1 /* SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause */
2 /*
3  * Copyright (C) 2003-2015, 2018-2020 Intel Corporation
4  * Copyright (C) 2013-2015 Intel Mobile Communications GmbH
5  * Copyright (C) 2016-2017 Intel Deutschland GmbH
6  */
7 #ifndef __iwl_trans_int_pcie_h__
8 #define __iwl_trans_int_pcie_h__
9 
10 #include <linux/spinlock.h>
11 #include <linux/interrupt.h>
12 #include <linux/skbuff.h>
13 #include <linux/wait.h>
14 #include <linux/pci.h>
15 #include <linux/timer.h>
16 #include <linux/cpu.h>
17 
18 #include "iwl-fh.h"
19 #include "iwl-csr.h"
20 #include "iwl-trans.h"
21 #include "iwl-debug.h"
22 #include "iwl-io.h"
23 #include "iwl-op-mode.h"
24 #include "iwl-drv.h"
25 #include "queue/tx.h"
26 
27 /*
28  * RX related structures and functions
29  */
30 #define RX_NUM_QUEUES 1
31 #define RX_POST_REQ_ALLOC 2
32 #define RX_CLAIM_REQ_ALLOC 8
33 #define RX_PENDING_WATERMARK 16
34 #define FIRST_RX_QUEUE 512
35 
36 struct iwl_host_cmd;
37 
38 /*This file includes the declaration that are internal to the
39  * trans_pcie layer */
40 
41 /**
42  * struct iwl_rx_mem_buffer
43  * @page_dma: bus address of rxb page
44  * @page: driver's pointer to the rxb page
45  * @invalid: rxb is in driver ownership - not owned by HW
46  * @vid: index of this rxb in the global table
47  * @offset: indicates which offset of the page (in bytes)
48  *	this buffer uses (if multiple RBs fit into one page)
49  */
50 struct iwl_rx_mem_buffer {
51 	dma_addr_t page_dma;
52 	struct page *page;
53 	u16 vid;
54 	bool invalid;
55 	struct list_head list;
56 	u32 offset;
57 };
58 
59 /**
60  * struct isr_statistics - interrupt statistics
61  *
62  */
63 struct isr_statistics {
64 	u32 hw;
65 	u32 sw;
66 	u32 err_code;
67 	u32 sch;
68 	u32 alive;
69 	u32 rfkill;
70 	u32 ctkill;
71 	u32 wakeup;
72 	u32 rx;
73 	u32 tx;
74 	u32 unhandled;
75 };
76 
77 /**
78  * struct iwl_rx_transfer_desc - transfer descriptor
79  * @addr: ptr to free buffer start address
80  * @rbid: unique tag of the buffer
81  * @reserved: reserved
82  */
83 struct iwl_rx_transfer_desc {
84 	__le16 rbid;
85 	__le16 reserved[3];
86 	__le64 addr;
87 } __packed;
88 
89 #define IWL_RX_CD_FLAGS_FRAGMENTED	BIT(0)
90 
91 /**
92  * struct iwl_rx_completion_desc - completion descriptor
93  * @reserved1: reserved
94  * @rbid: unique tag of the received buffer
95  * @flags: flags (0: fragmented, all others: reserved)
96  * @reserved2: reserved
97  */
98 struct iwl_rx_completion_desc {
99 	__le32 reserved1;
100 	__le16 rbid;
101 	u8 flags;
102 	u8 reserved2[25];
103 } __packed;
104 
105 /**
106  * struct iwl_rxq - Rx queue
107  * @id: queue index
108  * @bd: driver's pointer to buffer of receive buffer descriptors (rbd).
109  *	Address size is 32 bit in pre-9000 devices and 64 bit in 9000 devices.
110  *	In AX210 devices it is a pointer to a list of iwl_rx_transfer_desc's
111  * @bd_dma: bus address of buffer of receive buffer descriptors (rbd)
112  * @ubd: driver's pointer to buffer of used receive buffer descriptors (rbd)
113  * @ubd_dma: physical address of buffer of used receive buffer descriptors (rbd)
114  * @tr_tail: driver's pointer to the transmission ring tail buffer
115  * @tr_tail_dma: physical address of the buffer for the transmission ring tail
116  * @cr_tail: driver's pointer to the completion ring tail buffer
117  * @cr_tail_dma: physical address of the buffer for the completion ring tail
118  * @read: Shared index to newest available Rx buffer
119  * @write: Shared index to oldest written Rx packet
120  * @free_count: Number of pre-allocated buffers in rx_free
121  * @used_count: Number of RBDs handled to allocator to use for allocation
122  * @write_actual:
123  * @rx_free: list of RBDs with allocated RB ready for use
124  * @rx_used: list of RBDs with no RB attached
125  * @need_update: flag to indicate we need to update read/write index
126  * @rb_stts: driver's pointer to receive buffer status
127  * @rb_stts_dma: bus address of receive buffer status
128  * @lock:
129  * @queue: actual rx queue. Not used for multi-rx queue.
