1 /******************************************************************************
2  *
3  * This file is provided under a dual BSD/GPLv2 license.  When using or
4  * redistributing this file, you may do so under either license.
5  *
6  * GPL LICENSE SUMMARY
7  *
8  * Copyright(c) 2003 - 2015 Intel Corporation. All rights reserved.
9  * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
10  * Copyright(c) 2016 - 2017 Intel Deutschland GmbH
11  * Copyright(c) 2018 - 2019 Intel Corporation
12  *
13  * This program is free software; you can redistribute it and/or modify it
14  * under the terms of version 2 of the GNU General Public License as
15  * published by the Free Software Foundation.
16  *
17  * This program is distributed in the hope that it will be useful, but WITHOUT
18  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
19  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
20  * more details.
21  *
22  * The full GNU General Public License is included in this distribution in the
23  * file called COPYING.
24  *
25  * Contact Information:
26  *  Intel Linux Wireless <linuxwifi@intel.com>
27  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
28  *
29  * BSD LICENSE
30  *
31  * Copyright(c) 2003 - 2015 Intel Corporation. All rights reserved.
32  * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
33  * Copyright(c) 2016 - 2017 Intel Deutschland GmbH
34  * Copyright(c) 2018 - 2019 Intel Corporation
35  * All rights reserved.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  *
41  *  * Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  *  * Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in
45  *    the documentation and/or other materials provided with the
46  *    distribution.
47  *  * Neither the name Intel Corporation nor the names of its
48  *    contributors may be used to endorse or promote products derived
49  *    from this software without specific prior written permission.
50  *
51  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
52  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
53  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
54  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
55  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
56  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
57  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
58  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
59  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
60  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
61  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
62  *
63  *****************************************************************************/
64 #ifndef __iwl_trans_int_pcie_h__
65 #define __iwl_trans_int_pcie_h__
66 
67 #include <linux/spinlock.h>
68 #include <linux/interrupt.h>
69 #include <linux/skbuff.h>
70 #include <linux/wait.h>
71 #include <linux/pci.h>
72 #include <linux/timer.h>
73 #include <linux/cpu.h>
74 
75 #include "iwl-fh.h"
76 #include "iwl-csr.h"
77 #include "iwl-trans.h"
78 #include "iwl-debug.h"
79 #include "iwl-io.h"
80 #include "iwl-op-mode.h"
81 #include "iwl-drv.h"
82 
83 /* We need 2 entries for the TX command and header, and another one might
84  * be needed for potential data in the SKB's head. The remaining ones can
85  * be used for frags.
86  */
87 #define IWL_PCIE_MAX_FRAGS(x) (x->max_tbs - 3)
88 
89 /*
90  * RX related structures and functions
91  */
92 #define RX_NUM_QUEUES 1
93 #define RX_POST_REQ_ALLOC 2
94 #define RX_CLAIM_REQ_ALLOC 8
95 #define RX_PENDING_WATERMARK 16
96 #define FIRST_RX_QUEUE 512
97 
98 struct iwl_host_cmd;
99 
100 /*This file includes the declaration that are internal to the
101  * trans_pcie layer */
102 
103 /**
104  * struct iwl_rx_mem_buffer
105  * @page_dma: bus address of rxb page
106  * @page: driver's pointer to the rxb page
107  * @invalid: rxb is in driver ownership - not owned by HW
108  * @vid: index of this rxb in the global table
109  * @offset: indicates which offset of the page (in bytes)
110  *	this buffer uses (if multiple RBs fit into one page)
111  */
112 struct iwl_rx_mem_buffer {
113 	dma_addr_t page_dma;
114 	struct page *page;
115 	u16 vid;
116 	bool invalid;
117 	struct list_head list;
118 	u32 offset;
119 };
120 
121 /**
122  * struct isr_statistics - interrupt statistics
123  *
124  */
125 struct isr_statistics {
126 	u32 hw;
127 	u32 sw;
128 	u32 err_code;
129 	u32 sch;
130 	u32 alive;
131 	u32 rfkill;
132 	u32 ctkill;
133 	u32 wakeup;
134 	u32 rx;
135 	u32 tx;
136 	u32 unhandled;
137 };
138 
139 /**
140  * struct iwl_rx_transfer_desc - transfer descriptor
141  * @addr: ptr to free buffer start address
142  * @rbid: unique tag of the buffer
143  * @reserved: reserved
144  */
145 struct iwl_rx_transfer_desc {
146 	__le16 rbid;
147 	__le16 reserved[3];
148 	__le64 addr;
149 } __packed;
150 
151 #define IWL_RX_CD_FLAGS_FRAGMENTED	BIT(0)
152 
153 /**
154  * struct iwl_rx_completion_desc - completion descriptor
155  * @reserved1: reserved
156  * @rbid: unique tag of the received buffer
157  * @flags: flags (0: fragmented, all others: reserved)
158  * @reserved2: reserved
159  */
160 struct iwl_rx_completion_desc {
161 	__le32 reserved1;
162 	__le16 rbid;
163 	u8 flags;
164 	u8 reserved2[25];
165 } __packed;
166 
167 /**
168  * struct iwl_rxq - Rx queue
169  * @id: queue index
170  * @bd: driver's pointer to buffer of receive buffer descriptors (rbd).
171  *	Address size is 32 bit in pre-9000 devices and 64 bit in 9000 devices.
172  *	In AX210 devices it is a pointer to a list of iwl_rx_transfer_desc's
173  * @bd_dma: bus address of buffer of receive buffer descriptors (rbd)
174  * @ubd: driver's pointer to buffer of used receive buffer descriptors (rbd)
175  * @ubd_dma: physical address of buffer of used receive buffer descriptors (rbd)
176  * @tr_tail: driver's pointer to the transmission ring tail buffer
177  * @tr_tail_dma: physical address of the buffer for the transmission ring tail
178  * @cr_tail: driver's pointer to the completion ring tail buffer
179  * @cr_tail_dma: physical address of the buffer for the completion ring tail
180  * @read: Shared index to newest available Rx buffer
181  * @write: Shared index to oldest written Rx packet
182  * @free_count: Number of pre-allocated buffers in rx_free
183  * @used_count: Number of RBDs handled to allocator to use for allocation
184  * @write_actual:
185  * @rx_free: list of RBDs with allocated RB ready for use
186  * @rx_used: list of RBDs with no RB attached
187  * @need_update: flag to indicate we need to update read/write index
188  * @rb_stts: driver's pointer to receive buffer status
189  * @rb_stts_dma: bus address of receive buffer status
190  * @lock:
191  * @queue: actual rx queue. Not used for multi-rx queue.
