struct iwl_rb_allocator *rba = &trans_pcie->rba;
619 	struct device *dev = trans->dev;
620 	int i;
621 	int free_size = trans->cfg->mq_rx_supported ? sizeof(__le64) :
622 						      sizeof(__le32);
623 
624 	if (WARN_ON(trans_pcie->rxq))
625 		return -EINVAL;
626 
627 	trans_pcie->rxq = kcalloc(trans->num_rx_queues, sizeof(struct iwl_rxq),
628 				  GFP_KERNEL);
629 	if (!trans_pcie->rxq)
630 		return -EINVAL;
631 
632 	spin_lock_init(&rba->lock);
633 
634 	for (i = 0; i < trans->num_rx_queues; i++) {
635 		struct iwl_rxq *rxq = &trans_pcie->rxq[i];
636 
637 		spin_lock_init(&rxq->lock);
638 		if (trans->cfg->mq_rx_supported)
639 			rxq->queue_size = MQ_RX_TABLE_SIZE;
640 		else
641 			rxq->queue_size = RX_QUEUE_SIZE;
642 
643 		/*
644 		 * Allocate the circular buffer of Read Buffer Descriptors
645 		 * (RBDs)
646 		 */
647 		rxq->bd = dma_zalloc_coherent(dev,
648 					     free_size * rxq->queue_size,
649 					     &rxq->bd_dma, GFP_KERNEL);
650 		if (!rxq->bd)
651 			goto err;
652 
653 		if (trans->cfg->mq_rx_supported) {
654 			rxq->used_bd = dma_zalloc_coherent(dev,
655 							   sizeof(__le32) *
656 							   rxq->queue_size,
657 							   &rxq->used_bd_dma,
658 							   GFP_KERNEL);
659 			if (!rxq->used_bd)
660 				goto err;
661 		}
662 
663 		/*Allocate the driver's pointer to receive buffer status */
664 		rxq->rb_stts = dma_zalloc_coherent(dev, sizeof(*rxq->rb_stts),
665 						   &rxq->rb_stts_dma,
666 						   GFP_KERNEL);
667 		if (!rxq->rb_stts)
668 			goto err;
669 	}
670 	return 0;
671 
672 err:
673 	for (i = 0; i < trans->num_rx_queues; i++) {
674 		struct iwl_rxq *rxq = &trans_pcie->rxq[i];
675 
676 		if (rxq->bd)
677 			dma_free_coherent(dev, free_size * rxq->queue_size,
678 					  rxq->bd, rxq->bd_dma);
679 		rxq->bd_dma = 0;
680 		rxq->bd = NULL;
681 
682 		if (rxq->rb_stts)
683 			dma_free_coherent(trans->dev,
684 					  sizeof(struct iwl_rb_status),
685 					  rxq->rb_stts, rxq->rb_stts_dma);
686 
687 		if (rxq->used_bd)
688 			dma_free_coherent(dev, sizeof(__le32) * rxq->queue_size,
689 					  rxq->used_bd, rxq->used_bd_dma);
690 		rxq->used_bd_dma = 0;
691 		rxq->used_bd = NULL;
692 	}
693 	kfree(trans_pcie->rxq);
694 
695 	return -ENOMEM;
696 }
697 
698 static void iwl_pcie_rx_hw_init(struct iwl_trans *trans, struct iwl_rxq *rxq)
699 {
700 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
701 	u32 rb_size;
702 	unsigned long flags;
703 	const u32 rfdnlog = RX_QUEUE_SIZE_LOG; /* 256 RBDs */
704 
705 	switch (trans_pcie->rx_buf_size) {
706 	case IWL_AMSDU_4K:
707 		rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
708 		break;
709 	case IWL_AMSDU_8K:
710 		rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_8K;
711 		break;
712 	case IWL_AMSDU_12K:
713 		rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_12K;
714 		break;
715 	default:
716 		WARN_ON(1);
717 		rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
718 	}
719 
720 	if (!iwl_trans_grab_nic_access(trans, &flags))
721 		return;
722 
723 	/* Stop Rx DMA */
724 	iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
725 	/* reset and flush pointers */
726 	iwl_write32(trans, FH_MEM_RCSR_CHNL0_RBDCB_WPTR, 0);
727 	iwl_write32(trans, FH_MEM_RCSR_CHNL0_FLUSH_RB_REQ, 0);
728 	iwl_write32(trans, FH_RSCSR_CHNL0_RDPTR, 0);
729 
730 	/* Reset driver's Rx queue write index */
731 	iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0);
732 
733 	/* Tell device where to find RBD circular buffer in DRAM */
734 	iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_BASE_REG,
735 		    (u32)(rxq->bd_dma >> 8));
736 
737 	/* Tell device where in DRAM to update its Rx status */
738 	iwl_write32(trans, FH_RSCSR_CHNL0_STTS_WPTR_REG,
739 		    rxq->rb_stts_dma >> 4);
740 
741 	/* Enable Rx DMA
742 	 * FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY is set because of HW bug in
743 	 *      the credit mechanism in 5000 HW RX FIFO
744 	 * Direct rx interrupts to hosts
745 	 * Rx buffer size 4 or 8k or 12k
746 	 * RB timeout 0x10
747 	 * 256 RBDs
748 	 */
749 	iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG,
750 		    FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL |
751 		    FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY |
752 		    FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL |
753 		    rb_size |
754 		    (RX_RB_TIMEOUT << FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS) |
755 		    (rfdnlog << FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS));
756 
757 	iwl_trans_release_nic_access(trans, &flags);
758 
759 	/* Set interrupt coalescing timer to default (2048 usecs) */
760 	iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
761 
762 	/* W/A for interrupt coalescing bug in 7260 and 3160 */
763 	if (trans->cfg->host_interrupt_operation_mode)
764 		iwl_set_bit(trans, CSR_INT_COALESCING, IWL_HOST_INT_OPER_MODE);
765 }
766 
767 static void iwl_pcie_rx_mq_hw_init(struct iwl_trans *trans)
768 {
769 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
770 	u32 rb_size, enabled = 0;
771 	unsigned long flags;
772 	int i;
773 
774 	switch (trans_pcie->rx_buf_size) {
775 	case IWL_AMSDU_4K:
776 		rb_size = RFH_RXF_DMA_RB_SIZE_4K;
777 		break;
778 	case IWL_AMSDU_8K:
779 		rb_size = RFH_RXF_DMA_RB_SIZE_8K;
780 		break;
781 	case IWL_AMSDU_12K:
782 		rb_size = RFH_RXF_DMA_RB_SIZE_12K;
783 		break;
784 	default:
785 		WARN_ON(1);
786 		rb_size = RFH_RXF_DMA_RB_SIZE_4K;
787 	}
788 
789 	if (!iwl_trans_grab_nic_access(trans, &flags))
790 		return;
791 
792 	/* Stop Rx DMA */
793 	iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG, 0);
794 	/* disable free amd used rx queue operation */
795 	iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, 0);
796 
797 	for (i = 0; i < trans->num_rx_queues; i++) {
798 		/* Tell device where to find RBD free table in DRAM */
799 		iwl_pcie_write_prph_64_no_grab(trans,
800 					       RFH_Q_FRBDCB_BA_LSB(i),
801 					       trans_pcie->rxq[i].bd_dma);
802 		/* Tell device where to find RBD used table in DRAM */
803 		iwl_pcie_write_prph_64_no_grab(trans,
804 					       RFH_Q_URBDCB_BA_LSB(i),
805 					       trans_pcie->rxq[i].used_bd_dma);
806 		/* Tell device where in DRAM to update its Rx status */
807 		iwl_pcie_write_prph_64_no_grab(trans,
808 					       RFH_Q_URBD_STTS_WPTR_LSB(i),
809 					       trans_pcie->rxq[i].rb_stts_dma);
810 		/* Reset device indice tables */
811 		iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_WIDX(i), 0);
812 		iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_RIDX(i), 0);
813 		iwl_write_prph_no_grab(trans, RFH_Q_URBDCB_WIDX(i), 0);
814 
815 		enabled |= BIT(i) | BIT(i + 16);
816 	}
817 
818 	/* restock default queue */
819 	iwl_pcie_rxq_mq_restock(trans, &trans_pcie->rxq[0]);
820 
821 	/*
822 	 * Enable Rx DMA
823 	 * Single frame mode
824 	 * Rx buffer size 4 or 8k or 12k
825 	 * Min RB size 4 or 8
826 	 * Drop frames that exceed RB size
827 	 * 512 RBDs
828 	 */
829 	iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG,
830 			       RFH_DMA_EN_ENABLE_VAL |
831 			       rb_size | RFH_RXF_DMA_SINGLE_FRAME_MASK |
832 			       RFH_RXF_DMA_MIN_RB_4_8 |
833 			       RFH_RXF_DMA_DROP_TOO_LARGE_MASK |
834 			       RFH_RXF_DMA_RBDCB_SIZE_512);
835 
836 	/*
837 	 * Activate DMA snooping.
