1 /****************************************************************************** 2 * 3 * Copyright(c) 2003 - 2014 Intel Corporation. All rights reserved. 4 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH 5 * Copyright(c) 2016 - 2017 Intel Deutschland GmbH 6 * 7 * Portions of this file are derived from the ipw3945 project, as well 8 * as portions of the ieee80211 subsystem header files. 9 * 10 * This program is free software; you can redistribute it and/or modify it 11 * under the terms of version 2 of the GNU General Public License as 12 * published by the Free Software Foundation. 13 * 14 * This program is distributed in the hope that it will be useful, but WITHOUT 15 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 16 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 17 * more details. 18 * 19 * You should have received a copy of the GNU General Public License along with 20 * this program; if not, write to the Free Software Foundation, Inc., 21 * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA 22 * 23 * The full GNU General Public License is included in this distribution in the 24 * file called LICENSE. 25 * 26 * Contact Information: 27 * Intel Linux Wireless <linuxwifi@intel.com> 28 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 29 * 30 *****************************************************************************/ 31 #include <linux/sched.h> 32 #include <linux/wait.h> 33 #include <linux/gfp.h> 34 35 #include "iwl-prph.h" 36 #include "iwl-io.h" 37 #include "internal.h" 38 #include "iwl-op-mode.h" 39 40 /****************************************************************************** 41 * 42 * RX path functions 43 * 44 ******************************************************************************/ 45 46 /* 47 * Rx theory of operation 48 * 49 * Driver allocates a circular buffer of Receive Buffer Descriptors (RBDs), 50 * each of which point to Receive Buffers to be filled by the NIC. These get 51 * used not only for Rx frames, but for any command response or notification 52 * from the NIC. The driver and NIC manage the Rx buffers by means 53 * of indexes into the circular buffer. 54 * 55 * Rx Queue Indexes 56 * The host/firmware share two index registers for managing the Rx buffers. 57 * 58 * The READ index maps to the first position that the firmware may be writing 59 * to -- the driver can read up to (but not including) this position and get 60 * good data. 61 * The READ index is managed by the firmware once the card is enabled. 62 * 63 * The WRITE index maps to the last position the driver has read from -- the 64 * position preceding WRITE is the last slot the firmware can place a packet. 65 * 66 * The queue is empty (no good data) if WRITE = READ - 1, and is full if 67 * WRITE = READ. 68 * 69 * During initialization, the host sets up the READ queue position to the first 70 * INDEX position, and WRITE to the last (READ - 1 wrapped) 71 * 72 * When the firmware places a packet in a buffer, it will advance the READ index 73 * and fire the RX interrupt. The driver can then query the READ index and 74 * process as many packets as possible, moving the WRITE index forward as it 75 * resets the Rx queue buffers with new memory. 76 * 77 * The management in the driver is as follows: 78 * + A list of pre-allocated RBDs is stored in iwl->rxq->rx_free. 79 * When the interrupt handler is called, the request is processed. 80 * The page is either stolen - transferred to the upper layer 81 * or reused - added immediately to the iwl->rxq->rx_free list. 82 * + When the page is stolen - the driver updates the matching queue's used 83 * count, detaches the RBD and transfers it to the queue used list. 84 * When there are two used RBDs - they are transferred to the allocator empty 85 * list. Work is then scheduled for the allocator to start allocating 86 * eight buffers. 87 * When there are another 6 used RBDs - they are transferred to the allocator 88 * empty list and the driver tries to claim the pre-allocated buffers and 89 * add them to iwl->rxq->rx_free. If it fails - it continues to claim them 90 * until ready. 91 * When there are 8+ buffers in the free list - either from allocation or from 92 * 8 reused unstolen pages - restock is called to update the FW and indexes. 93 * + In order to make sure the allocator always has RBDs to use for allocation 94 * the allocator has initial pool in the size of num_queues*(8-2) - the 95 * maximum missing RBDs per allocation request (request posted with 2 96 * empty RBDs, there is no guarantee when the other 6 RBDs are supplied). 97 * The queues supplies the recycle of the rest of the RBDs. 98 * + A received packet is processed and handed to the kernel network stack, 99 * detached from the iwl->rxq. The driver 'processed' index is updated. 100 * + If there are no allocated buffers in iwl->rxq->rx_free, 101 * the READ INDEX is not incremented and iwl->status(RX_STALLED) is set. 102 * If there were enough free buffers and RX_STALLED is set it is cleared. 103 * 104 * 105 * Driver sequence: 106 * 107 * iwl_rxq_alloc() Allocates rx_free 108 * iwl_pcie_rx_replenish() Replenishes rx_free list from rx_used, and calls 109 * iwl_pcie_rxq_restock. 110 * Used only during initialization. 111 * iwl_pcie_rxq_restock() Moves available buffers from rx_free into Rx 112 * queue, updates firmware pointers, and updates 113 * the WRITE index. 114 * iwl_pcie_rx_allocator() Background work for allocating pages. 115 * 116 * -- enable interrupts -- 117 * ISR - iwl_rx() Detach iwl_rx_mem_buffers from pool up to the 118 * READ INDEX, detaching the SKB from the pool. 119 * Moves the packet buffer from queue to rx_used. 120 * Posts and claims requests to the allocator. 121 * Calls iwl_pcie_rxq_restock to refill any empty 122 * slots. 123 * 124 * RBD life-cycle: 125 * 126 * Init: 127 * rxq.pool -> rxq.rx_used -> rxq.rx_free -> rxq.queue 128 * 129 * Regular Receive interrupt: 130 * Page Stolen: 131 * rxq.queue -> rxq.rx_used -> allocator.rbd_empty -> 132 * allocator.rbd_allocated -> rxq.rx_free -> rxq.queue 133 * Page not Stolen: 134 * rxq.queue -> rxq.rx_free -> rxq.queue 135 * ... 136 * 137 */ 138 139 /* 140 * iwl_rxq_space - Return number of free slots available in queue. 141 */ 142 static int iwl_rxq_space(const struct iwl_rxq *rxq) 143 { 144 /* Make sure rx queue size is a power of 2 */ 145 WARN_ON(rxq->queue_size & (rxq->queue_size - 1)); 146 147 /* 148 * There can be up to (RX_QUEUE_SIZE - 1) free slots, to avoid ambiguity 149 * between empty and completely full queues. 150 * The following is equivalent to modulo by RX_QUEUE_SIZE and is well 151 * defined for negative dividends. 152 */ 153 return (rxq->read - rxq->write - 1) & (rxq->queue_size - 1); 154 } 155 156 /* 157 * iwl_dma_addr2rbd_ptr - convert a DMA address to a uCode read buffer ptr 158 */ 159 static inline __le32 iwl_pcie_dma_addr2rbd_ptr(dma_addr_t dma_addr) 160 { 161 return cpu_to_le32((u32)(dma_addr >> 8)); 162 } 163 164 /* 165 * iwl_pcie_rx_stop - stops the Rx DMA 166 */ 167 int iwl_pcie_rx_stop(struct iwl_trans *trans) 168 { 169 if (trans->cfg->mq_rx_supported) { 170 iwl_write_prph(trans, RFH_RXF_DMA_CFG, 0); 171 return iwl_poll_prph_bit(trans, RFH_GEN_STATUS, 172 RXF_DMA_IDLE, RXF_DMA_IDLE, 1000); 173 } else { 174 iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0); 175 return iwl_poll_direct_bit(trans, FH_MEM_RSSR_RX_STATUS_REG, 176 FH_RSSR_CHNL0_RX_STATUS_CHNL_IDLE, 177 1000); 178 } 179 } 180 181 /* 182 * iwl_pcie_rxq_inc_wr_ptr - Update the write pointer for the RX queue 183 */ 184 static void iwl_pcie_rxq_inc_wr_ptr(struct iwl_trans *trans, 185 struct iwl_rxq *rxq) 186 { 187 u32 reg; 188 189 lockdep_assert_held(&rxq->lock); 190 191 /* 192 * explicitly wake up the NIC if: 193 * 1. shadow registers aren't enabled 194 * 2. there is a chance that the NIC is asleep 195 */ 196 if (!trans->cfg->base_params->shadow_reg_enable && 197 test_bit(STATUS_TPOWER_PMI, &trans->status)) { 198 reg = iwl_read32(trans, CSR_UCODE_DRV_GP1); 199 200 if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) { 201 IWL_DEBUG_INFO(trans, "Rx queue requesting wakeup, GP1 = 0x%x\n", 202 reg); 203 iwl_set_bit(trans, CSR_GP_CNTRL, 204 CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ); 205 rxq->need_update = true; 206 return; 207 } 208 } 209 210 rxq->write_actual = round_down(rxq->write, 8); 211 if (trans->cfg->mq_rx_supported) 212 iwl_write32(trans, RFH_Q_FRBDCB_WIDX_TRG(rxq->id), 213 rxq->write_actual); 214 else 215 iwl_write32(trans, FH_RSCSR_CHNL0_WPTR, rxq->write_actual); 216 } 217 218 static void iwl_pcie_rxq_check_wrptr(struct iwl_trans *trans) 219 { 220 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 221 int i; 222 223 for (i = 0; i < trans->num_rx_queues; i++) { 224 struct iwl_rxq *rxq = &trans_pcie->rxq[i]; 225 226 if (!rxq->need_update) 227 continue; 228 spin_lock(&rxq->lock); 229 iwl_pcie_rxq_inc_wr_ptr(trans, rxq); 230 rxq->need_update = false; 231 spin_unlock(&rxq->lock); 232 } 233 } 234 235 /* 236 * iwl_pcie_rxmq_restock - restock implementation for multi-queue rx 237 */ 238 static void iwl_pcie_rxmq_restock(struct iwl_trans *trans, 239 struct iwl_rxq *rxq) 240 { 241 struct iwl_rx_mem_buffer *rxb; 242 243 /* 244 * If the device isn't enabled - no need to try to add buffers... 