130  * @next_rb_is_fragment: indicates that the previous RB that we handled set
131  *	the fragmented flag, so the next one is still another fragment
132  *
133  * NOTE:  rx_free and rx_used are used as a FIFO for iwl_rx_mem_buffers
134  */
135 struct iwl_rxq {
136 	int id;
137 	void *bd;
138 	dma_addr_t bd_dma;
139 	union {
140 		void *used_bd;
141 		__le32 *bd_32;
142 		struct iwl_rx_completion_desc *cd;
143 	};
144 	dma_addr_t used_bd_dma;
145 	__le16 *tr_tail;
146 	dma_addr_t tr_tail_dma;
147 	__le16 *cr_tail;
148 	dma_addr_t cr_tail_dma;
149 	u32 read;
150 	u32 write;
151 	u32 free_count;
152 	u32 used_count;
153 	u32 write_actual;
154 	u32 queue_size;
155 	struct list_head rx_free;
156 	struct list_head rx_used;
157 	bool need_update, next_rb_is_fragment;
158 	void *rb_stts;
159 	dma_addr_t rb_stts_dma;
160 	spinlock_t lock;
161 	struct napi_struct napi;
162 	struct iwl_rx_mem_buffer *queue[RX_QUEUE_SIZE];
163 };
164 
165 /**
166  * struct iwl_rb_allocator - Rx allocator
167  * @req_pending: number of requests the allcator had not processed yet
168  * @req_ready: number of requests honored and ready for claiming
169  * @rbd_allocated: RBDs with pages allocated and ready to be handled to
170  *	the queue. This is a list of &struct iwl_rx_mem_buffer
171  * @rbd_empty: RBDs with no page attached for allocator use. This is a list
172  *	of &struct iwl_rx_mem_buffer
173  * @lock: protects the rbd_allocated and rbd_empty lists
174  * @alloc_wq: work queue for background calls
175  * @rx_alloc: work struct for background calls
176  */
177 struct iwl_rb_allocator {
178 	atomic_t req_pending;
179 	atomic_t req_ready;
180 	struct list_head rbd_allocated;
181 	struct list_head rbd_empty;
182 	spinlock_t lock;
183 	struct workqueue_struct *alloc_wq;
184 	struct work_struct rx_alloc;
185 };
186 
187 /**
188  * iwl_get_closed_rb_stts - get closed rb stts from different structs
189  * @rxq - the rxq to get the rb stts from
190  */
191 static inline __le16 iwl_get_closed_rb_stts(struct iwl_trans *trans,
192 					    struct iwl_rxq *rxq)
193 {
194 	if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
195 		__le16 *rb_stts = rxq->rb_stts;
196 
197 		return READ_ONCE(*rb_stts);
198 	} else {
199 		struct iwl_rb_status *rb_stts = rxq->rb_stts;
200 
201 		return READ_ONCE(rb_stts->closed_rb_num);
202 	}
203 }
204 
205 #ifdef CONFIG_IWLWIFI_DEBUGFS
206 /**
207  * enum iwl_fw_mon_dbgfs_state - the different states of the monitor_data
208  * debugfs file
209  *
210  * @IWL_FW_MON_DBGFS_STATE_CLOSED: the file is closed.
211  * @IWL_FW_MON_DBGFS_STATE_OPEN: the file is open.
212  * @IWL_FW_MON_DBGFS_STATE_DISABLED: the file is disabled, once this state is
213  *	set the file can no longer be used.
214  */
215 enum iwl_fw_mon_dbgfs_state {
216 	IWL_FW_MON_DBGFS_STATE_CLOSED,
217 	IWL_FW_MON_DBGFS_STATE_OPEN,
218 	IWL_FW_MON_DBGFS_STATE_DISABLED,
219 };
220 #endif
221 
222 /**
223  * enum iwl_shared_irq_flags - level of sharing for irq
224  * @IWL_SHARED_IRQ_NON_RX: interrupt vector serves non rx causes.
225  * @IWL_SHARED_IRQ_FIRST_RSS: interrupt vector serves first RSS queue.