192  *
193  * NOTE:  rx_free and rx_used are used as a FIFO for iwl_rx_mem_buffers
194  */
195 struct iwl_rxq {
196 	int id;
197 	void *bd;
198 	dma_addr_t bd_dma;
199 	union {
200 		void *used_bd;
201 		__le32 *bd_32;
202 		struct iwl_rx_completion_desc *cd;
203 	};
204 	dma_addr_t used_bd_dma;
205 	__le16 *tr_tail;
206 	dma_addr_t tr_tail_dma;
207 	__le16 *cr_tail;
208 	dma_addr_t cr_tail_dma;
209 	u32 read;
210 	u32 write;
211 	u32 free_count;
212 	u32 used_count;
213 	u32 write_actual;
214 	u32 queue_size;
215 	struct list_head rx_free;
216 	struct list_head rx_used;
217 	bool need_update;
218 	void *rb_stts;
219 	dma_addr_t rb_stts_dma;
220 	spinlock_t lock;
221 	struct napi_struct napi;
222 	struct iwl_rx_mem_buffer *queue[RX_QUEUE_SIZE];
223 };
224 
225 /**
226  * struct iwl_rb_allocator - Rx allocator
227  * @req_pending: number of requests the allcator had not processed yet
228  * @req_ready: number of requests honored and ready for claiming
229  * @rbd_allocated: RBDs with pages allocated and ready to be handled to
230  *	the queue. This is a list of &struct iwl_rx_mem_buffer
231  * @rbd_empty: RBDs with no page attached for allocator use. This is a list
232  *	of &struct iwl_rx_mem_buffer
233  * @lock: protects the rbd_allocated and rbd_empty lists
234  * @alloc_wq: work queue for background calls
235  * @rx_alloc: work struct for background calls
236  */
237 struct iwl_rb_allocator {
238 	atomic_t req_pending;
239 	atomic_t req_ready;
240 	struct list_head rbd_allocated;
241 	struct list_head rbd_empty;
242 	spinlock_t lock;
243 	struct workqueue_struct *alloc_wq;
244 	struct work_struct rx_alloc;
245 };
246 
247 struct iwl_dma_ptr {
248 	dma_addr_t dma;
249 	void *addr;
250 	size_t size;
251 };
252 
253 /**
254  * iwl_queue_inc_wrap - increment queue index, wrap back to beginning
255  * @index -- current index
256  */
257 static inline int iwl_queue_inc_wrap(struct iwl_trans *trans, int index)
258 {
259 	return ++index &
260 		(trans->trans_cfg->base_params->max_tfd_queue_size - 1);
261 }
262 
263 /**
264  * iwl_get_closed_rb_stts - get closed rb stts from different structs
265  * @rxq - the rxq to get the rb stts from
266  */
267 static inline __le16 iwl_get_closed_rb_stts(struct iwl_trans *trans,
268 					    struct iwl_rxq *rxq)
269 {
270 	if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
271 		__le16 *rb_stts = rxq->rb_stts;
272 
273 		return READ_ONCE(*rb_stts);
274 	} else {
275 		struct iwl_rb_status *rb_stts = rxq->rb_stts;
276 
277 		return READ_ONCE(rb_stts->closed_rb_num);
278 	}
279 }
280 
281 /**
282  * iwl_queue_dec_wrap - decrement queue index, wrap back to end
283  * @index -- current index
284  */
285 static inline int iwl_queue_dec_wrap(struct iwl_trans *trans, int index)
286 {
287 	return --index &
288 		(trans->trans_cfg->base_params->max_tfd_queue_size - 1);
289 }
290 
291 struct iwl_cmd_meta {
292 	/* only for SYNC commands, iff the reply skb is wanted */
293 	struct iwl_host_cmd *source;
294 	u32 flags;
295 	u32 tbs;
296 };
297 
298 /*
299  * The FH will write back to the first TB only, so we need to copy some data
300  * into the buffer regardless of whether it should be mapped or not.
301  * This indicates how big the first TB must be to include the scratch buffer
302  * and the assigned PN.
303  * Since PN location is 8 bytes at offset 12, it's 20 now.
304  * If we make it bigger then allocations will be bigger and copy slower, so
305  * that's probably not useful.
306  */
307 #define IWL_FIRST_TB_SIZE	20
308 #define IWL_FIRST_TB_SIZE_ALIGN ALIGN(IWL_FIRST_TB_SIZE, 64)
309 
310 struct iwl_pcie_txq_entry {
311 	void *cmd;
312 	struct sk_buff *skb;
313 	/* buffer to free after command completes */
314 	const void *free_buf;
315 	struct iwl_cmd_meta meta;
316 };
317 
318 struct iwl_pcie_first_tb_buf {
319 	u8 buf[IWL_FIRST_TB_SIZE_ALIGN];
320 };
321 
322 /**
323  * struct iwl_txq - Tx Queue for DMA
324  * @q: generic Rx/Tx queue descriptor
325  * @tfds: transmit frame descriptors (DMA memory)
326  * @first_tb_bufs: start of command headers, including scratch buffers, for
327  *	the writeback -- this is DMA memory and an array holding one buffer
328  *	for each command on the queue
329  * @first_tb_dma: DMA address for the first_tb_bufs start
330  * @entries: transmit entries (driver state)
331  * @lock: queue lock
332  * @stuck_timer: timer that fires if queue gets stuck
333  * @trans_pcie: pointer back to transport (for timer)
334  * @need_update: indicates need to update read/write index
335  * @ampdu: true if this queue is an ampdu queue for an specific RA/TID
336  * @wd_timeout: queue watchdog timeout (jiffies) - per queue
337  * @frozen: tx stuck queue timer is frozen
338  * @frozen_expiry_remainder: remember how long until the timer fires
339  * @bc_tbl: byte count table of the queue (relevant only for gen2 transport)
340  * @write_ptr: 1-st empty entry (index) host_w
341  * @read_ptr: last used entry (index) host_r
342  * @dma_addr:  physical addr for BD's
343  * @n_window: safe queue window
344  * @id: queue id
345  * @low_mark: low watermark, resume queue if free space more than this
346  * @high_mark: high watermark, stop queue if free space less than this
347  *
348  * A Tx queue consists of circular buffer of BDs (a.k.a. TFDs, transmit frame
349  * descriptors) and required locking structures.
