1 /****************************************************************************** 2 * 3 * This file is provided under a dual BSD/GPLv2 license. When using or 4 * redistributing this file, you may do so under either license. 5 * 6 * GPL LICENSE SUMMARY 7 * 8 * Copyright(c) 2012 - 2014 Intel Corporation. All rights reserved. 9 * Copyright(c) 2013 - 2014 Intel Mobile Communications GmbH 10 * Copyright (C) 2015 - 2017 Intel Deutschland GmbH 11 * Copyright(c) 2018 Intel Corporation 12 * 13 * This program is free software; you can redistribute it and/or modify 14 * it under the terms of version 2 of the GNU General Public License as 15 * published by the Free Software Foundation. 16 * 17 * This program is distributed in the hope that it will be useful, but 18 * WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 20 * General Public License for more details. 21 * 22 * The full GNU General Public License is included in this distribution 23 * in the file called COPYING. 24 * 25 * Contact Information: 26 * Intel Linux Wireless <linuxwifi@intel.com> 27 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 28 * 29 * BSD LICENSE 30 * 31 * Copyright(c) 2012 - 2014 Intel Corporation. All rights reserved. 32 * Copyright(c) 2013 - 2014 Intel Mobile Communications GmbH 33 * Copyright (C) 2015 - 2017 Intel Deutschland GmbH 34 * Copyright(c) 2018 Intel Corporation 35 * All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 41 * * Redistributions of source code must retain the above copyright 42 * notice, this list of conditions and the following disclaimer. 43 * * Redistributions in binary form must reproduce the above copyright 44 * notice, this list of conditions and the following disclaimer in 45 * the documentation and/or other materials provided with the 46 * distribution. 47 * * Neither the name Intel Corporation nor the names of its 48 * contributors may be used to endorse or promote products derived 49 * from this software without specific prior written permission. 50 * 51 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 52 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 53 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 54 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 55 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 56 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 57 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 58 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 59 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 60 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 61 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 62 * 63 *****************************************************************************/ 64 #include <net/mac80211.h> 65 66 #include "iwl-debug.h" 67 #include "iwl-io.h" 68 #include "iwl-prph.h" 69 #include "iwl-csr.h" 70 #include "mvm.h" 71 #include "fw/api/rs.h" 72 73 /* 74 * Will return 0 even if the cmd failed when RFKILL is asserted unless 75 * CMD_WANT_SKB is set in cmd->flags. 76 */ 77 int iwl_mvm_send_cmd(struct iwl_mvm *mvm, struct iwl_host_cmd *cmd) 78 { 79 int ret; 80 81 #if defined(CONFIG_IWLWIFI_DEBUGFS) && defined(CONFIG_PM_SLEEP) 82 if (WARN_ON(mvm->d3_test_active)) 83 return -EIO; 84 #endif 85 86 /* 87 * Synchronous commands from this op-mode must hold 88 * the mutex, this ensures we don't try to send two 89 * (or more) synchronous commands at a time. 90 */ 91 if (!(cmd->flags & CMD_ASYNC)) { 92 lockdep_assert_held(&mvm->mutex); 93 if (!(cmd->flags & CMD_SEND_IN_IDLE)) 94 iwl_mvm_ref(mvm, IWL_MVM_REF_SENDING_CMD); 95 } 96 97 ret = iwl_trans_send_cmd(mvm->trans, cmd); 98 99 if (!(cmd->flags & (CMD_ASYNC | CMD_SEND_IN_IDLE))) 100 iwl_mvm_unref(mvm, IWL_MVM_REF_SENDING_CMD); 101 102 /* 103 * If the caller wants the SKB, then don't hide any problems, the 104 * caller might access the response buffer which will be NULL if 105 * the command failed. 106 */ 107 if (cmd->flags & CMD_WANT_SKB) 108 return ret; 109 110 /* Silently ignore failures if RFKILL is asserted */ 111 if (!ret || ret == -ERFKILL) 112 return 0; 113 return ret; 114 } 115 116 int iwl_mvm_send_cmd_pdu(struct iwl_mvm *mvm, u32 id, 117 u32 flags, u16 len, const void *data) 118 { 119 struct iwl_host_cmd cmd = { 120 .id = id, 121 .len = { len, }, 122 .data = { data, }, 123 .flags = flags, 124 }; 125 126 return iwl_mvm_send_cmd(mvm, &cmd); 127 } 128 129 /* 130 * We assume that the caller set the status to the success value 131 */ 132 int iwl_mvm_send_cmd_status(struct iwl_mvm *mvm, struct iwl_host_cmd *cmd, 133 u32 *status) 134 { 135 struct iwl_rx_packet *pkt; 136 struct iwl_cmd_response *resp; 137 int ret, resp_len; 138 139 lockdep_assert_held(&mvm->mutex); 140 141 #if defined(CONFIG_IWLWIFI_DEBUGFS) && defined(CONFIG_PM_SLEEP) 142 if (WARN_ON(mvm->d3_test_active)) 143 return -EIO; 144 #endif 145 146 /* 147 * Only synchronous commands can wait for status, 148 * we use WANT_SKB so the caller can't. 149 */ 150 if (WARN_ONCE(cmd->flags & (CMD_ASYNC | CMD_WANT_SKB), 151 "cmd flags %x", cmd->flags)) 152 return -EINVAL; 153 154 cmd->flags |= CMD_WANT_SKB; 155 156 ret = iwl_trans_send_cmd(mvm->trans, cmd); 157 if (ret == -ERFKILL) { 158 /* 159 * The command failed because of RFKILL, don't update 160 * the status, leave it as success and return 0. 