1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause 2 /* 3 * Copyright (C) 2012-2014, 2018-2021 Intel Corporation 4 * Copyright (C) 2013-2014 Intel Mobile Communications GmbH 5 * Copyright (C) 2015-2017 Intel Deutschland GmbH 6 */ 7 #include <net/mac80211.h> 8 9 #include "iwl-debug.h" 10 #include "iwl-io.h" 11 #include "iwl-prph.h" 12 #include "iwl-csr.h" 13 #include "mvm.h" 14 #include "fw/api/rs.h" 15 #include "fw/img.h" 16 17 /* 18 * Will return 0 even if the cmd failed when RFKILL is asserted unless 19 * CMD_WANT_SKB is set in cmd->flags. 20 */ 21 int iwl_mvm_send_cmd(struct iwl_mvm *mvm, struct iwl_host_cmd *cmd) 22 { 23 int ret; 24 25 #if defined(CONFIG_IWLWIFI_DEBUGFS) && defined(CONFIG_PM_SLEEP) 26 if (WARN_ON(mvm->d3_test_active)) 27 return -EIO; 28 #endif 29 30 /* 31 * Synchronous commands from this op-mode must hold 32 * the mutex, this ensures we don't try to send two 33 * (or more) synchronous commands at a time. 34 */ 35 if (!(cmd->flags & CMD_ASYNC)) 36 lockdep_assert_held(&mvm->mutex); 37 38 ret = iwl_trans_send_cmd(mvm->trans, cmd); 39 40 /* 41 * If the caller wants the SKB, then don't hide any problems, the 42 * caller might access the response buffer which will be NULL if 43 * the command failed. 44 */ 45 if (cmd->flags & CMD_WANT_SKB) 46 return ret; 47 48 /* 49 * Silently ignore failures if RFKILL is asserted or 50 * we are in suspend\resume process 51 */ 52 if (!ret || ret == -ERFKILL || ret == -EHOSTDOWN) 53 return 0; 54 return ret; 55 } 56 57 int iwl_mvm_send_cmd_pdu(struct iwl_mvm *mvm, u32 id, 58 u32 flags, u16 len, const void *data) 59 { 60 struct iwl_host_cmd cmd = { 61 .id = id, 62 .len = { len, }, 63 .data = { data, }, 64 .flags = flags, 65 }; 66 67 return iwl_mvm_send_cmd(mvm, &cmd); 68 } 69 70 /* 71 * We assume that the caller set the status to the success value 72 */ 73 int iwl_mvm_send_cmd_status(struct iwl_mvm *mvm, struct iwl_host_cmd *cmd, 74 u32 *status) 75 { 76 struct iwl_rx_packet *pkt; 77 struct iwl_cmd_response *resp; 78 int ret, resp_len; 79 80 lockdep_assert_held(&mvm->mutex); 81 82 #if defined(CONFIG_IWLWIFI_DEBUGFS) && defined(CONFIG_PM_SLEEP) 83 if (WARN_ON(mvm->d3_test_active)) 84 return -EIO; 85 #endif 86 87 /* 88 * Only synchronous commands can wait for status, 89 * we use WANT_SKB so the caller can't. 90 */ 91 if (WARN_ONCE(cmd->flags & (CMD_ASYNC | CMD_WANT_SKB), 92 "cmd flags %x", cmd->flags)) 93 return -EINVAL; 94 95 cmd->flags |= CMD_WANT_SKB; 96 97 ret = iwl_trans_send_cmd(mvm->trans, cmd); 98 if (ret == -ERFKILL) { 99 /* 100 * The command failed because of RFKILL, don't update 101 * the status, leave it as success and return 0. 102 */ 103 return 0; 104 } else if (ret) { 105 return ret; 106 } 107 108 pkt = cmd->resp_pkt; 109 110 resp_len = iwl_rx_packet_payload_len(pkt); 111 if (WARN_ON_ONCE(resp_len != sizeof(*resp))) { 112 ret = -EIO; 113 goto out_free_resp; 114 } 115 116 resp = (void *)pkt->data; 117 *status = le32_to_cpu(resp->status); 118 out_free_resp: 119 iwl_free_resp(cmd); 120 return ret; 121 } 122 123 /* 124 * We assume that the caller set the status to the sucess value 125 */ 126 int iwl_mvm_send_cmd_pdu_status(struct iwl_mvm *mvm, u32 id, u16 len, 127 const void *data, u32 *status) 128 { 129 struct iwl_host_cmd cmd = { 130 .id = id, 131 .len = { len, }, 132 .data = { data, }, 133 }; 134 135 return iwl_mvm_send_cmd_status(mvm, &cmd, status); 136 } 137 138 int iwl_mvm_legacy_hw_idx_to_mac80211_idx(u32 rate_n_flags, 139 enum nl80211_band band) 140 { 141 int format = rate_n_flags & RATE_MCS_MOD_TYPE_MSK; 142 int rate = rate_n_flags & RATE_LEGACY_RATE_MSK; 143 bool is_LB = band == NL80211_BAND_2GHZ; 144 145 if (format == RATE_MCS_LEGACY_OFDM_MSK) 146 return is_LB ? rate + IWL_FIRST_OFDM_RATE : 147 rate; 148 149 /* CCK is not allowed in HB */ 150 return is_LB ? rate : -1; 151 } 152 153 int iwl_mvm_legacy_rate_to_mac80211_idx(u32 rate_n_flags, 154 enum nl80211_band band) 155 { 156 int rate = rate_n_flags & RATE_LEGACY_RATE_MSK_V1; 157 int idx; 158 int band_offset = 0; 159 160 /* Legacy rate format, search for match in table */ 161 if (band != NL80211_BAND_2GHZ) 162 band_offset = IWL_FIRST_OFDM_RATE; 163 for (idx = band_offset; idx < IWL_RATE_COUNT_LEGACY; idx++) 164 if (iwl_fw_rate_idx_to_plcp(idx) == rate) 165 return idx - band_offset; 166 167 return -1; 168 } 169 170 u8 iwl_mvm_mac80211_idx_to_hwrate(const struct iwl_fw *fw, int rate_idx) 171 { 172 if (iwl_fw_lookup_cmd_ver(fw, LONG_GROUP, 173 TX_CMD, 0) > 8) 174 /* In the new rate legacy rates are indexed: 175 * 0 - 3 for CCK and 0 - 7 for OFDM. 176 */ 177 return (rate_idx >= IWL_FIRST_OFDM_RATE ? 