350  *
351  * Note the difference between TFD_QUEUE_SIZE_MAX and n_window: the hardware
352  * always assumes 256 descriptors, so TFD_QUEUE_SIZE_MAX is always 256 (unless
353  * there might be HW changes in the future). For the normal TX
354  * queues, n_window, which is the size of the software queue data
355  * is also 256; however, for the command queue, n_window is only
356  * 32 since we don't need so many commands pending. Since the HW
357  * still uses 256 BDs for DMA though, TFD_QUEUE_SIZE_MAX stays 256.
358  * This means that we end up with the following:
359  *  HW entries: | 0 | ... | N * 32 | ... | N * 32 + 31 | ... | 255 |
360  *  SW entries:           | 0      | ... | 31          |
361  * where N is a number between 0 and 7. This means that the SW
362  * data is a window overlayed over the HW queue.
363  */
364 struct iwl_txq {
365 	void *tfds;
366 	struct iwl_pcie_first_tb_buf *first_tb_bufs;
367 	dma_addr_t first_tb_dma;
368 	struct iwl_pcie_txq_entry *entries;
369 	spinlock_t lock;
370 	unsigned long frozen_expiry_remainder;
371 	struct timer_list stuck_timer;
372 	struct iwl_trans_pcie *trans_pcie;
373 	bool need_update;
374 	bool frozen;
375 	bool ampdu;
376 	int block;
377 	unsigned long wd_timeout;
378 	struct sk_buff_head overflow_q;
379 	struct iwl_dma_ptr bc_tbl;
380 
381 	int write_ptr;
382 	int read_ptr;
383 	dma_addr_t dma_addr;
384 	int n_window;
385 	u32 id;
386 	int low_mark;
387 	int high_mark;
388 
389 	bool overflow_tx;
390 };
391 
392 static inline dma_addr_t
393 iwl_pcie_get_first_tb_dma(struct iwl_txq *txq, int idx)
394 {
395 	return txq->first_tb_dma +
396 	       sizeof(struct iwl_pcie_first_tb_buf) * idx;
397 }
398 
399 struct iwl_tso_hdr_page {
400 	struct page *page;
401 	u8 *pos;
402 };
403 
404 #ifdef CONFIG_IWLWIFI_DEBUGFS
405 /**
406  * enum iwl_fw_mon_dbgfs_state - the different states of the monitor_data
407  * debugfs file
408  *
409  * @IWL_FW_MON_DBGFS_STATE_CLOSED: the file is closed.
410  * @IWL_FW_MON_DBGFS_STATE_OPEN: the file is open.
411  * @IWL_FW_MON_DBGFS_STATE_DISABLED: the file is disabled, once this state is
412  *	set the file can no longer be used.
413  */
414 enum iwl_fw_mon_dbgfs_state {
415 	IWL_FW_MON_DBGFS_STATE_CLOSED,
416 	IWL_FW_MON_DBGFS_STATE_OPEN,
417 	IWL_FW_MON_DBGFS_STATE_DISABLED,
418 };
419 #endif
420 
421 /**
422  * enum iwl_shared_irq_flags - level of sharing for irq
423  * @IWL_SHARED_IRQ_NON_RX: interrupt vector serves non rx causes.
424  * @IWL_SHARED_IRQ_FIRST_RSS: interrupt vector serves first RSS queue.
425  */
426 enum iwl_shared_irq_flags {
427 	IWL_SHARED_IRQ_NON_RX		= BIT(0),
428 	IWL_SHARED_IRQ_FIRST_RSS	= BIT(1),
429 };
430 
431 /**
432  * enum iwl_image_response_code - image response values
433  * @IWL_IMAGE_RESP_DEF: the default value of the register
434  * @IWL_IMAGE_RESP_SUCCESS: iml was read successfully
435  * @IWL_IMAGE_RESP_FAIL: iml reading failed
436  */
437 enum iwl_image_response_code {
438 	IWL_IMAGE_RESP_DEF		= 0,
439 	IWL_IMAGE_RESP_SUCCESS		= 1,
440 	IWL_IMAGE_RESP_FAIL		= 2,
441 };
442 
443 /**
444  * struct cont_rec: continuous recording data structure
445  * @prev_wr_ptr: the last address that was read in monitor_data
446  *	debugfs file
447  * @prev_wrap_cnt: the wrap count that was used during the last read in
448  *	monitor_data debugfs file
449  * @state: the state of monitor_data debugfs file as described
450  *	in &iwl_fw_mon_dbgfs_state enum
451  * @mutex: locked while reading from monitor_data debugfs file
452  */
453 #ifdef CONFIG_IWLWIFI_DEBUGFS
454 struct cont_rec {
455 	u32 prev_wr_ptr;
456 	u32 prev_wrap_cnt;
457 	u8  state;
458 	/* Used to sync monitor_data debugfs file with driver unload flow */
459 	struct mutex mutex;
460 };
461 #endif
462 
463 /**
464  * struct iwl_trans_pcie - PCIe transport specific data
465  * @rxq: all the RX queue data
466  * @rx_pool: initial pool of iwl_rx_mem_buffer for all the queues
467  * @global_table: table mapping received VID from hw to rxb
468  * @rba: allocator for RX replenishing
469  * @ctxt_info: context information for FW self init
470  * @ctxt_info_gen3: context information for gen3 devices
471  * @prph_info: prph info for self init
472  * @prph_scratch: prph scratch for self init
473  * @ctxt_info_dma_addr: dma addr of context information
474  * @prph_info_dma_addr: dma addr of prph info
475  * @prph_scratch_dma_addr: dma addr of prph scratch
476  * @ctxt_info_dma_addr: dma addr of context information
477  * @init_dram: DRAM data of firmware image (including paging).
478  *	Context information addresses will be taken from here.
479  *	This is driver's local copy for keeping track of size and
480  *	count for allocating and freeing the memory.
481  * @trans: pointer to the generic transport area
482  * @scd_base_addr: scheduler sram base address in SRAM
483  * @scd_bc_tbls: pointer to the byte count table of the scheduler
484  * @kw: keep warm address
485  * @pci_dev: basic pci-network driver stuff
486  * @hw_base: pci hardware address support
487  * @ucode_write_complete: indicates that the ucode has been copied.