245 * This can happen when we stop the device and still have an interrupt 246 * pending. We stop the APM before we sync the interrupts because we 247 * have to (see comment there). On the other hand, since the APM is 248 * stopped, we cannot access the HW (in particular not prph). 249 * So don't try to restock if the APM has been already stopped. 250 */ 251 if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status)) 252 return; 253 254 spin_lock(&rxq->lock); 255 while (rxq->free_count) { 256 __le64 *bd = (__le64 *)rxq->bd; 257 258 /* Get next free Rx buffer, remove from free list */ 259 rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer, 260 list); 261 list_del(&rxb->list); 262 rxb->invalid = false; 263 /* 12 first bits are expected to be empty */ 264 WARN_ON(rxb->page_dma & DMA_BIT_MASK(12)); 265 /* Point to Rx buffer via next RBD in circular buffer */ 266 bd[rxq->write] = cpu_to_le64(rxb->page_dma | rxb->vid); 267 rxq->write = (rxq->write + 1) & MQ_RX_TABLE_MASK; 268 rxq->free_count--; 269 } 270 spin_unlock(&rxq->lock); 271 272 /* 273 * If we've added more space for the firmware to place data, tell it. 274 * Increment device's write pointer in multiples of 8. 275 */ 276 if (rxq->write_actual != (rxq->write & ~0x7)) { 277 spin_lock(&rxq->lock); 278 iwl_pcie_rxq_inc_wr_ptr(trans, rxq); 279 spin_unlock(&rxq->lock); 280 } 281 } 282 283 /* 284 * iwl_pcie_rxsq_restock - restock implementation for single queue rx 285 */ 286 static void iwl_pcie_rxsq_restock(struct iwl_trans *trans, 287 struct iwl_rxq *rxq) 288 { 289 struct iwl_rx_mem_buffer *rxb; 290 291 /* 292 * If the device isn't enabled - not need to try to add buffers... 293 * This can happen when we stop the device and still have an interrupt 294 * pending. We stop the APM before we sync the interrupts because we 295 * have to (see comment there). On the other hand, since the APM is 296 * stopped, we cannot access the HW (in particular not prph). 297 * So don't try to restock if the APM has been already stopped. 298 */ 299 if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status)) 300 return; 301 302 spin_lock(&rxq->lock); 303 while ((iwl_rxq_space(rxq) > 0) && (rxq->free_count)) { 304 __le32 *bd = (__le32 *)rxq->bd; 305 /* The overwritten rxb must be a used one */ 306 rxb = rxq->queue[rxq->write]; 307 BUG_ON(rxb && rxb->page); 308 309 /* Get next free Rx buffer, remove from free list */ 310 rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer, 311 list); 312 list_del(&rxb->list); 313 rxb->invalid = false; 314 315 /* Point to Rx buffer via next RBD in circular buffer */ 316 bd[rxq->write] = iwl_pcie_dma_addr2rbd_ptr(rxb->page_dma); 317 rxq->queue[rxq->write] = rxb; 318 rxq->write = (rxq->write + 1) & RX_QUEUE_MASK; 319 rxq->free_count--; 320 } 321 spin_unlock(&rxq->lock); 322 323 /* If we've added more space for the firmware to place data, tell it. 324 * Increment device's write pointer in multiples of 8. */ 325 if (rxq->write_actual != (rxq->write & ~0x7)) { 326 spin_lock(&rxq->lock); 327 iwl_pcie_rxq_inc_wr_ptr(trans, rxq); 328 spin_unlock(&rxq->lock); 329 } 330 } 331 332 /* 333 * iwl_pcie_rxq_restock - refill RX queue from pre-allocated pool 334 * 335 * If there are slots in the RX queue that need to be restocked, 336 * and we have free pre-allocated buffers, fill the ranks as much 337 * as we can, pulling from rx_free. 338 * 339 * This moves the 'write' index forward to catch up with 'processed', and 340 * also updates the memory address in the firmware to reference the new 341 * target buffer. 342 */ 343 static 344 void iwl_pcie_rxq_restock(struct iwl_trans *trans, struct iwl_rxq *rxq) 345 { 346 if (trans->cfg->mq_rx_supported) 347 iwl_pcie_rxmq_restock(trans, rxq); 348 else 349 iwl_pcie_rxsq_restock(trans, rxq); 350 } 351 352 /* 353 * iwl_pcie_rx_alloc_page - allocates and returns a page. 354 * 355 */ 356 static struct page *iwl_pcie_rx_alloc_page(struct iwl_trans *trans, 357 gfp_t priority) 358 { 359 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 360 struct page *page; 361 gfp_t gfp_mask = priority; 362 363 if (trans_pcie->rx_page_order > 0) 364 gfp_mask |= __GFP_COMP; 365 366 /* Alloc a new receive buffer */ 367 page = alloc_pages(gfp_mask, trans_pcie->rx_page_order); 368 if (!page) { 369 if (net_ratelimit()) 370 IWL_DEBUG_INFO(trans, "alloc_pages failed, order: %d\n", 371 trans_pcie->rx_page_order); 372 /* 373 * Issue an error if we don't have enough pre-allocated 374 * buffers. 375 ` */ 376 if (!(gfp_mask & __GFP_NOWARN) && net_ratelimit()) 377 IWL_CRIT(trans, 378 "Failed to alloc_pages\n"); 379 return NULL; 380 } 381 return page; 382 } 383 384 /* 385 * iwl_pcie_rxq_alloc_rbs - allocate a page for each used RBD 386 * 387 * A used RBD is an Rx buffer that has been given to the stack. To use it again 388 * a page must be allocated and the RBD must point to the page. This function 389 * doesn't change the HW pointer but handles the list of pages that is used by 390 * iwl_pcie_rxq_restock. The latter function will update the HW to use the newly 391 * allocated buffers. 392 */ 393 static void iwl_pcie_rxq_alloc_rbs(struct iwl_trans *trans, gfp_t priority, 394 struct iwl_rxq *rxq) 395 { 396 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 397 struct iwl_rx_mem_buffer *rxb; 398 struct page *page; 399 400 while (1) { 401 spin_lock(&rxq->lock); 402 if (list_empty(&rxq->rx_used)) { 403 spin_unlock(&rxq->lock); 404 return; 405 } 406 spin_unlock(&rxq->lock); 407 408 /* Alloc a new receive buffer */ 409 page = iwl_pcie_rx_alloc_page(trans, priority); 410 if (!page) 411 return; 412 413 spin_lock(&rxq->lock); 414 415 if (list_empty(&rxq->rx_used)) { 416 spin_unlock(&rxq->lock); 417 __free_pages(page, trans_pcie->rx_page_order); 418 return; 419 } 420 rxb = list_first_entry(&rxq->rx_used, struct iwl_rx_mem_buffer, 421 list); 422 list_del(&rxb->list); 423 spin_unlock(&rxq->lock); 424 425 BUG_ON(rxb->page); 426 rxb->page = page; 427 /* Get physical address of the RB */ 428 rxb->page_dma = 429 dma_map_page(trans->dev, page, 0, 430 PAGE_SIZE << trans_pcie->rx_page_order, 431 DMA_FROM_DEVICE); 432 if (dma_mapping_error(trans->dev, rxb->page_dma)) { 433 rxb->page = NULL; 434 spin_lock(&rxq->lock); 435 list_add(&rxb->list, &rxq->rx_used); 436 spin_unlock(&rxq->lock); 437 __free_pages(page, trans_pcie->rx_page_order); 438 return; 439 } 440 441 spin_lock(&rxq->lock); 442 443 list_add_tail(&rxb->list, &rxq->rx_free); 444 rxq->free_count++; 445 446 spin_unlock(&rxq->lock); 447 } 448 } 449 450 static void iwl_pcie_free_rbs_pool(struct iwl_trans *trans) 451 { 452 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 453 int i; 454 455 for (i = 0; i < RX_POOL_SIZE; i++) { 456 if (!trans_pcie->rx_pool[i].page) 457 continue; 458 dma_unmap_page(trans->dev, trans_pcie->rx_pool[i].page_dma, 459 PAGE_SIZE << trans_pcie->rx_page_order, 460 DMA_FROM_DEVICE); 461 __free_pages(trans_pcie->rx_pool[i].page, 462 trans_pcie->rx_page_order); 463 trans_pcie->rx_pool[i].page = NULL; 464 } 465 } 466 467 /* 468 * iwl_pcie_rx_allocator - Allocates pages in the background for RX queues 469 * 470 * Allocates for each received request 8 pages 471 * Called as a scheduled work item. 472 */ 473 static void iwl_pcie_rx_allocator(struct iwl_trans *trans) 474 { 475 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 476 struct iwl_rb_allocator *rba = &trans_pcie->rba; 477 struct list_head local_empty; 478 int pending = atomic_xchg(&rba->req_pending, 0); 479 480 IWL_DEBUG_RX(trans, "Pending allocation requests = %d\n", pending); 481 482 /* If we were scheduled - there is at least one request */ 483 spin_lock(&rba->lock); 484 /* swap out the rba->rbd_empty to a local list */ 485 list_replace_init(&rba->rbd_empty, &local_empty); 486 spin_unlock(&rba->lock); 487 488 while (pending) { 489 int i; 490 LIST_HEAD(local_allocated); 491 gfp_t gfp_mask = GFP_KERNEL; 492 493 /* Do not post a warning if there are only a few requests */ 494 if (pending < RX_PENDING_WATERMARK) 495 gfp_mask |= __GFP_NOWARN; 496 497 for (i = 0; i < RX_CLAIM_REQ_ALLOC;) { 498 struct iwl_rx_mem_buffer *rxb; 499 struct page *page; 500 501 /* List should never be empty - each reused RBD is 502 * returned to the list, and initial pool covers any 503 * possible gap between the time the page is allocated 504 * to the time the RBD is added. 