178 rate_idx - IWL_FIRST_OFDM_RATE : 179 rate_idx); 180 181 return iwl_fw_rate_idx_to_plcp(rate_idx); 182 } 183 184 u8 iwl_mvm_mac80211_ac_to_ucode_ac(enum ieee80211_ac_numbers ac) 185 { 186 static const u8 mac80211_ac_to_ucode_ac[] = { 187 AC_VO, 188 AC_VI, 189 AC_BE, 190 AC_BK 191 }; 192 193 return mac80211_ac_to_ucode_ac[ac]; 194 } 195 196 void iwl_mvm_rx_fw_error(struct iwl_mvm *mvm, struct iwl_rx_cmd_buffer *rxb) 197 { 198 struct iwl_rx_packet *pkt = rxb_addr(rxb); 199 struct iwl_error_resp *err_resp = (void *)pkt->data; 200 201 IWL_ERR(mvm, "FW Error notification: type 0x%08X cmd_id 0x%02X\n", 202 le32_to_cpu(err_resp->error_type), err_resp->cmd_id); 203 IWL_ERR(mvm, "FW Error notification: seq 0x%04X service 0x%08X\n", 204 le16_to_cpu(err_resp->bad_cmd_seq_num), 205 le32_to_cpu(err_resp->error_service)); 206 IWL_ERR(mvm, "FW Error notification: timestamp 0x%016llX\n", 207 le64_to_cpu(err_resp->timestamp)); 208 } 209 210 /* 211 * Returns the first antenna as ANT_[ABC], as defined in iwl-config.h. 212 * The parameter should also be a combination of ANT_[ABC]. 213 */ 214 u8 first_antenna(u8 mask) 215 { 216 BUILD_BUG_ON(ANT_A != BIT(0)); /* using ffs is wrong if not */ 217 if (WARN_ON_ONCE(!mask)) /* ffs will return 0 if mask is zeroed */ 218 return BIT(0); 219 return BIT(ffs(mask) - 1); 220 } 221 222 #define MAX_ANT_NUM 2 223 /* 224 * Toggles between TX antennas to send the probe request on. 225 * Receives the bitmask of valid TX antennas and the *index* used 226 * for the last TX, and returns the next valid *index* to use. 227 * In order to set it in the tx_cmd, must do BIT(idx). 228 */ 229 u8 iwl_mvm_next_antenna(struct iwl_mvm *mvm, u8 valid, u8 last_idx) 230 { 231 u8 ind = last_idx; 232 int i; 233 234 for (i = 0; i < MAX_ANT_NUM; i++) { 235 ind = (ind + 1) % MAX_ANT_NUM; 236 if (valid & BIT(ind)) 237 return ind; 238 } 239 240 WARN_ONCE(1, "Failed to toggle between antennas 0x%x", valid); 241 return last_idx; 242 } 243 244 int iwl_mvm_reconfig_scd(struct iwl_mvm *mvm, int queue, int fifo, int sta_id, 245 int tid, int frame_limit, u16 ssn) 246 { 247 struct iwl_scd_txq_cfg_cmd cmd = { 248 .scd_queue = queue, 249 .action = SCD_CFG_ENABLE_QUEUE, 250 .window = frame_limit, 251 .sta_id = sta_id, 252 .ssn = cpu_to_le16(ssn), 253 .tx_fifo = fifo, 254 .aggregate = (queue >= IWL_MVM_DQA_MIN_DATA_QUEUE || 255 queue == IWL_MVM_DQA_BSS_CLIENT_QUEUE), 256 .tid = tid, 257 }; 258 int ret; 259 260 if (WARN_ON(iwl_mvm_has_new_tx_api(mvm))) 261 return -EINVAL; 262 263 if (WARN(mvm->queue_info[queue].tid_bitmap == 0, 264 "Trying to reconfig unallocated queue %d\n", queue)) 265 return -ENXIO; 266 267 IWL_DEBUG_TX_QUEUES(mvm, "Reconfig SCD for TXQ #%d\n", queue); 268 269 ret = iwl_mvm_send_cmd_pdu(mvm, SCD_QUEUE_CFG, 0, sizeof(cmd), &cmd); 270 WARN_ONCE(ret, "Failed to re-configure queue %d on FIFO %d, ret=%d\n", 271 queue, fifo, ret); 272 273 return ret; 274 } 275 276 /** 277 * iwl_mvm_send_lq_cmd() - Send link quality command 278 * @mvm: Driver data. 279 * @lq: Link quality command to send. 280 * 281 * The link quality command is sent as the last step of station creation. 282 * This is the special case in which init is set and we call a callback in 283 * this case to clear the state indicating that station creation is in 284 * progress. 