1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause 2 /* 3 * Copyright (C) 2012-2014, 2018-2022 Intel Corporation 4 * Copyright (C) 2013-2014 Intel Mobile Communications GmbH 5 * Copyright (C) 2015-2017 Intel Deutschland GmbH 6 */ 7 #include <net/mac80211.h> 8 9 #include "iwl-debug.h" 10 #include "iwl-io.h" 11 #include "iwl-prph.h" 12 #include "iwl-csr.h" 13 #include "mvm.h" 14 #include "fw/api/rs.h" 15 #include "fw/img.h" 16 17 /* 18 * Will return 0 even if the cmd failed when RFKILL is asserted unless 19 * CMD_WANT_SKB is set in cmd->flags. 20 */ 21 int iwl_mvm_send_cmd(struct iwl_mvm *mvm, struct iwl_host_cmd *cmd) 22 { 23 int ret; 24 25 #if defined(CONFIG_IWLWIFI_DEBUGFS) && defined(CONFIG_PM_SLEEP) 26 if (WARN_ON(mvm->d3_test_active)) 27 return -EIO; 28 #endif 29 30 /* 31 * Synchronous commands from this op-mode must hold 32 * the mutex, this ensures we don't try to send two 33 * (or more) synchronous commands at a time. 34 */ 35 if (!(cmd->flags & CMD_ASYNC)) 36 lockdep_assert_held(&mvm->mutex); 37 38 ret = iwl_trans_send_cmd(mvm->trans, cmd); 39 40 /* 41 * If the caller wants the SKB, then don't hide any problems, the 42 * caller might access the response buffer which will be NULL if 43 * the command failed. 44 */ 45 if (cmd->flags & CMD_WANT_SKB) 46 return ret; 47 48 /* 49 * Silently ignore failures if RFKILL is asserted or 50 * we are in suspend\resume process 51 */ 52 if (!ret || ret == -ERFKILL || ret == -EHOSTDOWN) 53 return 0; 54 return ret; 55 } 56 57 int iwl_mvm_send_cmd_pdu(struct iwl_mvm *mvm, u32 id, 58 u32 flags, u16 len, const void *data) 59 { 60 struct iwl_host_cmd cmd = { 61 .id = id, 62 .len = { len, }, 63 .data = { data, }, 64 .flags = flags, 65 }; 66 67 return iwl_mvm_send_cmd(mvm, &cmd); 68 } 69 70 /* 71 * We assume that the caller set the status to the success value 72 */ 73 int iwl_mvm_send_cmd_status(struct iwl_mvm *mvm, struct iwl_host_cmd *cmd, 74 u32 *status) 75 { 76 struct iwl_rx_packet *pkt; 77 struct iwl_cmd_response *resp; 78 int ret, resp_len; 79 80 lockdep_assert_held(&mvm->mutex); 81 82 #if defined(CONFIG_IWLWIFI_DEBUGFS) && defined(CONFIG_PM_SLEEP) 83 if (WARN_ON(mvm->d3_test_active)) 84 return -EIO; 85 #endif 86 87 /* 88 * Only synchronous commands can wait for status, 89 * we use WANT_SKB so the caller can't. 90 */ 91 if (WARN_ONCE(cmd->flags & (CMD_ASYNC | CMD_WANT_SKB), 92 "cmd flags %x", cmd->flags)) 93 return -EINVAL; 94 95 cmd->flags |= CMD_WANT_SKB; 96 97 ret = iwl_trans_send_cmd(mvm->trans, cmd); 98 if (ret == -ERFKILL) { 99 /* 100 * The command failed because of RFKILL, don't update 101 * the status, leave it as success and return 0. 102 */ 103 return 0; 104 } else if (ret) { 105 return ret; 106 } 107 108 pkt = cmd->resp_pkt; 109 110 resp_len = iwl_rx_packet_payload_len(pkt); 111 if (WARN_ON_ONCE(resp_len != sizeof(*resp))) { 112 ret = -EIO; 113 goto out_free_resp; 114 } 115 116 resp = (void *)pkt->data; 117 *status = le32_to_cpu(resp->status); 118 out_free_resp: 119 iwl_free_resp(cmd); 120 return ret; 121 } 122 123 /* 124 * We assume that the caller set the status to the sucess value 125 */ 126 int iwl_mvm_send_cmd_pdu_status(struct iwl_mvm *mvm, u32 id, u16 len, 127 const void *data, u32 *status) 128 { 129 struct iwl_host_cmd cmd = { 130 .id = id, 131 .len = { len, }, 132 .data = { data, }, 133 }; 134 135 return iwl_mvm_send_cmd_status(mvm, &cmd, status); 136 } 137 138 int iwl_mvm_legacy_hw_idx_to_mac80211_idx(u32 rate_n_flags, 139 enum nl80211_band band) 140 { 141 int format = rate_n_flags & RATE_MCS_MOD_TYPE_MSK; 142 int rate = rate_n_flags & RATE_LEGACY_RATE_MSK; 143 bool is_LB = band == NL80211_BAND_2GHZ; 144 145 if (format == RATE_MCS_LEGACY_OFDM_MSK) 146 return is_LB ? rate + IWL_FIRST_OFDM_RATE : 147 rate; 148 149 /* CCK is not allowed in HB */ 150 return is_LB ? rate : -1; 151 } 152 153 int iwl_mvm_legacy_rate_to_mac80211_idx(u32 rate_n_flags, 154 enum nl80211_band band) 155 { 156 int rate = rate_n_flags & RATE_LEGACY_RATE_MSK_V1; 157 int idx; 158 int band_offset = 0; 159 160 /* Legacy rate format, search for match in table */ 161 if (band != NL80211_BAND_2GHZ) 162 band_offset = IWL_FIRST_OFDM_RATE; 163 for (idx = band_offset; idx < IWL_RATE_COUNT_LEGACY; idx++) 164 if (iwl_fw_rate_idx_to_plcp(idx) == rate) 165 return idx - band_offset; 166 167 return -1; 168 } 169 170 u8 iwl_mvm_mac80211_idx_to_hwrate(const struct iwl_fw *fw, int rate_idx) 171 { 172 if (iwl_fw_lookup_cmd_ver(fw, TX_CMD, 0) > 8) 173 /* In the new rate legacy rates are indexed: 174 * 0 - 3 for CCK and 0 - 7 for OFDM. 175 */ 176 return (rate_idx >= IWL_FIRST_OFDM_RATE ? 