226  */
227 enum iwl_shared_irq_flags {
228 	IWL_SHARED_IRQ_NON_RX		= BIT(0),
229 	IWL_SHARED_IRQ_FIRST_RSS	= BIT(1),
230 };
231 
232 /**
233  * enum iwl_image_response_code - image response values
234  * @IWL_IMAGE_RESP_DEF: the default value of the register
235  * @IWL_IMAGE_RESP_SUCCESS: iml was read successfully
236  * @IWL_IMAGE_RESP_FAIL: iml reading failed
237  */
238 enum iwl_image_response_code {
239 	IWL_IMAGE_RESP_DEF		= 0,
240 	IWL_IMAGE_RESP_SUCCESS		= 1,
241 	IWL_IMAGE_RESP_FAIL		= 2,
242 };
243 
244 /**
245  * struct cont_rec: continuous recording data structure
246  * @prev_wr_ptr: the last address that was read in monitor_data
247  *	debugfs file
248  * @prev_wrap_cnt: the wrap count that was used during the last read in
249  *	monitor_data debugfs file
250  * @state: the state of monitor_data debugfs file as described
251  *	in &iwl_fw_mon_dbgfs_state enum
252  * @mutex: locked while reading from monitor_data debugfs file
253  */
254 #ifdef CONFIG_IWLWIFI_DEBUGFS
255 struct cont_rec {
256 	u32 prev_wr_ptr;
257 	u32 prev_wrap_cnt;
258 	u8  state;
259 	/* Used to sync monitor_data debugfs file with driver unload flow */
260 	struct mutex mutex;
261 };
262 #endif
263 
264 /**
265  * struct iwl_trans_pcie - PCIe transport specific data
266  * @rxq: all the RX queue data
267  * @rx_pool: initial pool of iwl_rx_mem_buffer for all the queues
268  * @global_table: table mapping received VID from hw to rxb
269  * @rba: allocator for RX replenishing
270  * @ctxt_info: context information for FW self init
271  * @ctxt_info_gen3: context information for gen3 devices
272  * @prph_info: prph info for self init
273  * @prph_scratch: prph scratch for self init
274  * @ctxt_info_dma_addr: dma addr of context information
275  * @prph_info_dma_addr: dma addr of prph info
276  * @prph_scratch_dma_addr: dma addr of prph scratch
277  * @ctxt_info_dma_addr: dma addr of context information
278  * @init_dram: DRAM data of firmware image (including paging).
279  *	Context information addresses will be taken from here.
280  *	This is driver's local copy for keeping track of size and
281  *	count for allocating and freeing the memory.
282  * @trans: pointer to the generic transport area
283  * @scd_base_addr: scheduler sram base address in SRAM
284  * @kw: keep warm address
285  * @pnvm_dram: DRAM area that contains the PNVM data
286  * @pci_dev: basic pci-network driver stuff
287  * @hw_base: pci hardware address support
288  * @ucode_write_complete: indicates that the ucode has been copied.
289  * @ucode_write_waitq: wait queue for uCode load
290  * @cmd_queue - command queue number
291  * @def_rx_queue - default rx queue number
292  * @rx_buf_size: Rx buffer size
293  * @scd_set_active: should the transport configure the SCD for HCMD queue
294  * @rx_page_order: page order for receive buffer size
295  * @rx_buf_bytes: RX buffer (RB) size in bytes
296  * @reg_lock: protect hw register access
297  * @mutex: to protect stop_device / start_fw / start_hw
298  * @cmd_in_flight: true when we have a host command in flight
299 #ifdef CONFIG_IWLWIFI_DEBUGFS
300  * @fw_mon_data: fw continuous recording data
301 #endif
302  * @msix_entries: array of MSI-X entries
303  * @msix_enabled: true if managed to enable MSI-X
304  * @shared_vec_mask: the type of causes the shared vector handles
305  *	(see iwl_shared_irq_flags).