488  * @ucode_write_waitq: wait queue for uCode load
489  * @cmd_queue - command queue number
490  * @def_rx_queue - default rx queue number
491  * @rx_buf_size: Rx buffer size
492  * @bc_table_dword: true if the BC table expects DWORD (as opposed to bytes)
493  * @scd_set_active: should the transport configure the SCD for HCMD queue
494  * @sw_csum_tx: if true, then the transport will compute the csum of the TXed
495  *	frame.
496  * @rx_page_order: page order for receive buffer size
497  * @rx_buf_bytes: RX buffer (RB) size in bytes
498  * @reg_lock: protect hw register access
499  * @mutex: to protect stop_device / start_fw / start_hw
500  * @cmd_in_flight: true when we have a host command in flight
501 #ifdef CONFIG_IWLWIFI_DEBUGFS
502  * @fw_mon_data: fw continuous recording data
503 #endif
504  * @msix_entries: array of MSI-X entries
505  * @msix_enabled: true if managed to enable MSI-X
506  * @shared_vec_mask: the type of causes the shared vector handles
507  *	(see iwl_shared_irq_flags).
508  * @alloc_vecs: the number of interrupt vectors allocated by the OS
509  * @def_irq: default irq for non rx causes
510  * @fh_init_mask: initial unmasked fh causes
511  * @hw_init_mask: initial unmasked hw causes
512  * @fh_mask: current unmasked fh causes
513  * @hw_mask: current unmasked hw causes
514  * @in_rescan: true if we have triggered a device rescan
515  * @base_rb_stts: base virtual address of receive buffer status for all queues
516  * @base_rb_stts_dma: base physical address of receive buffer status
517  * @supported_dma_mask: DMA mask to validate the actual address against,
518  *	will be DMA_BIT_MASK(11) or DMA_BIT_MASK(12) depending on the device
519  * @alloc_page_lock: spinlock for the page allocator
520  * @alloc_page: allocated page to still use parts of
521  * @alloc_page_used: how much of the allocated page was already used (bytes)
522  */
523 struct iwl_trans_pcie {
524 	struct iwl_rxq *rxq;
525 	struct iwl_rx_mem_buffer *rx_pool;
526 	struct iwl_rx_mem_buffer **global_table;
527 	struct iwl_rb_allocator rba;
528 	union {
529 		struct iwl_context_info *ctxt_info;
530 		struct iwl_context_info_gen3 *ctxt_info_gen3;
531 	};
532 	struct iwl_prph_info *prph_info;
533 	struct iwl_prph_scratch *prph_scratch;
534 	dma_addr_t ctxt_info_dma_addr;
535 	dma_addr_t prph_info_dma_addr;
536 	dma_addr_t prph_scratch_dma_addr;
537 	dma_addr_t iml_dma_addr;
538 	struct iwl_trans *trans;
539 
540 	struct net_device napi_dev;
541 
542 	struct __percpu iwl_tso_hdr_page *tso_hdr_page;
543 
544 	/* INT ICT Table */
545 	__le32 *ict_tbl;
546 	dma_addr_t ict_tbl_dma;
547 	int ict_index;
548 	bool use_ict;
549 	bool is_down, opmode_down;
550 	s8 debug_rfkill;
551 	struct isr_statistics isr_stats;
552 
553 	spinlock_t irq_lock;
554 	struct mutex mutex;
555 	u32 inta_mask;
556 	u32 scd_base_addr;
557 	struct iwl_dma_ptr scd_bc_tbls;
558 	struct iwl_dma_ptr kw;
559 
560 	struct iwl_txq *txq_memory;
561 	struct iwl_txq *txq[IWL_MAX_TVQM_QUEUES];
562 	unsigned long queue_used[BITS_TO_LONGS(IWL_MAX_TVQM_QUEUES)];
563 	unsigned long queue_stopped[BITS_TO_LONGS(IWL_MAX_TVQM_QUEUES)];
564 
565 	/* PCI bus related data */
566 	struct pci_dev *pci_dev;
567 	void __iomem *hw_base;
568 
569 	bool ucode_write_complete;
570 	bool sx_complete;
571 	wait_queue_head_t ucode_write_waitq;
572 	wait_queue_head_t wait_command_queue;
573 	wait_queue_head_t sx_waitq;
574 
575 	u8 page_offs, dev_cmd_offs;
576 
577 	u8 cmd_queue;
578 	u8 def_rx_queue;
579 	u8 cmd_fifo;
580 	unsigned int cmd_q_wdg_timeout;
581 	u8 n_no_reclaim_cmds;
582 	u8 no_reclaim_cmds[MAX_NO_RECLAIM_CMDS];
583 	u8 max_tbs;
584 	u16 tfd_size;
585 	u16 num_rx_bufs;
586 
587 	enum iwl_amsdu_size rx_buf_size;
588 	bool bc_table_dword;
589 	bool scd_set_active;
590 	bool sw_csum_tx;
591 	bool pcie_dbg_dumped_once;
592 	u32 rx_page_order;
593 	u32 rx_buf_bytes;
594 	u32 supported_dma_mask;
595 
596 	/* allocator lock for the two values below */
597 	spinlock_t alloc_page_lock;
598 	struct page *alloc_page;
599 	u32 alloc_page_used;
600 
601 	/*protect hw register */
602 	spinlock_t reg_lock;
603 	bool cmd_hold_nic_awake;
604 
605 #ifdef CONFIG_IWLWIFI_DEBUGFS
606 	struct cont_rec fw_mon_data;
607 #endif
608 
609 	struct msix_entry msix_entries[IWL_MAX_RX_HW_QUEUES];
610 	bool msix_enabled;
611 	u8 shared_vec_mask;
612 	u32 alloc_vecs;
613 	u32 def_irq;
614 	u32 fh_init_mask;
615 	u32 hw_init_mask;
616 	u32 fh_mask;
617 	u32 hw_mask;
618 	cpumask_t affinity_mask[IWL_MAX_RX_HW_QUEUES];
619 	u16 tx_cmd_queue_size;
620 	bool in_rescan;
621 
622 	void *base_rb_stts;
623 	dma_addr_t base_rb_stts_dma;
624 };
625 
626 static inline struct iwl_trans_pcie *
627 IWL_TRANS_GET_PCIE_TRANS(struct iwl_trans *trans)
628 {
629 	return (void *)trans->trans_specific;
630 }
631 
632 static inline void iwl_pcie_clear_irq(struct iwl_trans *trans,
633 				      struct msix_entry *entry)
634 {
635 	/*
636 	 * Before sending the interrupt the HW disables it to prevent
637 	 * a nested interrupt. This is done by writing 1 to the corresponding
638 	 * bit in the mask register. After handling the interrupt, it should be
639 	 * re-enabled by clearing this bit. This register is defined as
640 	 * write 1 clear (W1C) register, meaning that it's being clear
641 	 * by writing 1 to the bit.