177 rate_idx - IWL_FIRST_OFDM_RATE : 178 rate_idx); 179 180 return iwl_fw_rate_idx_to_plcp(rate_idx); 181 } 182 183 u8 iwl_mvm_mac80211_ac_to_ucode_ac(enum ieee80211_ac_numbers ac) 184 { 185 static const u8 mac80211_ac_to_ucode_ac[] = { 186 AC_VO, 187 AC_VI, 188 AC_BE, 189 AC_BK 190 }; 191 192 return mac80211_ac_to_ucode_ac[ac]; 193 } 194 195 void iwl_mvm_rx_fw_error(struct iwl_mvm *mvm, struct iwl_rx_cmd_buffer *rxb) 196 { 197 struct iwl_rx_packet *pkt = rxb_addr(rxb); 198 struct iwl_error_resp *err_resp = (void *)pkt->data; 199 200 IWL_ERR(mvm, "FW Error notification: type 0x%08X cmd_id 0x%02X\n", 201 le32_to_cpu(err_resp->error_type), err_resp->cmd_id); 202 IWL_ERR(mvm, "FW Error notification: seq 0x%04X service 0x%08X\n", 203 le16_to_cpu(err_resp->bad_cmd_seq_num), 204 le32_to_cpu(err_resp->error_service)); 205 IWL_ERR(mvm, "FW Error notification: timestamp 0x%016llX\n", 206 le64_to_cpu(err_resp->timestamp)); 207 } 208 209 /* 210 * Returns the first antenna as ANT_[ABC], as defined in iwl-config.h. 211 * The parameter should also be a combination of ANT_[ABC]. 212 */ 213 u8 first_antenna(u8 mask) 214 { 215 BUILD_BUG_ON(ANT_A != BIT(0)); /* using ffs is wrong if not */ 216 if (WARN_ON_ONCE(!mask)) /* ffs will return 0 if mask is zeroed */ 217 return BIT(0); 218 return BIT(ffs(mask) - 1); 219 } 220 221 #define MAX_ANT_NUM 2 222 /* 223 * Toggles between TX antennas to send the probe request on. 224 * Receives the bitmask of valid TX antennas and the *index* used 225 * for the last TX, and returns the next valid *index* to use. 226 * In order to set it in the tx_cmd, must do BIT(idx). 227 */ 228 u8 iwl_mvm_next_antenna(struct iwl_mvm *mvm, u8 valid, u8 last_idx) 229 { 230 u8 ind = last_idx; 231 int i; 232 233 for (i = 0; i < MAX_ANT_NUM; i++) { 234 ind = (ind + 1) % MAX_ANT_NUM; 235 if (valid & BIT(ind)) 236 return ind; 237 } 238 239 WARN_ONCE(1, "Failed to toggle between antennas 0x%x", valid); 240 return last_idx; 241 } 242 243 /** 244 * iwl_mvm_send_lq_cmd() - Send link quality command 245 * @mvm: Driver data. 246 * @lq: Link quality command to send. 247 * 248 * The link quality command is sent as the last step of station creation. 249 * This is the special case in which init is set and we call a callback in 250 * this case to clear the state indicating that station creation is in 251 * progress. 252 */ 253 int iwl_mvm_send_lq_cmd(struct iwl_mvm *mvm, struct iwl_lq_cmd *lq) 254 { 255 struct iwl_host_cmd cmd = { 256 .id = LQ_CMD, 257 .len = { sizeof(struct iwl_lq_cmd), }, 258 .flags = CMD_ASYNC, 259 .data = { lq, }, 260 }; 261 262 if (WARN_ON(lq->sta_id == IWL_MVM_INVALID_STA || 263 iwl_mvm_has_tlc_offload(mvm))) 264 return -EINVAL; 265 266 return iwl_mvm_send_cmd(mvm, &cmd); 267 } 268 269 /** 270 * iwl_mvm_update_smps - Get a request to change the SMPS mode 271 * @mvm: Driver data. 272 * @vif: Pointer to the ieee80211_vif structure 273 * @req_type: The part of the driver who call for a change. 274 * @smps_request: The request to change the SMPS mode. 275 * 276 * Get a requst to change the SMPS mode, 277 * and change it according to all other requests in the driver. 