838 	 * Set RX DMA chunk size to 64B
839 	 * Default queue is 0
840 	 */
841 	iwl_write_prph_no_grab(trans, RFH_GEN_CFG, RFH_GEN_CFG_RFH_DMA_SNOOP |
842 			       (DEFAULT_RXQ_NUM <<
843 				RFH_GEN_CFG_DEFAULT_RXQ_NUM_POS) |
844 			       RFH_GEN_CFG_SERVICE_DMA_SNOOP);
845 	/* Enable the relevant rx queues */
846 	iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, enabled);
847 
848 	iwl_trans_release_nic_access(trans, &flags);
849 
850 	/* Set interrupt coalescing timer to default (2048 usecs) */
851 	iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
852 }
853 
854 static void iwl_pcie_rx_init_rxb_lists(struct iwl_rxq *rxq)
855 {
856 	lockdep_assert_held(&rxq->lock);
857 
858 	INIT_LIST_HEAD(&rxq->rx_free);
859 	INIT_LIST_HEAD(&rxq->rx_used);
860 	rxq->free_count = 0;
861 	rxq->used_count = 0;
862 }
863 
864 static int iwl_pcie_dummy_napi_poll(struct napi_struct *napi, int budget)
865 {
866 	WARN_ON(1);
867 	return 0;
868 }
869 
870 int iwl_pcie_rx_init(struct iwl_trans *trans)
871 {
872 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
873 	struct iwl_rxq *def_rxq;
874 	struct iwl_rb_allocator *rba = &trans_pcie->rba;
875 	int i, err, queue_size, allocator_pool_size, num_alloc;
876 
877 	if (!trans_pcie->rxq) {
878 		err = iwl_pcie_rx_alloc(trans);
879 		if (err)
880 			return err;
881 	}
882 	def_rxq = trans_pcie->rxq;
883 	if (!rba->alloc_wq)
884 		rba->alloc_wq = alloc_workqueue("rb_allocator",
885 						WQ_HIGHPRI | WQ_UNBOUND, 1);
886 	INIT_WORK(&rba->rx_alloc, iwl_pcie_rx_allocator_work);
887 
888 	spin_lock(&rba->lock);
889 	atomic_set(&rba->req_pending, 0);
890 	atomic_set(&rba->req_ready, 0);
891 	INIT_LIST_HEAD(&rba->rbd_allocated);
892 	INIT_LIST_HEAD(&rba->rbd_empty);
893 	spin_unlock(&rba->lock);
894 
895 	/* free all first - we might be reconfigured for a different size */
896 	iwl_pcie_free_rbs_pool(trans);
897 
898 	for (i = 0; i < RX_QUEUE_SIZE; i++)
899 		def_rxq->queue[i] = NULL;
900 
901 	for (i = 0; i < trans->num_rx_queues; i++) {
902 		struct iwl_rxq *rxq = &trans_pcie->rxq[i];
903 
904 		rxq->id = i;
905 
906 		spin_lock(&rxq->lock);
907 		/*
908 		 * Set read write pointer to reflect that we have processed
909 		 * and used all buffers, but have not restocked the Rx queue
910 		 * with fresh buffers
911 		 */
912 		rxq->read = 0;
913 		rxq->write = 0;
914 		rxq->write_actual = 0;
915 		memset(rxq->rb_stts, 0, sizeof(*rxq->rb_stts));
916 
917 		iwl_pcie_rx_init_rxb_lists(rxq);
918 
919 		if (!rxq->napi.poll)
920 			netif_napi_add(&trans_pcie->napi_dev, &rxq->napi,
921 				       iwl_pcie_dummy_napi_poll, 64);
922 
923 		spin_unlock(&rxq->lock);
924 	}
925 
926 	/* move the pool to the default queue and allocator ownerships */
927 	queue_size = trans->cfg->mq_rx_supported ?