505 */ 506 BUG_ON(list_empty(&local_empty)); 507 /* Get the first rxb from the rbd list */ 508 rxb = list_first_entry(&local_empty, 509 struct iwl_rx_mem_buffer, list); 510 BUG_ON(rxb->page); 511 512 /* Alloc a new receive buffer */ 513 page = iwl_pcie_rx_alloc_page(trans, gfp_mask); 514 if (!page) 515 continue; 516 rxb->page = page; 517 518 /* Get physical address of the RB */ 519 rxb->page_dma = dma_map_page(trans->dev, page, 0, 520 PAGE_SIZE << trans_pcie->rx_page_order, 521 DMA_FROM_DEVICE); 522 if (dma_mapping_error(trans->dev, rxb->page_dma)) { 523 rxb->page = NULL; 524 __free_pages(page, trans_pcie->rx_page_order); 525 continue; 526 } 527 528 /* move the allocated entry to the out list */ 529 list_move(&rxb->list, &local_allocated); 530 i++; 531 } 532 533 pending--; 534 if (!pending) { 535 pending = atomic_xchg(&rba->req_pending, 0); 536 IWL_DEBUG_RX(trans, 537 "Pending allocation requests = %d\n", 538 pending); 539 } 540 541 spin_lock(&rba->lock); 542 /* add the allocated rbds to the allocator allocated list */ 543 list_splice_tail(&local_allocated, &rba->rbd_allocated); 544 /* get more empty RBDs for current pending requests */ 545 list_splice_tail_init(&rba->rbd_empty, &local_empty); 546 spin_unlock(&rba->lock); 547 548 atomic_inc(&rba->req_ready); 549 } 550 551 spin_lock(&rba->lock); 552 /* return unused rbds to the allocator empty list */ 553 list_splice_tail(&local_empty, &rba->rbd_empty); 554 spin_unlock(&rba->lock); 555 } 556 557 /* 558 * iwl_pcie_rx_allocator_get - returns the pre-allocated pages 559 .* 560 .* Called by queue when the queue posted allocation request and 561 * has freed 8 RBDs in order to restock itself. 562 * This function directly moves the allocated RBs to the queue's ownership 563 * and updates the relevant counters. 564 */ 565 static void iwl_pcie_rx_allocator_get(struct iwl_trans *trans, 566 struct iwl_rxq *rxq) 567 { 568 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 569 struct iwl_rb_allocator *rba = &trans_pcie->rba; 570 int i; 571 572 lockdep_assert_held(&rxq->lock); 573 574 /* 575 * atomic_dec_if_positive returns req_ready - 1 for any scenario. 576 * If req_ready is 0 atomic_dec_if_positive will return -1 and this 577 * function will return early, as there are no ready requests. 578 * atomic_dec_if_positive will perofrm the *actual* decrement only if 579 * req_ready > 0, i.e. - there are ready requests and the function 580 * hands one request to the caller. 581 */ 582 if (atomic_dec_if_positive(&rba->req_ready) < 0) 583 return; 584 585 spin_lock(&rba->lock); 586 for (i = 0; i < RX_CLAIM_REQ_ALLOC; i++) { 587 /* Get next free Rx buffer, remove it from free list */ 588 struct iwl_rx_mem_buffer *rxb = 589 list_first_entry(&rba->rbd_allocated, 590 struct iwl_rx_mem_buffer, list); 591 592 list_move(&rxb->list, &rxq->rx_free); 593 } 594 spin_unlock(&rba->lock); 595 596 rxq->used_count -= RX_CLAIM_REQ_ALLOC; 597 rxq->free_count += RX_CLAIM_REQ_ALLOC; 598 } 599 600 static void iwl_pcie_rx_allocator_work(struct work_struct *data) 601 { 602 struct iwl_rb_allocator *rba_p = 603 container_of(data, struct iwl_rb_allocator, rx_alloc); 604 struct iwl_trans_pcie *trans_pcie = 605 container_of(rba_p, struct iwl_trans_pcie, rba); 606 607 iwl_pcie_rx_allocator(trans_pcie->trans); 608 } 609 610 static int iwl_pcie_rx_alloc(struct iwl_trans *trans) 611 { 612 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 613 struct iwl_rb_allocator *rba = &trans_pcie->rba; 614 struct device *dev = trans->dev; 615 int i; 616 int free_size = trans->cfg->mq_rx_supported ? sizeof(__le64) : 617 sizeof(__le32); 618 619 if (WARN_ON(trans_pcie->rxq)) 620 return -EINVAL; 621 622 trans_pcie->rxq = kcalloc(trans->num_rx_queues, sizeof(struct iwl_rxq), 623 GFP_KERNEL); 624 if (!trans_pcie->rxq) 625 return -EINVAL; 626 627 spin_lock_init(&rba->lock); 628 629 for (i = 0; i < trans->num_rx_queues; i++) { 630 struct iwl_rxq *rxq = &trans_pcie->rxq[i]; 631 632 spin_lock_init(&rxq->lock); 633 if (trans->cfg->mq_rx_supported) 634 rxq->queue_size = MQ_RX_TABLE_SIZE; 635 else 636 rxq->queue_size = RX_QUEUE_SIZE; 637 638 /* 639 * Allocate the circular buffer of Read Buffer Descriptors 640 * (RBDs) 641 */ 642 rxq->bd = dma_zalloc_coherent(dev, 643 free_size * rxq->queue_size, 644 &rxq->bd_dma, GFP_KERNEL); 645 if (!rxq->bd) 646 goto err; 647 648 if (trans->cfg->mq_rx_supported) { 649 rxq->used_bd = dma_zalloc_coherent(dev, 650 sizeof(__le32) * 651 rxq->queue_size, 652 &rxq->used_bd_dma, 653 GFP_KERNEL); 654 if (!rxq->used_bd) 655 goto err; 656 } 657 658 /*Allocate the driver's pointer to receive buffer status */ 659 rxq->rb_stts = dma_zalloc_coherent(dev, sizeof(*rxq->rb_stts), 660 &rxq->rb_stts_dma, 661 GFP_KERNEL); 662 if (!rxq->rb_stts) 663 goto err; 664 } 665 return 0; 666 667 err: 668 for (i = 0; i < trans->num_rx_queues; i++) { 669 struct iwl_rxq *rxq = &trans_pcie->rxq[i]; 670 671 if (rxq->bd) 672 dma_free_coherent(dev, free_size * rxq->queue_size, 673 rxq->bd, rxq->bd_dma); 674 rxq->bd_dma = 0; 675 rxq->bd = NULL; 676 677 if (rxq->rb_stts) 678 dma_free_coherent(trans->dev, 679 sizeof(struct iwl_rb_status), 680 rxq->rb_stts, rxq->rb_stts_dma); 681 682 if (rxq->used_bd) 683 dma_free_coherent(dev, sizeof(__le32) * rxq->queue_size, 684 rxq->used_bd, rxq->used_bd_dma); 685 rxq->used_bd_dma = 0; 686 rxq->used_bd = NULL; 687 } 688 kfree(trans_pcie->rxq); 689 690 return -ENOMEM; 691 } 692 693 static void iwl_pcie_rx_hw_init(struct iwl_trans *trans, struct iwl_rxq *rxq) 694 { 695 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 696 u32 rb_size; 697 unsigned long flags; 698 const u32 rfdnlog = RX_QUEUE_SIZE_LOG; /* 256 RBDs */ 699 700 switch (trans_pcie->rx_buf_size) { 701 case IWL_AMSDU_4K: 702 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K; 703 break; 704 case IWL_AMSDU_8K: 705 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_8K; 706 break; 707 case IWL_AMSDU_12K: 708 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_12K; 709 break; 710 default: 711 WARN_ON(1); 712 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K; 713 } 714 715 if (!iwl_trans_grab_nic_access(trans, &flags)) 716 return; 717 718 /* Stop Rx DMA */ 719 iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0); 720 /* reset and flush pointers */ 721 iwl_write32(trans, FH_MEM_RCSR_CHNL0_RBDCB_WPTR, 0); 722 iwl_write32(trans, FH_MEM_RCSR_CHNL0_FLUSH_RB_REQ, 0); 723 iwl_write32(trans, FH_RSCSR_CHNL0_RDPTR, 0); 724 725 /* Reset driver's Rx queue write index */ 726 iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0); 727 728 /* Tell device where to find RBD circular buffer in DRAM */ 729 iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_BASE_REG, 730 (u32)(rxq->bd_dma >> 8)); 731 732 /* Tell device where in DRAM to update its Rx status */ 733 iwl_write32(trans, FH_RSCSR_CHNL0_STTS_WPTR_REG, 734 rxq->rb_stts_dma >> 4); 735 736 /* Enable Rx DMA 737 * FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY is set because of HW bug in 738 * the credit mechanism in 5000 HW RX FIFO 739 * Direct rx interrupts to hosts 740 * Rx buffer size 4 or 8k or 12k 741 * RB timeout 0x10 742 * 256 RBDs 743 */ 744 iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 745 FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL | 746 FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY | 747 FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL | 748 rb_size | 749 (RX_RB_TIMEOUT << FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS) | 750 (rfdnlog << FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS)); 751 752 iwl_trans_release_nic_access(trans, &flags); 753 754 /* Set interrupt coalescing timer to default (2048 usecs) */ 755 iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF); 756 757 /* W/A for interrupt coalescing bug in 7260 and 3160 */ 758 if (trans->cfg->host_interrupt_operation_mode) 759 iwl_set_bit(trans, CSR_INT_COALESCING, IWL_HOST_INT_OPER_MODE); 760 } 761 762 void iwl_pcie_enable_rx_wake(struct iwl_trans *trans, bool enable) 763 { 764 if (trans->cfg->device_family != IWL_DEVICE_FAMILY_9000) 765 return; 766 767 if (CSR_HW_REV_STEP(trans->hw_rev) != SILICON_A_STEP) 768 return; 769 770 if (!trans->cfg->integrated) 771 return; 772 773 /* 774 * Turn on the chicken-bits that cause MAC wakeup for RX-related 775 * values. 