306  * @alloc_vecs: the number of interrupt vectors allocated by the OS
307  * @def_irq: default irq for non rx causes
308  * @fh_init_mask: initial unmasked fh causes
309  * @hw_init_mask: initial unmasked hw causes
310  * @fh_mask: current unmasked fh causes
311  * @hw_mask: current unmasked hw causes
312  * @in_rescan: true if we have triggered a device rescan
313  * @base_rb_stts: base virtual address of receive buffer status for all queues
314  * @base_rb_stts_dma: base physical address of receive buffer status
315  * @supported_dma_mask: DMA mask to validate the actual address against,
316  *	will be DMA_BIT_MASK(11) or DMA_BIT_MASK(12) depending on the device
317  * @alloc_page_lock: spinlock for the page allocator
318  * @alloc_page: allocated page to still use parts of
319  * @alloc_page_used: how much of the allocated page was already used (bytes)
320  */
321 struct iwl_trans_pcie {
322 	struct iwl_rxq *rxq;
323 	struct iwl_rx_mem_buffer *rx_pool;
324 	struct iwl_rx_mem_buffer **global_table;
325 	struct iwl_rb_allocator rba;
326 	union {
327 		struct iwl_context_info *ctxt_info;
328 		struct iwl_context_info_gen3 *ctxt_info_gen3;
329 	};
330 	struct iwl_prph_info *prph_info;
331 	struct iwl_prph_scratch *prph_scratch;
332 	dma_addr_t ctxt_info_dma_addr;
333 	dma_addr_t prph_info_dma_addr;
334 	dma_addr_t prph_scratch_dma_addr;
335 	dma_addr_t iml_dma_addr;
336 	struct iwl_trans *trans;
337 
338 	struct net_device napi_dev;
339 
340 	/* INT ICT Table */
341 	__le32 *ict_tbl;
342 	dma_addr_t ict_tbl_dma;
343 	int ict_index;
344 	bool use_ict;
345 	bool is_down, opmode_down;
346 	s8 debug_rfkill;
347 	struct isr_statistics isr_stats;
348 
349 	spinlock_t irq_lock;
350 	struct mutex mutex;
351 	u32 inta_mask;
352 	u32 scd_base_addr;
353 	struct iwl_dma_ptr kw;
354 
355 	struct iwl_dram_data pnvm_dram;
356 
357 	struct iwl_txq *txq_memory;
358 
359 	/* PCI bus related data */
360 	struct pci_dev *pci_dev;
361 	void __iomem *hw_base;
362 
363 	bool ucode_write_complete;
364 	bool sx_complete;
365 	wait_queue_head_t ucode_write_waitq;
366 	wait_queue_head_t sx_waitq;
367 
368 	u8 def_rx_queue;
369 	u8 n_no_reclaim_cmds;
370 	u8 no_reclaim_cmds[MAX_NO_RECLAIM_CMDS];
371 	u16 num_rx_bufs;
372 
373 	enum iwl_amsdu_size rx_buf_size;
374 	bool scd_set_active;
375 	bool pcie_dbg_dumped_once;
376 	u32 rx_page_order;
377 	u32 rx_buf_bytes;
378 	u32 supported_dma_mask;
379 
380 	/* allocator lock for the two values below */
381 	spinlock_t alloc_page_lock;
382 	struct page *alloc_page;
383 	u32 alloc_page_used;
384 
385 	/*protect hw register */
386 	spinlock_t reg_lock;
387 	bool cmd_hold_nic_awake;
388 
389 #ifdef CONFIG_IWLWIFI_DEBUGFS
390 	struct cont_rec fw_mon_data;
391 #endif
392 
393 	struct msix_entry msix_entries[IWL_MAX_RX_HW_QUEUES];
394 	bool msix_enabled;
395 	u8 shared_vec_mask;
396 	u32 alloc_vecs;
397 	u32 def_irq;
398 	u32 fh_init_mask;
399 	u32 hw_init_mask;
400 	u32 fh_mask;
401 	u32 hw_mask;
402 	cpumask_t affinity_mask[IWL_MAX_RX_HW_QUEUES];
403 	u16 tx_cmd_queue_size;
404 	bool in_rescan;
405 
406 	void *base_rb_stts;
407 	dma_addr_t base_rb_stts_dma;
408 
409 	bool fw_reset_handshake;
410 	bool fw_reset_done;
411 	wait_queue_head_t fw_reset_waitq;
412 };
413 
414 static inline struct iwl_trans_pcie *
415 IWL_TRANS_GET_PCIE_TRANS(struct iwl_trans *trans)
416 {
417 	return (void *)trans->trans_specific;
418 }
419 
420 static inline void iwl_pcie_clear_irq(struct iwl_trans *trans, int queue)
421 {
422 	/*
423 	 * Before sending the interrupt the HW disables it to prevent
424 	 * a nested interrupt. This is done by writing 1 to the corresponding
425 	 * bit in the mask register. After handling the interrupt, it should be
426 	 * re-enabled by clearing this bit. This register is defined as
427 	 * write 1 clear (W1C) register, meaning that it's being clear
428 	 * by writing 1 to the bit.