278 */ 279 void iwl_mvm_update_smps(struct iwl_mvm *mvm, struct ieee80211_vif *vif, 280 enum iwl_mvm_smps_type_request req_type, 281 enum ieee80211_smps_mode smps_request) 282 { 283 struct iwl_mvm_vif *mvmvif; 284 enum ieee80211_smps_mode smps_mode = IEEE80211_SMPS_AUTOMATIC; 285 int i; 286 287 lockdep_assert_held(&mvm->mutex); 288 289 /* SMPS is irrelevant for NICs that don't have at least 2 RX antenna */ 290 if (num_of_ant(iwl_mvm_get_valid_rx_ant(mvm)) == 1) 291 return; 292 293 if (vif->type != NL80211_IFTYPE_STATION) 294 return; 295 296 mvmvif = iwl_mvm_vif_from_mac80211(vif); 297 mvmvif->smps_requests[req_type] = smps_request; 298 for (i = 0; i < NUM_IWL_MVM_SMPS_REQ; i++) { 299 if (mvmvif->smps_requests[i] == IEEE80211_SMPS_STATIC) { 300 smps_mode = IEEE80211_SMPS_STATIC; 301 break; 302 } 303 if (mvmvif->smps_requests[i] == IEEE80211_SMPS_DYNAMIC) 304 smps_mode = IEEE80211_SMPS_DYNAMIC; 305 } 306 307 ieee80211_request_smps(vif, smps_mode); 308 } 309 310 static bool iwl_wait_stats_complete(struct iwl_notif_wait_data *notif_wait, 311 struct iwl_rx_packet *pkt, void *data) 312 { 313 WARN_ON(pkt->hdr.cmd != STATISTICS_NOTIFICATION); 314 315 return true; 316 } 317 318 int iwl_mvm_request_statistics(struct iwl_mvm *mvm, bool clear) 319 { 320 struct iwl_statistics_cmd scmd = { 321 .flags = clear ? cpu_to_le32(IWL_STATISTICS_FLG_CLEAR) : 0, 322 }; 323 324 struct iwl_host_cmd cmd = { 325 .id = STATISTICS_CMD, 326 .len[0] = sizeof(scmd), 327 .data[0] = &scmd, 328 }; 329 int ret; 330 331 /* From version 15 - STATISTICS_NOTIFICATION, the reply for 332 * STATISTICS_CMD is empty, and the response is with 333 * STATISTICS_NOTIFICATION notification 334 */ 335 if (iwl_fw_lookup_notif_ver(mvm->fw, LEGACY_GROUP, 336 STATISTICS_NOTIFICATION, 0) < 15) { 337 cmd.flags = CMD_WANT_SKB; 338 339 ret = iwl_mvm_send_cmd(mvm, &cmd); 340 if (ret) 341 return ret; 342 343 iwl_mvm_handle_rx_statistics(mvm, cmd.resp_pkt); 344 iwl_free_resp(&cmd); 345 } else { 346 struct iwl_notification_wait stats_wait; 347 static const u16 stats_complete[] = { 348 STATISTICS_NOTIFICATION, 349 }; 350 351 iwl_init_notification_wait(&mvm->notif_wait, &stats_wait, 352 stats_complete, ARRAY_SIZE(stats_complete), 353 iwl_wait_stats_complete, NULL); 354 355 ret = iwl_mvm_send_cmd(mvm, &cmd); 356 if (ret) { 357 iwl_remove_notification(&mvm->notif_wait, &stats_wait); 358 return ret; 359 } 360 361 /* 200ms should be enough for FW to collect data from all 362 * LMACs and send STATISTICS_NOTIFICATION to host 363 */ 364 ret = iwl_wait_notification(&mvm->notif_wait, &stats_wait, HZ / 5); 365 if (ret) 366 return ret; 367 } 368 369 if (clear) 370 iwl_mvm_accu_radio_stats(mvm); 371 372 return 0; 373 } 374 375 void iwl_mvm_accu_radio_stats(struct iwl_mvm *mvm) 376 { 377 mvm->accu_radio_stats.rx_time += mvm->radio_stats.rx_time; 378 mvm->accu_radio_stats.tx_time += mvm->radio_stats.tx_time; 379 mvm->accu_radio_stats.on_time_rf += mvm->radio_stats.on_time_rf; 380 mvm->accu_radio_stats.on_time_scan += mvm->radio_stats.on_time_scan; 381 } 382 383 struct iwl_mvm_diversity_iter_data { 384 struct iwl_mvm_phy_ctxt *ctxt; 385 bool result; 386 }; 387 388 static void iwl_mvm_diversity_iter(void *_data, u8 *mac, 389 struct ieee80211_vif *vif) 390 { 391 struct iwl_mvm_vif *mvmvif = iwl_mvm_vif_from_mac80211(vif); 392 struct iwl_mvm_diversity_iter_data *data = _data; 393 int i; 394 395 if (mvmvif->phy_ctxt != data->ctxt) 396 return; 397 398 for (i = 0; i < NUM_IWL_MVM_SMPS_REQ; i++) { 399 if (mvmvif->smps_requests[i] == IEEE80211_SMPS_STATIC || 400 mvmvif->smps_requests[i] == IEEE80211_SMPS_DYNAMIC) { 401 data->result = false; 402 break; 403 } 404 } 405 } 406 407 bool iwl_mvm_rx_diversity_allowed(struct iwl_mvm *mvm, 408 struct iwl_mvm_phy_ctxt *ctxt) 409 { 410 struct iwl_mvm_diversity_iter_data data = { 411 .ctxt = ctxt, 412 .result = true, 413 }; 414 415 lockdep_assert_held(&mvm->mutex); 416 417 if (iwlmvm_mod_params.power_scheme != IWL_POWER_SCHEME_CAM) 418 return false; 419 420 if (num_of_ant(iwl_mvm_get_valid_rx_ant(mvm)) == 1) 421 return false; 422 423 if (mvm->cfg->rx_with_siso_diversity) 424 return false; 425 426 ieee80211_iterate_active_interfaces_atomic( 427 mvm->hw, IEEE80211_IFACE_ITER_NORMAL, 428 iwl_mvm_diversity_iter, &data); 429 430 return data.result; 431 } 432 433 void iwl_mvm_send_low_latency_cmd(struct iwl_mvm *mvm, 434 bool low_latency, u16 mac_id) 435 { 436 struct iwl_mac_low_latency_cmd cmd = { 437 .mac_id = cpu_to_le32(mac_id) 438 }; 439 440 