776 * This costs some power, but needed for W/A 9000 integrated A-step 777 * bug where shadow registers are not in the retention list and their 778 * value is lost when NIC powers down 779 */ 780 iwl_set_bit(trans, CSR_MAC_SHADOW_REG_CTRL, 781 CSR_MAC_SHADOW_REG_CTRL_RX_WAKE); 782 iwl_set_bit(trans, CSR_MAC_SHADOW_REG_CTL2, 783 CSR_MAC_SHADOW_REG_CTL2_RX_WAKE); 784 } 785 786 static void iwl_pcie_rx_mq_hw_init(struct iwl_trans *trans) 787 { 788 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 789 u32 rb_size, enabled = 0; 790 unsigned long flags; 791 int i; 792 793 switch (trans_pcie->rx_buf_size) { 794 case IWL_AMSDU_4K: 795 rb_size = RFH_RXF_DMA_RB_SIZE_4K; 796 break; 797 case IWL_AMSDU_8K: 798 rb_size = RFH_RXF_DMA_RB_SIZE_8K; 799 break; 800 case IWL_AMSDU_12K: 801 rb_size = RFH_RXF_DMA_RB_SIZE_12K; 802 break; 803 default: 804 WARN_ON(1); 805 rb_size = RFH_RXF_DMA_RB_SIZE_4K; 806 } 807 808 if (!iwl_trans_grab_nic_access(trans, &flags)) 809 return; 810 811 /* Stop Rx DMA */ 812 iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG, 0); 813 /* disable free amd used rx queue operation */ 814 iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, 0); 815 816 for (i = 0; i < trans->num_rx_queues; i++) { 817 /* Tell device where to find RBD free table in DRAM */ 818 iwl_write_prph64_no_grab(trans, 819 RFH_Q_FRBDCB_BA_LSB(i), 820 trans_pcie->rxq[i].bd_dma); 821 /* Tell device where to find RBD used table in DRAM */ 822 iwl_write_prph64_no_grab(trans, 823 RFH_Q_URBDCB_BA_LSB(i), 824 trans_pcie->rxq[i].used_bd_dma); 825 /* Tell device where in DRAM to update its Rx status */ 826 iwl_write_prph64_no_grab(trans, 827 RFH_Q_URBD_STTS_WPTR_LSB(i), 828 trans_pcie->rxq[i].rb_stts_dma); 829 /* Reset device indice tables */ 830 iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_WIDX(i), 0); 831 iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_RIDX(i), 0); 832 iwl_write_prph_no_grab(trans, RFH_Q_URBDCB_WIDX(i), 0); 833 834 enabled |= BIT(i) | BIT(i + 16); 835 } 836 837 /* 838 * Enable Rx DMA 839 * Rx buffer size 4 or 8k or 12k 840 * Min RB size 4 or 8 841 * Drop frames that exceed RB size 842 * 512 RBDs 843 */ 844 iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG, 845 RFH_DMA_EN_ENABLE_VAL | rb_size | 846 RFH_RXF_DMA_MIN_RB_4_8 | 847 RFH_RXF_DMA_DROP_TOO_LARGE_MASK | 848 RFH_RXF_DMA_RBDCB_SIZE_512); 849 850 /* 851 * Activate DMA snooping. 852 * Set RX DMA chunk size to 64B for IOSF and 128B for PCIe 853 * Default queue is 0 854 */ 855 iwl_write_prph_no_grab(trans, RFH_GEN_CFG, 856 RFH_GEN_CFG_RFH_DMA_SNOOP | 857 RFH_GEN_CFG_VAL(DEFAULT_RXQ_NUM, 0) | 858 RFH_GEN_CFG_SERVICE_DMA_SNOOP | 859 RFH_GEN_CFG_VAL(RB_CHUNK_SIZE, 860 trans->cfg->integrated ? 861 RFH_GEN_CFG_RB_CHUNK_SIZE_64 : 862 RFH_GEN_CFG_RB_CHUNK_SIZE_128)); 863 /* Enable the relevant rx queues */ 864 iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, enabled); 865 866 iwl_trans_release_nic_access(trans, &flags); 867 868 /* Set interrupt coalescing timer to default (2048 usecs) */ 869 iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF); 870 871 iwl_pcie_enable_rx_wake(trans, true); 872 } 873 874 static void iwl_pcie_rx_init_rxb_lists(struct iwl_rxq *rxq) 875 { 876 lockdep_assert_held(&rxq->lock); 877 878 INIT_LIST_HEAD(&rxq->rx_free); 879 INIT_LIST_HEAD(&rxq->rx_used); 880 rxq->free_count = 0; 881 rxq->used_count = 0; 882 } 883 884 static int iwl_pcie_dummy_napi_poll(struct napi_struct *napi, int budget) 885 { 886 WARN_ON(1); 887 return 0; 888 } 889 890 static int _iwl_pcie_rx_init(struct iwl_trans *trans) 891 { 892 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 893 struct iwl_rxq *def_rxq; 894 struct iwl_rb_allocator *rba = &trans_pcie->rba; 895 int i, err, queue_size, allocator_pool_size, num_alloc; 896 897 if (!trans_pcie->rxq) { 898 err = iwl_pcie_rx_alloc(trans); 899 if (err) 900 return err; 901 } 902 def_rxq = trans_pcie->rxq; 903 if (!rba->alloc_wq) 904 rba->alloc_wq = alloc_workqueue("rb_allocator", 905 WQ_HIGHPRI | WQ_UNBOUND, 1); 906 INIT_WORK(&rba->rx_alloc, iwl_pcie_rx_allocator_work); 907 908 spin_lock(&rba->lock); 909 atomic_set(&rba->req_pending, 0); 910 atomic_set(&rba->req_ready, 0); 911 INIT_LIST_HEAD(&rba->rbd_allocated); 912 INIT_LIST_HEAD(&rba->rbd_empty); 913 spin_unlock(&rba->lock); 914 915 /* free all first - we might be reconfigured for a different size */ 916 iwl_pcie_free_rbs_pool(trans); 917 918 for (i = 0; i < RX_QUEUE_SIZE; i++) 919 def_rxq->queue[i] = NULL; 920 921 for (i = 0; i < trans->num_rx_queues; i++) { 922 struct iwl_rxq *rxq = &trans_pcie->rxq[i]; 923 924 rxq->id = i; 925 926 spin_lock(&rxq->lock); 927 /* 928 * Set read write pointer to reflect that we have processed 929 * and used all buffers, but have not restocked the Rx queue 930 * with fresh buffers 931 */ 932 rxq->read = 0; 933 rxq->write = 0; 934 rxq->write_actual = 0; 935 memset(rxq->rb_stts, 0, sizeof(*rxq->rb_stts)); 936 937 iwl_pcie_rx_init_rxb_lists(rxq); 938 939 if (!rxq->napi.poll) 940 netif_napi_add(&trans_pcie->napi_dev, &rxq->napi, 941 iwl_pcie_dummy_napi_poll, 64); 942 943 spin_unlock(&rxq->lock); 944 } 945 946 /* move the pool to the default queue and allocator ownerships */ 947 queue_size = trans->cfg->mq_rx_supported ? 948 MQ_RX_NUM_RBDS : RX_QUEUE_SIZE; 949 allocator_pool_size = trans->num_rx_queues * 950 (RX_CLAIM_REQ_ALLOC - RX_POST_REQ_ALLOC); 951 num_alloc = queue_size + allocator_pool_size; 952 BUILD_BUG_ON(ARRAY_SIZE(trans_pcie->global_table) != 953 ARRAY_SIZE(trans_pcie->rx_pool)); 954 for (i = 0; i < num_alloc; i++) { 955 struct iwl_rx_mem_buffer *rxb = &trans_pcie->rx_pool[i]; 956 957 if (i < allocator_pool_size) 958 list_add(&rxb->list, &rba->rbd_empty); 959 else 960 list_add(&rxb->list, &def_rxq->rx_used); 961 trans_pcie->global_table[i] = rxb; 962 rxb->vid = (u16)(i + 1); 963 rxb->invalid = true; 964 } 965 966 iwl_pcie_rxq_alloc_rbs(trans, GFP_KERNEL, def_rxq); 967 968 return 0; 969 } 970 971 int iwl_pcie_rx_init(struct iwl_trans *trans) 972 { 973 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 974 int ret = _iwl_pcie_rx_init(trans); 975 976 if (ret) 977 return ret; 978 979 if (trans->cfg->mq_rx_supported) 980 iwl_pcie_rx_mq_hw_init(trans); 981 else 982 iwl_pcie_rx_hw_init(trans, trans_pcie->rxq); 983 984 iwl_pcie_rxq_restock(trans, trans_pcie->rxq); 985 986 spin_lock(&trans_pcie->rxq->lock); 987 iwl_pcie_rxq_inc_wr_ptr(trans, trans_pcie->rxq); 988 spin_unlock(&trans_pcie->rxq->lock); 989 990 return 0; 991 } 992 993 int iwl_pcie_gen2_rx_init(struct iwl_trans *trans) 994 { 995 /* 996 * We don't configure the RFH. 997 * Restock will be done at alive, after firmware configured the RFH. 998 */ 999 return _iwl_pcie_rx_init(trans); 1000 } 1001 1002 void iwl_pcie_rx_free(struct iwl_trans *trans) 1003 { 1004 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1005 struct iwl_rb_allocator *rba = &trans_pcie->rba; 1006 int free_size = trans->cfg->mq_rx_supported ? sizeof(__le64) : 1007 sizeof(__le32); 1008 int i; 1009 1010 /* 1011 * if rxq is NULL, it means that nothing has been allocated, 1012 * exit now 1013 */ 1014 if (!trans_pcie->rxq) { 1015 IWL_DEBUG_INFO(trans, "Free NULL rx context\n"); 1016 return; 1017 } 1018 1019 cancel_work_sync(&rba->rx_alloc); 1020 if (rba->alloc_wq) { 1021 destroy_workqueue(rba->alloc_wq); 1022 rba->alloc_wq = NULL; 1023 } 1024 1025 iwl_pcie_free_rbs_pool(trans); 1026 1027 for (i = 0; i < trans->num_rx_queues; i++) { 1028 struct iwl_rxq *rxq = &trans_pcie->rxq[i]; 1029 1030 if (rxq->bd) 1031 dma_free_coherent(trans->dev, 1032 free_size * rxq->queue_size, 1033 rxq->bd, rxq->bd_dma); 1034 rxq->bd_dma = 0; 1035 rxq->bd = NULL; 1036 1037 if (rxq->rb_stts) 1038 dma_free_coherent(trans->dev, 1039 sizeof(struct iwl_rb_status), 1040 rxq->rb_stts, rxq->rb_stts_dma); 1041 else 1042 IWL_DEBUG_INFO(trans, 1043 "Free rxq->rb_stts which is NULL\n"); 1044 1045 if (rxq->used_bd) 1046 dma_free_coherent(trans->dev, 1047 sizeof(__le32) * rxq->queue_size, 1048 rxq->used_bd, rxq->used_bd_dma); 1049 rxq->used_bd_dma = 0; 1050 rxq->used_bd = NULL; 1051 1052 if (rxq->napi.poll) 1053 netif_napi_del(&rxq->napi); 1054 } 1055 kfree(trans_pcie->rxq); 1056 } 1057 1058 /* 1059 * iwl_pcie_rx_reuse_rbd - Recycle used RBDs 1060 * 1061 * Called when a RBD can be reused. The RBD is transferred to the allocator. 