429 	 */
430 	iwl_write32(trans, CSR_MSIX_AUTOMASK_ST_AD, BIT(queue));
431 }
432 
433 static inline struct iwl_trans *
434 iwl_trans_pcie_get_trans(struct iwl_trans_pcie *trans_pcie)
435 {
436 	return container_of((void *)trans_pcie, struct iwl_trans,
437 			    trans_specific);
438 }
439 
440 /*
441  * Convention: trans API functions: iwl_trans_pcie_XXX
442  *	Other functions: iwl_pcie_XXX
443  */
444 struct iwl_trans
445 *iwl_trans_pcie_alloc(struct pci_dev *pdev,
446 		      const struct pci_device_id *ent,
447 		      const struct iwl_cfg_trans_params *cfg_trans);
448 void iwl_trans_pcie_free(struct iwl_trans *trans);
449 
450 /*****************************************************
451 * RX
452 ******************************************************/
453 int iwl_pcie_rx_init(struct iwl_trans *trans);
454 int iwl_pcie_gen2_rx_init(struct iwl_trans *trans);
455 irqreturn_t iwl_pcie_msix_isr(int irq, void *data);
456 irqreturn_t iwl_pcie_irq_handler(int irq, void *dev_id);
457 irqreturn_t iwl_pcie_irq_msix_handler(int irq, void *dev_id);
458 irqreturn_t iwl_pcie_irq_rx_msix_handler(int irq, void *dev_id);
459 int iwl_pcie_rx_stop(struct iwl_trans *trans);
460 void iwl_pcie_rx_free(struct iwl_trans *trans);
461 void iwl_pcie_free_rbs_pool(struct iwl_trans *trans);
462 void iwl_pcie_rx_init_rxb_lists(struct iwl_rxq *rxq);
463 void iwl_pcie_rxq_alloc_rbs(struct iwl_trans *trans, gfp_t priority,
464 			    struct iwl_rxq *rxq);
465 
466 /*****************************************************
467 * ICT - interrupt handling
468 ******************************************************/
469 irqreturn_t iwl_pcie_isr(int irq, void *data);
470 int iwl_pcie_alloc_ict(struct iwl_trans *trans);
471 void iwl_pcie_free_ict(struct iwl_trans *trans);
472 void iwl_pcie_reset_ict(struct iwl_trans *trans);
473 void iwl_pcie_disable_ict(struct iwl_trans *trans);
474 
475 /*****************************************************
476 * TX / HCMD
477 ******************************************************/
478 int iwl_pcie_tx_init(struct iwl_trans *trans);
479 void iwl_pcie_tx_start(struct iwl_trans *trans, u32 scd_base_addr);
480 int iwl_pcie_tx_stop(struct iwl_trans *trans);
481 void iwl_pcie_tx_free(struct iwl_trans *trans);
482 bool iwl_trans_pcie_txq_enable(struct iwl_trans *trans, int queue, u16 ssn,
483 			       const struct iwl_trans_txq_scd_cfg *cfg,
484 			       unsigned int wdg_timeout);
485 void iwl_trans_pcie_txq_disable(struct iwl_trans *trans, int queue,
486 				bool configure_scd);
487 void iwl_trans_pcie_txq_set_shared_mode(struct iwl_trans *trans, u32 txq_id,
488 					bool shared_mode);
489 int iwl_trans_pcie_tx(struct iwl_trans *trans, struct sk_buff *skb,
490 		      struct iwl_device_tx_cmd *dev_cmd, int txq_id);
491 void iwl_pcie_txq_check_wrptrs(struct iwl_trans *trans);
492 int iwl_trans_pcie_send_hcmd(struct iwl_trans *trans, struct iwl_host_cmd *cmd);
493 void iwl_pcie_hcmd_complete(struct iwl_trans *trans,
494 			    struct iwl_rx_cmd_buffer *rxb);
495 void iwl_trans_pcie_tx_reset(struct iwl_trans *trans);
496 
497 /*****************************************************
498 * Error handling
499 ******************************************************/
500 void iwl_pcie_dump_csr(struct iwl_trans *trans);
501 
502 /*****************************************************
503 * Helpers