285 */ 286 int iwl_mvm_send_lq_cmd(struct iwl_mvm *mvm, struct iwl_lq_cmd *lq) 287 { 288 struct iwl_host_cmd cmd = { 289 .id = LQ_CMD, 290 .len = { sizeof(struct iwl_lq_cmd), }, 291 .flags = CMD_ASYNC, 292 .data = { lq, }, 293 }; 294 295 if (WARN_ON(lq->sta_id == IWL_MVM_INVALID_STA || 296 iwl_mvm_has_tlc_offload(mvm))) 297 return -EINVAL; 298 299 return iwl_mvm_send_cmd(mvm, &cmd); 300 } 301 302 /** 303 * iwl_mvm_update_smps - Get a request to change the SMPS mode 304 * @mvm: Driver data. 305 * @vif: Pointer to the ieee80211_vif structure 306 * @req_type: The part of the driver who call for a change. 307 * @smps_request: The request to change the SMPS mode. 308 * 309 * Get a requst to change the SMPS mode, 310 * and change it according to all other requests in the driver. 311 */ 312 void iwl_mvm_update_smps(struct iwl_mvm *mvm, struct ieee80211_vif *vif, 313 enum iwl_mvm_smps_type_request req_type, 314 enum ieee80211_smps_mode smps_request) 315 { 316 struct iwl_mvm_vif *mvmvif; 317 enum ieee80211_smps_mode smps_mode = IEEE80211_SMPS_AUTOMATIC; 318 int i; 319 320 lockdep_assert_held(&mvm->mutex); 321 322 /* SMPS is irrelevant for NICs that don't have at least 2 RX antenna */ 323 if (num_of_ant(iwl_mvm_get_valid_rx_ant(mvm)) == 1) 324 return; 325 326 if (vif->type != NL80211_IFTYPE_STATION) 327 return; 328 329 mvmvif = iwl_mvm_vif_from_mac80211(vif); 330 mvmvif->smps_requests[req_type] = smps_request; 331 for (i = 0; i < NUM_IWL_MVM_SMPS_REQ; i++) { 332 if (mvmvif->smps_requests[i] == IEEE80211_SMPS_STATIC) { 333 smps_mode = IEEE80211_SMPS_STATIC; 334 break; 335 } 336 if (mvmvif->smps_requests[i] == IEEE80211_SMPS_DYNAMIC) 337 smps_mode = IEEE80211_SMPS_DYNAMIC; 338 } 339 340 ieee80211_request_smps(vif, smps_mode); 341 } 342 343 int iwl_mvm_request_statistics(struct iwl_mvm *mvm, bool clear) 344 { 345 struct iwl_statistics_cmd scmd = { 346 .flags = clear ? cpu_to_le32(IWL_STATISTICS_FLG_CLEAR) : 0, 347 }; 348 struct iwl_host_cmd cmd = { 349 .id = STATISTICS_CMD, 350 .len[0] = sizeof(scmd), 351 .data[0] = &scmd, 352 .flags = CMD_WANT_SKB, 353 }; 354 int ret; 355 356 ret = iwl_mvm_send_cmd(mvm, &cmd); 357 if (ret) 358 return ret; 359 360 iwl_mvm_handle_rx_statistics(mvm, cmd.resp_pkt); 361 iwl_free_resp(&cmd); 362 363 if (clear) 364 iwl_mvm_accu_radio_stats(mvm); 365 366 return 0; 367 } 368 369 void iwl_mvm_accu_radio_stats(struct iwl_mvm *mvm) 370 { 371 mvm->accu_radio_stats.rx_time += mvm->radio_stats.rx_time; 372 mvm->accu_radio_stats.tx_time += mvm->radio_stats.tx_time; 373 mvm->accu_radio_stats.on_time_rf += mvm->radio_stats.on_time_rf; 374 mvm->accu_radio_stats.on_time_scan += mvm->radio_stats.on_time_scan; 375 } 376 377 struct iwl_mvm_diversity_iter_data { 378 struct iwl_mvm_phy_ctxt *ctxt; 379 bool result; 380 }; 381 382 static void iwl_mvm_diversity_iter(void *_data, u8 *mac, 383 struct ieee80211_vif *vif) 384 { 385 struct iwl_mvm_vif *mvmvif = iwl_mvm_vif_from_mac80211(vif); 386 struct iwl_mvm_diversity_iter_data *data = _data; 387 int i; 388 389 if (mvmvif->phy_ctxt != data->ctxt) 390 return; 391 392 for (i = 0; i < NUM_IWL_MVM_SMPS_REQ; i++) { 393 if (mvmvif->smps_requests[i] == IEEE80211_SMPS_STATIC || 394 mvmvif->smps_requests[i] == IEEE80211_SMPS_DYNAMIC) { 395 data->result = false; 396 break; 397 } 398 } 399 } 400 401 bool iwl_mvm_rx_diversity_allowed(struct iwl_mvm *mvm, 402 struct iwl_mvm_phy_ctxt *ctxt) 403 { 404 struct iwl_mvm_diversity_iter_data data = { 405 .ctxt = ctxt, 406 .result = true, 407 }; 408 409 lockdep_assert_held(&mvm->mutex); 410 411 if (iwlmvm_mod_params.power_scheme != IWL_POWER_SCHEME_CAM) 412 return false; 413 414 if (num_of_ant(iwl_mvm_get_valid_rx_ant(mvm)) == 1) 415 return false; 416 417 if (mvm->cfg->rx_with_siso_diversity) 418 return false; 419 420 ieee80211_iterate_active_interfaces_atomic( 421 mvm->hw, IEEE80211_IFACE_ITER_NORMAL, 422 iwl_mvm_diversity_iter, &data); 423 424 return data.result; 425 } 426 427 void iwl_mvm_send_low_latency_cmd(struct iwl_mvm *mvm, 428 bool low_latency, u16 mac_id) 429 { 430 struct iwl_mac_low_latency_cmd cmd = { 431 .mac_id = cpu_to_le32(mac_id) 432 }; 433 434 if (!fw_has_capa(&mvm->fw->ucode_capa, 435 IWL_UCODE_TLV_CAPA_DYNAMIC_QUOTA)) 436 return; 437 438 if (low_latency) { 439 /* currently we don't care about the direction */ 440 cmd.low_latency_rx = 1; 441 cmd.low_latency_tx = 1; 442 } 443 444 if (iwl_mvm_send_cmd_pdu(mvm, iwl_cmd_id(LOW_LATENCY_CMD, 445 MAC_CONF_GROUP, 0), 446 0, sizeof(cmd), &cmd)) 447 IWL_ERR(mvm, "Failed to send low latency command\n"); 448 } 449 450 int iwl_mvm_update_low_latency(struct iwl_mvm *mvm, struct ieee80211_vif *vif, 451 bool low_latency, 452 enum iwl_mvm_low_latency_cause cause) 453 { 454 struct iwl_mvm_vif *mvmvif = iwl_mvm_vif_from_mac80211(vif); 455 int res; 456 bool prev; 457 458 lockdep_assert_held(&mvm->mutex); 459 460 prev = iwl_mvm_vif_low_latency(mvmvif); 461 iwl_mvm_vif_set_low_latency(mvmvif, low_latency, cause); 462 463 low_latency = iwl_mvm_vif_low_latency(mvmvif); 464 465 if (low_latency == prev) 466 return 0; 467 468 iwl_mvm_send_low_latency_cmd(mvm, low_latency, mvmvif->id); 469 470 res = iwl_mvm_update_quotas(mvm, false, NULL); 471 if (res) 472 return res; 473 474 iwl_mvm_bt_coex_vif_change(mvm); 475 476 return iwl_mvm_power_update_mac(mvm); 477 } 478 479 struct iwl_mvm_low_latency_iter { 480 bool result; 481 bool result_per_band[NUM_NL80211_BANDS]; 482 }; 483 484 static void iwl_mvm_ll_iter(void *_data, u8 *mac, struct ieee80211_vif *vif) 485 { 486 struct iwl_mvm_low_latency_iter *result = _data; 487 struct iwl_mvm_vif *mvmvif = iwl_mvm_vif_from_mac80211(vif); 488 enum nl80211_band band; 489 490 if (iwl_mvm_vif_low_latency(mvmvif)) { 491 result->result = true; 492 493 if (!mvmvif->phy_ctxt) 494 return; 495 496 band = mvmvif->phy_ctxt->channel->band; 497 result->result_per_band[band] = true; 498 } 499 } 500 501 bool iwl_mvm_low_latency(struct iwl_mvm *mvm) 502 { 503 struct iwl_mvm_low_latency_iter data = {}; 504 505 ieee80211_iterate_active_interfaces_atomic( 506 mvm->hw, IEEE80211_IFACE_ITER_NORMAL, 507 iwl_mvm_ll_iter, &data); 508 509 return data.result; 510 } 511 512 bool iwl_mvm_low_latency_band(struct iwl_mvm *mvm, enum nl80211_band band) 513 { 514 struct iwl_mvm_low_latency_iter data = {}; 515 516 ieee80211_iterate_active_interfaces_atomic( 517 mvm->hw, IEEE80211_IFACE_ITER_NORMAL, 518 iwl_mvm_ll_iter, &data); 519 520 return data.result_per_band[band]; 521 } 522 523 struct iwl_bss_iter_data { 524 struct ieee80211_vif *vif; 525 bool error; 526 }; 527 528 static void iwl_mvm_bss_iface_iterator(void *_data, u8 *mac, 529 struct ieee80211_vif *vif) 530 { 531 struct iwl_bss_iter_data *data = _data; 532 533 if (vif->type != NL80211_IFTYPE_STATION || vif->p2p) 534 return; 535 536 if (data->vif) { 537 data->error = true; 538 return; 539 } 540 541 data->vif = vif; 542 } 543 544 struct ieee80211_vif *iwl_mvm_get_bss_vif(struct iwl_mvm *mvm) 545 { 546 struct iwl_bss_iter_data bss_iter_data = {}; 547 548 ieee80211_iterate_active_interfaces_atomic( 549 mvm->hw, IEEE80211_IFACE_ITER_NORMAL, 550 iwl_mvm_bss_iface_iterator, &bss_iter_data); 551 552 if (bss_iter_data.error) { 553 IWL_ERR(mvm, "More than one managed interface active!\n"); 554 return ERR_PTR(-EINVAL); 555 } 556 557 return bss_iter_data.vif; 558 } 559 560 struct iwl_bss_find_iter_data { 561 struct ieee80211_vif *vif; 562 u32 macid; 563 }; 564 565 static void iwl_mvm_bss_find_iface_iterator(void *_data, u8 *mac, 566 struct ieee80211_vif *vif) 567 { 568 struct iwl_bss_find_iter_data *data = _data; 569 struct iwl_mvm_vif *mvmvif = iwl_mvm_vif_from_mac80211(vif); 570 571 if (mvmvif->id == data->macid) 572 data->vif = vif; 573 } 574 575 struct ieee80211_vif *iwl_mvm_get_vif_by_macid(struct iwl_mvm *mvm, u32 macid) 576 { 577 struct iwl_bss_find_iter_data data = { 578 .macid = macid, 579 }; 580 581 lockdep_assert_held(&mvm->mutex); 582 583 ieee80211_iterate_active_interfaces_atomic( 584 mvm->hw, IEEE80211_IFACE_ITER_NORMAL, 585 iwl_mvm_bss_find_iface_iterator, &data); 586 587 return data.vif; 588 } 589 590 struct iwl_sta_iter_data { 591 bool assoc; 592 }; 593 594 static void iwl_mvm_sta_iface_iterator(void *_data, u8 *mac, 595 struct ieee80211_vif *vif) 596 { 597 struct iwl_sta_iter_data *data = _data; 598 599 if (vif->type != NL80211_IFTYPE_STATION) 