928 		     MQ_RX_NUM_RBDS : RX_QUEUE_SIZE;
929 	allocator_pool_size = trans->num_rx_queues *
930 		(RX_CLAIM_REQ_ALLOC - RX_POST_REQ_ALLOC);
931 	num_alloc = queue_size + allocator_pool_size;
932 	BUILD_BUG_ON(ARRAY_SIZE(trans_pcie->global_table) !=
933 		     ARRAY_SIZE(trans_pcie->rx_pool));
934 	for (i = 0; i < num_alloc; i++) {
935 		struct iwl_rx_mem_buffer *rxb = &trans_pcie->rx_pool[i];
936 
937 		if (i < allocator_pool_size)
938 			list_add(&rxb->list, &rba->rbd_empty);
939 		else
940 			list_add(&rxb->list, &def_rxq->rx_used);
941 		trans_pcie->global_table[i] = rxb;
942 		rxb->vid = (u16)i;
943 	}
944 
945 	iwl_pcie_rxq_alloc_rbs(trans, GFP_KERNEL, def_rxq);
946 	if (trans->cfg->mq_rx_supported) {
947 		iwl_pcie_rx_mq_hw_init(trans);
948 	} else {
949 		iwl_pcie_rxq_sq_restock(trans, def_rxq);
950 		iwl_pcie_rx_hw_init(trans, def_rxq);
951 	}
952 
953 	spin_lock(&def_rxq->lock);
954 	iwl_pcie_rxq_inc_wr_ptr(trans, def_rxq);
955 	spin_unlock(&def_rxq->lock);
956 
957 	return 0;
958 }
959 
960 void iwl_pcie_rx_free(struct iwl_trans *trans)
961 {
962 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
963 	struct iwl_rb_allocator *rba = &trans_pcie->rba;
964 	int free_size = trans->cfg->mq_rx_supported ? sizeof(__le64) :
965 					      sizeof(__le32);
966 	int i;
967 
968 	/*
969 	 * if rxq is NULL, it means that nothing has been allocated,
970 	 * exit now
971 	 */
972 	if (!trans_pcie->rxq) {
973 		IWL_DEBUG_INFO(trans, "Free NULL rx context\n");
974 		return;
975 	}
976 
977 	cancel_work_sync(&rba->rx_alloc);
978 	if (rba->alloc_wq) {
979 		destroy_workqueue(rba->alloc_wq);
980 		rba->alloc_wq = NULL;
981 	}
982 
983 	iwl_pcie_free_rbs_pool(trans);
984 
985 	for (i = 0; i < trans->num_rx_queues; i++) {
986 		struct iwl_rxq *rxq = &trans_pcie->rxq[i];
987 
988 		if (rxq->bd)
989 			dma_free_coherent(trans->dev,
990 					  free_size * rxq->queue_size,
991 					  rxq->bd, rxq->bd_dma);
992 		rxq->bd_dma = 0;
993 		rxq->bd = NULL;
994 
995 		if (rxq->rb_stts)
996 			dma_free_coherent(trans->dev,
997 					  sizeof(struct iwl_rb_status),
998 					  rxq->rb_stts, rxq->rb_stts_dma);
999 		else
1000 			IWL_DEBUG_INFO(trans,
1001 				       "Free rxq->rb_stts which is NULL\n");
1002 
1003 		if (rxq->used_bd)
1004 			dma_free_coherent(trans->dev,
1005 					  sizeof(__le32) * rxq->queue_size,
1006 					  rxq->used_bd, rxq->used_bd_dma);
1007 		rxq->used_bd_dma = 0;
1008 		rxq->used_bd = NULL;
1009 
1010 		if (rxq->napi.poll)
1011 			netif_napi_del(&rxq->napi);
1012 	}
1013 	kfree(trans_pcie->rxq);
1014 }
1015 
1016 /*
1017  * iwl_pcie_rx_reuse_rbd - Recycle used RBDs
1018  *
1019  * Called when a RBD can be reused. The RBD is transferred to the allocator.
1020  * When there are 2 empty RBDs - a request for allocation is posted
1021  */
1022 static void iwl_pcie_rx_reuse_rbd(struct iwl_trans *trans,
1023 				  struct iwl_rx_mem_buffer *rxb,
1024 				  struct iwl_rxq *rxq, bool emergency)
1025 {
1026 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1027 	struct iwl_rb_allocator *rba = &trans_pcie->rba;
1028 
1029 	/* Move the RBD to the used list, will be moved to allocator in batches
1030 	 * before claiming or posting a request*/
1031 	list_add_tail(&rxb->list, &rxq->rx_used);
1032 
1033 	if (unlikely(emergency))
1034 		return;
1035 
1036 	/* Count the allocator owned RBDs */
1037 	rxq->used_count++;
1038 
1039 	/* If we have RX_POST_REQ_ALLOC new released rx buffers -
1040 	 * issue a request for allocator. Modulo RX_CLAIM_REQ_ALLOC is
1041 	 * used for the case we failed to claim RX_CLAIM_REQ_ALLOC,
1042 	 * after but we still need to post another request.
1043 	 */
1044 	if ((rxq->used_count % RX_CLAIM_REQ_ALLOC) == RX_POST_REQ_ALLOC) {
1045 		/* Move the 2 RBDs to the allocator ownership.
1046 		 Allocator has another 6 from pool for the request completion*/
1047 		spin_lock(&rba->lock);
1048 		list_splice_tail_init(&rxq->rx_used, &rba->rbd_empty);
1049 		spin_unlock(&rba->lock);
1050 
1051 		atomic_inc(&rba->req_pending);
1052 		queue_work(rba->alloc_wq, &rba->rx_alloc);
1053 	}
1054 }
1055 
1056 static void iwl_pcie_rx_handle_rb(struct iwl_trans *trans,
1057 				struct iwl_rxq *rxq,
1058 				struct iwl_rx_mem_buffer *rxb,
1059 				bool emergency)
1060 {
1061 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1062 	struct iwl_txq *txq = &trans_pcie->txq[trans_pcie->cmd_queue];
1063 	bool page_stolen = false;
1064 	int max_len = PAGE_SIZE << trans_pcie->rx_page_order;
1065 	u32 offset = 0;
1066 
1067 	if (WARN_ON(!rxb))
1068 		return;
1069 
1070 	dma_unmap_page(trans->dev, rxb->page_dma, max_len, DMA_FROM_DEVICE);
1071 
1072 	while (offset + sizeof(u32) + sizeof(struct iwl_cmd_header) < max_len) {
1073 		struct iwl_rx_packet *pkt;
1074 		u16 sequence;
1075 		bool reclaim;
1076 		int index, cmd_index, len;
1077 		struct iwl_rx_cmd_buffer rxcb = {
1078 			._offset = offset,
1079 			._rx_page_order = trans_pcie->rx_page_order,
1080 			._page = rxb->page,
1081 			._page_stolen = false,
1082 			.truesize = max_len,
1083 		};
1084 
1085 		pkt = rxb_addr(&rxcb);
1086 
1087 		if (pkt->len_n_flags == cpu_to_le32(FH_RSCSR_FRAME_INVALID))
1088 			break;
1089 
1090 		IWL_DEBUG_RX(trans,
1091 			     "cmd at offset %d: %s (0x%.2x, seq 0x%x)\n",
1092 			     rxcb._offset,
1093 			     iwl_get_cmd_string(trans,
1094 						iwl_cmd_id(pkt->hdr.cmd,
1095 							   pkt->hdr.group_id,
1096 							   0)),
1097 			     pkt->hdr.cmd, le16_to_cpu(pkt->hdr.sequence));
1098 
1099 		len = iwl_rx_packet_len(pkt);
1100 		len += sizeof(u32); /* account for status word */
1101 		trace_iwlwifi_dev_rx(trans->dev, trans, pkt, len);
1102 		trace_iwlwifi_dev_rx_data(trans->dev, trans, pkt, len);
1103 
1104 		/* Reclaim a command buffer only if this packet is a response
1105 		 *   to a (driver-originated) command.
1106 		 * If the packet (e.g. Rx frame) originated from uCode,
1107 		 *   there is no command buffer to reclaim.
1108 		 * Ucode should set SEQ_RX_FRAME bit if ucode-originated,
1109 		 *   but apparently a few don't get set; catch them here. */
1110 		reclaim = !(pkt->hdr.sequence & SEQ_RX_FRAME);
1111 		if (reclaim) {
1112 			int i;
1113 
1114 			for (i = 0; i < trans_pcie->n_no_reclaim_cmds; i++) {
1115 				if (trans_pcie->no_reclaim_cmds[i] ==
1116 							pkt->hdr.cmd) {
1117 					reclaim = false;
1118 					break;
1119 				}
1120 			}
1121 		}
1122 
1123 		sequence = le16_to_cpu(pkt->hdr.sequence);
1124 		index = SEQ_TO_INDEX(sequence);
1125 		cmd_index = get_cmd_index(&txq->q, index);
1126 
1127 		if (rxq->id == 0)
1128 			iwl_op_mode_rx(trans->op_mode, &rxq->napi,
1129 				       &rxcb);
1130 		else
1131 			iwl_op_mode_rx_rss(trans->op_mode, &rxq->napi,
1132 					   &rxcb, rxq->id);
1133 
1134 		if (reclaim) {
1135 			kzfree(txq->entries[cmd_index].free_buf);
1136 			txq->entries[cmd_index].free_buf = NULL;
1137 		}
1138 
1139 		/*
1140 		 * After here, we should always check rxcb._page_stolen,
1141 		 * if it is true then one of the handlers took the page.