1062 * When there are 2 empty RBDs - a request for allocation is posted 1063 */ 1064 static void iwl_pcie_rx_reuse_rbd(struct iwl_trans *trans, 1065 struct iwl_rx_mem_buffer *rxb, 1066 struct iwl_rxq *rxq, bool emergency) 1067 { 1068 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1069 struct iwl_rb_allocator *rba = &trans_pcie->rba; 1070 1071 /* Move the RBD to the used list, will be moved to allocator in batches 1072 * before claiming or posting a request*/ 1073 list_add_tail(&rxb->list, &rxq->rx_used); 1074 1075 if (unlikely(emergency)) 1076 return; 1077 1078 /* Count the allocator owned RBDs */ 1079 rxq->used_count++; 1080 1081 /* If we have RX_POST_REQ_ALLOC new released rx buffers - 1082 * issue a request for allocator. Modulo RX_CLAIM_REQ_ALLOC is 1083 * used for the case we failed to claim RX_CLAIM_REQ_ALLOC, 1084 * after but we still need to post another request. 1085 */ 1086 if ((rxq->used_count % RX_CLAIM_REQ_ALLOC) == RX_POST_REQ_ALLOC) { 1087 /* Move the 2 RBDs to the allocator ownership. 1088 Allocator has another 6 from pool for the request completion*/ 1089 spin_lock(&rba->lock); 1090 list_splice_tail_init(&rxq->rx_used, &rba->rbd_empty); 1091 spin_unlock(&rba->lock); 1092 1093 atomic_inc(&rba->req_pending); 1094 queue_work(rba->alloc_wq, &rba->rx_alloc); 1095 } 1096 } 1097 1098 static void iwl_pcie_rx_handle_rb(struct iwl_trans *trans, 1099 struct iwl_rxq *rxq, 1100 struct iwl_rx_mem_buffer *rxb, 1101 bool emergency) 1102 { 1103 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1104 struct iwl_txq *txq = trans_pcie->txq[trans_pcie->cmd_queue]; 1105 bool page_stolen = false; 1106 int max_len = PAGE_SIZE << trans_pcie->rx_page_order; 1107 u32 offset = 0; 1108 1109 if (WARN_ON(!rxb)) 1110 return; 1111 1112 dma_unmap_page(trans->dev, rxb->page_dma, max_len, DMA_FROM_DEVICE); 1113 1114 while (offset + sizeof(u32) + sizeof(struct iwl_cmd_header) < max_len) { 1115 struct iwl_rx_packet *pkt; 1116 u16 sequence; 1117 bool reclaim; 1118 int index, cmd_index, len; 1119 struct iwl_rx_cmd_buffer rxcb = { 1120 ._offset = offset, 1121 ._rx_page_order = trans_pcie->rx_page_order, 1122 ._page = rxb->page, 1123 ._page_stolen = false, 1124 .truesize = max_len, 1125 }; 1126 1127 pkt = rxb_addr(&rxcb); 1128 1129 if (pkt->len_n_flags == cpu_to_le32(FH_RSCSR_FRAME_INVALID)) { 1130 IWL_DEBUG_RX(trans, 1131 "Q %d: RB end marker at offset %d\n", 1132 rxq->id, offset); 1133 break; 1134 } 1135 1136 WARN((le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_RXQ_MASK) >> 1137 FH_RSCSR_RXQ_POS != rxq->id, 1138 "frame on invalid queue - is on %d and indicates %d\n", 1139 rxq->id, 1140 (le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_RXQ_MASK) >> 1141 FH_RSCSR_RXQ_POS); 1142 1143 IWL_DEBUG_RX(trans, 1144 "Q %d: cmd at offset %d: %s (%.2x.%2x, seq 0x%x)\n", 1145 rxq->id, offset, 1146 iwl_get_cmd_string(trans, 1147 iwl_cmd_id(pkt->hdr.cmd, 1148 pkt->hdr.group_id, 1149 0)), 1150 pkt->hdr.group_id, pkt->hdr.cmd, 1151 le16_to_cpu(pkt->hdr.sequence)); 1152 1153 len = iwl_rx_packet_len(pkt); 1154 len += sizeof(u32); /* account for status word */ 1155 trace_iwlwifi_dev_rx(trans->dev, trans, pkt, len); 1156 trace_iwlwifi_dev_rx_data(trans->dev, trans, pkt, len); 1157 1158 /* Reclaim a command buffer only if this packet is a response 1159 * to a (driver-originated) command. 1160 * If the packet (e.g. Rx frame) originated from uCode, 1161 * there is no command buffer to reclaim. 1162 * Ucode should set SEQ_RX_FRAME bit if ucode-originated, 1163 * but apparently a few don't get set; catch them here. */ 1164 reclaim = !(pkt->hdr.sequence & SEQ_RX_FRAME); 1165 if (reclaim && !pkt->hdr.group_id) { 1166 int i; 1167 1168 for (i = 0; i < trans_pcie->n_no_reclaim_cmds; i++) { 1169 if (trans_pcie->no_reclaim_cmds[i] == 1170 pkt->hdr.cmd) { 1171 reclaim = false; 1172 break; 1173 } 1174 } 1175 } 1176 1177 sequence = le16_to_cpu(pkt->hdr.sequence); 1178 index = SEQ_TO_INDEX(sequence); 1179 cmd_index = get_cmd_index(txq, index); 1180 1181 if (rxq->id == 0) 1182 iwl_op_mode_rx(trans->op_mode, &rxq->napi, 1183 &rxcb); 1184 else 1185 iwl_op_mode_rx_rss(trans->op_mode, &rxq->napi, 1186 &rxcb, rxq->id); 1187 1188 if (reclaim) { 1189 kzfree(txq->entries[cmd_index].free_buf); 1190 txq->entries[cmd_index].free_buf = NULL; 1191 } 1192 1193 /* 1194 * After here, we should always check rxcb._page_stolen, 1195 * if it is true then one of the handlers took the page. 1196 */ 1197 1198 if (reclaim) { 1199 /* Invoke any callbacks, transfer the buffer to caller, 1200 * and fire off the (possibly) blocking 1201 * iwl_trans_send_cmd() 1202 * as we reclaim the driver command queue */ 1203 if (!rxcb._page_stolen) 1204 iwl_pcie_hcmd_complete(trans, &rxcb); 1205 else 1206 IWL_WARN(trans, "Claim null rxb?\n"); 1207 } 1208 1209 page_stolen |= rxcb._page_stolen; 1210 offset += ALIGN(len, FH_RSCSR_FRAME_ALIGN); 1211 } 1212 1213 /* page was stolen from us -- free our reference */ 1214 if (page_stolen) { 1215 __free_pages(rxb->page, trans_pcie->rx_page_order); 1216 rxb->page = NULL; 1217 } 1218 1219 /* Reuse the page if possible. For notification packets and 1220 * SKBs that fail to Rx correctly, add them back into the 1221 * rx_free list for reuse later. */ 1222 if (rxb->page != NULL) { 1223 rxb->page_dma = 1224 dma_map_page(trans->dev, rxb->page, 0, 1225 PAGE_SIZE << trans_pcie->rx_page_order, 1226 DMA_FROM_DEVICE); 1227 if (dma_mapping_error(trans->dev, rxb->page_dma)) { 1228 /* 1229 * free the page(s) as well to not break 1230 * the invariant that the items on the used 1231 * list have no page(s) 1232 */ 1233 __free_pages(rxb->page, trans_pcie->rx_page_order); 1234 rxb->page = NULL; 1235 iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency); 1236 } else { 1237 list_add_tail(&rxb->list, &rxq->rx_free); 1238 rxq->free_count++; 1239 } 1240 } else 1241 iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency); 1242 } 1243 1244 /* 1245 * iwl_pcie_rx_handle - Main entry function for receiving responses from fw 1246 */ 1247 static void iwl_pcie_rx_handle(struct iwl_trans *trans, int queue) 1248 { 1249 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1250 struct iwl_rxq *rxq = &trans_pcie->rxq[queue]; 1251 u32 r, i, count = 0; 1252 bool emergency = false; 1253 1254 restart: 1255 spin_lock(&rxq->lock); 1256 /* uCode's read index (stored in shared DRAM) indicates the last Rx 1257 * buffer that the driver may process (last buffer filled by ucode). */ 1258 r = le16_to_cpu(ACCESS_ONCE(rxq->rb_stts->closed_rb_num)) & 0x0FFF; 1259 i = rxq->read; 1260 1261 /* W/A 9000 device step A0 wrap-around bug */ 1262 r &= (rxq->queue_size - 1); 1263 1264 /* Rx interrupt, but nothing sent from uCode */ 1265 if (i == r) 1266 IWL_DEBUG_RX(trans, "Q %d: HW = SW = %d\n", rxq->id, r); 1267 1268 while (i != r) { 1269 struct iwl_rx_mem_buffer *rxb; 1270 1271 if (unlikely(rxq->used_count == rxq->queue_size / 2)) 1272 emergency = true; 1273 1274 if (trans->cfg->mq_rx_supported) { 1275 /* 1276 * used_bd is a 32 bit but only 12 are used to retrieve 1277 * the vid 1278 */ 1279 u16 vid = le32_to_cpu(rxq->used_bd[i]) & 0x0FFF; 1280 1281 if (WARN(!vid || 1282 vid > ARRAY_SIZE(trans_pcie->global_table), 1283 "Invalid rxb index from HW %u\n", (u32)vid)) { 1284 iwl_force_nmi(trans); 1285 goto out; 1286 } 1287 rxb = trans_pcie->global_table[vid - 1]; 1288 if (WARN(rxb->invalid, 1289 "Invalid rxb from HW %u\n", (u32)vid)) { 1290 iwl_force_nmi(trans); 1291 goto out; 1292 } 1293 rxb->invalid = true; 1294 } else { 1295 rxb = rxq->queue[i]; 1296 rxq->queue[i] = NULL; 1297 } 1298 1299 IWL_DEBUG_RX(trans, "Q %d: HW = %d, SW = %d\n", rxq->id, r, i); 1300 iwl_pcie_rx_handle_rb(trans, rxq, rxb, emergency); 1301 1302 i = (i + 1) & (rxq->queue_size - 1); 1303 1304 /* 1305 * If we have RX_CLAIM_REQ_ALLOC released rx buffers - 1306 * try to claim the pre-allocated buffers from the allocator. 