600 return; 601 602 if (vif->bss_conf.assoc) 603 data->assoc = true; 604 } 605 606 bool iwl_mvm_is_vif_assoc(struct iwl_mvm *mvm) 607 { 608 struct iwl_sta_iter_data data = { 609 .assoc = false, 610 }; 611 612 ieee80211_iterate_active_interfaces_atomic(mvm->hw, 613 IEEE80211_IFACE_ITER_NORMAL, 614 iwl_mvm_sta_iface_iterator, 615 &data); 616 return data.assoc; 617 } 618 619 unsigned int iwl_mvm_get_wd_timeout(struct iwl_mvm *mvm, 620 struct ieee80211_vif *vif, 621 bool tdls, bool cmd_q) 622 { 623 struct iwl_fw_dbg_trigger_tlv *trigger; 624 struct iwl_fw_dbg_trigger_txq_timer *txq_timer; 625 unsigned int default_timeout = cmd_q ? 626 IWL_DEF_WD_TIMEOUT : 627 mvm->trans->trans_cfg->base_params->wd_timeout; 628 629 if (!iwl_fw_dbg_trigger_enabled(mvm->fw, FW_DBG_TRIGGER_TXQ_TIMERS)) { 630 /* 631 * We can't know when the station is asleep or awake, so we 632 * must disable the queue hang detection. 633 */ 634 if (fw_has_capa(&mvm->fw->ucode_capa, 635 IWL_UCODE_TLV_CAPA_STA_PM_NOTIF) && 636 vif && vif->type == NL80211_IFTYPE_AP) 637 return IWL_WATCHDOG_DISABLED; 638 return default_timeout; 639 } 640 641 trigger = iwl_fw_dbg_get_trigger(mvm->fw, FW_DBG_TRIGGER_TXQ_TIMERS); 642 txq_timer = (void *)trigger->data; 643 644 if (tdls) 645 return le32_to_cpu(txq_timer->tdls); 646 647 if (cmd_q) 648 return le32_to_cpu(txq_timer->command_queue); 649 650 if (WARN_ON(!vif)) 651 return default_timeout; 652 653 switch (ieee80211_vif_type_p2p(vif)) { 654 case NL80211_IFTYPE_ADHOC: 655 return le32_to_cpu(txq_timer->ibss); 656 case NL80211_IFTYPE_STATION: 657 return le32_to_cpu(txq_timer->bss); 658 case NL80211_IFTYPE_AP: 659 return le32_to_cpu(txq_timer->softap); 660 case NL80211_IFTYPE_P2P_CLIENT: 661 return le32_to_cpu(txq_timer->p2p_client); 662 case NL80211_IFTYPE_P2P_GO: 663 return le32_to_cpu(txq_timer->p2p_go); 664 case NL80211_IFTYPE_P2P_DEVICE: 665 return le32_to_cpu(txq_timer->p2p_device); 666 case NL80211_IFTYPE_MONITOR: 667 return default_timeout; 668 default: 669 WARN_ON(1); 670 return mvm->trans->trans_cfg->base_params->wd_timeout; 671 } 672 } 673 674 void iwl_mvm_connection_loss(struct iwl_mvm *mvm, struct ieee80211_vif *vif, 675 const char *errmsg) 676 { 677 struct iwl_fw_dbg_trigger_tlv *trig; 678 struct iwl_fw_dbg_trigger_mlme *trig_mlme; 679 680 trig = iwl_fw_dbg_trigger_on(&mvm->fwrt, ieee80211_vif_to_wdev(vif), 681 FW_DBG_TRIGGER_MLME); 682 if (!trig) 683 goto out; 684 685 trig_mlme = (void *)trig->data; 686 687 if (trig_mlme->stop_connection_loss && 688 --trig_mlme->stop_connection_loss) 689 goto out; 690 691 iwl_fw_dbg_collect_trig(&mvm->fwrt, trig, "%s", errmsg); 692 693 out: 694 ieee80211_connection_loss(vif); 695 } 696 697 void iwl_mvm_event_frame_timeout_callback(struct iwl_mvm *mvm, 698 struct ieee80211_vif *vif, 699 const struct ieee80211_sta *sta, 700 u16 tid) 701 { 702 struct iwl_fw_dbg_trigger_tlv *trig; 703 struct iwl_fw_dbg_trigger_ba *ba_trig; 704 705 trig = iwl_fw_dbg_trigger_on(&mvm->fwrt, ieee80211_vif_to_wdev(vif), 706 FW_DBG_TRIGGER_BA); 707 if (!trig) 708 return; 709 710 ba_trig = (void *)trig->data; 711 712 if (!(le16_to_cpu(ba_trig->frame_timeout) & BIT(tid))) 713 return; 714 715 iwl_fw_dbg_collect_trig(&mvm->fwrt, trig, 716 "Frame from %pM timed out, tid %d", 717 sta->addr, tid); 718 } 719 720 u8 iwl_mvm_tcm_load_percentage(u32 airtime, u32 elapsed) 721 { 722 if (!elapsed) 723 return 0; 724 725 return (100 * airtime / elapsed) / USEC_PER_MSEC; 726 } 727 728 static enum iwl_mvm_traffic_load 729 iwl_mvm_tcm_load(struct iwl_mvm *mvm, u32 airtime, unsigned long elapsed) 730 { 731 u8 load = iwl_mvm_tcm_load_percentage(airtime, elapsed); 732 733 if (load > IWL_MVM_TCM_LOAD_HIGH_THRESH) 734 return IWL_MVM_TRAFFIC_HIGH; 735 if (load > IWL_MVM_TCM_LOAD_MEDIUM_THRESH) 736 return IWL_MVM_TRAFFIC_MEDIUM; 737 738 return IWL_MVM_TRAFFIC_LOW; 739 } 740 741 static void iwl_mvm_tcm_iter(void *_data, u8 *mac, struct ieee80211_vif *vif) 742 { 743 struct iwl_mvm *mvm = _data; 744 struct iwl_mvm_vif *mvmvif = iwl_mvm_vif_from_mac80211(vif); 745 bool