1142 		 */
1143 
1144 		if (reclaim) {
1145 			/* Invoke any callbacks, transfer the buffer to caller,
1146 			 * and fire off the (possibly) blocking
1147 			 * iwl_trans_send_cmd()
1148 			 * as we reclaim the driver command queue */
1149 			if (!rxcb._page_stolen)
1150 				iwl_pcie_hcmd_complete(trans, &rxcb);
1151 			else
1152 				IWL_WARN(trans, "Claim null rxb?\n");
1153 		}
1154 
1155 		page_stolen |= rxcb._page_stolen;
1156 		offset += ALIGN(len, FH_RSCSR_FRAME_ALIGN);
1157 	}
1158 
1159 	/* page was stolen from us -- free our reference */
1160 	if (page_stolen) {
1161 		__free_pages(rxb->page, trans_pcie->rx_page_order);
1162 		rxb->page = NULL;
1163 	}
1164 
1165 	/* Reuse the page if possible. For notification packets and
1166 	 * SKBs that fail to Rx correctly, add them back into the
1167 	 * rx_free list for reuse later. */
1168 	if (rxb->page != NULL) {
1169 		rxb->page_dma =
1170 			dma_map_page(trans->dev, rxb->page, 0,
1171 				     PAGE_SIZE << trans_pcie->rx_page_order,
1172 				     DMA_FROM_DEVICE);
1173 		if (dma_mapping_error(trans->dev, rxb->page_dma)) {
1174 			/*
1175 			 * free the page(s) as well to not break
1176 			 * the invariant that the items on the used
1177 			 * list have no page(s)
1178 			 */
1179 			__free_pages(rxb->page, trans_pcie->rx_page_order);
1180 			rxb->page = NULL;
1181 			iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency);
1182 		} else {
1183 			list_add_tail(&rxb->list, &rxq->rx_free);
1184 			rxq->free_count++;
1185 		}
1186 	} else
1187 		iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency);
1188 }
1189 
1190 /*
1191  * iwl_pcie_rx_handle - Main entry function for receiving responses from fw
1192  */
1193 static void iwl_pcie_rx_handle(struct iwl_trans *trans, int queue)
1194 {
1195 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1196 	struct iwl_rxq *rxq = &trans_pcie->rxq[queue];
1197 	u32 r, i, count = 0;
1198 	bool emergency = false;
1199 
1200 restart:
1201 	spin_lock(&rxq->lock);
1202 	/* uCode's read index (stored in shared DRAM) indicates the last Rx
1203 	 * buffer that the driver may process (last buffer filled by ucode). */
1204 	r = le16_to_cpu(ACCESS_ONCE(rxq->rb_stts->closed_rb_num)) & 0x0FFF;
1205 	i = rxq->read;
1206 
1207 	/* W/A 9000 device step A0 wrap-around bug */
1208 	r &= (rxq->queue_size - 1);
1209 
1210 	/* Rx interrupt, but nothing sent from uCode */
1211 	if (i == r)
1212 		IWL_DEBUG_RX(trans, "Q %d: HW = SW = %d\n", rxq->id, r);
1213 
1214 	while (i != r) {
1215 		struct iwl_rx_mem_buffer *rxb;
1216 
1217 		if (unlikely(rxq->used_count == rxq->queue_size / 2))
1218 			emergency = true;
1219 
1220 		if (trans->cfg->mq_rx_supported) {
1221 			/*
1222 			 * used_bd is a 32 bit but only 12 are used to retrieve
1223 			 * the vid
1224 			 */
1225 			u16 vid = le32_to_cpu(rxq->used_bd[i]) & 0x0FFF;
1226 
1227 			if (WARN(vid >= ARRAY_SIZE(trans_pcie->global_table),
1228 				 "Invalid rxb index from HW %u\n", (u32)vid))
1229 				goto out;
1230 			rxb = trans_pcie->global_table[vid];
1231 		} else {
1232 			rxb = rxq->queue[i];
1233 			rxq->queue[i] = NULL;
1234 		}
1235 
1236 		IWL_DEBUG_RX(trans, "Q %d: HW = %d, SW = %d\n", rxq->id, r, i);
1237 		iwl_pcie_rx_handle_rb(trans, rxq, rxb, emergency);
1238 
1239 		i = (i + 1) & (rxq->queue_size - 1);
1240 
1241 		/*
1242 		 * If we have RX_CLAIM_REQ_ALLOC released rx buffers -
1243 		 * try to claim the pre-allocated buffers from the allocator.
1244 		 * If not ready - will try to reclaim next time.
1245 		 * There is no need to reschedule work - allocator exits only
1246 		 * on success
1247 		 */
1248 		if (rxq->used_count >= RX_CLAIM_REQ_ALLOC)
1249 			iwl_pcie_rx_allocator_get(trans, rxq);
1250 
1251 		if (rxq->used_count % RX_CLAIM_REQ_ALLOC == 0 && !emergency) {
1252 			struct iwl_rb_allocator *rba = &trans_pcie->rba;
1253 
1254 			/* Add the remaining empty RBDs for allocator use */
1255 			spin_lock(&rba->lock);
1256 			list_splice_tail_init(&rxq->rx_used, &rba->rbd_empty);
1257 			spin_unlock(&rba->lock);
1258 		} else if (emergency) {
1259 			count++;
1260 			if (count == 8) {
1261 				count = 0;
1262 				if (rxq->used_count < rxq->queue_size / 3)
1263 					emergency = false;
1264 
1265 				rxq->read = i;
1266 				spin_unlock(&rxq->lock);
1267 				iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq);
1268 				iwl_pcie_rxq_restock(trans, rxq);
1269 				goto restart;
1270 			}
1271 		}
1272 	}
1273 out:
1274 	/* Backtrack one entry */
1275 	rxq->read = i;
1276 	spin_unlock(&rxq->lock);
1277 
1278 	/*
1279 	 * handle a case where in emergency there are some unallocated RBDs.
1280 	 * those RBDs are in the used list, but are not tracked by the queue's
1281 	 * used_count which counts allocator owned RBDs.
1282 	 * unallocated emergency RBDs must be allocated on exit, otherwise
1283 	 * when called again the function may not be in emergency mode and
1284 	 * they will be handed to the allocator with no tracking in the RBD
1285 	 * allocator counters, which will lead to them never being claimed back
1286 	 * by the queue.
1287 	 * by allocating them here, they are now in the queue free list, and
1288 	 * will be restocked by the next call of iwl_pcie_rxq_restock.