1307 * If not ready - will try to reclaim next time. 1308 * There is no need to reschedule work - allocator exits only 1309 * on success 1310 */ 1311 if (rxq->used_count >= RX_CLAIM_REQ_ALLOC) 1312 iwl_pcie_rx_allocator_get(trans, rxq); 1313 1314 if (rxq->used_count % RX_CLAIM_REQ_ALLOC == 0 && !emergency) { 1315 struct iwl_rb_allocator *rba = &trans_pcie->rba; 1316 1317 /* Add the remaining empty RBDs for allocator use */ 1318 spin_lock(&rba->lock); 1319 list_splice_tail_init(&rxq->rx_used, &rba->rbd_empty); 1320 spin_unlock(&rba->lock); 1321 } else if (emergency) { 1322 count++; 1323 if (count == 8) { 1324 count = 0; 1325 if (rxq->used_count < rxq->queue_size / 3) 1326 emergency = false; 1327 1328 rxq->read = i; 1329 spin_unlock(&rxq->lock); 1330 iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq); 1331 iwl_pcie_rxq_restock(trans, rxq); 1332 goto restart; 1333 } 1334 } 1335 } 1336 out: 1337 /* Backtrack one entry */ 1338 rxq->read = i; 1339 spin_unlock(&rxq->lock); 1340 1341 /* 1342 * handle a case where in emergency there are some unallocated RBDs. 1343 * those RBDs are in the used list, but are not tracked by the queue's 1344 * used_count which counts allocator owned RBDs. 1345 * unallocated emergency RBDs must be allocated on exit, otherwise 1346 * when called again the function may not be in emergency mode and 1347 * they will be handed to the allocator with no tracking in the RBD 1348 * allocator counters, which will lead to them never being claimed back 1349 * by the queue. 1350 * by allocating them here, they are now in the queue free list, and 1351 * will be restocked by the next call of iwl_pcie_rxq_restock. 1352 */ 1353 if (unlikely(emergency && count)) 1354 iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq); 1355 1356 if (rxq->napi.poll) 1357 napi_gro_flush(&rxq->napi, false); 1358 1359 iwl_pcie_rxq_restock(trans, rxq); 1360 } 1361 1362 static struct iwl_trans_pcie *iwl_pcie_get_trans_pcie(struct msix_entry *entry) 1363 { 1364 u8 queue = entry->entry; 1365 struct msix_entry *entries = entry - queue; 1366 1367 return container_of(entries, struct iwl_trans_pcie, msix_entries[0]); 1368 } 1369 1370 static inline void iwl_pcie_clear_irq(struct iwl_trans *trans, 1371 struct msix_entry *entry) 1372 { 1373 /* 1374 * Before sending the interrupt the HW disables it to prevent 1375 * a nested interrupt. This is done by writing 1 to the corresponding 1376 * bit in the mask register. After handling the interrupt, it should be 1377 * re-enabled by clearing this bit. This register is defined as 1378 * write 1 clear (W1C) register, meaning that it's being clear 1379 * by writing 1 to the bit. 1380 */ 1381 iwl_write32(trans, CSR_MSIX_AUTOMASK_ST_AD, BIT(entry->entry)); 1382 } 1383 1384 /* 1385 * iwl_pcie_rx_msix_handle - Main entry function for receiving responses from fw 1386 * This interrupt handler should be used with RSS queue only. 1387 */ 1388 irqreturn_t iwl_pcie_irq_rx_msix_handler(int irq, void *dev_id) 1389 { 1390 struct msix_entry *entry = dev_id; 1391 struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry); 1392 struct iwl_trans *trans = trans_pcie->trans; 1393 1394 trace_iwlwifi_dev_irq_msix(trans->dev, entry, false, 0, 0); 1395 1396 if (WARN_ON(entry->entry >= trans->num_rx_queues)) 1397 return IRQ_NONE; 1398 1399 lock_map_acquire(&trans->sync_cmd_lockdep_map); 1400 1401 local_bh_disable(); 1402 iwl_pcie_rx_handle(trans, entry->entry); 1403 local_bh_enable(); 1404 1405 iwl_pcie_clear_irq(trans, entry); 1406 1407 lock_map_release(&trans->sync_cmd_lockdep_map); 1408 1409 return IRQ_HANDLED; 1410 } 1411 1412 /* 1413 * iwl_pcie_irq_handle_error - called for HW or SW error interrupt from card 1414 */ 1415 static void iwl_pcie_irq_handle_error(struct iwl_trans *trans) 1416 { 1417 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1418 int i; 1419 1420 /* W/A for WiFi/WiMAX coex and WiMAX own the RF */ 1421 if (trans->cfg->internal_wimax_coex && 1422 !trans->cfg->apmg_not_supported && 1423 (!(iwl_read_prph(trans, APMG_CLK_CTRL_REG) & 1424 APMS_CLK_VAL_MRB_FUNC_MODE) || 1425 (iwl_read_prph(trans, APMG_PS_CTRL_REG) & 1426 APMG_PS_CTRL_VAL_RESET_REQ))) { 1427 clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status); 1428 iwl_op_mode_wimax_active(trans->op_mode); 1429 wake_up(&trans_pcie->wait_command_queue); 1430 return; 1431 } 1432 1433 for (i = 0; i < trans->cfg->base_params->num_of_queues; i++) { 1434 if (!trans_pcie->txq[i]) 1435 continue; 1436 del_timer(&trans_pcie->txq[i]->stuck_timer); 1437 } 1438 1439 /* The STATUS_FW_ERROR bit is set in this function. This must happen 1440 * before we wake up the command caller, to ensure a proper cleanup. */ 1441 iwl_trans_fw_error(trans); 1442 1443 clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status); 1444 wake_up(&trans_pcie->wait_command_queue); 1445 } 1446 1447 static u32 iwl_pcie_int_cause_non_ict(struct iwl_trans *trans) 1448 { 1449 u32 inta; 1450 1451 lockdep_assert_held(&IWL_TRANS_GET_PCIE_TRANS(trans)->irq_lock); 1452 1453 trace_iwlwifi_dev_irq(trans->dev); 1454 1455 /* Discover which interrupts are active/pending */ 1456 inta = iwl_read32(trans, CSR_INT); 1457 1458 /* the thread will service interrupts and re-enable them */ 1459 return inta; 1460 } 1461 1462 /* a device (PCI-E) page is 4096 bytes long */ 1463 #define ICT_SHIFT 12 1464 #define ICT_SIZE (1 << ICT_SHIFT) 1465 #define ICT_COUNT (ICT_SIZE / sizeof(u32)) 1466 1467 /* interrupt handler using ict table, with this interrupt driver will 1468 * stop using INTA register to get device's interrupt, reading this register 1469 * is expensive, device will write interrupts in ICT dram table, increment 1470 * index then will fire interrupt to driver, driver will OR all ICT table 1471 * entries from current index up to table entry with 0 value. the result is 1472 * the interrupt we need to service, driver will set the entries back to 0 and 1473 * set index. 1474 */ 1475 static u32 iwl_pcie_int_cause_ict(struct iwl_trans *trans) 1476 { 1477 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1478 u32 inta; 1479 u32 val = 0; 1480 u32 read; 1481 1482 trace_iwlwifi_dev_irq(trans->dev); 1483 1484 /* Ignore interrupt if there's nothing in NIC to service. 1485 * This may be due to IRQ shared with another device, 1486 * or due to sporadic interrupts thrown from our NIC. */ 1487 read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]); 1488 trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index, read); 1489 if (!read) 1490 return 0; 1491 1492 /* 1493 * Collect all entries up to the first 0, starting from ict_index; 1494 * note we already read at ict_index. 1495 */ 1496 do { 1497 val |= read; 1498 IWL_DEBUG_ISR(trans, "ICT index %d value 0x%08X\n", 1499 trans_pcie->ict_index, read); 1500 trans_pcie->ict_tbl[trans_pcie->ict_index] = 0; 1501 trans_pcie->ict_index = 1502 ((trans_pcie->ict_index + 1) & (ICT_COUNT - 1)); 1503 1504 read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]); 1505 trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index, 1506 read); 1507 } while (read); 1508 1509 /* We should not get this value, just ignore it. */ 1510 if (val == 0xffffffff) 1511 val = 0; 1512 1513 /* 1514 * this is a w/a for a h/w bug. the h/w bug may cause the Rx bit 1515 * (bit 15 before shifting it to 31) to clear when using interrupt 1516 * coalescing. fortunately, bits 18 and 19 stay set when this happens 1517 * so we use them to decide on the real state of the Rx bit. 1518 * In order words, bit 15 is set if bit 18 or bit 19 are set. 1519 */ 1520 if (val & 0xC0000) 1521 val |= 0x8000; 1522 1523 inta = (0xff & val) | ((0xff00 & val) << 16); 1524 return inta; 1525 } 1526 1527 void iwl_pcie_handle_rfkill_irq(struct iwl_trans *trans) 1528 { 1529 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1530 struct isr_statistics *isr_stats = &trans_pcie->isr_stats; 1531 bool hw_rfkill, prev, report; 1532 1533 mutex_lock(&trans_pcie->mutex); 1534 prev = test_bit(STATUS_RFKILL_OPMODE, &trans->status); 1535 hw_rfkill = iwl_is_rfkill_set(trans); 1536 if (hw_rfkill) { 1537 set_bit(STATUS_RFKILL_OPMODE, &trans->status); 1538 set_bit(STATUS_RFKILL_HW, &trans->status); 1539 } 1540 if (trans_pcie->opmode_down) 1541 report = hw_rfkill; 1542 else 1543 report = test_bit(STATUS_RFKILL_OPMODE, &trans->status); 1544 1545 IWL_WARN(trans, "RF_KILL bit toggled to %s.