642 	 */
643 	iwl_write32(trans, CSR_MSIX_AUTOMASK_ST_AD, BIT(entry->entry));
644 }
645 
646 static inline struct iwl_trans *
647 iwl_trans_pcie_get_trans(struct iwl_trans_pcie *trans_pcie)
648 {
649 	return container_of((void *)trans_pcie, struct iwl_trans,
650 			    trans_specific);
651 }
652 
653 /*
654  * Convention: trans API functions: iwl_trans_pcie_XXX
655  *	Other functions: iwl_pcie_XXX
656  */
657 struct iwl_trans
658 *iwl_trans_pcie_alloc(struct pci_dev *pdev,
659 		      const struct pci_device_id *ent,
660 		      const struct iwl_cfg_trans_params *cfg_trans);
661 void iwl_trans_pcie_free(struct iwl_trans *trans);
662 
663 /*****************************************************
664 * RX
665 ******************************************************/
666 int iwl_pcie_rx_init(struct iwl_trans *trans);
667 int iwl_pcie_gen2_rx_init(struct iwl_trans *trans);
668 irqreturn_t iwl_pcie_msix_isr(int irq, void *data);
669 irqreturn_t iwl_pcie_irq_handler(int irq, void *dev_id);
670 irqreturn_t iwl_pcie_irq_msix_handler(int irq, void *dev_id);
671 irqreturn_t iwl_pcie_irq_rx_msix_handler(int irq, void *dev_id);
672 int iwl_pcie_rx_stop(struct iwl_trans *trans);
673 void iwl_pcie_rx_free(struct iwl_trans *trans);
674 void iwl_pcie_free_rbs_pool(struct iwl_trans *trans);
675 void iwl_pcie_rx_init_rxb_lists(struct iwl_rxq *rxq);
676 int iwl_pcie_dummy_napi_poll(struct napi_struct *napi, int budget);
677 void iwl_pcie_rxq_alloc_rbs(struct iwl_trans *trans, gfp_t priority,
678 			    struct iwl_rxq *rxq);
679 
680 /*****************************************************
681 * ICT - interrupt handling
682 ******************************************************/
683 irqreturn_t iwl_pcie_isr(int irq, void *data);
684 int iwl_pcie_alloc_ict(struct iwl_trans *trans);
685 void iwl_pcie_free_ict(struct iwl_trans *trans);
686 void iwl_pcie_reset_ict(struct iwl_trans *trans);
687 void iwl_pcie_disable_ict(struct iwl_trans *trans);
688 
689 /*****************************************************
690 * TX / HCMD
691 ******************************************************/
692 /*
693  * We need this inline in case dma_addr_t is only 32-bits - since the
694  * hardware is always 64-bit, the issue can still occur in that case,
695  * so use u64 for 'phys' here to force the addition in 64-bit.
696  */
697 static inline bool iwl_pcie_crosses_4g_boundary(u64 phys, u16 len)
698 {
699 	return upper_32_bits(phys) != upper_32_bits(phys + len);
700 }
701 
702 int iwl_pcie_tx_init(struct iwl_trans *trans);
703 int iwl_pcie_gen2_tx_init(struct iwl_trans *trans, int txq_id,
704 			  int queue_size);
705 void iwl_pcie_tx_start(struct iwl_trans *trans, u32 scd_base_addr);
706 int iwl_pcie_tx_stop(struct iwl_trans *trans);
707 void iwl_pcie_tx_free(struct iwl_trans *trans);
708 bool iwl_trans_pcie_txq_enable(struct iwl_trans *trans, int queue, u16 ssn,
709 			       const struct iwl_trans_txq_scd_cfg *cfg,
710 			       unsigned int wdg_timeout);
711 void iwl_trans_pcie_txq_disable(struct iwl_trans *trans, int queue,
712 				bool configure_scd);
713 void iwl_trans_pcie_txq_set_shared_mode(struct iwl_trans *trans, u32 txq_id,
714 					bool shared_mode);
715 void iwl_trans_pcie_log_scd_error(struct iwl_trans *trans,
716 				  struct iwl_txq *txq);
717 int iwl_trans_pcie_tx(struct iwl_trans *trans, struct sk_buff *skb,
718 		      struct iwl_device_tx_cmd *dev_cmd, int txq_id);
719 void iwl_pcie_txq_check_wrptrs(struct iwl_trans *trans);
720 int iwl_trans_pcie_send_hcmd(struct iwl_trans *trans, struct iwl_host_cmd *cmd);
721 void iwl_pcie_gen2_txq_inc_wr_ptr(struct iwl_trans *trans,
722 				  struct iwl_txq *txq);
723 void iwl_pcie_hcmd_complete(struct iwl_trans *trans,
724 			    struct iwl_rx_cmd_buffer *rxb);
725 void iwl_trans_pcie_reclaim(struct iwl_trans *trans, int txq_id, int ssn,
726 			    struct sk_buff_head *skbs);
727 void iwl_trans_pcie_set_q_ptrs(struct iwl_trans *trans, int txq_id, int ptr);
728 void iwl_trans_pcie_tx_reset(struct iwl_trans *trans);
729 
730 static inline u16 iwl_pcie_tfd_tb_get_len(struct iwl_trans *trans, void *_tfd,
731 					  u8 idx)
732 {
733 	if (trans->trans_cfg->use_tfh) {
734 		struct iwl_tfh_tfd *tfd = _tfd;
735 		struct iwl_tfh_tb *tb = &tfd->tbs[idx];
736 
737 		return le16_to_cpu(tb->tb_len);
738 	} else {
739 		struct iwl_tfd *tfd = _tfd;
740 		struct iwl_tfd_tb *tb = &tfd->tbs[idx];
741 
742 		return le16_to_cpu(tb->hi_n_len) >> 4;
743 	}
744 }
745 
746 /*****************************************************
747 * Error handling
748 ******************************************************/
749 void iwl_pcie_dump_csr(struct iwl_trans *trans);
750 
751 /*****************************************************
752 * Helpers
753 ******************************************************/
754 static inline void _iwl_disable_interrupts(struct iwl_trans *trans)
755 {
756 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
757 
758 	clear_bit(STATUS_INT_ENABLED, &trans->status);
759 	if (!trans_pcie->msix_enabled) {