1289 	 */
1290 	if (unlikely(emergency && count))
1291 		iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq);
1292 
1293 	if (rxq->napi.poll)
1294 		napi_gro_flush(&rxq->napi, false);
1295 
1296 	iwl_pcie_rxq_restock(trans, rxq);
1297 }
1298 
1299 static struct iwl_trans_pcie *iwl_pcie_get_trans_pcie(struct msix_entry *entry)
1300 {
1301 	u8 queue = entry->entry;
1302 	struct msix_entry *entries = entry - queue;
1303 
1304 	return container_of(entries, struct iwl_trans_pcie, msix_entries[0]);
1305 }
1306 
1307 static inline void iwl_pcie_clear_irq(struct iwl_trans *trans,
1308 				      struct msix_entry *entry)
1309 {
1310 	/*
1311 	 * Before sending the interrupt the HW disables it to prevent
1312 	 * a nested interrupt. This is done by writing 1 to the corresponding
1313 	 * bit in the mask register. After handling the interrupt, it should be
1314 	 * re-enabled by clearing this bit. This register is defined as
1315 	 * write 1 clear (W1C) register, meaning that it's being clear
1316 	 * by writing 1 to the bit.
1317 	 */
1318 	iwl_write32(trans, CSR_MSIX_AUTOMASK_ST_AD, BIT(entry->entry));
1319 }
1320 
1321 /*
1322  * iwl_pcie_rx_msix_handle - Main entry function for receiving responses from fw
1323  * This interrupt handler should be used with RSS queue only.
1324  */
1325 irqreturn_t iwl_pcie_irq_rx_msix_handler(int irq, void *dev_id)
1326 {
1327 	struct msix_entry *entry = dev_id;
1328 	struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry);
1329 	struct iwl_trans *trans = trans_pcie->trans;
1330 
1331 	if (WARN_ON(entry->entry >= trans->num_rx_queues))
1332 		return IRQ_NONE;
1333 
1334 	lock_map_acquire(&trans->sync_cmd_lockdep_map);
1335 
1336 	local_bh_disable();
1337 	iwl_pcie_rx_handle(trans, entry->entry);
1338 	local_bh_enable();
1339 
1340 	iwl_pcie_clear_irq(trans, entry);
1341 
1342 	lock_map_release(&trans->sync_cmd_lockdep_map);
1343 
1344 	return IRQ_HANDLED;
1345 }
1346 
1347 /*
1348  * iwl_pcie_irq_handle_error - called for HW or SW error interrupt from card
1349  */
1350 static void iwl_pcie_irq_handle_error(struct iwl_trans *trans)
1351 {
1352 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1353 	int i;
1354 
1355 	/* W/A for WiFi/WiMAX coex and WiMAX own the RF */
1356 	if (trans->cfg->internal_wimax_coex &&
1357 	    !trans->cfg->apmg_not_supported &&
1358 	    (!(iwl_read_prph(trans, APMG_CLK_CTRL_REG) &
1359 			     APMS_CLK_VAL_MRB_FUNC_MODE) ||
1360 	     (iwl_read_prph(trans, APMG_PS_CTRL_REG) &
1361 			    APMG_PS_CTRL_VAL_RESET_REQ))) {
1362 		clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
1363 		iwl_op_mode_wimax_active(trans->op_mode);
1364 		wake_up(&trans_pcie->wait_command_queue);
1365 		return;
1366 	}
1367 
1368 	iwl_pcie_dump_csr(trans);
1369 	iwl_dump_fh(trans, NULL);
1370 
1371 	local_bh_disable();
1372 	/* The STATUS_FW_ERROR bit is set in this function. This must happen
1373 	 * before we wake up the command caller, to ensure a proper cleanup. */
1374 	iwl_trans_fw_error(trans);
1375 	local_bh_enable();
1376 
1377 	for (i = 0; i < trans->cfg->base_params->num_of_queues; i++)
1378 		del_timer(&trans_pcie->txq[i].stuck_timer);
1379 
1380 	clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
1381 	wake_up(&trans_pcie->wait_command_queue);
1382 }
1383 
1384 static u32 iwl_pcie_int_cause_non_ict(struct iwl_trans *trans)
1385 {
1386 	u32 inta;
1387 
1388 	lockdep_assert_held(&IWL_TRANS_GET_PCIE_TRANS(trans)->irq_lock);
1389 
1390 	trace_iwlwifi_dev_irq(trans->dev);
1391 
1392 	/* Discover which interrupts are active/pending */
1393 	inta = iwl_read32(trans, CSR_INT);
1394 
1395 	/* the thread will service interrupts and re-enable them */
1396 	return inta;
1397 }
1398 
1399 /* a device (PCI-E) page is 4096 bytes long */
1400 #define ICT_SHIFT	12
1401 #define ICT_SIZE	(1 << ICT_SHIFT)
1402 #define ICT_COUNT	(ICT_SIZE / sizeof(u32))
1403 
1404 /* interrupt handler using ict table, with this interrupt driver will
1405  * stop using INTA register to get device's interrupt, reading this register
1406  * is expensive, device will write interrupts in ICT dram table, increment
1407  * index then will fire interrupt to driver, driver will OR all ICT table
1408  * entries from current index up to table entry with 0 value. the result is
1409  * the interrupt we need to service, driver will set the entries back to 0 and
1410  * set index.
1411  */
1412 static u32 iwl_pcie_int_cause_ict(struct iwl_trans *trans)
1413 {
1414 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1415 	u32 inta;
1416 	u32 val = 0;
1417 	u32 read;
1418 
1419 	trace_iwlwifi_dev_irq(trans->dev);
1420 
1421 	/* Ignore interrupt if there's nothing in NIC to service.
1422 	 * This may be due to IRQ shared with another device,
1423 	 * or due to sporadic interrupts thrown from our NIC. */
1424 	read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
1425 	trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index, read);
1426 	if (!read)
1427 		return 0;
1428 
1429 	/*
1430 	 * Collect all entries up to the first 0, starting from ict_index;
1431 	 * note we already read at ict_index.
1432 	 */
1433 	do {
1434 		val |= read;
1435 		IWL_DEBUG_ISR(trans, "ICT index %d value 0x%08X\n",
1436 				trans_pcie->ict_index, read);
1437 		trans_pcie->ict_tbl[trans_pcie->ict_index] = 0;
1438 		trans_pcie->ict_index =
1439 			((trans_pcie->ict_index + 1) & (ICT_COUNT - 1));
1440 
1441 		read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
1442 		trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index,
1443 					   read);
1444 	} while (read);
1445 
1446 	/* We should not get this value, just ignore it. */
1447 	if (val == 0xffffffff)
1448 		val = 0;
1449 
1450 	/*
1451 	 * this is a w/a for a h/w bug. the h/w bug may cause the Rx bit
1452 	 * (bit 15 before shifting it to 31) to clear when using interrupt
1453 	 * coalescing. fortunately, bits 18 and 19 stay set when this happens
1454 	 * so we use them to decide on the real state of the Rx bit.
1455 	 * In order words, bit 15 is set if bit 18 or bit 19 are set.
1456 	 */
1457 	if (val & 0xC0000)
1458 		val |= 0x8000;
1459 
1460 	inta = (0xff & val) | ((0xff00 & val) << 16);
1461 	return inta;
1462 }
1463 
1464 irqreturn_t iwl_pcie_irq_handler(int irq, void *dev_id)
1465 {
1466 	struct iwl_trans *trans = dev_id;
1467 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1468 	struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
1469 	u32 inta = 0;
1470 	u32 handled = 0;
1471 
1472 	lock_map_acquire(&trans->sync_cmd_lockdep_map);
1473 
1474 	spin_lock(&trans_pcie->irq_lock);
1475 
1476 	/* dram interrupt table not set yet,
1477 	 * use legacy interrupt.