161 */ 162 return 0; 163 } else if (ret) { 164 return ret; 165 } 166 167 pkt = cmd->resp_pkt; 168 169 resp_len = iwl_rx_packet_payload_len(pkt); 170 if (WARN_ON_ONCE(resp_len != sizeof(*resp))) { 171 ret = -EIO; 172 goto out_free_resp; 173 } 174 175 resp = (void *)pkt->data; 176 *status = le32_to_cpu(resp->status); 177 out_free_resp: 178 iwl_free_resp(cmd); 179 return ret; 180 } 181 182 /* 183 * We assume that the caller set the status to the sucess value 184 */ 185 int iwl_mvm_send_cmd_pdu_status(struct iwl_mvm *mvm, u32 id, u16 len, 186 const void *data, u32 *status) 187 { 188 struct iwl_host_cmd cmd = { 189 .id = id, 190 .len = { len, }, 191 .data = { data, }, 192 }; 193 194 return iwl_mvm_send_cmd_status(mvm, &cmd, status); 195 } 196 197 #define IWL_DECLARE_RATE_INFO(r) \ 198 [IWL_RATE_##r##M_INDEX] = IWL_RATE_##r##M_PLCP 199 200 /* 201 * Translate from fw_rate_index (IWL_RATE_XXM_INDEX) to PLCP 202 */ 203 static const u8 fw_rate_idx_to_plcp[IWL_RATE_COUNT] = { 204 IWL_DECLARE_RATE_INFO(1), 205 IWL_DECLARE_RATE_INFO(2), 206 IWL_DECLARE_RATE_INFO(5), 207 IWL_DECLARE_RATE_INFO(11), 208 IWL_DECLARE_RATE_INFO(6), 209 IWL_DECLARE_RATE_INFO(9), 210 IWL_DECLARE_RATE_INFO(12), 211 IWL_DECLARE_RATE_INFO(18), 212 IWL_DECLARE_RATE_INFO(24), 213 IWL_DECLARE_RATE_INFO(36), 214 IWL_DECLARE_RATE_INFO(48), 215 IWL_DECLARE_RATE_INFO(54), 216 }; 217 218 int iwl_mvm_legacy_rate_to_mac80211_idx(u32 rate_n_flags, 219 enum nl80211_band band) 220 { 221 int rate = rate_n_flags & RATE_LEGACY_RATE_MSK; 222 int idx; 223 int band_offset = 0; 224 225 /* Legacy rate format, search for match in table */ 226 if (band == NL80211_BAND_5GHZ) 227 band_offset = IWL_FIRST_OFDM_RATE; 228 for (idx = band_offset; idx < IWL_RATE_COUNT_LEGACY; idx++) 229 if (fw_rate_idx_to_plcp[idx] == rate) 230 return idx - band_offset; 231 232 return -1; 233 } 234 235 u8 iwl_mvm_mac80211_idx_to_hwrate(int rate_idx) 236 { 237 /* Get PLCP rate for tx_cmd->rate_n_flags */ 238 return fw_rate_idx_to_plcp[rate_idx]; 239 } 240 241 u8 iwl_mvm_mac80211_ac_to_ucode_ac(enum ieee80211_ac_numbers ac) 242 { 243 static const u8 mac80211_ac_to_ucode_ac[] = { 244 AC_VO, 245 AC_VI, 246 AC_BE, 247 AC_BK 248 }; 249 250 return mac80211_ac_to_ucode_ac[ac]; 251 } 252 253 void iwl_mvm_rx_fw_error(struct iwl_mvm *mvm, struct iwl_rx_cmd_buffer *rxb) 254 { 255 struct iwl_rx_packet *pkt = rxb_addr(rxb); 256 struct iwl_error_resp *err_resp = (void *)pkt->data; 257 258 IWL_ERR(mvm, "FW Error notification: type 0x%08X cmd_id 0x%02X\n", 259 le32_to_cpu(err_resp->error_type), err_resp->cmd_id); 260 IWL_ERR(mvm, "FW Error notification: seq 0x%04X service 0x%08X\n", 261 le16_to_cpu(err_resp->bad_cmd_seq_num), 262 le32_to_cpu(err_resp->error_service)); 263 IWL_ERR(mvm, "FW Error notification: timestamp 0x%016llX\n", 264 le64_to_cpu(err_resp->timestamp)); 265 } 266 267 /* 268 * Returns the first antenna as ANT_[ABC], as defined in iwl-config.h. 269 * The parameter should also be a combination of ANT_[ABC]. 270 */ 271 u8 first_antenna(u8 mask) 272 { 273 BUILD_BUG_ON(ANT_A != BIT(0)); /* using ffs is wrong if not */ 274 if (WARN_ON_ONCE(!mask)) /* ffs will return 0 if mask is zeroed */ 275 return BIT(0); 276 return BIT(ffs(mask) - 1); 277 } 278 279 /* 280 * Toggles between TX antennas to send the probe request on. 281 * Receives the bitmask of valid TX antennas and the *index* used 282 * for the last TX, and returns the next valid *index* to use. 283 * In order to set it in the tx_cmd, must do BIT(idx). 284 */ 285 u8 iwl_mvm_next_antenna(struct iwl_mvm *mvm, u8 valid, u8 last_idx) 286 { 287 u8 ind = last_idx; 288 int i; 289 290 for (i = 0; i < MAX_ANT_NUM; i++) { 291 ind = (ind + 1) % MAX_ANT_NUM; 292 if (valid & BIT(ind)) 293 return ind; 294 } 295 296 WARN_ONCE(1, "Failed to toggle between antennas 0x%x", valid); 297 return last_idx; 298 } 299 300 #define FW_SYSASSERT_CPU_MASK 0xf0000000 301 static const struct { 302 const char *name; 303 u8 num; 304 } advanced_lookup[] = { 305 { "NMI_INTERRUPT_WDG", 0x34 }, 306 { "SYSASSERT", 0x35 }, 307 { "UCODE_VERSION_MISMATCH", 0x37 }, 308 { "BAD_COMMAND", 0x38 }, 309 { "BAD_COMMAND", 0x39 }, 310 { "NMI_INTERRUPT_DATA_ACTION_PT", 0x3C }, 311 { "FATAL_ERROR", 0x3D }, 312 { "NMI_TRM_HW_ERR", 0x46 }, 313 { "NMI_INTERRUPT_TRM", 0x4C }, 314 { "NMI_INTERRUPT_BREAK_POINT", 0x54 }, 315 { "NMI_INTERRUPT_WDG_RXF_FULL", 0x5C }, 316 { "NMI_INTERRUPT_WDG_NO_RBD_RXF_FULL", 0x64 }, 317 { "NMI_INTERRUPT_HOST", 0x66 }, 318 { "NMI_INTERRUPT_LMAC_FATAL", 0x70 }, 319 { "NMI_INTERRUPT_UMAC_FATAL", 0x71 }, 320 { "NMI_INTERRUPT_OTHER_LMAC_FATAL", 0x73 }, 321 { "NMI_INTERRUPT_ACTION_PT", 0x7C }, 322 { "NMI_INTERRUPT_UNKNOWN", 0x84 }, 323 { "NMI_INTERRUPT_INST_ACTION_PT", 0x86 }, 324 { "ADVANCED_SYSASSERT", 0 }, 325 }; 326 327 static const char *desc_lookup(u32 num) 328 { 329 int i; 330 331 for (i = 0; i < ARRAY_SIZE(advanced_lookup) - 1; i++) 332 if (advanced_lookup[i].num == (num & ~FW_SYSASSERT_CPU_MASK)) 333 return advanced_lookup[i].name; 334 335 /* No entry matches 'num', so it is the last: ADVANCED_SYSASSERT */ 336 return advanced_lookup[i].name; 337 } 338 339 /* 340 * Note: This structure is read from the device with IO accesses, 341 * and the reading already does the endian conversion. As it is 342 * read with u32-sized accesses, any members with a different size 343 * need to be ordered correctly though! 344 */ 345 struct iwl_error_event_table_v1 { 346 u32 valid; /* (nonzero) valid, (0) log is empty */ 347 u32 error_id; /* type of error */ 348 u32 pc; /* program counter */ 349 u32 blink1; /* branch link */ 350 u32 blink2; /* branch link */ 351 u32 ilink1; /* interrupt link */ 352 u32 ilink2; /* interrupt link */ 353 u32 data1; /* error-specific data */ 354 u32 data2; /* error-specific data */ 355 u32 data3; /* error-specific data */ 356 u32 bcon_time; /* beacon timer */ 357 u32 tsf_low; /* network timestamp function timer */ 358 u32 tsf_hi; /* network timestamp function timer */ 359 u32 gp1; /* GP1 timer register */ 360 u32 gp2; /* GP2 timer register */ 361 u32 gp3; /* GP3 timer register */ 362 u32 ucode_ver; /* uCode version */ 363 u32 hw_ver; /* HW Silicon version */ 364 u32 brd_ver; /* HW board version */ 365 u32 log_pc; /* log program counter */ 366 u32 frame_ptr; /* frame pointer */ 367 u32 stack_ptr; /* stack pointer */ 368 u32 