if (!fw_has_capa(&mvm->fw->ucode_capa, 441 IWL_UCODE_TLV_CAPA_DYNAMIC_QUOTA)) 442 return; 443 444 if (low_latency) { 445 /* currently we don't care about the direction */ 446 cmd.low_latency_rx = 1; 447 cmd.low_latency_tx = 1; 448 } 449 450 if (iwl_mvm_send_cmd_pdu(mvm, WIDE_ID(MAC_CONF_GROUP, LOW_LATENCY_CMD), 451 0, sizeof(cmd), &cmd)) 452 IWL_ERR(mvm, "Failed to send low latency command\n"); 453 } 454 455 int iwl_mvm_update_low_latency(struct iwl_mvm *mvm, struct ieee80211_vif *vif, 456 bool low_latency, 457 enum iwl_mvm_low_latency_cause cause) 458 { 459 struct iwl_mvm_vif *mvmvif = iwl_mvm_vif_from_mac80211(vif); 460 int res; 461 bool prev; 462 463 lockdep_assert_held(&mvm->mutex); 464 465 prev = iwl_mvm_vif_low_latency(mvmvif); 466 iwl_mvm_vif_set_low_latency(mvmvif, low_latency, cause); 467 468 low_latency = iwl_mvm_vif_low_latency(mvmvif); 469 470 if (low_latency == prev) 471 return 0; 472 473 iwl_mvm_send_low_latency_cmd(mvm, low_latency, mvmvif->id); 474 475 res = iwl_mvm_update_quotas(mvm, false, NULL); 476 if (res) 477 return res; 478 479 iwl_mvm_bt_coex_vif_change(mvm); 480 481 return iwl_mvm_power_update_mac(mvm); 482 } 483 484 struct iwl_mvm_low_latency_iter { 485 bool result; 486 bool result_per_band[NUM_NL80211_BANDS]; 487 }; 488 489 static void iwl_mvm_ll_iter(void *_data, u8 *mac, struct ieee80211_vif *vif) 490 { 491 struct iwl_mvm_low_latency_iter *result = _data; 492 struct iwl_mvm_vif *mvmvif = iwl_mvm_vif_from_mac80211(vif); 493 enum nl80211_band band; 494 495 if (iwl_mvm_vif_low_latency(mvmvif)) { 496 result->result = true; 497 498 if (!mvmvif->phy_ctxt) 499 return; 500 501 band = mvmvif->phy_ctxt->channel->band; 502 result->result_per_band[band] = true; 503 } 504 } 505 506 bool iwl_mvm_low_latency(struct iwl_mvm *mvm) 507 { 508 struct iwl_mvm_low_latency_iter data = {}; 509 510 ieee80211_iterate_active_interfaces_atomic( 511 mvm->hw, IEEE80211_IFACE_ITER_NORMAL, 512 iwl_mvm_ll_iter, &data); 513 514 return data.result; 515 } 516 517 bool iwl_mvm_low_latency_band(struct iwl_mvm *mvm, enum nl80211_band band) 518 { 519 struct iwl_mvm_low_latency_iter data = {}; 520 521 ieee80211_iterate_active_interfaces_atomic( 522 mvm->hw, IEEE80211_IFACE_ITER_NORMAL, 523 iwl_mvm_ll_iter, &data); 524 525 return data.result_per_band[band]; 526 } 527 528 struct iwl_bss_iter_data { 529 struct ieee80211_vif *vif; 530 bool error; 531 }; 532 533 static void iwl_mvm_bss_iface_iterator(void *_data, u8 *mac, 534 struct ieee80211_vif *vif) 535 { 536 struct iwl_bss_iter_data *data = _data; 537 538 if (vif->type != NL80211_IFTYPE_STATION || vif->p2p) 539 return; 540 541 if (data->vif) { 542 data->error = true; 543 return; 544 } 545 546 data->vif = vif; 547 } 548 549 struct ieee80211_vif *iwl_mvm_get_bss_vif(struct iwl_mvm *mvm) 550 { 551 struct iwl_bss_iter_data bss_iter_data = {}; 552 553 ieee80211_iterate_active_interfaces_atomic( 554 mvm->hw, IEEE80211_IFACE_ITER_NORMAL, 555 iwl_mvm_bss_iface_iterator, &bss_iter_data); 556 557 if (bss_iter_data.error) { 558 IWL_ERR(mvm, "More than one managed interface active!\n"); 559 return ERR_PTR(-EINVAL); 560 } 561 562 return bss_iter_data.vif; 563 } 564 565 struct iwl_bss_find_iter_data { 566 struct ieee80211_vif *vif; 567 u32 macid; 568 }; 569 570 static void iwl_mvm_bss_find_iface_iterator(void *_data, u8 *mac, 571 struct ieee80211_vif *vif) 572 { 573 struct iwl_bss_find_iter_data *data = _data; 574 struct iwl_mvm_vif *mvmvif = iwl_mvm_vif_from_mac80211(vif); 575 576 if (mvmvif->id == data->macid) 577 data->vif = vif; 578 } 579 580 struct ieee80211_vif *iwl_mvm_get_vif_by_macid(struct iwl_mvm *mvm, u32 macid) 581 { 582 struct iwl_bss_find_iter_data data = { 583 .macid = macid, 584 }; 585 586 lockdep_assert_held(&mvm->mutex); 587 588 ieee80211_iterate_active_interfaces_atomic( 589 mvm->hw, IEEE80211_IFACE_ITER_NORMAL, 590 iwl_mvm_bss_find_iface_iterator, &data); 591 592 return data.vif; 593 } 594 595 struct iwl_sta_iter_data { 596 bool assoc; 597 }; 598 599 static void iwl_mvm_sta_iface_iterator(void *_data, u8 *mac, 600 struct ieee80211_vif *vif) 