low_latency, prev = mvmvif->low_latency & LOW_LATENCY_TRAFFIC; 746 747 if (mvmvif->id >= NUM_MAC_INDEX_DRIVER) 748 return; 749 750 low_latency = mvm->tcm.result.low_latency[mvmvif->id]; 751 752 if (!mvm->tcm.result.change[mvmvif->id] && 753 prev == low_latency) { 754 iwl_mvm_update_quotas(mvm, false, NULL); 755 return; 756 } 757 758 if (prev != low_latency) { 759 /* this sends traffic load and updates quota as well */ 760 iwl_mvm_update_low_latency(mvm, vif, low_latency, 761 LOW_LATENCY_TRAFFIC); 762 } else { 763 iwl_mvm_update_quotas(mvm, false, NULL); 764 } 765 } 766 767 static void iwl_mvm_tcm_results(struct iwl_mvm *mvm) 768 { 769 mutex_lock(&mvm->mutex); 770 771 ieee80211_iterate_active_interfaces( 772 mvm->hw, IEEE80211_IFACE_ITER_NORMAL, 773 iwl_mvm_tcm_iter, mvm); 774 775 if (fw_has_capa(&mvm->fw->ucode_capa, IWL_UCODE_TLV_CAPA_UMAC_SCAN)) 776 iwl_mvm_config_scan(mvm); 777 778 mutex_unlock(&mvm->mutex); 779 } 780 781 static void iwl_mvm_tcm_uapsd_nonagg_detected_wk(struct work_struct *wk) 782 { 783 struct iwl_mvm *mvm; 784 struct iwl_mvm_vif *mvmvif; 785 struct ieee80211_vif *vif; 786 787 mvmvif = container_of(wk, struct iwl_mvm_vif, 788 uapsd_nonagg_detected_wk.work); 789 vif = container_of((void *)mvmvif, struct ieee80211_vif, drv_priv); 790 mvm = mvmvif->mvm; 791 792 if (mvm->tcm.data[mvmvif->id].opened_rx_ba_sessions) 793 return; 794 795 /* remember that this AP is broken */ 796 memcpy(mvm->uapsd_noagg_bssids[mvm->uapsd_noagg_bssid_write_idx].addr, 797 vif->bss_conf.bssid, ETH_ALEN); 798 mvm->uapsd_noagg_bssid_write_idx++; 799 if (mvm->uapsd_noagg_bssid_write_idx >= IWL_MVM_UAPSD_NOAGG_LIST_LEN) 800 mvm->uapsd_noagg_bssid_write_idx = 0; 801 802 iwl_mvm_connection_loss(mvm, vif, 803 "AP isn't using AMPDU with uAPSD enabled"); 804 } 805 806 static void iwl_mvm_uapsd_agg_disconnect(struct iwl_mvm *mvm, 807 struct ieee80211_vif *vif) 808 { 809 struct iwl_mvm_vif *mvmvif = iwl_mvm_vif_from_mac80211(vif); 810 811 if (vif->type != NL80211_IFTYPE_STATION) 812 return; 813 814 if (!vif->bss_conf.assoc) 815 return; 816 817 if (!mvmvif->queue_params[IEEE80211_AC_VO].uapsd && 818 !mvmvif->queue_params[IEEE80211_AC_VI].uapsd && 819 !mvmvif->queue_params[IEEE80211_AC_BE].uapsd && 820 !mvmvif->queue_params[IEEE80211_AC_BK].uapsd) 821 return; 822 823 if (mvm->tcm.data[mvmvif->id].uapsd_nonagg_detect.detected) 824 return; 825 826 mvm->tcm.data[mvmvif->id].uapsd_nonagg_detect.detected = true; 827 IWL_INFO(mvm, 828 "detected AP should do aggregation but isn't, likely due to U-APSD\n"); 829 schedule_delayed_work(&mvmvif->uapsd_nonagg_detected_wk, 15 * HZ); 830 } 831 832 static void iwl_mvm_check_uapsd_agg_expected_tpt(struct iwl_mvm *mvm, 833 unsigned int elapsed, 834 int mac) 835 { 836 u64 bytes = mvm->tcm.data[mac].uapsd_nonagg_detect.rx_bytes; 837 u64 tpt; 838 unsigned long rate; 839 struct ieee80211_vif *vif; 840 841 rate = ewma_rate_read(&mvm->tcm.data[mac].uapsd_nonagg_detect.rate); 842 843 if (!rate || mvm->tcm.data[mac].opened_rx_ba_sessions || 844 mvm->tcm.data[mac].uapsd_nonagg_detect.detected) 845 return; 846 847 if (iwl_mvm_has_new_rx_api(mvm)) { 848 tpt = 8 * bytes; /* kbps */ 849 do_div(tpt, elapsed); 850 rate *= 1000; /* kbps */ 851 if (tpt < 22 * rate / 100) 852 return; 853 } else { 854 /* 855 * the rate here is actually the threshold, in 100Kbps units, 856 * so do the needed conversion from bytes to 100Kbps: 857 * 100kb = bits / (100 * 1000), 858 * 100kbps = 100kb / (msecs / 1000) == 859 * (bits / (100 * 1000)) / (msecs / 1000) == 860 * bits / (100 * msecs) 861 */ 862 tpt = (8 * bytes); 863 do_div(tpt, elapsed * 100); 864 if (tpt < rate) 865 return; 866 } 867 868 rcu_read_lock(); 869 vif = rcu_dereference(mvm->vif_id_to_mac[mac]); 870 if (vif) 871 iwl_mvm_uapsd_agg_disconnect(mvm, vif); 872 rcu_read_unlock(); 873 } 874 875 static void iwl_mvm_tcm_iterator(void *_data, u8 *mac, 876 struct ieee80211_vif *vif) 877 { 878 struct iwl_mvm_vif *mvmvif = iwl_mvm_vif_from_mac80211(vif); 879 u32 *band = _data; 880 881 if (!mvmvif->phy_ctxt) 882 return; 883 884 