hcmd; /* last host command header */ 369 u32 isr0; /* isr status register LMPM_NIC_ISR0: 370 * rxtx_flag */ 371 u32 isr1; /* isr status register LMPM_NIC_ISR1: 372 * host_flag */ 373 u32 isr2; /* isr status register LMPM_NIC_ISR2: 374 * enc_flag */ 375 u32 isr3; /* isr status register LMPM_NIC_ISR3: 376 * time_flag */ 377 u32 isr4; /* isr status register LMPM_NIC_ISR4: 378 * wico interrupt */ 379 u32 isr_pref; /* isr status register LMPM_NIC_PREF_STAT */ 380 u32 wait_event; /* wait event() caller address */ 381 u32 l2p_control; /* L2pControlField */ 382 u32 l2p_duration; /* L2pDurationField */ 383 u32 l2p_mhvalid; /* L2pMhValidBits */ 384 u32 l2p_addr_match; /* L2pAddrMatchStat */ 385 u32 lmpm_pmg_sel; /* indicate which clocks are turned on 386 * (LMPM_PMG_SEL) */ 387 u32 u_timestamp; /* indicate when the date and time of the 388 * compilation */ 389 u32 flow_handler; /* FH read/write pointers, RX credit */ 390 } __packed /* LOG_ERROR_TABLE_API_S_VER_1 */; 391 392 struct iwl_error_event_table { 393 u32 valid; /* (nonzero) valid, (0) log is empty */ 394 u32 error_id; /* type of error */ 395 u32 trm_hw_status0; /* TRM HW status */ 396 u32 trm_hw_status1; /* TRM HW status */ 397 u32 blink2; /* branch link */ 398 u32 ilink1; /* interrupt link */ 399 u32 ilink2; /* interrupt link */ 400 u32 data1; /* error-specific data */ 401 u32 data2; /* error-specific data */ 402 u32 data3; /* error-specific data */ 403 u32 bcon_time; /* beacon timer */ 404 u32 tsf_low; /* network timestamp function timer */ 405 u32 tsf_hi; /* network timestamp function timer */ 406 u32 gp1; /* GP1 timer register */ 407 u32 gp2; /* GP2 timer register */ 408 u32 fw_rev_type; /* firmware revision type */ 409 u32 major; /* uCode version major */ 410 u32 minor; /* uCode version minor */ 411 u32 hw_ver; /* HW Silicon version */ 412 u32 brd_ver; /* HW board version */ 413 u32 log_pc; /* log program counter */ 414 u32 frame_ptr; /* frame pointer */ 415 u32 stack_ptr; /* stack pointer */ 416 u32 hcmd; /* last host command header */ 417 u32 isr0; /* isr status register LMPM_NIC_ISR0: 418 * rxtx_flag */ 419 u32 isr1; /* isr status register LMPM_NIC_ISR1: 420 * host_flag */ 421 u32 isr2; /* isr status register LMPM_NIC_ISR2: 422 * enc_flag */ 423 u32 isr3; /* isr status register LMPM_NIC_ISR3: 424 * time_flag */ 425 u32 isr4; /* isr status register LMPM_NIC_ISR4: 426 * wico interrupt */ 427 u32 last_cmd_id; /* last HCMD id handled by the firmware */ 428 u32 wait_event; /* wait event() caller address */ 429 u32 l2p_control; /* L2pControlField */ 430 u32 l2p_duration; /* L2pDurationField */ 431 u32 l2p_mhvalid; /* L2pMhValidBits */ 432 u32 l2p_addr_match; /* L2pAddrMatchStat */ 433 u32 lmpm_pmg_sel; /* indicate which clocks are turned on 434 * (LMPM_PMG_SEL) */ 435 u32 u_timestamp; /* indicate when the date and time of the 436 * compilation */ 437 u32 flow_handler; /* FH read/write pointers, RX credit */ 438 } __packed /* LOG_ERROR_TABLE_API_S_VER_3 */; 439 440 /* 441 * UMAC error struct - relevant starting from family 8000 chip. 442 * Note: This structure is read from the device with IO accesses, 443 * and the reading already does the endian conversion. As it is 444 * read with u32-sized accesses, any members with a different size 445 * need to be ordered correctly though! 446 */ 447 struct iwl_umac_error_event_table { 448 u32 valid; /* (nonzero) valid, (0) log is empty */ 449 u32 error_id; /* type of error */ 450 u32 blink1; /* branch link */ 451 u32 blink2; /* branch link */ 452 u32 ilink1; /* interrupt link */ 453 u32 ilink2; /* interrupt link */ 454 u32 data1; /* error-specific data */ 455 u32 data2; /* error-specific data */ 456 u32 data3; /* error-specific data */ 457 u32 umac_major; 458 u32 umac_minor; 459 u32 frame_pointer; /* core register 27*/ 460 u32 stack_pointer; /* core register 28 */ 461 u32 cmd_header; /* latest host cmd sent to UMAC */ 462 u32 nic_isr_pref; /* ISR status register */ 463 } __packed; 464 465 #define ERROR_START_OFFSET (1 * sizeof(u32)) 466 #define ERROR_ELEM_SIZE (7 * sizeof(u32)) 467 468 static void iwl_mvm_dump_umac_error_log(struct iwl_mvm *mvm) 469 { 470 struct iwl_trans *trans = mvm->trans; 471 struct iwl_umac_error_event_table table; 472 u32 base = mvm->trans->dbg.umac_error_event_table; 473 474 if (!mvm->support_umac_log && 475 !(mvm->trans->dbg.error_event_table_tlv_status & 476 IWL_ERROR_EVENT_TABLE_UMAC)) 477 return; 478 479 iwl_trans_read_mem_bytes(trans, base, &table, sizeof(table)); 480 481 if (table.valid) 482 mvm->fwrt.dump.umac_err_id = table.error_id; 483 484 if (ERROR_START_OFFSET <= table.valid * ERROR_ELEM_SIZE) { 485 IWL_ERR(trans, "Start IWL Error Log Dump:\n"); 486 IWL_ERR(trans, "Status: 0x%08lX, count: %d\n", 487 mvm->status, table.valid); 488 } 489 490 IWL_ERR(mvm, "0x%08X | %s\n", table.error_id, 491 desc_lookup(table.error_id)); 492 IWL_ERR(mvm, "0x%08X | umac branchlink1\n", table.blink1); 493 IWL_ERR(mvm, "0x%08X | umac branchlink2\n", table.blink2); 494 IWL_ERR(mvm, "0x%08X | umac interruptlink1\n", table.ilink1); 495 IWL_ERR(mvm, "0x%08X | umac interruptlink2\n", table.ilink2); 496 IWL_ERR(mvm, "0x%08X | umac data1\n", table.data1); 497 IWL_ERR(mvm, "0x%08X | umac data2\n", table.data2); 498 IWL_ERR(mvm, "0x%08X | umac data3\n", table.data3); 499 IWL_ERR(mvm, "0x%08X | umac major\n", table.umac_major); 500 IWL_ERR(mvm, "0x%08X | umac minor\n", table.umac_minor); 501 IWL_ERR(mvm, "0x%08X | frame pointer\n", table.frame_pointer); 502 IWL_ERR(mvm, "0x%08X | stack pointer\n", table.stack_pointer); 503 IWL_ERR(mvm, "0x%08X | last host cmd\n", table.cmd_header); 504 IWL_ERR(mvm, "0x%08X | isr status reg\n", table.nic_isr_pref); 505 } 506 507 static void iwl_mvm_dump_lmac_error_log(struct iwl_mvm *mvm, u8 lmac_num) 508 { 509 struct iwl_trans *trans = mvm->trans; 510 struct