601 { 602 struct iwl_sta_iter_data *data = _data; 603 604 if (vif->type != NL80211_IFTYPE_STATION) 605 return; 606 607 if (vif->bss_conf.assoc) 608 data->assoc = true; 609 } 610 611 bool iwl_mvm_is_vif_assoc(struct iwl_mvm *mvm) 612 { 613 struct iwl_sta_iter_data data = { 614 .assoc = false, 615 }; 616 617 ieee80211_iterate_active_interfaces_atomic(mvm->hw, 618 IEEE80211_IFACE_ITER_NORMAL, 619 iwl_mvm_sta_iface_iterator, 620 &data); 621 return data.assoc; 622 } 623 624 unsigned int iwl_mvm_get_wd_timeout(struct iwl_mvm *mvm, 625 struct ieee80211_vif *vif, 626 bool tdls, bool cmd_q) 627 { 628 struct iwl_fw_dbg_trigger_tlv *trigger; 629 struct iwl_fw_dbg_trigger_txq_timer *txq_timer; 630 unsigned int default_timeout = cmd_q ? 631 IWL_DEF_WD_TIMEOUT : 632 mvm->trans->trans_cfg->base_params->wd_timeout; 633 634 if (!iwl_fw_dbg_trigger_enabled(mvm->fw, FW_DBG_TRIGGER_TXQ_TIMERS)) { 635 /* 636 * We can't know when the station is asleep or awake, so we 637 * must disable the queue hang detection. 638 */ 639 if (fw_has_capa(&mvm->fw->ucode_capa, 640 IWL_UCODE_TLV_CAPA_STA_PM_NOTIF) && 641 vif && vif->type == NL80211_IFTYPE_AP) 642 return IWL_WATCHDOG_DISABLED; 643 return default_timeout; 644 } 645 646 trigger = iwl_fw_dbg_get_trigger(mvm->fw, FW_DBG_TRIGGER_TXQ_TIMERS); 647 txq_timer = (void *)trigger->data; 648 649 if (tdls) 650 return le32_to_cpu(txq_timer->tdls); 651 652 if (cmd_q) 653 return le32_to_cpu(txq_timer->command_queue); 654 655 if (WARN_ON(!vif)) 656 return default_timeout; 657 658 switch (ieee80211_vif_type_p2p(vif)) { 659 case NL80211_IFTYPE_ADHOC: 660 return le32_to_cpu(txq_timer->ibss); 661 case NL80211_IFTYPE_STATION: 662 return le32_to_cpu(txq_timer->bss); 663 case NL80211_IFTYPE_AP: 664 return le32_to_cpu(txq_timer->softap); 665 case NL80211_IFTYPE_P2P_CLIENT: 666 return le32_to_cpu(txq_timer->p2p_client); 667 case NL80211_IFTYPE_P2P_GO: 668 return le32_to_cpu(txq_timer->p2p_go); 669 case NL80211_IFTYPE_P2P_DEVICE: 670 return le32_to_cpu(txq_timer->p2p_device); 671 case NL80211_IFTYPE_MONITOR: 672 return default_timeout; 673 default: 674 WARN_ON(1); 675 return mvm->trans->trans_cfg->base_params->wd_timeout; 676 } 677 } 678 679 void iwl_mvm_connection_loss(struct iwl_mvm *mvm, struct ieee80211_vif *vif, 680 const char *errmsg) 681 { 682 struct iwl_fw_dbg_trigger_tlv *trig; 683 struct iwl_fw_dbg_trigger_mlme *trig_mlme; 684 685 trig = iwl_fw_dbg_trigger_on(&mvm->fwrt, ieee80211_vif_to_wdev(vif), 686 FW_DBG_TRIGGER_MLME); 687 if (!trig) 688 goto out; 689 690 trig_mlme = (void *)trig->data; 691 692 if (trig_mlme->stop_connection_loss && 693 --trig_mlme->stop_connection_loss) 694 goto out; 695 696 iwl_fw_dbg_collect_trig(&mvm->fwrt, trig, "%s", errmsg); 697 698 out: 699 ieee80211_connection_loss(vif); 700 } 701 702 void iwl_mvm_event_frame_timeout_callback(struct iwl_mvm *mvm, 703 struct ieee80211_vif *vif, 704 const struct ieee80211_sta *sta, 705 u16 tid) 706 { 707 struct iwl_fw_dbg_trigger_tlv *trig; 708 struct iwl_fw_dbg_trigger_ba *ba_trig; 709 710 trig = iwl_fw_dbg_trigger_on(&mvm->fwrt, ieee80211_vif_to_wdev(vif), 711 FW_DBG_TRIGGER_BA); 712 if (!trig) 713 return; 714 715 ba_trig = (void *)trig->data; 716 717 if (!(le16_to_cpu(ba_trig->frame_timeout) & BIT(tid))) 718 return; 719 720 iwl_fw_dbg_collect_trig(&mvm->fwrt, trig, 721 "Frame from %pM timed out, tid %d", 722 sta->addr, tid); 723 } 724 725 u8 iwl_mvm_tcm_load_percentage(u32 airtime, u32 elapsed) 726 { 727 if (!elapsed) 728 return 0; 729 730 return (100 * airtime / elapsed) / USEC_PER_MSEC; 731 } 732 733 static enum iwl_mvm_traffic_load 734 iwl_mvm_tcm_load(struct iwl_mvm *mvm, u32 airtime, unsigned long elapsed) 735 { 736 u8 load = iwl_mvm_tcm_load_percentage(airtime, elapsed); 737 738 if (load > IWL_MVM_TCM_LOAD_HIGH_THRESH) 739 return IWL_MVM_TRAFFIC_HIGH; 740 if (load > IWL_MVM_TCM_LOAD_MEDIUM_THRESH) 741 return IWL_MVM_TRAFFIC_MEDIUM; 742 743 return IWL_MVM_TRAFFIC_LOW; 744 } 745 746 static void iwl_mvm_tcm_iter(void *_data, u8 *mac, struct ieee80211_vif *vif) 747 { 748 struct iwl_mvm *mvm = _data; 749 struct