760 		/* disable interrupts from uCode/NIC to host */
761 		iwl_write32(trans, CSR_INT_MASK, 0x00000000);
762 
763 		/* acknowledge/clear/reset any interrupts still pending
764 		 * from uCode or flow handler (Rx/Tx DMA) */
765 		iwl_write32(trans, CSR_INT, 0xffffffff);
766 		iwl_write32(trans, CSR_FH_INT_STATUS, 0xffffffff);
767 	} else {
768 		/* disable all the interrupt we might use */
769 		iwl_write32(trans, CSR_MSIX_FH_INT_MASK_AD,
770 			    trans_pcie->fh_init_mask);
771 		iwl_write32(trans, CSR_MSIX_HW_INT_MASK_AD,
772 			    trans_pcie->hw_init_mask);
773 	}
774 	IWL_DEBUG_ISR(trans, "Disabled interrupts\n");
775 }
776 
777 #define IWL_NUM_OF_COMPLETION_RINGS	31
778 #define IWL_NUM_OF_TRANSFER_RINGS	527
779 
780 static inline int iwl_pcie_get_num_sections(const struct fw_img *fw,
781 					    int start)
782 {
783 	int i = 0;
784 
785 	while (start < fw->num_sec &&
786 	       fw->sec[start].offset != CPU1_CPU2_SEPARATOR_SECTION &&
787 	       fw->sec[start].offset != PAGING_SEPARATOR_SECTION) {
788 		start++;
789 		i++;
790 	}
791 
792 	return i;
793 }
794 
795 static inline int iwl_pcie_ctxt_info_alloc_dma(struct iwl_trans *trans,
796 					       const struct fw_desc *sec,
797 					       struct iwl_dram_data *dram)
798 {
799 	dram->block = dma_alloc_coherent(trans->dev, sec->len,
800 					 &dram->physical,
801 					 GFP_KERNEL);
802 	if (!dram->block)
803 		return -ENOMEM;
804 
805 	dram->size = sec->len;
806 	memcpy(dram->block, sec->data, sec->len);
807 
808 	return 0;
809 }
810 
811 static inline void iwl_pcie_ctxt_info_free_fw_img(struct iwl_trans *trans)
812 {
813 	struct iwl_self_init_dram *dram = &trans->init_dram;
814 	int i;
815 
816 	if (!dram->fw) {
817 		WARN_ON(dram->fw_cnt);
818 		return;
819 	}
820 
821 	for (i = 0; i < dram->fw_cnt; i++)
822 		dma_free_coherent(trans->dev, dram->fw[i].size,
823 				  dram->fw[i].block, dram->fw[i].physical);
824 
825 	kfree(dram->fw);
826 	dram->fw_cnt = 0;
827 	dram->fw = NULL;
828 }
829 
830 static inline void iwl_disable_interrupts(struct iwl_trans *trans)
831 {
832 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
833 
834 	spin_lock(&trans_pcie->irq_lock);
835 	_iwl_disable_interrupts(trans);
836 	spin_unlock(&trans_pcie->irq_lock);
837 }
838 
839 static inline void _iwl_enable_interrupts(struct iwl_trans *trans)
840 {
841 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
842 
843 	IWL_DEBUG_ISR(trans, "Enabling interrupts\n");
844 	set_bit(STATUS_INT_ENABLED, &trans->status);
845 	if (!trans_pcie->msix_enabled) {
846 		trans_pcie->inta_mask = CSR_INI_SET_MASK;
847 		iwl_write32(trans, CSR_INT_MASK, trans_pcie->inta_mask);
848 	} else {
849 		/*
850 		 * fh/hw_mask keeps all the unmasked causes.
851 		 * Unlike msi, in msix cause is enabled when it is unset.
852 		 */
853 		trans_pcie->hw_mask = trans_pcie->hw_init_mask;
854 		trans_pcie->fh_mask = trans_pcie->fh_init_mask;
855 		iwl_write32(trans, CSR_MSIX_FH_INT_MASK_AD,
856 			    ~trans_pcie->fh_mask);
857 		iwl_write32(trans, CSR_MSIX_HW_INT_MASK_AD,
858 			    ~trans_pcie->hw_mask);
859 	}
860 }
861 
862 static inline void iwl_enable_interrupts(struct iwl_trans *trans)
863 {
864 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
865 
866 	spin_lock(&trans_pcie->irq_lock);
867 	_iwl_enable_interrupts(trans);
868 	spin_unlock(&trans_pcie->irq_lock);
869 }
870 static inline void iwl_enable_hw_int_msk_msix(struct iwl_trans *trans, u32 msk)
871 {
872 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
873 
874 	iwl_write32(trans, CSR_MSIX_HW_INT_MASK_AD, ~msk);
875 	trans_pcie->hw_mask = msk;
876 }
877 
878 static inline void iwl_enable_fh_int_msk_msix(struct iwl_trans *trans, u32 msk)
879 {
880 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
881 
882 	iwl_write32(trans, CSR_MSIX_FH_INT_MASK_AD, ~msk);
883 	trans_pcie->fh_mask = msk;
884 }
885 
886 static inline void iwl_enable_fw_load_int(struct iwl_trans *trans)
887 {
888 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
889 
890 	IWL_DEBUG_ISR(trans, "Enabling FW load interrupt\n");
891 	if (!trans_pcie->msix_enabled) {
892 		trans_pcie->inta_mask = CSR_INT_BIT_FH_TX;
893 		iwl_write32(trans, CSR_INT_MASK, trans_pcie->inta_mask);
894 	} else {
895 		iwl_write32(trans, CSR_MSIX_HW_INT_MASK_AD,
896 			    trans_pcie->hw_init_mask);
897 		iwl_enable_fh_int_msk_msix(trans,
898 					   MSIX_FH_INT_CAUSES_D2S_CH0_NUM);
899 	}
900 }
901 
902 static inline void iwl_enable_fw_load_int_ctx_info(struct iwl_trans *trans)
903 {
904 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
905 
906 	IWL_DEBUG_ISR(trans, "Enabling ALIVE interrupt only\n");
907 
908 	if (!trans_pcie->msix_enabled) {
909 		/*
910 		 * When we'll receive the ALIVE interrupt, the ISR will call
911 		 * iwl_enable_fw_load_int_ctx_info again to set the ALIVE
912 		 * interrupt (which is not really needed anymore) but also the
913 		 * RX interrupt which will allow us to receive the ALIVE
914 		 * notification (which is Rx) and continue the flow.