iwl_error_event_table table; 511 u32 val, base = mvm->trans->dbg.lmac_error_event_table[lmac_num]; 512 513 if (mvm->fwrt.cur_fw_img == IWL_UCODE_INIT) { 514 if (!base) 515 base = mvm->fw->init_errlog_ptr; 516 } else { 517 if (!base) 518 base = mvm->fw->inst_errlog_ptr; 519 } 520 521 if (base < 0x400000) { 522 IWL_ERR(mvm, 523 "Not valid error log pointer 0x%08X for %s uCode\n", 524 base, 525 (mvm->fwrt.cur_fw_img == IWL_UCODE_INIT) 526 ? "Init" : "RT"); 527 return; 528 } 529 530 /* check if there is a HW error */ 531 val = iwl_trans_read_mem32(trans, base); 532 if (((val & ~0xf) == 0xa5a5a5a0) || ((val & ~0xf) == 0x5a5a5a50)) { 533 int err; 534 535 IWL_ERR(trans, "HW error, resetting before reading\n"); 536 537 /* reset the device */ 538 iwl_trans_sw_reset(trans); 539 540 err = iwl_finish_nic_init(trans); 541 if (err) 542 return; 543 } 544 545 iwl_trans_read_mem_bytes(trans, base, &table, sizeof(table)); 546 547 if (table.valid) 548 mvm->fwrt.dump.lmac_err_id[lmac_num] = table.error_id; 549 550 if (ERROR_START_OFFSET <= table.valid * ERROR_ELEM_SIZE) { 551 IWL_ERR(trans, "Start IWL Error Log Dump:\n"); 552 IWL_ERR(trans, "Status: 0x%08lX, count: %d\n", 553 mvm->status, table.valid); 554 } 555 556 /* Do not change this output - scripts rely on it */ 557 558 IWL_ERR(mvm, "Loaded firmware version: %s\n", mvm->fw->fw_version); 559 560 IWL_ERR(mvm, "0x%08X | %-28s\n", table.error_id, 561 desc_lookup(table.error_id)); 562 IWL_ERR(mvm, "0x%08X | trm_hw_status0\n", table.trm_hw_status0); 563 IWL_ERR(mvm, "0x%08X | trm_hw_status1\n", table.trm_hw_status1); 564 IWL_ERR(mvm, "0x%08X | branchlink2\n", table.blink2); 565 IWL_ERR(mvm, "0x%08X | interruptlink1\n", table.ilink1); 566 IWL_ERR(mvm, "0x%08X | interruptlink2\n", table.ilink2); 567 IWL_ERR(mvm, "0x%08X | data1\n", table.data1); 568 IWL_ERR(mvm, "0x%08X | data2\n", table.data2); 569 IWL_ERR(mvm, "0x%08X | data3\n", table.data3); 570 IWL_ERR(mvm, "0x%08X | beacon time\n", table.bcon_time); 571 IWL_ERR(mvm, "0x%08X | tsf low\n", table.tsf_low); 572 IWL_ERR(mvm, "0x%08X | tsf hi\n", table.tsf_hi); 573 IWL_ERR(mvm, "0x%08X | time gp1\n", table.gp1); 574 IWL_ERR(mvm, "0x%08X | time gp2\n", table.gp2); 575 IWL_ERR(mvm, "0x%08X | uCode revision type\n", table.fw_rev_type); 576 IWL_ERR(mvm, "0x%08X | uCode version major\n", table.major); 577 IWL_ERR(mvm, "0x%08X | uCode version minor\n", table.minor); 578 IWL_ERR(mvm, "0x%08X | hw version\n", table.hw_ver); 579 IWL_ERR(mvm, "0x%08X | board version\n", table.brd_ver); 580 IWL_ERR(mvm, "0x%08X | hcmd\n", table.hcmd); 581 IWL_ERR(mvm, "0x%08X | isr0\n", table.isr0); 582 IWL_ERR(mvm, "0x%08X | isr1\n", table.isr1); 583 IWL_ERR(mvm, "0x%08X | isr2\n", table.isr2); 584 IWL_ERR(mvm, "0x%08X | isr3\n", table.isr3); 585 IWL_ERR(mvm, "0x%08X | isr4\n", table.isr4); 586 IWL_ERR(mvm, "0x%08X | last cmd Id\n", table.last_cmd_id); 587 IWL_ERR(mvm, "0x%08X | wait_event\n", table.wait_event); 588 IWL_ERR(mvm, "0x%08X | l2p_control\n", table.l2p_control); 589 IWL_ERR(mvm, "0x%08X | l2p_duration\n", table.l2p_duration); 590 IWL_ERR(mvm, "0x%08X | l2p_mhvalid\n", table.l2p_mhvalid); 591 IWL_ERR(mvm, "0x%08X | l2p_addr_match\n", table.l2p_addr_match); 592 IWL_ERR(mvm, "0x%08X | lmpm_pmg_sel\n", table.lmpm_pmg_sel); 593 IWL_ERR(mvm, "0x%08X | timestamp\n", table.u_timestamp); 594 IWL_ERR(mvm, "0x%08X | flow_handler\n", table.flow_handler); 595 } 596 597 void iwl_mvm_dump_nic_error_log(struct iwl_mvm *mvm) 598 { 599 if (!test_bit(STATUS_DEVICE_ENABLED, &mvm->trans->status)) { 600 IWL_ERR(mvm, 601 "DEVICE_ENABLED bit is not set. Aborting dump.\n"); 602 return; 603 } 604 605 iwl_mvm_dump_lmac_error_log(mvm, 0); 606 607 if (mvm->trans->dbg.lmac_error_event_table[1]) 608 iwl_mvm_dump_lmac_error_log(mvm, 1); 609 610 iwl_mvm_dump_umac_error_log(mvm); 611 612 iwl_fw_error_print_fseq_regs(&mvm->fwrt); 613 } 614 615 int iwl_mvm_reconfig_scd(struct iwl_mvm *mvm, int queue, int fifo, int sta_id, 616 int tid, int frame_limit, u16 ssn) 617 { 618 struct iwl_scd_txq_cfg_cmd cmd = { 619 .scd_queue = queue, 620 .action = SCD_CFG_ENABLE_QUEUE, 621 .window = frame_limit, 622 .sta_id = sta_id, 623 .ssn = cpu_to_le16(ssn), 624 .tx_fifo = fifo, 625 .aggregate = (queue >= IWL_MVM_DQA_MIN_DATA_QUEUE || 626 queue == IWL_MVM_DQA_BSS_CLIENT_QUEUE), 627 .tid = tid, 628 }; 629 int ret; 630 631 if (WARN_ON(iwl_mvm_has_new_tx_api(mvm))) 632 return -EINVAL; 633 634 if (WARN(mvm->queue_info[queue].tid_bitmap == 0, 635 "Trying to reconfig unallocated queue %d\n", queue)) 636 return -ENXIO; 637 638 IWL_DEBUG_TX_QUEUES(mvm, "Reconfig SCD for TXQ #%d\n", queue); 639 640 ret = iwl_mvm_send_cmd_pdu(mvm, SCD_QUEUE_CFG, 0, sizeof(cmd), &cmd); 641 WARN_ONCE(ret, "Failed to re-configure queue %d on FIFO %d, ret=%d\n", 642 queue, fifo, ret); 643 644 return ret; 645 } 646 647 /** 648 * iwl_mvm_send_lq_cmd() - Send link quality command 649 * @sync: This command can be sent synchronously. 650 * 651 * The link quality command is sent as the last step of station creation. 652 * This is the special case in which init is set and we call a callback in 653 * this case to clear the state indicating that station creation is in 654 * progress. 655 */ 656 int iwl_mvm_send_lq_cmd(struct iwl_mvm *mvm, struct iwl_lq_cmd *lq, bool sync) 657 { 658 struct iwl_host_cmd cmd = { 659 .id = LQ_CMD, 660 .len = { sizeof(struct iwl_lq_cmd), }, 661 .flags = sync ? 0 : CMD_ASYNC, 662 .data = { lq, }, 663 }; 664 665 if (WARN_ON(lq->sta_id == IWL_MVM_INVALID_STA || 666 iwl_mvm_has_tlc_offload(mvm))) 667 return -EINVAL; 668 669 return iwl_mvm_send_cmd(mvm, &cmd); 670 } 671 672 /** 673 * iwl_mvm_update_smps - Get a request to change the SMPS mode 674 * @req_type: The part of the driver who call for a change. 