iwl_mvm_vif *mvmvif = iwl_mvm_vif_from_mac80211(vif); 750 bool low_latency, prev = mvmvif->low_latency & LOW_LATENCY_TRAFFIC; 751 752 if (mvmvif->id >= NUM_MAC_INDEX_DRIVER) 753 return; 754 755 low_latency = mvm->tcm.result.low_latency[mvmvif->id]; 756 757 if (!mvm->tcm.result.change[mvmvif->id] && 758 prev == low_latency) { 759 iwl_mvm_update_quotas(mvm, false, NULL); 760 return; 761 } 762 763 if (prev != low_latency) { 764 /* this sends traffic load and updates quota as well */ 765 iwl_mvm_update_low_latency(mvm, vif, low_latency, 766 LOW_LATENCY_TRAFFIC); 767 } else { 768 iwl_mvm_update_quotas(mvm, false, NULL); 769 } 770 } 771 772 static void iwl_mvm_tcm_results(struct iwl_mvm *mvm) 773 { 774 mutex_lock(&mvm->mutex); 775 776 ieee80211_iterate_active_interfaces( 777 mvm->hw, IEEE80211_IFACE_ITER_NORMAL, 778 iwl_mvm_tcm_iter, mvm); 779 780 if (fw_has_capa(&mvm->fw->ucode_capa, IWL_UCODE_TLV_CAPA_UMAC_SCAN)) 781 iwl_mvm_config_scan(mvm); 782 783 mutex_unlock(&mvm->mutex); 784 } 785 786 static void iwl_mvm_tcm_uapsd_nonagg_detected_wk(struct work_struct *wk) 787 { 788 struct iwl_mvm *mvm; 789 struct iwl_mvm_vif *mvmvif; 790 struct ieee80211_vif *vif; 791 792 mvmvif = container_of(wk, struct iwl_mvm_vif, 793 uapsd_nonagg_detected_wk.work); 794 vif = container_of((void *)mvmvif, struct ieee80211_vif, drv_priv); 795 mvm = mvmvif->mvm; 796 797 if (mvm->tcm.data[mvmvif->id].opened_rx_ba_sessions) 798 return; 799 800 /* remember that this AP is broken */ 801 memcpy(mvm->uapsd_noagg_bssids[mvm->uapsd_noagg_bssid_write_idx].addr, 802 vif->bss_conf.bssid, ETH_ALEN); 803 mvm->uapsd_noagg_bssid_write_idx++; 804 if (mvm->uapsd_noagg_bssid_write_idx >= IWL_MVM_UAPSD_NOAGG_LIST_LEN) 805 mvm->uapsd_noagg_bssid_write_idx = 0; 806 807 iwl_mvm_connection_loss(mvm, vif, 808 "AP isn't using AMPDU with uAPSD enabled"); 809 } 810 811 static void iwl_mvm_uapsd_agg_disconnect(struct iwl_mvm *mvm, 812 struct ieee80211_vif *vif) 813 { 814 struct iwl_mvm_vif *mvmvif = iwl_mvm_vif_from_mac80211(vif); 815 816 if (vif->type != NL80211_IFTYPE_STATION) 817 return; 818 819 if (!vif->bss_conf.assoc) 820 return; 821 822 if (!mvmvif->queue_params[IEEE80211_AC_VO].uapsd && 823 !mvmvif->queue_params[IEEE80211_AC_VI].uapsd && 824 !mvmvif->queue_params[IEEE80211_AC_BE].uapsd && 825 !mvmvif->queue_params[IEEE80211_AC_BK].uapsd) 826 return; 827 828 if (mvm->tcm.data[mvmvif->id].uapsd_nonagg_detect.detected) 829 return; 830 831 mvm->tcm.data[mvmvif->id].uapsd_nonagg_detect.detected = true; 832 IWL_INFO(mvm, 833 "detected AP should do aggregation but isn't, likely due to U-APSD\n"); 834 schedule_delayed_work(&mvmvif->uapsd_nonagg_detected_wk, 15 * HZ); 835 } 836 837 static void iwl_mvm_check_uapsd_agg_expected_tpt(struct iwl_mvm *mvm, 838 unsigned int elapsed, 839 int mac) 840 { 841 u64 bytes = mvm->tcm.data[mac].uapsd_nonagg_detect.rx_bytes; 842 u64 tpt; 843 unsigned long rate; 844 struct ieee80211_vif *vif; 845 846 rate = ewma_rate_read(&mvm->tcm.data[mac].uapsd_nonagg_detect.rate); 847 848 if (!rate || mvm->tcm.data[mac].opened_rx_ba_sessions || 849 mvm->tcm.data[mac].uapsd_nonagg_detect.detected) 850 return; 851 852 if (iwl_mvm_has_new_rx_api(mvm)) { 853 tpt = 8 * bytes; /* kbps */ 854 do_div(tpt, elapsed); 855 rate *= 1000; /* kbps */ 856 if (tpt < 22 * rate / 100) 857 return; 858 } else { 859 /* 860 * the rate here is actually the threshold, in 100Kbps units, 861 * so do the needed conversion from bytes to 100Kbps: 862 * 100kb = bits / (100 * 1000), 863 * 100kbps = 100kb / (msecs / 1000) == 864 * (bits / (100 * 1000)) / (msecs / 1000) == 865 * bits / (100 * msecs) 866 */ 867 tpt = (8 * bytes); 868 do_div(tpt, elapsed * 100); 869 if (tpt < rate) 870 return; 871 } 872 873 rcu_read_lock(); 874 vif = rcu_dereference(mvm->vif_id_to_mac[mac]); 875 if (vif) 876 iwl_mvm_uapsd_agg_disconnect(mvm, vif); 877 rcu_read_unlock(); 878 } 879 880 static void iwl_mvm_tcm_iterator(void *_data, u8 *mac, 881 struct ieee80211_vif *vif) 882 { 883 struct iwl_mvm_vif *mvmvif = iwl_mvm_vif_from_mac80211(vif); 884 u32 *band = _data; 885 886 if (!mvmvif->phy_ctxt) 887 return; 888 889 band[mvmvif->id] = mvmvif->phy_ctxt->channel->band; 890 } 891 892 static unsigned long iwl_mvm_calc_tcm_stats(struct iwl_mvm *mvm, 893 unsigned long ts, 894 bool handle_uapsd) 895 { 896 unsigned int elapsed = jiffies_to_msecs(ts - mvm->tcm.ts); 897 unsigned int uapsd_elapsed = 898 jiffies_to_msecs(ts - mvm->tcm.uapsd_nonagg_ts); 899 u32 total_airtime = 0; 900 u32 band_airtime[NUM_NL80211_BANDS] = {0}; 901 u32 band[NUM_MAC_INDEX_DRIVER] = {0}; 902 int ac, mac, i; 903 bool low_latency = false; 904 enum iwl_mvm_traffic_load load, band_load; 905 bool handle_ll = time_after(ts, mvm->tcm.ll_ts + MVM_LL_PERIOD); 906 907 if (handle_ll) 908 mvm->tcm.ll_ts = ts; 909 if (handle_uapsd) 910 mvm->tcm.uapsd_nonagg_ts = ts; 911 912 mvm->tcm.result.elapsed = elapsed; 913 914 ieee80211_iterate_active_interfaces_atomic(mvm->hw, 915 IEEE80211_IFACE_ITER_NORMAL, 916 iwl_mvm_tcm_iterator, 917 &band); 918 919 for (mac = 0; mac < NUM_MAC_INDEX_DRIVER; mac++) { 920 struct iwl_mvm_tcm_mac *mdata = &mvm->tcm.data[mac]; 921 u32 vo_vi_pkts = 0; 922 u32 airtime = mdata->rx.airtime + mdata->tx.airtime; 923 924 total_airtime += airtime; 925 band_airtime[band[mac]] += airtime; 926 927 load = iwl_mvm_tcm_load(mvm, airtime, elapsed); 928 mvm->tcm.result.change[mac] = load != mvm->tcm.result.load[mac]; 929 mvm->tcm.result.load[mac] = load; 930 mvm->tcm.result.airtime[mac] = airtime; 931 932 for (ac = IEEE80211_AC_VO; ac <= IEEE80211_AC_VI; ac++) 933 vo_vi_pkts += mdata->rx.pkts[ac] + 934 mdata->tx.pkts[ac]; 935 936 /* enable immediately with enough packets but defer disabling */ 937 if (vo_vi_pkts > IWL_MVM_TCM_LOWLAT_ENABLE_THRESH) 938 mvm->tcm.result.low_latency[mac] = true; 939 else if (handle_ll) 940 mvm->tcm.result.low_latency[mac] = false; 941 942 if (handle_ll) { 943 /* clear old data */ 944 memset(&mdata->rx.pkts, 0, sizeof(mdata->rx.pkts)); 945 memset(&mdata->tx.pkts, 0, sizeof(mdata->tx.pkts)); 946 } 947 low_latency |= mvm->tcm.result.low_latency[mac]; 948 949 if (!mvm->tcm.result.low_latency[mac] && handle_uapsd) 950 iwl_mvm_check_uapsd_agg_expected_tpt(mvm, uapsd_elapsed, 951 mac); 952 /* clear old data */ 953 if (handle_uapsd) 954 mdata->uapsd_nonagg_detect.rx_bytes = 0; 955 memset(&mdata->rx.airtime, 0, sizeof(mdata->rx.airtime)); 956 memset(&mdata->tx.airtime, 0, sizeof(mdata->tx.airtime)); 957 } 958 959 load = iwl_mvm_tcm_load(mvm, total_airtime, elapsed); 960 mvm->tcm.result.global_load = load; 961 962 for (i = 0; i < NUM_NL80211_BANDS; i++) { 963 band_load = iwl_mvm_tcm_load(mvm, band_airtime[i], elapsed); 964 mvm->tcm.result.band_load[i] = band_load; 965 } 966 967 /* 968 * If the current load isn't low we need to force re-evaluation 969 * in the TCM period, so that we can return to low load if there 970 * was no traffic at all (and thus iwl_mvm_recalc_tcm didn't get 971 * triggered by traffic). 972 */ 973 if (load != IWL_MVM_TRAFFIC_LOW) 974 return MVM_TCM_PERIOD; 975 /* 976 * If low-latency is active we need to force re-evaluation after 977 * (the longer) MVM_LL_PERIOD, so that we can disable low-latency 978 * when there's no traffic at all. 979 */ 980 if (low_latency) 981 return MVM_LL_PERIOD; 982 /* 983 * Otherwise, we don't need to run the work struct because we're 984 * in the default "idle" state - traffic indication is low (which 985 * also covers the "no traffic" case) and low-latency is disabled 986 * so there's no state that may need to be disabled when there's 987 * no traffic at all. 988 * 989 * Note that this has no impact on the regular scheduling of the 990 * updates triggered by traffic - those happen whenever one of the 991 * two timeouts expire (if there's traffic at all.) 992 */ 993 return 0; 994 } 995 996 void iwl_mvm_recalc_tcm(struct iwl_mvm *mvm) 997 { 998 unsigned long ts = jiffies; 999 bool handle_uapsd = 1000 time_after(ts, mvm->tcm.uapsd_nonagg_ts + 1001 msecs_to_jiffies(IWL_MVM_UAPSD_NONAGG_PERIOD)); 1002 1003 spin_lock(&mvm->tcm.lock); 1004 if (mvm->tcm.paused || !time_after(ts, mvm->tcm.ts + MVM_TCM_PERIOD)) { 1005 spin_unlock(&mvm->tcm.lock); 