band[mvmvif->id] = mvmvif->phy_ctxt->channel->band; 885 } 886 887 static unsigned long iwl_mvm_calc_tcm_stats(struct iwl_mvm *mvm, 888 unsigned long ts, 889 bool handle_uapsd) 890 { 891 unsigned int elapsed = jiffies_to_msecs(ts - mvm->tcm.ts); 892 unsigned int uapsd_elapsed = 893 jiffies_to_msecs(ts - mvm->tcm.uapsd_nonagg_ts); 894 u32 total_airtime = 0; 895 u32 band_airtime[NUM_NL80211_BANDS] = {0}; 896 u32 band[NUM_MAC_INDEX_DRIVER] = {0}; 897 int ac, mac, i; 898 bool low_latency = false; 899 enum iwl_mvm_traffic_load load, band_load; 900 bool handle_ll = time_after(ts, mvm->tcm.ll_ts + MVM_LL_PERIOD); 901 902 if (handle_ll) 903 mvm->tcm.ll_ts = ts; 904 if (handle_uapsd) 905 mvm->tcm.uapsd_nonagg_ts = ts; 906 907 mvm->tcm.result.elapsed = elapsed; 908 909 ieee80211_iterate_active_interfaces_atomic(mvm->hw, 910 IEEE80211_IFACE_ITER_NORMAL, 911 iwl_mvm_tcm_iterator, 912 &band); 913 914 for (mac = 0; mac < NUM_MAC_INDEX_DRIVER; mac++) { 915 struct iwl_mvm_tcm_mac *mdata = &mvm->tcm.data[mac]; 916 u32 vo_vi_pkts = 0; 917 u32 airtime = mdata->rx.airtime + mdata->tx.airtime; 918 919 total_airtime += airtime; 920 band_airtime[band[mac]] += airtime; 921 922 load = iwl_mvm_tcm_load(mvm, airtime, elapsed); 923 mvm->tcm.result.change[mac] = load != mvm->tcm.result.load[mac]; 924 mvm->tcm.result.load[mac] = load; 925 mvm->tcm.result.airtime[mac] = airtime; 926 927 for (ac = IEEE80211_AC_VO; ac <= IEEE80211_AC_VI; ac++) 928 vo_vi_pkts += mdata->rx.pkts[ac] + 929 mdata->tx.pkts[ac]; 930 931 /* enable immediately with enough packets but defer disabling */ 932 if (vo_vi_pkts > IWL_MVM_TCM_LOWLAT_ENABLE_THRESH) 933 mvm->tcm.result.low_latency[mac] = true; 934 else if (handle_ll) 935 mvm->tcm.result.low_latency[mac] = false; 936 937 if (handle_ll) { 938 /* clear old data */ 939 memset(&mdata->rx.pkts, 0, sizeof(mdata->rx.pkts)); 940 memset(&mdata->tx.pkts, 0, sizeof(mdata->tx.pkts)); 941 } 942 low_latency |= mvm->tcm.result.low_latency[mac]; 943 944 if (!mvm->tcm.result.low_latency[mac] && handle_uapsd) 945 iwl_mvm_check_uapsd_agg_expected_tpt(mvm, uapsd_elapsed, 946 mac); 947 /* clear old data */ 948 if (handle_uapsd) 949 mdata->uapsd_nonagg_detect.rx_bytes = 0; 950 memset(&mdata->rx.airtime, 0, sizeof(mdata->rx.airtime)); 951 memset(&mdata->tx.airtime, 0, sizeof(mdata->tx.airtime)); 952 } 953 954 load = iwl_mvm_tcm_load(mvm, total_airtime, elapsed); 955 mvm->tcm.result.global_load = load; 956 957 for (i = 0; i < NUM_NL80211_BANDS; i++) { 958 band_load = iwl_mvm_tcm_load(mvm, band_airtime[i], elapsed); 959 mvm->tcm.result.band_load[i] = band_load; 960 } 961 962 /* 963 * If the current load isn't low we need to force re-evaluation 964 * in the TCM period, so that we can return to low load if there 965 * was no traffic at all (and thus iwl_mvm_recalc_tcm didn't get 966 * triggered by traffic). 967 */ 968 if (load != IWL_MVM_TRAFFIC_LOW) 969 return MVM_TCM_PERIOD; 970 /* 971 * If low-latency is active we need to force re-evaluation after 972 * (the longer) MVM_LL_PERIOD, so that we can disable low-latency 973 * when there's no traffic at all. 974 */ 975 if (low_latency) 976 return MVM_LL_PERIOD; 977 /* 978 * Otherwise, we don't need to run the work struct because we're 979 * in the default "idle" state - traffic indication is low (which 980 * also covers the "no traffic" case) and low-latency is disabled 981 * so there's no state that may need to be disabled when there's 982 * no traffic at all. 983 * 984 * Note that this has no impact on the regular scheduling of the 985 * updates triggered by traffic - those happen whenever one of the 986 * two timeouts expire (if there's traffic at all.) 987 */ 988 return 0; 989 } 990 991 void iwl_mvm_recalc_tcm(struct iwl_mvm *mvm) 992 { 993 unsigned long ts = jiffies; 994 bool handle_uapsd = 995 time_after(ts, mvm->tcm.uapsd_nonagg_ts + 996 msecs_to_jiffies(IWL_MVM_UAPSD_NONAGG_PERIOD)); 997 998 spin_lock(&mvm->tcm.lock); 999 if (mvm->tcm.paused || !time_after(ts, mvm->tcm.ts + MVM_TCM_PERIOD)) { 1000 spin_unlock(&mvm->tcm.lock); 1001 return; 1002 } 