1478 	 */
1479 	if (likely(trans_pcie->use_ict))
1480 		inta = iwl_pcie_int_cause_ict(trans);
1481 	else
1482 		inta = iwl_pcie_int_cause_non_ict(trans);
1483 
1484 	if (iwl_have_debug_level(IWL_DL_ISR)) {
1485 		IWL_DEBUG_ISR(trans,
1486 			      "ISR inta 0x%08x, enabled 0x%08x(sw), enabled(hw) 0x%08x, fh 0x%08x\n",
1487 			      inta, trans_pcie->inta_mask,
1488 			      iwl_read32(trans, CSR_INT_MASK),
1489 			      iwl_read32(trans, CSR_FH_INT_STATUS));
1490 		if (inta & (~trans_pcie->inta_mask))
1491 			IWL_DEBUG_ISR(trans,
1492 				      "We got a masked interrupt (0x%08x)\n",
1493 				      inta & (~trans_pcie->inta_mask));
1494 	}
1495 
1496 	inta &= trans_pcie->inta_mask;
1497 
1498 	/*
1499 	 * Ignore interrupt if there's nothing in NIC to service.
1500 	 * This may be due to IRQ shared with another device,
1501 	 * or due to sporadic interrupts thrown from our NIC.
1502 	 */
1503 	if (unlikely(!inta)) {
1504 		IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
1505 		/*
1506 		 * Re-enable interrupts here since we don't
1507 		 * have anything to service
1508 		 */
1509 		if (test_bit(STATUS_INT_ENABLED, &trans->status))
1510 			iwl_enable_interrupts(trans);
1511 		spin_unlock(&trans_pcie->irq_lock);
1512 		lock_map_release(&trans->sync_cmd_lockdep_map);
1513 		return IRQ_NONE;
1514 	}
1515 
1516 	if (unlikely(inta == 0xFFFFFFFF || (inta & 0xFFFFFFF0) == 0xa5a5a5a0)) {
1517 		/*
1518 		 * Hardware disappeared. It might have
1519 		 * already raised an interrupt.
1520 		 */
1521 		IWL_WARN(trans, "HARDWARE GONE?? INTA == 0x%08x\n", inta);
1522 		spin_unlock(&trans_pcie->irq_lock);
1523 		goto out;
1524 	}
1525 
1526 	/* Ack/clear/reset pending uCode interrupts.
1527 	 * Note:  Some bits in CSR_INT are "OR" of bits in CSR_FH_INT_STATUS,
1528 	 */
1529 	/* There is a hardware bug in the interrupt mask function that some
1530 	 * interrupts (i.e. CSR_INT_BIT_SCD) can still be generated even if
1531 	 * they are disabled in the CSR_INT_MASK register. Furthermore the
1532 	 * ICT interrupt handling mechanism has another bug that might cause
1533 	 * these unmasked interrupts fail to be detected. We workaround the
1534 	 * hardware bugs here by ACKing all the possible interrupts so that
1535 	 * interrupt coalescing can still be achieved.
1536 	 */
1537 	iwl_write32(trans, CSR_INT, inta | ~trans_pcie->inta_mask);
1538 
1539 	if (iwl_have_debug_level(IWL_DL_ISR))
1540 		IWL_DEBUG_ISR(trans, "inta 0x%08x, enabled 0x%08x\n",
1541 			      inta, iwl_read32(trans, CSR_INT_MASK));
1542 
1543 	spin_unlock(&trans_pcie->irq_lock);
1544 
1545 	/* Now service all interrupt bits discovered above. */
1546 	if (inta & CSR_INT_BIT_HW_ERR) {
1547 		IWL_ERR(trans, "Hardware error detected.  Restarting.\n");
1548 
1549 		/* Tell the device to stop sending interrupts */
1550 		iwl_disable_interrupts(trans);
1551 
1552 		isr_stats->hw++;
1553 		iwl_pcie_irq_handle_error(trans);
1554 
1555 		handled |= CSR_INT_BIT_HW_ERR;
1556 
1557 		goto out;
1558 	}
1559 
1560 	if (iwl_have_debug_level(IWL_DL_ISR)) {
1561 		/* NIC fires this, but we don't use it, redundant with WAKEUP */
1562 		if (inta & CSR_INT_BIT_SCD) {
1563 			IWL_DEBUG_ISR(trans,
1564 				      "Scheduler finished to transmit the frame/frames.\n");
1565 			isr_stats->sch++;
1566 		}
1567 
1568 		/* Alive notification via Rx interrupt will do the real work */
1569 		if (inta & CSR_INT_BIT_ALIVE) {
1570 			IWL_DEBUG_ISR(trans, "Alive interrupt\n");
1571 			isr_stats->alive++;
1572 		}
1573 	}
1574 
1575 	/* Safely ignore these bits for debug checks below */
1576 	inta &= ~(CSR_INT_BIT_SCD | CSR_INT_BIT_ALIVE);
1577 
1578 	/* HW RF KILL switch toggled */
1579 	if (inta & CSR_INT_BIT_RF_KILL) {
1580 		bool hw_rfkill;
1581 
1582 		hw_rfkill = iwl_is_rfkill_set(trans);
1583 		IWL_WARN(trans, "RF_KILL bit toggled to %s.\n",
1584 			 hw_rfkill ? "disable radio" : "enable radio");
1585 
1586 		isr_stats->rfkill++;
1587 
1588 		mutex_lock(&trans_pcie->mutex);
1589 		iwl_trans_pcie_rf_kill(trans, hw_rfkill);
1590 		mutex_unlock(&trans_pcie->mutex);
1591 		if (hw_rfkill) {
1592 			set_bit(STATUS_RFKILL, &trans->status);
1593 			if (test_and_clear_bit(STATUS_SYNC_HCMD_ACTIVE,
1594 					       &trans->status))
1595 				IWL_DEBUG_RF_KILL(trans,
1596 						  "Rfkill while SYNC HCMD in flight\n");
1597 			wake_up(&trans_pcie->wait_command_queue);
1598 		} else {
1599 			clear_bit(STATUS_RFKILL, &trans->status);
1600 		}
1601 
1602 		handled |= CSR_INT_BIT_RF_KILL;
1603 	}
1604 
1605 	/* Chip got too hot and stopped itself */
1606 	if (inta & CSR_INT_BIT_CT_KILL) {
1607 		IWL_ERR(trans, "Microcode CT kill error detected.\n");
1608 		isr_stats->ctkill++;
1609 		handled |= CSR_INT_BIT_CT_KILL;
1610 	}
1611 
1612 	/* Error detected by uCode */
1613 	if (inta & CSR_INT_BIT_SW_ERR) {
1614 		IWL_ERR(trans, "Microcode SW error detected. "
1615 			" Restarting 0x%X.\n", inta);
1616 		isr_stats->sw++;
1617 		iwl_pcie_irq_handle_error(trans);
1618 		handled |= CSR_INT_BIT_SW_ERR;
1619 	}
1620 
1621 	/* uCode wakes up after power-down sleep */
1622 	if (inta & CSR_INT_BIT_WAKEUP) {
1623 		IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
1624 		iwl_pcie_rxq_check_wrptr(trans);
1625 		iwl_pcie_txq_check_wrptrs(trans);
1626 
1627 		isr_stats->wakeup++;
1628 
1629 		handled |= CSR_INT_BIT_WAKEUP;
1630 	}
1631 
1632 	/* All uCode command responses, including Tx command responses,
1633 	 * Rx "responses" (frame-received notification), and other
1634 	 * notifications from uCode come through here*/
1635 	if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX |
1636 		    CSR_INT_BIT_RX_PERIODIC)) {
1637 		IWL_DEBUG_ISR(trans, "Rx interrupt\n");
1638 		if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX)) {
1639 			handled |= (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX);
1640 			iwl_write32(trans, CSR_FH_INT_STATUS,
1641 					CSR_FH_INT_RX_MASK);
1642 		}
1643 		if (inta & CSR_INT_BIT_RX_PERIODIC) {
1644 			handled |= CSR_INT_BIT_RX_PERIODIC;
1645 			iwl_write32(trans,
1646 				CSR_INT, CSR_INT_BIT_RX_PERIODIC);
1647 		}
1648 		/* Sending RX interrupt require many steps to be done in the
1649 		 * the device:
1650 		 * 1- write interrupt to current index in ICT table.