504 ******************************************************/
505 static inline void _iwl_disable_interrupts(struct iwl_trans *trans)
506 {
507 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
508 
509 	clear_bit(STATUS_INT_ENABLED, &trans->status);
510 	if (!trans_pcie->msix_enabled) {
511 		/* disable interrupts from uCode/NIC to host */
512 		iwl_write32(trans, CSR_INT_MASK, 0x00000000);
513 
514 		/* acknowledge/clear/reset any interrupts still pending
515 		 * from uCode or flow handler (Rx/Tx DMA) */
516 		iwl_write32(trans, CSR_INT, 0xffffffff);
517 		iwl_write32(trans, CSR_FH_INT_STATUS, 0xffffffff);
518 	} else {
519 		/* disable all the interrupt we might use */
520 		iwl_write32(trans, CSR_MSIX_FH_INT_MASK_AD,
521 			    trans_pcie->fh_init_mask);
522 		iwl_write32(trans, CSR_MSIX_HW_INT_MASK_AD,
523 			    trans_pcie->hw_init_mask);
524 	}
525 	IWL_DEBUG_ISR(trans, "Disabled interrupts\n");
526 }
527 
528 #define IWL_NUM_OF_COMPLETION_RINGS	31
529 #define IWL_NUM_OF_TRANSFER_RINGS	527
530 
531 static inline int iwl_pcie_get_num_sections(const struct fw_img *fw,
532 					    int start)
533 {
534 	int i = 0;
535 
536 	while (start < fw->num_sec &&
537 	       fw->sec[start].offset != CPU1_CPU2_SEPARATOR_SECTION &&
538 	       fw->sec[start].offset != PAGING_SEPARATOR_SECTION) {
539 		start++;
540 		i++;
541 	}
542 
543 	return i;
544 }
545 
546 static inline void iwl_pcie_ctxt_info_free_fw_img(struct iwl_trans *trans)
547 {
548 	struct iwl_self_init_dram *dram = &trans->init_dram;
549 	int i;
550 
551 	if (!dram->fw) {
552 		WARN_ON(dram->fw_cnt);
553 		return;
554 	}
555 
556 	for (i = 0; i < dram->fw_cnt; i++)
557 		dma_free_coherent(trans->dev, dram->fw[i].size,
558 				  dram->fw[i].block, dram->fw[i].physical);
559 
560 	kfree(dram->fw);
561 	dram->fw_cnt = 0;
562 	dram->fw = NULL;
563 }
564 
565 static inline void iwl_disable_interrupts(struct iwl_trans *trans)
566 {
567 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
568 
569 	spin_lock_bh(&trans_pcie->irq_lock);
570 	_iwl_disable_interrupts(trans);
571 	spin_unlock_bh(&trans_pcie->irq_lock);
572 }
573 
574 static inline void _iwl_enable_interrupts(struct iwl_trans *trans)
575 {
576 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
577 
578 	IWL_DEBUG_ISR(trans, "Enabling interrupts\n");
579 	set_bit(STATUS_INT_ENABLED, &trans->status);
580 	if (!trans_pcie->msix_enabled) {
581 		trans_pcie->inta_mask = CSR_INI_SET_MASK;
582 		iwl_write32(trans, CSR_INT_MASK, trans_pcie->inta_mask);
583 	} else {
584 		/*
585 		 * fh/hw_mask keeps all the unmasked causes.
586 		 * Unlike msi, in msix cause is enabled when it is unset.
587 		 */
588 		trans_pcie->hw_mask = trans_pcie->hw_init_mask;
589 		trans_pcie->fh_mask = trans_pcie->fh_init_mask;
590 		iwl_write32(trans, CSR_MSIX_FH_INT_MASK_AD,
591 			    ~trans_pcie->fh_mask);
592 		iwl_write32(trans, CSR_MSIX_HW_INT_MASK_AD,
593 			    ~trans_pcie->hw_mask);
594 	}
595 }
596 
597 static inline void iwl_enable_interrupts(struct iwl_trans *trans)
598 {
599 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
600 
601 	spin_lock_bh(&trans_pcie->irq_lock);
602 	_iwl_enable_interrupts(trans);
603 	spin_unlock_bh(&trans_pcie->irq_lock);
604 }
605 static inline void iwl_enable_hw_int_msk_msix(struct iwl_trans *trans, u32 msk)
606 {
607 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
608 