675 * @smps_requests: The request to change the SMPS mode. 676 * 677 * Get a requst to change the SMPS mode, 678 * and change it according to all other requests in the driver. 679 */ 680 void iwl_mvm_update_smps(struct iwl_mvm *mvm, struct ieee80211_vif *vif, 681 enum iwl_mvm_smps_type_request req_type, 682 enum ieee80211_smps_mode smps_request) 683 { 684 struct iwl_mvm_vif *mvmvif; 685 enum ieee80211_smps_mode smps_mode; 686 int i; 687 688 lockdep_assert_held(&mvm->mutex); 689 690 /* SMPS is irrelevant for NICs that don't have at least 2 RX antenna */ 691 if (num_of_ant(iwl_mvm_get_valid_rx_ant(mvm)) == 1) 692 return; 693 694 if (vif->type == NL80211_IFTYPE_AP) 695 smps_mode = IEEE80211_SMPS_OFF; 696 else 697 smps_mode = IEEE80211_SMPS_AUTOMATIC; 698 699 mvmvif = iwl_mvm_vif_from_mac80211(vif); 700 mvmvif->smps_requests[req_type] = smps_request; 701 for (i = 0; i < NUM_IWL_MVM_SMPS_REQ; i++) { 702 if (mvmvif->smps_requests[i] == IEEE80211_SMPS_STATIC) { 703 smps_mode = IEEE80211_SMPS_STATIC; 704 break; 705 } 706 if (mvmvif->smps_requests[i] == IEEE80211_SMPS_DYNAMIC) 707 smps_mode = IEEE80211_SMPS_DYNAMIC; 708 } 709 710 ieee80211_request_smps(vif, smps_mode); 711 } 712 713 int iwl_mvm_request_statistics(struct iwl_mvm *mvm, bool clear) 714 { 715 struct iwl_statistics_cmd scmd = { 716 .flags = clear ? cpu_to_le32(IWL_STATISTICS_FLG_CLEAR) : 0, 717 }; 718 struct iwl_host_cmd cmd = { 719 .id = STATISTICS_CMD, 720 .len[0] = sizeof(scmd), 721 .data[0] = &scmd, 722 .flags = CMD_WANT_SKB, 723 }; 724 int ret; 725 726 ret = iwl_mvm_send_cmd(mvm, &cmd); 727 if (ret) 728 return ret; 729 730 iwl_mvm_handle_rx_statistics(mvm, cmd.resp_pkt); 731 iwl_free_resp(&cmd); 732 733 if (clear) 734 iwl_mvm_accu_radio_stats(mvm); 735 736 return 0; 737 } 738 739 void iwl_mvm_accu_radio_stats(struct iwl_mvm *mvm) 740 { 741 mvm->accu_radio_stats.rx_time += mvm->radio_stats.rx_time; 742 mvm->accu_radio_stats.tx_time += mvm->radio_stats.tx_time; 743 mvm->accu_radio_stats.on_time_rf += mvm->radio_stats.on_time_rf; 744 mvm->accu_radio_stats.on_time_scan += mvm->radio_stats.on_time_scan; 745 } 746 747 static void iwl_mvm_diversity_iter(void *_data, u8 *mac, 748 struct ieee80211_vif *vif) 749 { 750 struct iwl_mvm_vif *mvmvif = iwl_mvm_vif_from_mac80211(vif); 751 bool *result = _data; 752 int i; 753 754 for (i = 0; i < NUM_IWL_MVM_SMPS_REQ; i++) { 755 if (mvmvif->smps_requests[i] == IEEE80211_SMPS_STATIC || 756 mvmvif->smps_requests[i] == IEEE80211_SMPS_DYNAMIC) 757 *result = false; 758 } 759 } 760 761 bool iwl_mvm_rx_diversity_allowed(struct iwl_mvm *mvm) 762 { 763 bool result = true; 764 765 lockdep_assert_held(&mvm->mutex); 766 767 if (num_of_ant(iwl_mvm_get_valid_rx_ant(mvm)) == 1) 768 return false; 769 770 if (mvm->cfg->rx_with_siso_diversity) 771 return false; 772 773 ieee80211_iterate_active_interfaces_atomic( 774 mvm->hw, IEEE80211_IFACE_ITER_NORMAL, 775 iwl_mvm_diversity_iter, &result); 776 777 return result; 778 } 779 780 void iwl_mvm_send_low_latency_cmd(struct iwl_mvm *mvm, 781 bool low_latency, u16 mac_id) 782 { 783 struct iwl_mac_low_latency_cmd cmd = { 784 .mac_id = cpu_to_le32(mac_id) 785 }; 786 787 if (!fw_has_capa(&mvm->fw->ucode_capa, 788 IWL_UCODE_TLV_CAPA_DYNAMIC_QUOTA)) 789 return; 790 791 if (low_latency) { 792 /* currently we don't care about the direction */ 793 cmd.low_latency_rx = 1; 794 cmd.low_latency_tx = 1; 795 } 796 797 if (iwl_mvm_send_cmd_pdu(mvm, iwl_cmd_id(LOW_LATENCY_CMD, 798 MAC_CONF_GROUP, 0), 799 0, sizeof(cmd), &cmd)) 800 IWL_ERR(mvm, "Failed to send low latency command\n"); 801 } 802 803 int iwl_mvm_update_low_latency(struct iwl_mvm *mvm, struct ieee80211_vif *vif, 804 bool low_latency, 805 enum iwl_mvm_low_latency_cause cause) 806 { 807 struct iwl_mvm_vif *mvmvif = iwl_mvm_vif_from_mac80211(vif); 808 int res; 809 bool prev; 810 811 lockdep_assert_held(&mvm->mutex); 812 813 prev = iwl_mvm_vif_low_latency(mvmvif); 814 iwl_mvm_vif_set_low_latency(mvmvif, low_latency, cause); 815 816 low_latency = iwl_mvm_vif_low_latency(mvmvif); 817 818 if (low_latency == prev) 819 return 0; 820 821 iwl_mvm_send_low_latency_cmd(mvm, low_latency, mvmvif->id); 822 823 res = iwl_mvm_update_quotas(mvm, false, NULL); 824 if (res) 825 return res; 826 827 iwl_mvm_bt_coex_vif_change(mvm); 828 829 return iwl_mvm_power_update_mac(mvm); 830 } 831 832 struct iwl_mvm_low_latency_iter { 833 bool result; 834 bool result_per_band[NUM_NL80211_BANDS]; 835 }; 836 837 static void iwl_mvm_ll_iter(void *_data, u8 *mac, struct ieee80211_vif *vif) 838 { 839 struct iwl_mvm_low_latency_iter *result = _data; 840 struct iwl_mvm_vif *mvmvif = iwl_mvm_vif_from_mac80211(vif); 841 enum nl80211_band band; 842 843 if (iwl_mvm_vif_low_latency(mvmvif)) { 844 result->result = true; 845 846 if (!mvmvif->phy_ctxt) 847 return; 848 849 band = mvmvif->phy_ctxt->channel->band; 850 result->result_per_band[band] = true; 851 } 852 } 853 854 bool iwl_mvm_low_latency(struct iwl_mvm *mvm) 855 { 856 struct iwl_mvm_low_latency_iter data = {}; 857 858 ieee80211_iterate_active_interfaces_atomic( 859 mvm->hw, IEEE80211_IFACE_ITER_NORMAL, 860 iwl_mvm_ll_iter, &data); 861 862 return data.result; 863 } 864 865 bool iwl_mvm_low_latency_band(struct iwl_mvm *mvm, enum nl80211_band band) 866 { 867 struct iwl_mvm_low_latency_iter data = {}; 868 869 ieee80211_iterate_active_interfaces_atomic( 870 mvm->hw, IEEE80211_IFACE_ITER_NORMAL, 871 iwl_mvm_ll_iter, &data); 872 873 return data.result_per_band[band]; 874 } 875 876 struct iwl_bss_iter_data { 877 struct ieee80211_vif *vif; 878 bool error; 879 }; 880 881 static void iwl_mvm_bss_iface_iterator(void *_data, u8 *mac, 882 struct ieee80211_vif *vif) 883 { 884 struct iwl_bss_iter_data *data = _data; 885 886 if (vif->type != NL80211_IFTYPE_STATION || vif->p2p) 887 return; 888 889 if (data->vif) { 890 data->error = true; 891 return; 892 } 893 894 data->vif = vif; 895 } 896 897 struct ieee80211_vif *iwl_mvm_get_bss_vif(struct iwl_mvm *mvm) 898 { 899 struct iwl_bss_iter_data bss_iter_data = {}; 900 901 ieee80211_iterate_active_interfaces_atomic( 902 mvm->hw, IEEE80211_IFACE_ITER_NORMAL, 903 iwl_mvm_bss_iface_iterator, &bss_iter_data); 904 905 if (bss_iter_data.error) { 906 IWL_ERR(mvm, "More than one managed interface active!