\n", 1546 hw_rfkill ? "disable radio" : "enable radio"); 1547 1548 isr_stats->rfkill++; 1549 1550 if (prev != report) 1551 iwl_trans_pcie_rf_kill(trans, report); 1552 mutex_unlock(&trans_pcie->mutex); 1553 1554 if (hw_rfkill) { 1555 if (test_and_clear_bit(STATUS_SYNC_HCMD_ACTIVE, 1556 &trans->status)) 1557 IWL_DEBUG_RF_KILL(trans, 1558 "Rfkill while SYNC HCMD in flight\n"); 1559 wake_up(&trans_pcie->wait_command_queue); 1560 } else { 1561 clear_bit(STATUS_RFKILL_HW, &trans->status); 1562 if (trans_pcie->opmode_down) 1563 clear_bit(STATUS_RFKILL_OPMODE, &trans->status); 1564 } 1565 } 1566 1567 irqreturn_t iwl_pcie_irq_handler(int irq, void *dev_id) 1568 { 1569 struct iwl_trans *trans = dev_id; 1570 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1571 struct isr_statistics *isr_stats = &trans_pcie->isr_stats; 1572 u32 inta = 0; 1573 u32 handled = 0; 1574 1575 lock_map_acquire(&trans->sync_cmd_lockdep_map); 1576 1577 spin_lock(&trans_pcie->irq_lock); 1578 1579 /* dram interrupt table not set yet, 1580 * use legacy interrupt. 1581 */ 1582 if (likely(trans_pcie->use_ict)) 1583 inta = iwl_pcie_int_cause_ict(trans); 1584 else 1585 inta = iwl_pcie_int_cause_non_ict(trans); 1586 1587 if (iwl_have_debug_level(IWL_DL_ISR)) { 1588 IWL_DEBUG_ISR(trans, 1589 "ISR inta 0x%08x, enabled 0x%08x(sw), enabled(hw) 0x%08x, fh 0x%08x\n", 1590 inta, trans_pcie->inta_mask, 1591 iwl_read32(trans, CSR_INT_MASK), 1592 iwl_read32(trans, CSR_FH_INT_STATUS)); 1593 if (inta & (~trans_pcie->inta_mask)) 1594 IWL_DEBUG_ISR(trans, 1595 "We got a masked interrupt (0x%08x)\n", 1596 inta & (~trans_pcie->inta_mask)); 1597 } 1598 1599 inta &= trans_pcie->inta_mask; 1600 1601 /* 1602 * Ignore interrupt if there's nothing in NIC to service. 1603 * This may be due to IRQ shared with another device, 1604 * or due to sporadic interrupts thrown from our NIC. 1605 */ 1606 if (unlikely(!inta)) { 1607 IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n"); 1608 /* 1609 * Re-enable interrupts here since we don't 1610 * have anything to service 1611 */ 1612 if (test_bit(STATUS_INT_ENABLED, &trans->status)) 1613 _iwl_enable_interrupts(trans); 1614 spin_unlock(&trans_pcie->irq_lock); 1615 lock_map_release(&trans->sync_cmd_lockdep_map); 1616 return IRQ_NONE; 1617 } 1618 1619 if (unlikely(inta == 0xFFFFFFFF || (inta & 0xFFFFFFF0) == 0xa5a5a5a0)) { 1620 /* 1621 * Hardware disappeared. It might have 1622 * already raised an interrupt. 1623 */ 1624 IWL_WARN(trans, "HARDWARE GONE?? INTA == 0x%08x\n", inta); 1625 spin_unlock(&trans_pcie->irq_lock); 1626 goto out; 1627 } 1628 1629 /* Ack/clear/reset pending uCode interrupts. 1630 * Note: Some bits in CSR_INT are "OR" of bits in CSR_FH_INT_STATUS, 1631 */ 1632 /* There is a hardware bug in the interrupt mask function that some 1633 * interrupts (i.e. CSR_INT_BIT_SCD) can still be generated even if 1634 * they are disabled in the CSR_INT_MASK register. Furthermore the 1635 * ICT interrupt handling mechanism has another bug that might cause 1636 * these unmasked interrupts fail to be detected. We workaround the 1637 * hardware bugs here by ACKing all the possible interrupts so that 1638 * interrupt coalescing can still be achieved. 1639 */ 1640 iwl_write32(trans, CSR_INT, inta | ~trans_pcie->inta_mask); 1641 1642 if (iwl_have_debug_level(IWL_DL_ISR)) 1643 IWL_DEBUG_ISR(trans, "inta 0x%08x, enabled 0x%08x\n", 1644 inta, iwl_read32(trans, CSR_INT_MASK)); 1645 1646 spin_unlock(&trans_pcie->irq_lock); 1647 1648 /* Now service all interrupt bits discovered above. */ 1649 if (inta & CSR_INT_BIT_HW_ERR) { 1650 IWL_ERR(trans, "Hardware error detected. Restarting.\n"); 1651 1652 /* Tell the device to stop sending interrupts */ 1653 iwl_disable_interrupts(trans); 1654 1655 isr_stats->hw++; 1656 iwl_pcie_irq_handle_error(trans); 1657 1658 handled |= CSR_INT_BIT_HW_ERR; 1659 1660 goto out; 1661 } 1662 1663 if (iwl_have_debug_level(IWL_DL_ISR)) { 1664 /* NIC fires this, but we don't use it, redundant with WAKEUP */ 1665 if (inta & CSR_INT_BIT_SCD) { 1666 IWL_DEBUG_ISR(trans, 1667 "Scheduler finished to transmit the frame/frames.\n"); 1668 isr_stats->sch++; 1669 } 1670 1671 /* Alive notification via Rx interrupt will do the real work */ 1672 if (inta & CSR_INT_BIT_ALIVE) { 1673 IWL_DEBUG_ISR(trans, "Alive interrupt\n"); 1674 isr_stats->alive++; 1675 if (trans->cfg->gen2) { 1676 /* 1677 * We can restock, since firmware configured 1678 * the RFH 1679 */ 1680 iwl_pcie_rxmq_restock(trans, trans_pcie->rxq); 1681 } 1682 } 1683 } 1684 1685 /* Safely ignore these bits for debug checks below */ 1686 inta &= ~(CSR_INT_BIT_SCD | CSR_INT_BIT_ALIVE); 1687 1688 /* HW RF KILL switch toggled */ 1689 if (inta & CSR_INT_BIT_RF_KILL) { 1690 iwl_pcie_handle_rfkill_irq(trans); 1691 handled |= CSR_INT_BIT_RF_KILL; 1692 } 1693 1694 /* Chip got too hot and stopped itself */ 1695 if (inta & CSR_INT_BIT_CT_KILL) { 1696 IWL_ERR(trans, "Microcode CT kill error detected.\n"); 1697 isr_stats->ctkill++; 1698 handled |= CSR_INT_BIT_CT_KILL; 1699 } 1700 1701 /* Error detected by uCode */ 1702 if (inta & CSR_INT_BIT_SW_ERR) { 1703 IWL_ERR(trans, "Microcode SW error detected. " 1704 " Restarting 0x%X.\n", inta); 1705 isr_stats->sw++; 1706 iwl_pcie_irq_handle_error(trans); 1707 handled |= CSR_INT_BIT_SW_ERR; 1708 } 1709 1710 /* uCode wakes up after power-down sleep */ 1711 if (inta & CSR_INT_BIT_WAKEUP) { 1712 IWL_DEBUG_ISR(trans, "Wakeup interrupt\n"); 1713 iwl_pcie_rxq_check_wrptr(trans); 1714 iwl_pcie_txq_check_wrptrs(trans); 1715 1716 isr_stats->wakeup++; 1717 1718 handled |= CSR_INT_BIT_WAKEUP; 1719 } 1720 1721 /* All uCode command responses, including Tx command responses, 1722 * Rx "responses" (frame-received notification), and other 1723 * notifications from uCode come through here*/ 1724 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX | 1725 CSR_INT_BIT_RX_PERIODIC)) { 1726 IWL_DEBUG_ISR(trans, "Rx interrupt\n"); 1727 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX)) { 1728 handled |= (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX); 1729 iwl_write32(trans, CSR_FH_INT_STATUS, 1730 CSR_FH_INT_RX_MASK); 1731 } 1732 if (inta & CSR_INT_BIT_RX_PERIODIC) { 1733 handled |= CSR_INT_BIT_RX_PERIODIC; 1734 iwl_write32(trans, 1735 CSR_INT, CSR_INT_BIT_RX_PERIODIC); 1736 } 1737 /* Sending RX interrupt require many steps to be done in the 1738 * the device: 1739 * 1- write interrupt to current index in ICT table. 1740 * 2- dma RX frame. 1741 * 3- update RX shared data to indicate last write index. 1742 * 4- send interrupt. 1743 * This could lead to RX race, driver could receive RX interrupt 1744 * but the shared data changes does not reflect this; 1745 * periodic interrupt will detect any dangling Rx activity. 1746 */ 1747 1748 /* Disable periodic interrupt; we use it as just a one-shot. */ 1749 iwl_write8(trans, CSR_INT_PERIODIC_REG, 1750 CSR_INT_PERIODIC_DIS); 1751 1752 /* 1753 * Enable periodic interrupt in 8 msec only if we received 1754 * real RX interrupt (instead of just periodic int), to catch 1755 * any dangling Rx interrupt. If it was just the periodic 1756 * interrupt, there was no dangling Rx activity, and no need 1757 * to extend the periodic interrupt; one-shot is enough. 