609 	iwl_write32(trans, CSR_MSIX_HW_INT_MASK_AD, ~msk);
610 	trans_pcie->hw_mask = msk;
611 }
612 
613 static inline void iwl_enable_fh_int_msk_msix(struct iwl_trans *trans, u32 msk)
614 {
615 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
616 
617 	iwl_write32(trans, CSR_MSIX_FH_INT_MASK_AD, ~msk);
618 	trans_pcie->fh_mask = msk;
619 }
620 
621 static inline void iwl_enable_fw_load_int(struct iwl_trans *trans)
622 {
623 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
624 
625 	IWL_DEBUG_ISR(trans, "Enabling FW load interrupt\n");
626 	if (!trans_pcie->msix_enabled) {
627 		trans_pcie->inta_mask = CSR_INT_BIT_FH_TX;
628 		iwl_write32(trans, CSR_INT_MASK, trans_pcie->inta_mask);
629 	} else {
630 		iwl_write32(trans, CSR_MSIX_HW_INT_MASK_AD,
631 			    trans_pcie->hw_init_mask);
632 		iwl_enable_fh_int_msk_msix(trans,
633 					   MSIX_FH_INT_CAUSES_D2S_CH0_NUM);
634 	}
635 }
636 
637 static inline void iwl_enable_fw_load_int_ctx_info(struct iwl_trans *trans)
638 {
639 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
640 
641 	IWL_DEBUG_ISR(trans, "Enabling ALIVE interrupt only\n");
642 
643 	if (!trans_pcie->msix_enabled) {
644 		/*
645 		 * When we'll receive the ALIVE interrupt, the ISR will call
646 		 * iwl_enable_fw_load_int_ctx_info again to set the ALIVE
647 		 * interrupt (which is not really needed anymore) but also the
648 		 * RX interrupt which will allow us to receive the ALIVE
649 		 * notification (which is Rx) and continue the flow.
650 		 */
651 		trans_pcie->inta_mask =  CSR_INT_BIT_ALIVE | CSR_INT_BIT_FH_RX;
652 		iwl_write32(trans, CSR_INT_MASK, trans_pcie->inta_mask);
653 	} else {
654 		iwl_enable_hw_int_msk_msix(trans,
655 					   MSIX_HW_INT_CAUSES_REG_ALIVE);
656 		/*
657 		 * Leave all the FH causes enabled to get the ALIVE
658 		 * notification.
659 		 */
660 		iwl_enable_fh_int_msk_msix(trans, trans_pcie->fh_init_mask);
661 	}
662 }
663 
664 static inline const char *queue_name(struct device *dev,
665 				     struct iwl_trans_pcie *trans_p, int i)
666 {
667 	if (trans_p->shared_vec_mask) {
668 		int vec = trans_p->shared_vec_mask &
669 			  IWL_SHARED_IRQ_FIRST_RSS ? 1 : 0;
670 
671 		if (i == 0)
672 			return DRV_NAME ": shared IRQ";
673 
674 		return devm_kasprintf(dev, GFP_KERNEL,
675 				      DRV_NAME ": queue %d", i + vec);
676 	}
677 	if (i == 0)
678 		return DRV_NAME ": default queue";
679 
680 	if (i == trans_p->alloc_vecs - 1)
681 		return DRV_NAME ": exception";
682 
683 	return devm_kasprintf(dev, GFP_KERNEL,
684 			      DRV_NAME  ": queue %d", i);
685 }
686 
687 static inline void iwl_enable_rfkill_int(struct iwl_trans *trans)
688 {
689 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
690 
691 	IWL_DEBUG_ISR(trans, "Enabling rfkill interrupt\n");
692 	if (!trans_pcie->msix_enabled) {
693 		trans_pcie->inta_mask = CSR_INT_BIT_RF_KILL;
694 		iwl_write32(trans, CSR_INT_MASK, trans_pcie->inta_mask);
695 	} else {
696 		iwl_write32(trans, CSR_MSIX_FH_INT_MASK_AD,
697 			    trans_pcie->fh_init_mask);
698 		iwl_enable_hw_int_msk_msix(trans,
699 					   MSIX_HW_INT_CAUSES_REG_RF_KILL);
700 	}
701 
702 	if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_9000) {
703 		/*
704 		 * On 9000-series devices this bit isn't enabled by default, so
705 		 * when we power down the device we need set the bit to allow it
706 		 * to wake up the PCI-E bus for RF-kill interrupts.