\n"); 907 return ERR_PTR(-EINVAL); 908 } 909 910 return bss_iter_data.vif; 911 } 912 913 struct iwl_sta_iter_data { 914 bool assoc; 915 }; 916 917 static void iwl_mvm_sta_iface_iterator(void *_data, u8 *mac, 918 struct ieee80211_vif *vif) 919 { 920 struct iwl_sta_iter_data *data = _data; 921 922 if (vif->type != NL80211_IFTYPE_STATION) 923 return; 924 925 if (vif->bss_conf.assoc) 926 data->assoc = true; 927 } 928 929 bool iwl_mvm_is_vif_assoc(struct iwl_mvm *mvm) 930 { 931 struct iwl_sta_iter_data data = { 932 .assoc = false, 933 }; 934 935 ieee80211_iterate_active_interfaces_atomic(mvm->hw, 936 IEEE80211_IFACE_ITER_NORMAL, 937 iwl_mvm_sta_iface_iterator, 938 &data); 939 return data.assoc; 940 } 941 942 unsigned int iwl_mvm_get_wd_timeout(struct iwl_mvm *mvm, 943 struct ieee80211_vif *vif, 944 bool tdls, bool cmd_q) 945 { 946 struct iwl_fw_dbg_trigger_tlv *trigger; 947 struct iwl_fw_dbg_trigger_txq_timer *txq_timer; 948 unsigned int default_timeout = 949 cmd_q ? IWL_DEF_WD_TIMEOUT : mvm->cfg->base_params->wd_timeout; 950 951 if (!iwl_fw_dbg_trigger_enabled(mvm->fw, FW_DBG_TRIGGER_TXQ_TIMERS)) { 952 /* 953 * We can't know when the station is asleep or awake, so we 954 * must disable the queue hang detection. 955 */ 956 if (fw_has_capa(&mvm->fw->ucode_capa, 957 IWL_UCODE_TLV_CAPA_STA_PM_NOTIF) && 958 vif && vif->type == NL80211_IFTYPE_AP) 959 return IWL_WATCHDOG_DISABLED; 960 return iwlmvm_mod_params.tfd_q_hang_detect ? 961 default_timeout : IWL_WATCHDOG_DISABLED; 962 } 963 964 trigger = iwl_fw_dbg_get_trigger(mvm->fw, FW_DBG_TRIGGER_TXQ_TIMERS); 965 txq_timer = (void *)trigger->data; 966 967 if (tdls) 968 return le32_to_cpu(txq_timer->tdls); 969 970 if (cmd_q) 971 return le32_to_cpu(txq_timer->command_queue); 972 973 if (WARN_ON(!vif)) 974 return default_timeout; 975 976 switch (ieee80211_vif_type_p2p(vif)) { 977 case NL80211_IFTYPE_ADHOC: 978 return le32_to_cpu(txq_timer->ibss); 979 case NL80211_IFTYPE_STATION: 980 return le32_to_cpu(txq_timer->bss); 981 case NL80211_IFTYPE_AP: 982 return le32_to_cpu(txq_timer->softap); 983 case NL80211_IFTYPE_P2P_CLIENT: 984 return le32_to_cpu(txq_timer->p2p_client); 985 case NL80211_IFTYPE_P2P_GO: 986 return le32_to_cpu(txq_timer->p2p_go); 987 case NL80211_IFTYPE_P2P_DEVICE: 988 return le32_to_cpu(txq_timer->p2p_device); 989 case NL80211_IFTYPE_MONITOR: 990 return default_timeout; 991 default: 992 WARN_ON(1); 993 return mvm->cfg->base_params->wd_timeout; 994 } 995 } 996 997 void iwl_mvm_connection_loss(struct iwl_mvm *mvm, struct ieee80211_vif *vif, 998 const char *errmsg) 999 { 1000 struct iwl_fw_dbg_trigger_tlv *trig; 1001 struct iwl_fw_dbg_trigger_mlme *trig_mlme; 1002 1003 trig = iwl_fw_dbg_trigger_on(&mvm->fwrt, ieee80211_vif_to_wdev(vif), 1004 FW_DBG_TRIGGER_MLME); 1005 if (!trig) 1006 goto out; 1007 1008 trig_mlme = (void *)trig->data; 1009 1010 if (trig_mlme->stop_connection_loss && 1011 --trig_mlme->stop_connection_loss) 1012 goto out; 1013 1014 iwl_fw_dbg_collect_trig(&mvm->fwrt, trig, "%s", errmsg); 1015 1016 out: 1017 ieee80211_connection_loss(vif); 1018 } 1019 1020 void iwl_mvm_event_frame_timeout_callback(struct iwl_mvm *mvm, 1021 struct ieee80211_vif *vif, 1022 const struct ieee80211_sta *sta, 1023 u16 tid) 1024 { 1025 struct iwl_fw_dbg_trigger_tlv *trig; 1026 struct iwl_fw_dbg_trigger_ba *ba_trig; 1027 1028 trig = iwl_fw_dbg_trigger_on(&mvm->fwrt, ieee80211_vif_to_wdev(vif), 1029 FW_DBG_TRIGGER_BA); 1030 if (!trig) 1031 return; 1032 1033 ba_trig = (void *)trig->data; 1034 1035 if (!(le16_to_cpu(ba_trig->frame_timeout) & BIT(tid))) 1036 return; 1037 1038 iwl_fw_dbg_collect_trig(&mvm->fwrt, trig, 1039 "Frame from %pM timed out, tid %d", 1040 sta->addr, tid); 1041 } 1042 1043 u8 iwl_mvm_tcm_load_percentage(u32 airtime, u32 elapsed) 1044 { 1045 if (!elapsed) 1046 return 0; 1047 1048 return (100 * airtime / elapsed) / USEC_PER_MSEC; 1049 } 1050 1051 static enum iwl_mvm_traffic_load 1052 iwl_mvm_tcm_load(struct iwl_mvm *mvm, u32 airtime, unsigned long elapsed) 1053 { 1054 u8 load = iwl_mvm_tcm_load_percentage(airtime, elapsed); 1055 1056 if (load > IWL_MVM_TCM_LOAD_HIGH_THRESH) 1057 return IWL_MVM_TRAFFIC_HIGH; 1058 if (load > IWL_MVM_TCM_LOAD_MEDIUM_THRESH) 1059 return IWL_MVM_TRAFFIC_MEDIUM; 1060 1061 return IWL_MVM_TRAFFIC_LOW; 1062 } 1063 1064 struct iwl_mvm_tcm_iter_data { 1065 struct iwl_mvm *mvm; 1066 bool any_sent; 1067 }; 1068 1069 static void iwl_mvm_tcm_iter(void *_data, u8 *mac, struct ieee80211_vif *vif) 1070 { 1071 struct iwl_mvm_tcm_iter_data *data = _data; 1072 struct iwl_mvm *mvm = data->mvm; 1073 struct iwl_mvm_vif *mvmvif = iwl_mvm_vif_from_mac80211(vif); 1074 bool low_latency, prev = mvmvif->low_latency & LOW_LATENCY_TRAFFIC; 1075 1076 if (mvmvif->id >= NUM_MAC_INDEX_DRIVER) 1077 return; 1078 1079 low_latency = mvm->tcm.result.low_latency[mvmvif->id]; 1080 1081 if (!mvm->tcm.result.change[mvmvif->id] && 1082 prev == low_latency) { 1083 iwl_mvm_update_quotas(mvm, false, NULL); 1084 return; 1085 } 1086 1087 if (prev != low_latency) { 1088 /* this sends traffic load and updates quota as well */ 1089 iwl_mvm_update_low_latency(mvm, vif, low_latency, 1090 LOW_LATENCY_TRAFFIC); 1091 } else { 1092 iwl_mvm_update_quotas(mvm, false, NULL); 1093 } 1094 1095 data->any_sent = true; 1096 } 1097 1098 static void iwl_mvm_tcm_results(struct iwl_mvm *mvm) 1099 { 1100 struct iwl_mvm_tcm_iter_data data = { 1101 .mvm = mvm, 1102 .any_sent = false, 1103 }; 1104 1105 mutex_lock(&mvm->mutex); 