1651 		 * 2- dma RX frame.
1652 		 * 3- update RX shared data to indicate last write index.
1653 		 * 4- send interrupt.
1654 		 * This could lead to RX race, driver could receive RX interrupt
1655 		 * but the shared data changes does not reflect this;
1656 		 * periodic interrupt will detect any dangling Rx activity.
1657 		 */
1658 
1659 		/* Disable periodic interrupt; we use it as just a one-shot. */
1660 		iwl_write8(trans, CSR_INT_PERIODIC_REG,
1661 			    CSR_INT_PERIODIC_DIS);
1662 
1663 		/*
1664 		 * Enable periodic interrupt in 8 msec only if we received
1665 		 * real RX interrupt (instead of just periodic int), to catch
1666 		 * any dangling Rx interrupt.  If it was just the periodic
1667 		 * interrupt, there was no dangling Rx activity, and no need
1668 		 * to extend the periodic interrupt; one-shot is enough.
1669 		 */
1670 		if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX))
1671 			iwl_write8(trans, CSR_INT_PERIODIC_REG,
1672 				   CSR_INT_PERIODIC_ENA);
1673 
1674 		isr_stats->rx++;
1675 
1676 		local_bh_disable();
1677 		iwl_pcie_rx_handle(trans, 0);
1678 		local_bh_enable();
1679 	}
1680 
1681 	/* This "Tx" DMA channel is used only for loading uCode */
1682 	if (inta & CSR_INT_BIT_FH_TX) {
1683 		iwl_write32(trans, CSR_FH_INT_STATUS, CSR_FH_INT_TX_MASK);
1684 		IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
1685 		isr_stats->tx++;
1686 		handled |= CSR_INT_BIT_FH_TX;
1687 		/* Wake up uCode load routine, now that load is complete */
1688 		trans_pcie->ucode_write_complete = true;
1689 		wake_up(&trans_pcie->ucode_write_waitq);
1690 	}
1691 
1692 	if (inta & ~handled) {
1693 		IWL_ERR(trans, "Unhandled INTA bits 0x%08x\n", inta & ~handled);
1694 		isr_stats->unhandled++;
1695 	}
1696 
1697 	if (inta & ~(trans_pcie->inta_mask)) {
1698 		IWL_WARN(trans, "Disabled INTA bits 0x%08x were pending\n",
1699 			 inta & ~trans_pcie->inta_mask);
1700 	}
1701 
1702 	/* we are loading the firmware, enable FH_TX interrupt only */
1703 	if (handled & CSR_INT_BIT_FH_TX)
1704 		iwl_enable_fw_load_int(trans);
1705 	/* only Re-enable all interrupt if disabled by irq */
1706 	else if (test_bit(STATUS_INT_ENABLED, &trans->status))
1707 		iwl_enable_interrupts(trans);
1708 	/* Re-enable RF_KILL if it occurred */
1709 	else if (handled & CSR_INT_BIT_RF_KILL)
1710 		iwl_enable_rfkill_int(trans);
1711 
1712 out:
1713 	lock_map_release(&trans->sync_cmd_lockdep_map);
1714 	return IRQ_HANDLED;
1715 }
1716 
1717 /******************************************************************************
1718  *
1719  * ICT functions
1720  *
1721  ******************************************************************************/
1722 
1723 /* Free dram table */
1724 void iwl_pcie_free_ict(struct iwl_trans *trans)
1725 {
1726 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1727 
1728 	if (trans_pcie->ict_tbl) {
1729 		dma_free_coherent(trans->dev, ICT_SIZE,
1730 				  trans_pcie->ict_tbl,
1731 				  trans_pcie->ict_tbl_dma);
1732 		trans_pcie->ict_tbl = NULL;
1733 		trans_pcie->ict_tbl_dma = 0;
1734 	}
1735 }
1736 
1737 /*
1738  * allocate dram shared table, it is an aligned memory
1739  * block of ICT_SIZE.
1740  * also reset all data related to ICT table interrupt.
1741  */
1742 int iwl_pcie_alloc_ict(struct iwl_trans *trans)
1743 {
1744 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1745 
1746 	trans_pcie->ict_tbl =
1747 		dma_zalloc_coherent(trans->dev, ICT_SIZE,
1748 				   &trans_pcie->ict_tbl_dma,
1749 				   GFP_KERNEL);
1750 	if (!trans_pcie->ict_tbl)
1751 		return -ENOMEM;
1752 
1753 	/* just an API sanity check ... it is guaranteed to be aligned */
1754 	if (WARN_ON(trans_pcie->ict_tbl_dma & (ICT_SIZE - 1))) {
1755 		iwl_pcie_free_ict(trans);
1756 		return -EINVAL;
1757 	}
1758 
1759 	return 0;
1760 }
1761 
1762 /* Device is going up inform it about using ICT interrupt table,
1763  * also we need to tell the driver to start using ICT interrupt.
1764  */
1765 void iwl_pcie_reset_ict(struct iwl_trans *trans)
1766 {
1767 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1768 	u32 val;
1769 
1770 	if (!trans_pcie->ict_tbl)
1771 		return;
1772 
1773 	spin_lock(&trans_pcie->irq_lock);
1774 	iwl_disable_interrupts(trans);
1775 
1776 	memset(trans_pcie->ict_tbl, 0, ICT_SIZE);
1777 
1778 	val = trans_pcie->ict_tbl_dma >> ICT_SHIFT;
1779 
1780 	val |= CSR_DRAM_INT_TBL_ENABLE |
1781 	       CSR_DRAM_INIT_TBL_WRAP_CHECK |
1782 	       CSR_DRAM_INIT_TBL_WRITE_POINTER;
1783 
1784 	IWL_DEBUG_ISR(trans, "CSR_DRAM_INT_TBL_REG =0x%x\n", val);
1785 
1786 	iwl_write32(trans, CSR_DRAM_INT_TBL_REG, val);
1787 	trans_pcie->use_ict = true;
1788 	trans_pcie->ict_index = 0;
1789 	iwl_write32(trans, CSR_INT, trans_pcie->inta_mask);
1790 	iwl_enable_interrupts(trans);
1791 	spin_unlock(&trans_pcie->irq_lock);
1792 }
1793 
1794 /* Device is going down disable ict interrupt usage */
1795 void iwl_pcie_disable_ict(struct iwl_trans *trans)
1796 {
1797 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1798 
1799 	spin_lock(&trans_pcie->irq_lock);
1800 	trans_pcie->use_ict = false;
1801 	spin_unlock(&trans_pcie->irq_lock);
1802 }
1803 
1804 irqreturn_t iwl_pcie_isr(int irq, void *data)
1805 {
1806 	struct iwl_trans *trans = data;
1807 
1808 	if (!trans)
1809 		return IRQ_NONE;
1810 
1811 	/* Disable (but don't clear!) interrupts here to avoid
1812 	 * back-to-back ISRs and sporadic interrupts from our NIC.