707 		 */
708 		iwl_set_bit(trans, CSR_GP_CNTRL,
709 			    CSR_GP_CNTRL_REG_FLAG_RFKILL_WAKE_L1A_EN);
710 	}
711 }
712 
713 void iwl_pcie_handle_rfkill_irq(struct iwl_trans *trans);
714 
715 static inline bool iwl_is_rfkill_set(struct iwl_trans *trans)
716 {
717 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
718 
719 	lockdep_assert_held(&trans_pcie->mutex);
720 
721 	if (trans_pcie->debug_rfkill == 1)
722 		return true;
723 
724 	return !(iwl_read32(trans, CSR_GP_CNTRL) &
725 		CSR_GP_CNTRL_REG_FLAG_HW_RF_KILL_SW);
726 }
727 
728 static inline void __iwl_trans_pcie_set_bits_mask(struct iwl_trans *trans,
729 						  u32 reg, u32 mask, u32 value)
730 {
731 	u32 v;
732 
733 #ifdef CONFIG_IWLWIFI_DEBUG
734 	WARN_ON_ONCE(value & ~mask);
735 #endif
736 
737 	v = iwl_read32(trans, reg);
738 	v &= ~mask;
739 	v |= value;
740 	iwl_write32(trans, reg, v);
741 }
742 
743 static inline void __iwl_trans_pcie_clear_bit(struct iwl_trans *trans,
744 					      u32 reg, u32 mask)
745 {
746 	__iwl_trans_pcie_set_bits_mask(trans, reg, mask, 0);
747 }
748 
749 static inline void __iwl_trans_pcie_set_bit(struct iwl_trans *trans,
750 					    u32 reg, u32 mask)
751 {
752 	__iwl_trans_pcie_set_bits_mask(trans, reg, mask, mask);
753 }
754 
755 static inline bool iwl_pcie_dbg_on(struct iwl_trans *trans)
756 {
757 	return (trans->dbg.dest_tlv || iwl_trans_dbg_ini_valid(trans));
758 }
759 
760 void iwl_trans_pcie_rf_kill(struct iwl_trans *trans, bool state);
761 void iwl_trans_pcie_dump_regs(struct iwl_trans *trans);
762 
763 #ifdef CONFIG_IWLWIFI_DEBUGFS
764 void iwl_trans_pcie_dbgfs_register(struct iwl_trans *trans);
765 #else
766 static inline void iwl_trans_pcie_dbgfs_register(struct iwl_trans *trans) { }
767 #endif
768 
769 void iwl_pcie_rx_allocator_work(struct work_struct *data);
770 
771 /* common functions that are used by gen2 transport */
772 int iwl_pcie_gen2_apm_init(struct iwl_trans *trans);
773 void iwl_pcie_apm_config(struct iwl_trans *trans);
774 int iwl_pcie_prepare_card_hw(struct iwl_trans *trans);
775 void iwl_pcie_synchronize_irqs(struct iwl_trans *trans);
776 bool iwl_pcie_check_hw_rf_kill(struct iwl_trans *trans);
777 void iwl_trans_pcie_handle_stop_rfkill(struct iwl_trans *trans,
778 				       bool was_in_rfkill);
779 void iwl_pcie_apm_stop_master(struct iwl_trans *trans);
780 void iwl_pcie_conf_msix_hw(struct iwl_trans_pcie *trans_pcie);
781 int iwl_pcie_alloc_dma_ptr(struct iwl_trans *trans,
782 			   struct iwl_dma_ptr *ptr, size_t size);
783 void iwl_pcie_free_dma_ptr(struct iwl_trans *trans, struct iwl_dma_ptr *ptr);
784 void iwl_pcie_apply_destination(struct iwl_trans *trans);
785 
786 /* common functions that are used by gen3 transport */
787 void iwl_pcie_alloc_fw_monitor(struct iwl_trans *trans, u8 max_power);
788 
789 /* transport gen 2 exported functions */
790 int iwl_trans_pcie_gen2_start_fw(struct iwl_trans *trans,
791 				 const struct fw_img *fw, bool run_in_rfkill);
792 void iwl_trans_pcie_gen2_fw_alive(struct iwl_trans *trans, u32 scd_addr);
793 int iwl_trans_pcie_gen2_send_hcmd(struct iwl_trans *trans,
794 				  struct iwl_host_cmd *cmd);
795 void iwl_trans_pcie_gen2_stop_device(struct iwl_trans *trans);
796 void _iwl_trans_pcie_gen2_stop_device(struct iwl_trans *trans);
797 void iwl_pcie_d3_complete_suspend(struct iwl_trans *trans,
798 				  bool test, bool reset);
799 int iwl_pcie_gen2_enqueue_hcmd(struct iwl_trans *trans,
800 			       struct iwl_host_cmd *cmd);
801 int iwl_pcie_enqueue_hcmd(struct iwl_trans *trans,
802 			  struct iwl_host_cmd *cmd);
803 #endif /* __iwl_trans_int_pcie_h__ */
804