1106 1107 ieee80211_iterate_active_interfaces( 1108 mvm->hw, IEEE80211_IFACE_ITER_NORMAL, 1109 iwl_mvm_tcm_iter, &data); 1110 1111 if (fw_has_capa(&mvm->fw->ucode_capa, IWL_UCODE_TLV_CAPA_UMAC_SCAN)) 1112 iwl_mvm_config_scan(mvm); 1113 1114 mutex_unlock(&mvm->mutex); 1115 } 1116 1117 static void iwl_mvm_tcm_uapsd_nonagg_detected_wk(struct work_struct *wk) 1118 { 1119 struct iwl_mvm *mvm; 1120 struct iwl_mvm_vif *mvmvif; 1121 struct ieee80211_vif *vif; 1122 1123 mvmvif = container_of(wk, struct iwl_mvm_vif, 1124 uapsd_nonagg_detected_wk.work); 1125 vif = container_of((void *)mvmvif, struct ieee80211_vif, drv_priv); 1126 mvm = mvmvif->mvm; 1127 1128 if (mvm->tcm.data[mvmvif->id].opened_rx_ba_sessions) 1129 return; 1130 1131 /* remember that this AP is broken */ 1132 memcpy(mvm->uapsd_noagg_bssids[mvm->uapsd_noagg_bssid_write_idx].addr, 1133 vif->bss_conf.bssid, ETH_ALEN); 1134 mvm->uapsd_noagg_bssid_write_idx++; 1135 if (mvm->uapsd_noagg_bssid_write_idx >= IWL_MVM_UAPSD_NOAGG_LIST_LEN) 1136 mvm->uapsd_noagg_bssid_write_idx = 0; 1137 1138 iwl_mvm_connection_loss(mvm, vif, 1139 "AP isn't using AMPDU with uAPSD enabled"); 1140 } 1141 1142 static void iwl_mvm_uapsd_agg_disconnect(struct iwl_mvm *mvm, 1143 struct ieee80211_vif *vif) 1144 { 1145 struct iwl_mvm_vif *mvmvif = iwl_mvm_vif_from_mac80211(vif); 1146 1147 if (vif->type != NL80211_IFTYPE_STATION) 1148 return; 1149 1150 if (!vif->bss_conf.assoc) 1151 return; 1152 1153 if (!mvmvif->queue_params[IEEE80211_AC_VO].uapsd && 1154 !mvmvif->queue_params[IEEE80211_AC_VI].uapsd && 1155 !mvmvif->queue_params[IEEE80211_AC_BE].uapsd && 1156 !mvmvif->queue_params[IEEE80211_AC_BK].uapsd) 1157 return; 1158 1159 if (mvm->tcm.data[mvmvif->id].uapsd_nonagg_detect.detected) 1160 return; 1161 1162 mvm->tcm.data[mvmvif->id].uapsd_nonagg_detect.detected = true; 1163 IWL_INFO(mvm, 1164 "detected AP should do aggregation but isn't, likely due to U-APSD\n"); 1165 schedule_delayed_work(&mvmvif->uapsd_nonagg_detected_wk, 15 * HZ); 1166 } 1167 1168 static void iwl_mvm_check_uapsd_agg_expected_tpt(struct iwl_mvm *mvm, 1169 unsigned int elapsed, 1170 int mac) 1171 { 1172 u64 bytes = mvm->tcm.data[mac].uapsd_nonagg_detect.rx_bytes; 1173 u64 tpt; 1174 unsigned long rate; 1175 struct ieee80211_vif *vif; 1176 1177 rate = ewma_rate_read(&mvm->tcm.data[mac].uapsd_nonagg_detect.rate); 1178 1179 if (!rate || mvm->tcm.data[mac].opened_rx_ba_sessions || 1180 mvm->tcm.data[mac].uapsd_nonagg_detect.detected) 1181 return; 1182 1183 if (iwl_mvm_has_new_rx_api(mvm)) { 1184 tpt = 8 * bytes; /* kbps */ 1185 do_div(tpt, elapsed); 1186 rate *= 1000; /* kbps */ 1187 if (tpt < 22 * rate / 100) 1188 return; 1189 } else { 1190 /* 1191 * the rate here is actually the threshold, in 100Kbps units, 1192 * so do the needed conversion from bytes to 100Kbps: 1193 * 100kb = bits / (100 * 1000), 1194 * 100kbps = 100kb / (msecs / 1000) == 1195 * (bits / (100 * 1000)) / (msecs / 1000) == 1196 * bits / (100 * msecs) 1197 */ 1198 tpt = (8 * bytes); 1199 do_div(tpt, elapsed * 100); 1200 if (tpt < rate) 1201 return; 1202 } 1203 1204 rcu_read_lock(); 1205 vif = rcu_dereference(mvm->vif_id_to_mac[mac]); 1206 if (vif) 1207 iwl_mvm_uapsd_agg_disconnect(mvm, vif); 1208 rcu_read_unlock(); 1209 } 1210 1211 static void iwl_mvm_tcm_iterator(void *_data, u8 *mac, 1212 struct ieee80211_vif *vif) 1213 { 1214 struct iwl_mvm_vif *mvmvif = iwl_mvm_vif_from_mac80211(vif); 1215 u32 *band = _data; 1216 1217 if (!mvmvif->phy_ctxt) 1218 return; 1219 1220 band[mvmvif->id] = mvmvif->phy_ctxt->channel->band; 1221 } 1222 1223 static unsigned long iwl_mvm_calc_tcm_stats(struct iwl_mvm *mvm, 1224 unsigned long ts, 1225 bool handle_uapsd) 1226 { 1227 unsigned int elapsed = jiffies_to_msecs(ts - mvm->tcm.ts); 1228 unsigned int uapsd_elapsed = 1229 jiffies_to_msecs(ts - mvm->tcm.uapsd_nonagg_ts); 1230 u32 total_airtime = 0; 1231 u32 band_airtime[NUM_NL80211_BANDS] = {0}; 1232 u32 band[NUM_MAC_INDEX_DRIVER] = {0}; 1233 int ac, mac, i; 1234 bool low_latency = false; 1235 enum iwl_mvm_traffic_load load, band_load; 1236 bool handle_ll = time_after(ts, mvm->tcm.ll_ts + MVM_LL_PERIOD); 1237 1238 if (handle_ll) 1239 mvm->tcm.ll_ts = ts; 1240 if (handle_uapsd) 1241 mvm->tcm.uapsd_nonagg_ts = ts; 1242 1243 mvm->tcm.result.elapsed = elapsed; 1244 1245 ieee80211_iterate_active_interfaces_atomic(mvm->hw, 1246 IEEE80211_IFACE_ITER_NORMAL, 1247 iwl_mvm_tcm_iterator, 1248 &band); 1249 1250 for (mac = 0; mac < NUM_MAC_INDEX_DRIVER; mac++) { 1251 struct iwl_mvm_tcm_mac *mdata = &mvm->tcm.data[mac]; 1252 u32 vo_vi_pkts = 0; 1253 u32 airtime = mdata->rx.airtime + mdata->tx.airtime; 1254 1255 total_airtime += airtime; 1256 band_airtime[band[mac]] += airtime; 1257 1258 load = iwl_mvm_tcm_load(mvm, airtime, elapsed); 1259 mvm->tcm.result.change[mac] = load != mvm->tcm.result.load[mac]; 1260 mvm->tcm.result.load[mac] = load; 1261 mvm->tcm.result.airtime[mac] = airtime; 1262 1263 for (ac = IEEE80211_AC_VO; ac <= IEEE80211_AC_VI; ac++) 1264 vo_vi_pkts += mdata->rx.pkts[ac] + 1265 mdata->tx.pkts[ac]; 1266 1267 /* enable immediately with enough packets but defer disabling */ 1268 if (vo_vi_pkts > IWL_MVM_TCM_LOWLAT_ENABLE_THRESH) 1269 mvm->tcm.result.low_latency[mac] = true; 1270 else if (handle_ll) 1271 mvm->tcm.result.low_latency[mac] = false; 1272 1273 if (handle_ll) { 1274 /* clear old data */ 1275 memset(&mdata->rx.pkts, 0, sizeof(mdata->rx.pkts)); 1276 memset(&mdata->tx.pkts, 0, sizeof(mdata->tx.pkts)); 1277 } 1278 low_latency |= mvm->tcm.result.low_latency[mac]; 1279 1280 if (!mvm->tcm.result.low_latency[mac] && handle_uapsd) 1281 iwl_mvm_check_uapsd_agg_expected_tpt(mvm, uapsd_elapsed, 1282 mac); 1283 /* clear old data */ 1284 if (handle_uapsd) 1285 mdata->uapsd_nonagg_detect.rx_bytes = 0; 1286 memset(&mdata->rx.airtime, 0, sizeof(mdata->rx.airtime)); 1287 memset(&mdata->tx.airtime, 0, sizeof(mdata->tx.airtime)); 1288 } 1289 1290 load = iwl_mvm_tcm_load(mvm, total_airtime, elapsed); 1291 mvm->tcm.result.global_change = load != mvm->tcm.result.global_load; 1292 mvm->tcm.result.global_load = load; 1293 1294 for (i = 0; i < NUM_NL80211_BANDS; i++) { 1295 band_load = iwl_mvm_tcm_load(mvm, band_airtime[i], elapsed); 1296 mvm->tcm.result.band_load[i] = band_load; 1297 } 1298 1299 /* 1300 * If the current load isn't low we need to force re-evaluation 1301 * in the TCM period, so that we can return to low load if there 1302 * was no traffic at all (and thus iwl_mvm_recalc_tcm didn't get 1303 * triggered by traffic). 