1003 spin_unlock(&mvm->tcm.lock); 1004 1005 if (handle_uapsd && iwl_mvm_has_new_rx_api(mvm)) { 1006 mutex_lock(&mvm->mutex); 1007 if (iwl_mvm_request_statistics(mvm, true)) 1008 handle_uapsd = false; 1009 mutex_unlock(&mvm->mutex); 1010 } 1011 1012 spin_lock(&mvm->tcm.lock); 1013 /* re-check if somebody else won the recheck race */ 1014 if (!mvm->tcm.paused && time_after(ts, mvm->tcm.ts + MVM_TCM_PERIOD)) { 1015 /* calculate statistics */ 1016 unsigned long work_delay = iwl_mvm_calc_tcm_stats(mvm, ts, 1017 handle_uapsd); 1018 1019 /* the memset needs to be visible before the timestamp */ 1020 smp_mb(); 1021 mvm->tcm.ts = ts; 1022 if (work_delay) 1023 schedule_delayed_work(&mvm->tcm.work, work_delay); 1024 } 1025 spin_unlock(&mvm->tcm.lock); 1026 1027 iwl_mvm_tcm_results(mvm); 1028 } 1029 1030 void iwl_mvm_tcm_work(struct work_struct *work) 1031 { 1032 struct delayed_work *delayed_work = to_delayed_work(work); 1033 struct iwl_mvm *mvm = container_of(delayed_work, struct iwl_mvm, 1034 tcm.work); 1035 1036 iwl_mvm_recalc_tcm(mvm); 1037 } 1038 1039 void iwl_mvm_pause_tcm(struct iwl_mvm *mvm, bool with_cancel) 1040 { 1041 spin_lock_bh(&mvm->tcm.lock); 1042 mvm->tcm.paused = true; 1043 spin_unlock_bh(&mvm->tcm.lock); 1044 if (with_cancel) 1045 cancel_delayed_work_sync(&mvm->tcm.work); 1046 } 1047 1048 void iwl_mvm_resume_tcm(struct iwl_mvm *mvm) 1049 { 1050 int mac; 1051 bool low_latency = false; 1052 1053 spin_lock_bh(&mvm->tcm.lock); 1054 mvm->tcm.ts = jiffies; 1055 mvm->tcm.ll_ts = jiffies; 1056 for (mac = 0; mac < NUM_MAC_INDEX_DRIVER; mac++) { 1057 struct iwl_mvm_tcm_mac *mdata = &mvm->tcm.data[mac]; 1058 1059 memset(&mdata->rx.pkts, 0, sizeof(mdata->rx.pkts)); 1060 memset(&mdata->tx.pkts, 0, sizeof(mdata->tx.pkts)); 1061 memset(&mdata->rx.airtime, 0, sizeof(mdata->rx.airtime)); 1062 memset(&mdata->tx.airtime, 0, sizeof(mdata->tx.airtime)); 1063 1064 if (mvm->tcm.result.low_latency[mac]) 1065 low_latency = true; 1066 } 1067 /* The TCM data needs to be reset before "paused" flag changes */ 1068 smp_mb(); 1069 mvm->tcm.paused = false; 1070 1071 /* 1072 * if the current load is not low or low latency is active, force 1073 * re-evaluation to cover the case of no traffic. 1074 */ 1075 if (mvm->tcm.result.global_load > IWL_MVM_TRAFFIC_LOW) 1076 schedule_delayed_work(&mvm->tcm.work, MVM_TCM_PERIOD); 1077 else if (low_latency) 1078 schedule_delayed_work(&mvm->tcm.work, MVM_LL_PERIOD); 1079 1080 spin_unlock_bh(&mvm->tcm.lock); 1081 } 1082 1083 void iwl_mvm_tcm_add_vif(struct iwl_mvm *mvm, struct ieee80211_vif *vif) 1084 { 1085 struct iwl_mvm_vif *mvmvif = iwl_mvm_vif_from_mac80211(vif); 1086 1087 INIT_DELAYED_WORK(&mvmvif->uapsd_nonagg_detected_wk, 1088 iwl_mvm_tcm_uapsd_nonagg_detected_wk); 1089 } 1090 1091 void iwl_mvm_tcm_rm_vif(struct iwl_mvm *mvm, struct ieee80211_vif *vif) 1092 { 1093 struct iwl_mvm_vif *mvmvif = iwl_mvm_vif_from_mac80211(vif); 1094 1095 cancel_delayed_work_sync(&mvmvif->uapsd_nonagg_detected_wk); 1096 } 1097 1098 u32 iwl_mvm_get_systime(struct iwl_mvm *mvm) 1099 { 1100 u32 reg_addr = DEVICE_SYSTEM_TIME_REG; 1101 1102 if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_22000 && 1103 mvm->trans->cfg->gp2_reg_addr) 1104 reg_addr = mvm->trans->cfg->gp2_reg_addr; 1105 1106 return iwl_read_prph(mvm->trans, reg_addr); 1107 } 1108 1109 void iwl_mvm_get_sync_time(struct iwl_mvm *mvm, int clock_type, 1110 u32 *gp2, u64 *boottime, ktime_t *realtime) 1111 { 1112 bool ps_disabled; 1113 1114 lockdep_assert_held(&mvm->mutex); 1115 1116 /* Disable power save when reading GP2 */ 1117 ps_disabled = mvm->ps_disabled; 1118 if (!ps_disabled) { 1119 mvm->ps_disabled = true; 1120 iwl_mvm_power_update_device(mvm); 1121 } 1122 1123 *gp2 = iwl_mvm_get_systime(mvm); 1124 1125 if (clock_type == CLOCK_BOOTTIME && boottime) 1126 *boottime = ktime_get_boottime_ns(); 1127 else if (clock_type == CLOCK_REALTIME && realtime) 1128 *realtime = ktime_get_real(); 1129 1130 if (!ps_disabled) { 1131 mvm->ps_disabled = ps_disabled; 1132 iwl_mvm_power_update_device(mvm); 1133 } 1134 } 1135