1813 	 * If we have something to service, the tasklet will re-enable ints.
1814 	 * If we *don't* have something, we'll re-enable before leaving here.
1815 	 */
1816 	iwl_write32(trans, CSR_INT_MASK, 0x00000000);
1817 
1818 	return IRQ_WAKE_THREAD;
1819 }
1820 
1821 irqreturn_t iwl_pcie_msix_isr(int irq, void *data)
1822 {
1823 	return IRQ_WAKE_THREAD;
1824 }
1825 
1826 irqreturn_t iwl_pcie_irq_msix_handler(int irq, void *dev_id)
1827 {
1828 	struct msix_entry *entry = dev_id;
1829 	struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry);
1830 	struct iwl_trans *trans = trans_pcie->trans;
1831 	struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
1832 	u32 inta_fh, inta_hw;
1833 
1834 	lock_map_acquire(&trans->sync_cmd_lockdep_map);
1835 
1836 	spin_lock(&trans_pcie->irq_lock);
1837 	inta_fh = iwl_read32(trans, CSR_MSIX_FH_INT_CAUSES_AD);
1838 	inta_hw = iwl_read32(trans, CSR_MSIX_HW_INT_CAUSES_AD);
1839 	/*
1840 	 * Clear causes registers to avoid being handling the same cause.
1841 	 */
1842 	iwl_write32(trans, CSR_MSIX_FH_INT_CAUSES_AD, inta_fh);
1843 	iwl_write32(trans, CSR_MSIX_HW_INT_CAUSES_AD, inta_hw);
1844 	spin_unlock(&trans_pcie->irq_lock);
1845 
1846 	if (unlikely(!(inta_fh | inta_hw))) {
1847 		IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
1848 		lock_map_release(&trans->sync_cmd_lockdep_map);
1849 		return IRQ_NONE;
1850 	}
1851 
1852 	if (iwl_have_debug_level(IWL_DL_ISR))
1853 		IWL_DEBUG_ISR(trans, "ISR inta_fh 0x%08x, enabled 0x%08x\n",
1854 			      inta_fh,
1855 			      iwl_read32(trans, CSR_MSIX_FH_INT_MASK_AD));
1856 
1857 	/* This "Tx" DMA channel is used only for loading uCode */
1858 	if (inta_fh & MSIX_FH_INT_CAUSES_D2S_CH0_NUM) {
1859 		IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
1860 		isr_stats->tx++;
1861 		/*
1862 		 * Wake up uCode load routine,
1863 		 * now that load is complete
1864 		 */
1865 		trans_pcie->ucode_write_complete = true;
1866 		wake_up(&trans_pcie->ucode_write_waitq);
1867 	}
1868 
1869 	/* Error detected by uCode */
1870 	if ((inta_fh & MSIX_FH_INT_CAUSES_FH_ERR) ||
1871 	    (inta_hw & MSIX_HW_INT_CAUSES_REG_SW_ERR)) {
1872 		IWL_ERR(trans,
1873 			"Microcode SW error detected. Restarting 0x%X.\n",
1874 			inta_fh);
1875 		isr_stats->sw++;
1876 		iwl_pcie_irq_handle_error(trans);
1877 	}
1878 
1879 	/* After checking FH register check HW register */
1880 	if (iwl_have_debug_level(IWL_DL_ISR))
1881 		IWL_DEBUG_ISR(trans,
1882 			      "ISR inta_hw 0x%08x, enabled 0x%08x\n",
1883 			      inta_hw,
1884 			      iwl_read32(trans, CSR_MSIX_HW_INT_MASK_AD));
1885 
1886 	/* Alive notification via Rx interrupt will do the real work */
1887 	if (inta_hw & MSIX_HW_INT_CAUSES_REG_ALIVE) {
1888 		IWL_DEBUG_ISR(trans, "Alive interrupt\n");
1889 		isr_stats->alive++;
1890 	}
1891 
1892 	/* uCode wakes up after power-down sleep */
1893 	if (inta_hw & MSIX_HW_INT_CAUSES_REG_WAKEUP) {
1894 		IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
1895 		iwl_pcie_rxq_check_wrptr(trans);
1896 		iwl_pcie_txq_check_wrptrs(trans);
1897 
1898 		isr_stats->wakeup++;
1899 	}
1900 
1901 	/* Chip got too hot and stopped itself */
1902 	if (inta_hw & MSIX_HW_INT_CAUSES_REG_CT_KILL) {
1903 		IWL_ERR(trans, "Microcode CT kill error detected.\n");
1904 		isr_stats->ctkill++;
1905 	}
1906 
1907 	/* HW RF KILL switch toggled */
1908 	if (inta_hw & MSIX_HW_INT_CAUSES_REG_RF_KILL) {
1909 		bool hw_rfkill;
1910 
1911 		hw_rfkill = iwl_is_rfkill_set(trans);
1912 		IWL_WARN(trans, "RF_KILL bit toggled to %s.\n",
1913 			 hw_rfkill ? "disable radio" : "enable radio");
1914 
1915 		isr_stats->rfkill++;
1916 
1917 		mutex_lock(&trans_pcie->mutex);
1918 		iwl_trans_pcie_rf_kill(trans, hw_rfkill);
1919 		mutex_unlock(&trans_pcie->mutex);
1920 		if (hw_rfkill) {
1921 			set_bit(STATUS_RFKILL, &trans->status);
1922 			if (test_and_clear_bit(STATUS_SYNC_HCMD_ACTIVE,
1923 					       &trans->status))
1924 				IWL_DEBUG_RF_KILL(trans,
1925 						  "Rfkill while SYNC HCMD in flight\n");
1926 			wake_up(&trans_pcie->wait_command_queue);
1927 		} else {
1928 			clear_bit(STATUS_RFKILL, &trans->status);
1929 		}
1930 	}
1931 
1932 	if (inta_hw & MSIX_HW_INT_CAUSES_REG_HW_ERR) {
1933 		IWL_ERR(trans,
1934 			"Hardware error detected. Restarting.\n");
1935 
1936 		isr_stats->hw++;
1937 		iwl_pcie_irq_handle_error(trans);
1938 	}
1939 
1940 	iwl_pcie_clear_irq(trans, entry);
1941 
1942 	lock_map_release(&trans->sync_cmd_lockdep_map);
1943 
1944 	return IRQ_HANDLED;
1945 }
1946