1006 return; 1007 } 1008 spin_unlock(&mvm->tcm.lock); 1009 1010 if (handle_uapsd && iwl_mvm_has_new_rx_api(mvm)) { 1011 mutex_lock(&mvm->mutex); 1012 if (iwl_mvm_request_statistics(mvm, true)) 1013 handle_uapsd = false; 1014 mutex_unlock(&mvm->mutex); 1015 } 1016 1017 spin_lock(&mvm->tcm.lock); 1018 /* re-check if somebody else won the recheck race */ 1019 if (!mvm->tcm.paused && time_after(ts, mvm->tcm.ts + MVM_TCM_PERIOD)) { 1020 /* calculate statistics */ 1021 unsigned long work_delay = iwl_mvm_calc_tcm_stats(mvm, ts, 1022 handle_uapsd); 1023 1024 /* the memset needs to be visible before the timestamp */ 1025 smp_mb(); 1026 mvm->tcm.ts = ts; 1027 if (work_delay) 1028 schedule_delayed_work(&mvm->tcm.work, work_delay); 1029 } 1030 spin_unlock(&mvm->tcm.lock); 1031 1032 iwl_mvm_tcm_results(mvm); 1033 } 1034 1035 void iwl_mvm_tcm_work(struct work_struct *work) 1036 { 1037 struct delayed_work *delayed_work = to_delayed_work(work); 1038 struct iwl_mvm *mvm = container_of(delayed_work, struct iwl_mvm, 1039 tcm.work); 1040 1041 iwl_mvm_recalc_tcm(mvm); 1042 } 1043 1044 void iwl_mvm_pause_tcm(struct iwl_mvm *mvm, bool with_cancel) 1045 { 1046 spin_lock_bh(&mvm->tcm.lock); 1047 mvm->tcm.paused = true; 1048 spin_unlock_bh(&mvm->tcm.lock); 1049 if (with_cancel) 1050 cancel_delayed_work_sync(&mvm->tcm.work); 1051 } 1052 1053 void iwl_mvm_resume_tcm(struct iwl_mvm *mvm) 1054 { 1055 int mac; 1056 bool low_latency = false; 1057 1058 spin_lock_bh(&mvm->tcm.lock); 1059 mvm->tcm.ts = jiffies; 1060 mvm->tcm.ll_ts = jiffies; 1061 for (mac = 0; mac < NUM_MAC_INDEX_DRIVER; mac++) { 1062 struct iwl_mvm_tcm_mac *mdata = &mvm->tcm.data[mac]; 1063 1064 memset(&mdata->rx.pkts, 0, sizeof(mdata->rx.pkts)); 1065 memset(&mdata->tx.pkts, 0, sizeof(mdata->tx.pkts)); 1066 memset(&mdata->rx.airtime, 0, sizeof(mdata->rx.airtime)); 1067 memset(&mdata->tx.airtime, 0, sizeof(mdata->tx.airtime)); 1068 1069 if (mvm->tcm.result.low_latency[mac]) 1070 low_latency = true; 1071 } 1072 /* The TCM data needs to be reset before "paused" flag changes */ 1073 smp_mb(); 1074 mvm->tcm.paused = false; 1075 1076 /* 1077 * if the current load is not low or low latency is active, force 1078 * re-evaluation to cover the case of no traffic. 1079 */ 1080 if (mvm->tcm.result.global_load > IWL_MVM_TRAFFIC_LOW) 1081 schedule_delayed_work(&mvm->tcm.work, MVM_TCM_PERIOD); 1082 else if (low_latency) 1083 schedule_delayed_work(&mvm->tcm.work, MVM_LL_PERIOD); 1084 1085 spin_unlock_bh(&mvm->tcm.lock); 1086 } 1087 1088 void iwl_mvm_tcm_add_vif(struct iwl_mvm *mvm, struct ieee80211_vif *vif) 1089 { 1090 struct iwl_mvm_vif *mvmvif = iwl_mvm_vif_from_mac80211(vif); 1091 1092 INIT_DELAYED_WORK(&mvmvif->uapsd_nonagg_detected_wk, 1093 iwl_mvm_tcm_uapsd_nonagg_detected_wk); 1094 } 1095 1096 void iwl_mvm_tcm_rm_vif(struct iwl_mvm *mvm, struct ieee80211_vif *vif) 1097 { 1098 struct iwl_mvm_vif *mvmvif = iwl_mvm_vif_from_mac80211(vif); 1099 1100 cancel_delayed_work_sync(&mvmvif->uapsd_nonagg_detected_wk); 1101 } 1102 1103 u32 iwl_mvm_get_systime(struct iwl_mvm *mvm) 1104 { 1105 u32 reg_addr = DEVICE_SYSTEM_TIME_REG; 1106 1107 if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_22000 && 1108 mvm->trans->cfg->gp2_reg_addr) 1109 reg_addr = mvm->trans->cfg->gp2_reg_addr; 1110 1111 return iwl_read_prph(mvm->trans, reg_addr); 1112 } 1113 1114 void iwl_mvm_get_sync_time(struct iwl_mvm *mvm, int clock_type, 1115 u32 *gp2, u64 *boottime, ktime_t *realtime) 1116 { 1117 bool ps_disabled; 1118 1119 lockdep_assert_held(&mvm->mutex); 1120 1121 /* Disable power save when reading GP2 */ 1122 ps_disabled = mvm->ps_disabled; 1123 if (!ps_disabled) { 1124 mvm->ps_disabled = true; 1125 iwl_mvm_power_update_device(mvm); 1126 } 1127 1128 *gp2 = iwl_mvm_get_systime(mvm); 1129 1130 if (clock_type == CLOCK_BOOTTIME && boottime) 1131 *boottime = ktime_get_boottime_ns(); 1132 else if (clock_type == CLOCK_REALTIME && realtime) 1133 *realtime = ktime_get_real(); 1134 1135 if (!ps_disabled) { 1136 mvm->ps_disabled = ps_disabled; 1137 iwl_mvm_power_update_device(mvm); 1138 } 1139 } 1140