1758 */ 1759 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX)) 1760 iwl_write8(trans, CSR_INT_PERIODIC_REG, 1761 CSR_INT_PERIODIC_ENA); 1762 1763 isr_stats->rx++; 1764 1765 local_bh_disable(); 1766 iwl_pcie_rx_handle(trans, 0); 1767 local_bh_enable(); 1768 } 1769 1770 /* This "Tx" DMA channel is used only for loading uCode */ 1771 if (inta & CSR_INT_BIT_FH_TX) { 1772 iwl_write32(trans, CSR_FH_INT_STATUS, CSR_FH_INT_TX_MASK); 1773 IWL_DEBUG_ISR(trans, "uCode load interrupt\n"); 1774 isr_stats->tx++; 1775 handled |= CSR_INT_BIT_FH_TX; 1776 /* Wake up uCode load routine, now that load is complete */ 1777 trans_pcie->ucode_write_complete = true; 1778 wake_up(&trans_pcie->ucode_write_waitq); 1779 } 1780 1781 if (inta & ~handled) { 1782 IWL_ERR(trans, "Unhandled INTA bits 0x%08x\n", inta & ~handled); 1783 isr_stats->unhandled++; 1784 } 1785 1786 if (inta & ~(trans_pcie->inta_mask)) { 1787 IWL_WARN(trans, "Disabled INTA bits 0x%08x were pending\n", 1788 inta & ~trans_pcie->inta_mask); 1789 } 1790 1791 spin_lock(&trans_pcie->irq_lock); 1792 /* only Re-enable all interrupt if disabled by irq */ 1793 if (test_bit(STATUS_INT_ENABLED, &trans->status)) 1794 _iwl_enable_interrupts(trans); 1795 /* we are loading the firmware, enable FH_TX interrupt only */ 1796 else if (handled & CSR_INT_BIT_FH_TX) 1797 iwl_enable_fw_load_int(trans); 1798 /* Re-enable RF_KILL if it occurred */ 1799 else if (handled & CSR_INT_BIT_RF_KILL) 1800 iwl_enable_rfkill_int(trans); 1801 spin_unlock(&trans_pcie->irq_lock); 1802 1803 out: 1804 lock_map_release(&trans->sync_cmd_lockdep_map); 1805 return IRQ_HANDLED; 1806 } 1807 1808 /****************************************************************************** 1809 * 1810 * ICT functions 1811 * 1812 ******************************************************************************/ 1813 1814 /* Free dram table */ 1815 void iwl_pcie_free_ict(struct iwl_trans *trans) 1816 { 1817 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1818 1819 if (trans_pcie->ict_tbl) { 1820 dma_free_coherent(trans->dev, ICT_SIZE, 1821 trans_pcie->ict_tbl, 1822 trans_pcie->ict_tbl_dma); 1823 trans_pcie->ict_tbl = NULL; 1824 trans_pcie->ict_tbl_dma = 0; 1825 } 1826 } 1827 1828 /* 1829 * allocate dram shared table, it is an aligned memory 1830 * block of ICT_SIZE. 1831 * also reset all data related to ICT table interrupt. 1832 */ 1833 int iwl_pcie_alloc_ict(struct iwl_trans *trans) 1834 { 1835 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1836 1837 trans_pcie->ict_tbl = 1838 dma_zalloc_coherent(trans->dev, ICT_SIZE, 1839 &trans_pcie->ict_tbl_dma, 1840 GFP_KERNEL); 1841 if (!trans_pcie->ict_tbl) 1842 return -ENOMEM; 1843 1844 /* just an API sanity check ... it is guaranteed to be aligned */ 1845 if (WARN_ON(trans_pcie->ict_tbl_dma & (ICT_SIZE - 1))) { 1846 iwl_pcie_free_ict(trans); 1847 return -EINVAL; 1848 } 1849 1850 return 0; 1851 } 1852 1853 /* Device is going up inform it about using ICT interrupt table, 1854 * also we need to tell the driver to start using ICT interrupt. 1855 */ 1856 void iwl_pcie_reset_ict(struct iwl_trans *trans) 1857 { 1858 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1859 u32 val; 1860 1861 if (!trans_pcie->ict_tbl) 1862 return; 1863 1864 spin_lock(&trans_pcie->irq_lock); 1865 _iwl_disable_interrupts(trans); 1866 1867 memset(trans_pcie->ict_tbl, 0, ICT_SIZE); 1868 1869 val = trans_pcie->ict_tbl_dma >> ICT_SHIFT; 1870 1871 val |= CSR_DRAM_INT_TBL_ENABLE | 1872 CSR_DRAM_INIT_TBL_WRAP_CHECK | 1873 CSR_DRAM_INIT_TBL_WRITE_POINTER; 1874 1875 IWL_DEBUG_ISR(trans, "CSR_DRAM_INT_TBL_REG =0x%x\n", val); 1876 1877 iwl_write32(trans, CSR_DRAM_INT_TBL_REG, val); 1878 trans_pcie->use_ict = true; 1879 trans_pcie->ict_index = 0; 1880 iwl_write32(trans, CSR_INT, trans_pcie->inta_mask); 1881 _iwl_enable_interrupts(trans); 1882 spin_unlock(&trans_pcie->irq_lock); 1883 } 1884 1885 /* Device is going down disable ict interrupt usage */ 1886 void iwl_pcie_disable_ict(struct iwl_trans *trans) 1887 { 1888 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1889 1890 spin_lock(&trans_pcie->irq_lock); 1891 trans_pcie->use_ict = false; 1892 spin_unlock(&trans_pcie->irq_lock); 1893 } 1894 1895 irqreturn_t iwl_pcie_isr(int irq, void *data) 1896 { 1897 struct iwl_trans *trans = data; 1898 1899 if (!trans) 1900 return IRQ_NONE; 1901 1902 /* Disable (but don't clear!) interrupts here to avoid 1903 * back-to-back ISRs and sporadic interrupts from our NIC. 1904 * If we have something to service, the tasklet will re-enable ints. 1905 * If we *don't* have something, we'll re-enable before leaving here. 1906 */ 1907 iwl_write32(trans, CSR_INT_MASK, 0x00000000); 1908 1909 return IRQ_WAKE_THREAD; 1910 } 1911 1912 irqreturn_t iwl_pcie_msix_isr(int irq, void *data) 1913 { 1914 return IRQ_WAKE_THREAD; 1915 } 1916 1917 irqreturn_t iwl_pcie_irq_msix_handler(int irq, void *dev_id) 1918 { 1919 struct msix_entry *entry = dev_id; 1920 struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry); 1921 struct iwl_trans *trans = trans_pcie->trans; 1922 struct isr_statistics *isr_stats = &trans_pcie->isr_stats; 1923 u32 inta_fh, inta_hw; 1924 1925 lock_map_acquire(&trans->sync_cmd_lockdep_map); 1926 1927 spin_lock(&trans_pcie->irq_lock); 1928 inta_fh = iwl_read32(trans, CSR_MSIX_FH_INT_CAUSES_AD); 1929 inta_hw = iwl_read32(trans, CSR_MSIX_HW_INT_CAUSES_AD); 1930 /* 1931 * Clear causes registers to avoid being handling the same cause. 1932 */ 1933 iwl_write32(trans, CSR_MSIX_FH_INT_CAUSES_AD, inta_fh); 1934 iwl_write32(trans, CSR_MSIX_HW_INT_CAUSES_AD, inta_hw); 1935 spin_unlock(&trans_pcie->irq_lock); 1936 1937 trace_iwlwifi_dev_irq_msix(trans->dev, entry, true, inta_fh, inta_hw); 1938 1939 if (unlikely(!(inta_fh | inta_hw))) { 1940 IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n"); 1941 lock_map_release(&trans->sync_cmd_lockdep_map); 1942 return IRQ_NONE; 1943 } 1944 1945 if (iwl_have_debug_level(IWL_DL_ISR)) 1946 IWL_DEBUG_ISR(trans, "ISR inta_fh 0x%08x, enabled 0x%08x\n", 1947 inta_fh, 1948 iwl_read32(trans, CSR_MSIX_FH_INT_MASK_AD)); 1949 1950 if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_NON_RX) && 1951 inta_fh & MSIX_FH_INT_CAUSES_Q0) { 1952 local_bh_disable(); 1953 iwl_pcie_rx_handle(trans, 0); 1954 local_bh_enable(); 1955 } 1956 1957 if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS) && 1958 inta_fh & MSIX_FH_INT_CAUSES_Q1) { 1959 local_bh_disable(); 1960 iwl_pcie_rx_handle(trans, 1); 1961 local_bh_enable(); 1962 } 1963 1964 /* This "Tx" DMA channel is used only for loading uCode */ 1965 if (inta_fh & MSIX_FH_INT_CAUSES_D2S_CH0_NUM) { 1966 IWL_DEBUG_ISR(trans, "uCode load interrupt\n"); 1967 isr_stats->tx++; 1968 /* 1969 * Wake up uCode load routine, 1970 * now that load is complete 1971 */ 1972 trans_pcie->ucode_write_complete = true; 1973 wake_up(&trans_pcie->ucode_write_waitq); 1974 } 1975 1976 /* Error detected by uCode */ 1977 if ((inta_fh & MSIX_FH_INT_CAUSES_FH_ERR) || 1978 (inta_hw & MSIX_HW_INT_CAUSES_REG_SW_ERR)) { 1979 IWL_ERR(trans, 1980 "Microcode SW error detected. Restarting 0x%X.\n", 1981 inta_fh); 1982 isr_stats->sw++; 1983 iwl_pcie_irq_handle_error(trans); 1984 } 1985 1986 /* After checking FH register check HW register */ 1987 if (iwl_have_debug_level(IWL_DL_ISR)) 1988 IWL_DEBUG_ISR(trans, 1989 "ISR inta_hw 0x%08x, enabled 0x%08x\n", 1990 inta_hw, 1991 iwl_read32(trans, CSR_MSIX_HW_INT_MASK_AD)); 1992 1993 /* Alive notification via Rx interrupt will do the real work */ 1994 if (inta_hw & MSIX_HW_INT_CAUSES_REG_ALIVE) { 1995 IWL_DEBUG_ISR(trans, "Alive interrupt\n"); 1996 isr_stats->alive++; 1997 if (trans->cfg->gen2) { 1998 /* We can restock, since firmware configured the RFH */ 1999 iwl_pcie_rxmq_restock(trans, trans_pcie->rxq); 2000 } 2001 } 2002 2003 /* uCode wakes up after power-down sleep */ 2004 if (inta_hw & MSIX_HW_INT_CAUSES_REG_WAKEUP) { 2005 IWL_DEBUG_ISR(trans, "Wakeup interrupt\n"); 2006 iwl_pcie_rxq_check_wrptr(trans); 2007 iwl_pcie_txq_check_wrptrs(trans); 2008 2009 isr_stats->wakeup++; 2010 } 2011 2012 /* Chip got too hot and stopped itself */ 2013 if (inta_hw & MSIX_HW_INT_CAUSES_REG_CT_KILL) { 2014 IWL_ERR(trans, "Microcode CT kill error detected.\n"); 2015 isr_stats->ctkill++; 2016 } 2017 2018 /* HW RF KILL switch toggled */ 2019 if (inta_hw & MSIX_HW_INT_CAUSES_REG_RF_KILL) 2020 iwl_pcie_handle_rfkill_irq(trans); 2021 2022 if (inta_hw & MSIX_HW_INT_CAUSES_REG_HW_ERR) { 2023 IWL_ERR(trans, 2024 "Hardware error detected. Restarting.\n"); 2025 2026 isr_stats->hw++; 2027 iwl_pcie_irq_handle_error(trans); 2028 } 2029 2030 iwl_pcie_clear_irq(trans, entry); 2031 2032 lock_map_release(&trans->sync_cmd_lockdep_map); 2033 2034 return IRQ_HANDLED; 2035 } 2036