915 		 */
916 		trans_pcie->inta_mask =  CSR_INT_BIT_ALIVE | CSR_INT_BIT_FH_RX;
917 		iwl_write32(trans, CSR_INT_MASK, trans_pcie->inta_mask);
918 	} else {
919 		iwl_enable_hw_int_msk_msix(trans,
920 					   MSIX_HW_INT_CAUSES_REG_ALIVE);
921 		/*
922 		 * Leave all the FH causes enabled to get the ALIVE
923 		 * notification.
924 		 */
925 		iwl_enable_fh_int_msk_msix(trans, trans_pcie->fh_init_mask);
926 	}
927 }
928 
929 static inline u16 iwl_pcie_get_cmd_index(const struct iwl_txq *q, u32 index)
930 {
931 	return index & (q->n_window - 1);
932 }
933 
934 static inline void *iwl_pcie_get_tfd(struct iwl_trans *trans,
935 				     struct iwl_txq *txq, int idx)
936 {
937 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
938 
939 	if (trans->trans_cfg->use_tfh)
940 		idx = iwl_pcie_get_cmd_index(txq, idx);
941 
942 	return txq->tfds + trans_pcie->tfd_size * idx;
943 }
944 
945 static inline const char *queue_name(struct device *dev,
946 				     struct iwl_trans_pcie *trans_p, int i)
947 {
948 	if (trans_p->shared_vec_mask) {
949 		int vec = trans_p->shared_vec_mask &
950 			  IWL_SHARED_IRQ_FIRST_RSS ? 1 : 0;
951 
952 		if (i == 0)
953 			return DRV_NAME ": shared IRQ";
954 
955 		return devm_kasprintf(dev, GFP_KERNEL,
956 				      DRV_NAME ": queue %d", i + vec);
957 	}
958 	if (i == 0)
959 		return DRV_NAME ": default queue";
960 
961 	if (i == trans_p->alloc_vecs - 1)
962 		return DRV_NAME ": exception";
963 
964 	return devm_kasprintf(dev, GFP_KERNEL,
965 			      DRV_NAME  ": queue %d", i);
966 }
967 
968 static inline void iwl_enable_rfkill_int(struct iwl_trans *trans)
969 {
970 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
971 
972 	IWL_DEBUG_ISR(trans, "Enabling rfkill interrupt\n");
973 	if (!trans_pcie->msix_enabled) {
974 		trans_pcie->inta_mask = CSR_INT_BIT_RF_KILL;
975 		iwl_write32(trans, CSR_INT_MASK, trans_pcie->inta_mask);
976 	} else {
977 		iwl_write32(trans, CSR_MSIX_FH_INT_MASK_AD,
978 			    trans_pcie->fh_init_mask);
979 		iwl_enable_hw_int_msk_msix(trans,
980 					   MSIX_HW_INT_CAUSES_REG_RF_KILL);
981 	}
982 
983 	if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_9000) {
984 		/*
985 		 * On 9000-series devices this bit isn't enabled by default, so
986 		 * when we power down the device we need set the bit to allow it
987 		 * to wake up the PCI-E bus for RF-kill interrupts.
988 		 */
989 		iwl_set_bit(trans, CSR_GP_CNTRL,
990 			    CSR_GP_CNTRL_REG_FLAG_RFKILL_WAKE_L1A_EN);
991 	}
992 }
993 
994 void iwl_pcie_handle_rfkill_irq(struct iwl_trans *trans);
995 
996 static inline void iwl_wake_queue(struct iwl_trans *trans,
997 				  struct iwl_txq *txq)
998 {
999 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1000 
1001 	if (test_and_clear_bit(txq->id, trans_pcie->queue_stopped)) {
1002 		IWL_DEBUG_TX_QUEUES(trans, "Wake hwq %d\n", txq->id);
1003 		iwl_op_mode_queue_not_full(trans->op_mode, txq->id);
1004 	}
1005 }
1006 
1007 static inline void iwl_stop_queue(struct iwl_trans *trans,
1008 				  struct iwl_txq *txq)
1009 {
1010 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1011 
1012 	if (!test_and_set_bit(txq->id, trans_pcie->queue_stopped)) {
1013 		iwl_op_mode_queue_full(trans->op_mode, txq->id);
1014 		IWL_DEBUG_TX_QUEUES(trans, "Stop hwq %d\n", txq->id);
1015 	} else
1016 		IWL_DEBUG_TX_QUEUES(trans, "hwq %d already stopped\n",
1017 				    txq->id);
1018 }
1019 
1020 static inline bool iwl_queue_used(const struct iwl_txq *q, int i)
1021 {
1022 	int index = iwl_pcie_get_cmd_index(q, i);
1023 	int r = iwl_pcie_get_cmd_index(q, q->read_ptr);
1024 	int w = iwl_pcie_get_cmd_index(q, q->write_ptr);
1025 
1026 	return w >= r ?