1304 */ 1305 if (load != IWL_MVM_TRAFFIC_LOW) 1306 return MVM_TCM_PERIOD; 1307 /* 1308 * If low-latency is active we need to force re-evaluation after 1309 * (the longer) MVM_LL_PERIOD, so that we can disable low-latency 1310 * when there's no traffic at all. 1311 */ 1312 if (low_latency) 1313 return MVM_LL_PERIOD; 1314 /* 1315 * Otherwise, we don't need to run the work struct because we're 1316 * in the default "idle" state - traffic indication is low (which 1317 * also covers the "no traffic" case) and low-latency is disabled 1318 * so there's no state that may need to be disabled when there's 1319 * no traffic at all. 1320 * 1321 * Note that this has no impact on the regular scheduling of the 1322 * updates triggered by traffic - those happen whenever one of the 1323 * two timeouts expire (if there's traffic at all.) 1324 */ 1325 return 0; 1326 } 1327 1328 void iwl_mvm_recalc_tcm(struct iwl_mvm *mvm) 1329 { 1330 unsigned long ts = jiffies; 1331 bool handle_uapsd = 1332 time_after(ts, mvm->tcm.uapsd_nonagg_ts + 1333 msecs_to_jiffies(IWL_MVM_UAPSD_NONAGG_PERIOD)); 1334 1335 spin_lock(&mvm->tcm.lock); 1336 if (mvm->tcm.paused || !time_after(ts, mvm->tcm.ts + MVM_TCM_PERIOD)) { 1337 spin_unlock(&mvm->tcm.lock); 1338 return; 1339 } 1340 spin_unlock(&mvm->tcm.lock); 1341 1342 if (handle_uapsd && iwl_mvm_has_new_rx_api(mvm)) { 1343 mutex_lock(&mvm->mutex); 1344 if (iwl_mvm_request_statistics(mvm, true)) 1345 handle_uapsd = false; 1346 mutex_unlock(&mvm->mutex); 1347 } 1348 1349 spin_lock(&mvm->tcm.lock); 1350 /* re-check if somebody else won the recheck race */ 1351 if (!mvm->tcm.paused && time_after(ts, mvm->tcm.ts + MVM_TCM_PERIOD)) { 1352 /* calculate statistics */ 1353 unsigned long work_delay = iwl_mvm_calc_tcm_stats(mvm, ts, 1354 handle_uapsd); 1355 1356 /* the memset needs to be visible before the timestamp */ 1357 smp_mb(); 1358 mvm->tcm.ts = ts; 1359 if (work_delay) 1360 schedule_delayed_work(&mvm->tcm.work, work_delay); 1361 } 1362 spin_unlock(&mvm->tcm.lock); 1363 1364 iwl_mvm_tcm_results(mvm); 1365 } 1366 1367 void iwl_mvm_tcm_work(struct work_struct *work) 1368 { 1369 struct delayed_work *delayed_work = to_delayed_work(work); 1370 struct iwl_mvm *mvm = container_of(delayed_work, struct iwl_mvm, 1371 tcm.work); 1372 1373 iwl_mvm_recalc_tcm(mvm); 1374 } 1375 1376 void iwl_mvm_pause_tcm(struct iwl_mvm *mvm, bool with_cancel) 1377 { 1378 spin_lock_bh(&mvm->tcm.lock); 1379 mvm->tcm.paused = true; 1380 spin_unlock_bh(&mvm->tcm.lock); 1381 if (with_cancel) 1382 cancel_delayed_work_sync(&mvm->tcm.work); 1383 } 1384 1385 void iwl_mvm_resume_tcm(struct iwl_mvm *mvm) 1386 { 1387 int mac; 1388 bool low_latency = false; 1389 1390 spin_lock_bh(&mvm->tcm.lock); 1391 mvm->tcm.ts = jiffies; 1392 mvm->tcm.ll_ts = jiffies; 1393 for (mac = 0; mac < NUM_MAC_INDEX_DRIVER; mac++) { 1394 struct iwl_mvm_tcm_mac *mdata = &mvm->tcm.data[mac]; 1395 1396 memset(&mdata->rx.pkts, 0, sizeof(mdata->rx.pkts)); 1397 memset(&mdata->tx.pkts, 0, sizeof(mdata->tx.pkts)); 1398 memset(&mdata->rx.airtime, 0, sizeof(mdata->rx.airtime)); 1399 memset(&mdata->tx.airtime, 0, sizeof(mdata->tx.airtime)); 1400 1401 if (mvm->tcm.result.low_latency[mac]) 1402 low_latency = true; 1403 } 1404 /* The TCM data needs to be reset before "paused" flag changes */ 1405 smp_mb(); 1406 mvm->tcm.paused = false; 1407 1408 /* 1409 * if the current load is not low or low latency is active, force 1410 * re-evaluation to cover the case of no traffic. 1411 */ 1412 if (mvm->tcm.result.global_load > IWL_MVM_TRAFFIC_LOW) 1413 schedule_delayed_work(&mvm->tcm.work, MVM_TCM_PERIOD); 1414 else if (low_latency) 1415 schedule_delayed_work(&mvm->tcm.work, MVM_LL_PERIOD); 1416 1417 spin_unlock_bh(&mvm->tcm.lock); 1418 } 1419 1420 void iwl_mvm_tcm_add_vif(struct iwl_mvm *mvm, struct ieee80211_vif *vif) 1421 { 1422 struct iwl_mvm_vif *mvmvif = iwl_mvm_vif_from_mac80211(vif); 1423 1424 INIT_DELAYED_WORK(&mvmvif->uapsd_nonagg_detected_wk, 1425 iwl_mvm_tcm_uapsd_nonagg_detected_wk); 1426 } 1427 1428 void iwl_mvm_tcm_rm_vif(struct iwl_mvm *mvm, struct ieee80211_vif *vif) 1429 { 1430 struct iwl_mvm_vif *mvmvif = iwl_mvm_vif_from_mac80211(vif); 1431 1432 cancel_delayed_work_sync(&mvmvif->uapsd_nonagg_detected_wk); 1433 } 1434 1435 u32 iwl_mvm_get_systime(struct iwl_mvm *mvm) 1436 { 1437 u32 reg_addr = DEVICE_SYSTEM_TIME_REG; 1438 1439 if (mvm->trans->cfg->device_family >= IWL_DEVICE_FAMILY_22000 && 1440 mvm->trans->cfg->gp2_reg_addr) 1441 reg_addr = mvm->trans->cfg->gp2_reg_addr; 1442 1443 return iwl_read_prph(mvm->trans, reg_addr); 1444 } 1445 1446 void iwl_mvm_get_sync_time(struct iwl_mvm *mvm, u32 *gp2, u64 *boottime) 1447 { 1448 bool ps_disabled; 1449 1450 lockdep_assert_held(&mvm->mutex); 1451 1452 /* Disable power save when reading GP2 */ 1453 ps_disabled = mvm->ps_disabled; 1454 if (!ps_disabled) { 1455 mvm->ps_disabled = true; 1456 iwl_mvm_power_update_device(mvm); 1457 } 1458 1459 *gp2 = iwl_mvm_get_systime(mvm); 1460 *boottime = ktime_get_boottime_ns(); 1461 1462 if (!ps_disabled) { 1463 mvm->ps_disabled = ps_disabled; 1464 iwl_mvm_power_update_device(mvm); 1465 } 1466 } 1467