1027 		(index >= r && index < w) :
1028 		!(index < r && index >= w);
1029 }
1030 
1031 static inline bool iwl_is_rfkill_set(struct iwl_trans *trans)
1032 {
1033 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1034 
1035 	lockdep_assert_held(&trans_pcie->mutex);
1036 
1037 	if (trans_pcie->debug_rfkill == 1)
1038 		return true;
1039 
1040 	return !(iwl_read32(trans, CSR_GP_CNTRL) &
1041 		CSR_GP_CNTRL_REG_FLAG_HW_RF_KILL_SW);
1042 }
1043 
1044 static inline void __iwl_trans_pcie_set_bits_mask(struct iwl_trans *trans,
1045 						  u32 reg, u32 mask, u32 value)
1046 {
1047 	u32 v;
1048 
1049 #ifdef CONFIG_IWLWIFI_DEBUG
1050 	WARN_ON_ONCE(value & ~mask);
1051 #endif
1052 
1053 	v = iwl_read32(trans, reg);
1054 	v &= ~mask;
1055 	v |= value;
1056 	iwl_write32(trans, reg, v);
1057 }
1058 
1059 static inline void __iwl_trans_pcie_clear_bit(struct iwl_trans *trans,
1060 					      u32 reg, u32 mask)
1061 {
1062 	__iwl_trans_pcie_set_bits_mask(trans, reg, mask, 0);
1063 }
1064 
1065 static inline void __iwl_trans_pcie_set_bit(struct iwl_trans *trans,
1066 					    u32 reg, u32 mask)
1067 {
1068 	__iwl_trans_pcie_set_bits_mask(trans, reg, mask, mask);
1069 }
1070 
1071 static inline bool iwl_pcie_dbg_on(struct iwl_trans *trans)
1072 {
1073 	return (trans->dbg.dest_tlv || iwl_trans_dbg_ini_valid(trans));
1074 }
1075 
1076 void iwl_trans_pcie_rf_kill(struct iwl_trans *trans, bool state);
1077 void iwl_trans_pcie_dump_regs(struct iwl_trans *trans);
1078 void iwl_trans_pcie_sync_nmi(struct iwl_trans *trans);
1079 
1080 #ifdef CONFIG_IWLWIFI_DEBUGFS
1081 void iwl_trans_pcie_dbgfs_register(struct iwl_trans *trans);
1082 #else
1083 static inline void iwl_trans_pcie_dbgfs_register(struct iwl_trans *trans) { }
1084 #endif
1085 
1086 void iwl_pcie_rx_allocator_work(struct work_struct *data);
1087 
1088 /* common functions that are used by gen2 transport */
1089 int iwl_pcie_gen2_apm_init(struct iwl_trans *trans);
1090 void iwl_pcie_apm_config(struct iwl_trans *trans);
1091 int iwl_pcie_prepare_card_hw(struct iwl_trans *trans);
1092 void iwl_pcie_synchronize_irqs(struct iwl_trans *trans);
1093 bool iwl_pcie_check_hw_rf_kill(struct iwl_trans *trans);
1094 void iwl_trans_pcie_handle_stop_rfkill(struct iwl_trans *trans,
1095 				       bool was_in_rfkill);
1096 void iwl_pcie_txq_free_tfd(struct iwl_trans *trans, struct iwl_txq *txq);
1097 int iwl_queue_space(struct iwl_trans *trans, const struct iwl_txq *q);
1098 void iwl_pcie_apm_stop_master(struct iwl_trans *trans);
1099 void iwl_pcie_conf_msix_hw(struct iwl_trans_pcie *trans_pcie);
1100 int iwl_pcie_txq_init(struct iwl_trans *trans, struct iwl_txq *txq,
1101 		      int slots_num, bool cmd_queue);
1102 int iwl_pcie_txq_alloc(struct iwl_trans *trans,
1103 		       struct iwl_txq *txq, int slots_num,  bool cmd_queue);
1104 int iwl_pcie_alloc_dma_ptr(struct iwl_trans *trans,
1105 			   struct iwl_dma_ptr *ptr, size_t size);
1106 void iwl_pcie_free_dma_ptr(struct iwl_trans *trans, struct iwl_dma_ptr *ptr);
1107 void iwl_pcie_apply_destination(struct iwl_trans *trans);
1108 void iwl_pcie_free_tso_page(struct iwl_trans_pcie *trans_pcie,
1109 			    struct sk_buff *skb);
1110 #ifdef CONFIG_INET
1111 struct iwl_tso_hdr_page *get_page_hdr(struct iwl_trans *trans, size_t len,
1112 				      struct sk_buff *skb);
1113 #endif
1114 
1115 /* common functions that are used by gen3 transport */
1116 void iwl_pcie_alloc_fw_monitor(struct iwl_trans *trans, u8 max_power);
1117 
1118 /* transport gen 2 exported functions */
1119 int iwl_trans_pcie_gen2_start_fw(struct iwl_trans *trans,
1120 				 const struct fw_img *fw, bool run_in_rfkill);
1121 void iwl_trans_pcie_gen2_fw_alive(struct iwl_trans *trans, u32 scd_addr);
1122 void iwl_pcie_gen2_txq_free_memory(struct iwl_trans *trans,
1123 				   struct iwl_txq *txq);
1124 int iwl_trans_pcie_dyn_txq_alloc_dma(struct iwl_trans *trans,
1125 				     struct iwl_txq **intxq, int size,
1126 				     unsigned int timeout);
1127 int iwl_trans_pcie_txq_alloc_response(struct iwl_trans *trans,
1128 				      struct iwl_txq *txq,
1129 				      struct iwl_host_cmd *hcmd);
1130 int iwl_trans_pcie_dyn_txq_alloc(struct iwl_trans *trans,
1131 				 __le16 flags, u8 sta_id, u8 tid,
1132 				 int cmd_id, int size,
1133 				 unsigned int timeout);
1134 void iwl_trans_pcie_dyn_txq_free(struct iwl_trans *trans, int queue);
1135 int iwl_trans_pcie_gen2_tx(struct iwl_trans *trans, struct sk_buff *skb,
1136 			   struct iwl_device_tx_cmd *dev_cmd, int txq_id);
1137 int iwl_trans_pcie_gen2_send_hcmd(struct iwl_trans *trans,
1138 				  struct iwl_host_cmd *cmd);
1139 void iwl_trans_pcie_gen2_stop_device(struct iwl_trans *trans);
1140 void _iwl_trans_pcie_gen2_stop_device(struct iwl_trans *trans);
1141 void iwl_pcie_gen2_txq_unmap(struct iwl_trans *trans, int txq_id);
1142 void iwl_pcie_gen2_tx_free(struct iwl_trans *trans);
1143 void iwl_pcie_gen2_tx_stop(struct iwl_trans *trans);
1144 void iwl_pcie_d3_complete_suspend(struct iwl_trans *trans,
1145 				  bool test, bool reset);
1146 #endif /* __iwl_trans_int_pcie_h__ */
1147